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Abstract

The aim of this paper is to derive energy estimates for smistiof the Cauchy
problem for the Klein—Gordon type equatiog — Au + m(t)?u = 0. The coefficient
m is given bym(t)? = A(t)? + p(t) with a decreasing, smooth shape functiomnd
an oscillating, smooth and bounded perturbation funcfioWe study under which
assumptions for. and p one can expect results about a generalization of energy
conservation. The main theorems of this note deal witbelonging toCM, M > 2,
and m belonging to the Gevrey class®, s > 1.

1. Introduction

This note deals with the following Cauchy problem of Kleiner@on type equation:

(1.1) {(33 — A +m(t)?)u(t, x) =0, t, X) € (0, 00) x R",

(U(O! X)! (atu)(o! X)) = (UO(X)1 Ul(X)), X € Rny

wherem(t) is a positive function and\ = E?:lai- Furthermore, we assume thaf €

H' and u; € L2. By partial Fourier transformation with respect to the spaariable
X problem (1.1) is rewritten as

12) {(83 + {E)n)o(t, €) =0, (t, £) € (0, 00) xR™,
' (v(0,£), (4v)(0, €)) = (vo(§), v1(§)), & €R",

where (§)my) 1= V/I§]% + m(t)?, v(t, §) = O(t, §) and f (&) denotes the partial Fourier
transformation off (x) with respect tox.
Let us introduce an energy functional to the solution of \hg

(1.3) £t §) = S0t O + (€1 olt, O

The aim of this paper is to derive some conditions fiig(t) in order to get some uni-
form estimates o€y(v)(t, &) with respect to { £) by the initial energy&y(v)(0, &).
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If m(t) is a constant, then we immediately have the property ofggneonserva-
tion of microlocal version, that is

(1.4) Eo(v)(t, &) = Eo(v)(0, §)

for all time t. Moreover, we define an enerdyo(u) to the solutions of (1.1) by
1
Eo(u)(t) := S(l3ut, DN+ 1vu(t, )7 + mt)?|ut, )13,

whereV = (dx,,...,d,) and | -| denotes the usudl? norm inR". Then by Plancherel’s
equality the estimate (1.4) implies immediately the enetcgyservation in the usual
meaning:

Eo(u)(t) = Eo(u)(0)

for all time t.

However, such an identity cannot be expected in general doable m(t). Thus
we introduce in a natural way the following partial estinsate (1.4), which is called
generalized energy conservatiga- GEC):

(1.5) E)(, §) ~ £(v)(0, )

for a suitable energy function&(v) to the solution of (1.2).

Throughout the papef ~ g denotes that the two positive functiorfsand g are
uniformly equivalent. More precisely, we introduce the tiotass f < g and f > g
if there exist two positive constants;, C, such that two positive function$ and g
uniformly satisfy f < C,;g and f > C,g, respectively. Thenf ~ g denotes thatf and
g satisfy both of the estimates < g and f > g.

One of the trivial conditions ofm(t) for (1.5) is thatm’/m € L. Then we easily
verify that (1.5) for€(v) = &(v) holds true. On the other hand, (1.5) does not hold in
general ifm'/m ¢ L!; we will consider such a counter-example in Example 2.3.

However, one can expect a result about (1.5) evem'jfm ¢ L under some ad-
ditional assumptions ton. Let us consider a function € C? satisfying the following
properties for any large time

/ ’ IYORY
(L6) M) =0, ¥ <0, M) 5ckx(t)(m)

for k =1, 2, whereA(t) := jg A(r) dz. Moreover, let the functionaf(v) be given by

1
(E)r

(1.7) EW)(t, §) = Eo(v)(t, €).



GENERALIZED ENERGY CONSERVATION FOR KLEIN—GORDON EQUATIONS 299

Then it is proved in [1] the following result:

Theorem 1.1([1]). Let m(t) = A(t), where 1 satisfies(1.6). If

(1.8) % = o(A(t))

as t— oo, then £(v) satisfies(1.5).

REMARK 1.1. We see from Theorem 1.1 thé&fv) defined by (1.7) can be an
appropriate energy of (1.2) for the generalized energy emasion (1.5). On the other
hand, it is also proved in [1] that (1.5) does not hold in gahdr E(v) = &Ey(v).

Let us defineE(u)(t) by

EWO:= [ o) 8 de.
]Rn
Then by Theorem 1.1 we immediately have the following cagtl

Corollary 1.1. Let mt) = A(t). Under the same assumptions A¢) as in The-
orem 1.1we have

1.9) E(u)(t) ~ E(u)(0)

and

A(t)Eo(u)(0) S Eo(u)(t) < Eo(u)(0).

ExampLE 1.1. Letm(t) = A(t) = (141t)™ with O < « < 1. Then the conditions
to Theorem 1.1 are satisfied.

In contrast of (1.1), the weaker estimate@)?Eq(u)(0) < Eo(u)(t) < Eo(u)(0) is
trivial by Ej(u)(t) = A'()A®)[lu(, I|I? = (logA(t)2) Eo(u)(t) and Gronwall’s inequality.
Generally, we can expect only the weaker estimatenfi@) = A(t) = (1 + t)~* with
a > 1; for this reason it is called tham(t) = (14t)™ is an effective and non-effective
mass for 0< o < 1 anda > 1, respectively. Indeedy = 1 is the critical case and the
situation is more complicate as follows.

We restrict ourselves to the scale-invariant Klein—Gordquation (1.1) wittm(t) =
mo(1 + t)~, wheremy is a positive constant. The decreasing functiordoes not sat-
isfy (1.8). Nevertheless, in [2] there is a result about gnegstimates with respect to
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a non-standard enerdym,(u) depending essentially on the constamt Let En,, (u) be
given by

Em, (U)(t) := %(Ili?tu(t, DIF+1Vut, )12+ w®?utt, -)I?)

with
1+1)" m s 1
1 O 4’
1
p? = { @+ A+ In@+ 1) mE =7,
(1 4 )~ V/1-4m m2 € (o, %)

The scale-invariance of the Klein—Gordon equation (1.2hwi(t) = me(1+t)~* allows

us to carry out some transformations to a confluent hyperga@requation which de-
pends on the parameteny as introduced in [4]. Exact solution representations imply
the following estimates similar to those stated in Corgllarl.

Theorem 1.2([2]). Let m(t) = mp(1 + t)~1. Then the solutions t¢l.1) satisfy
14(t) Emo(U)(0) S Emo(U)(t) < Em, (U)(0).

Briefly, our problem to investigate in this paper is a peratidn of Theorem 1.1
for non monotone decreasing masgt). That is, we will represenin(t) as

(1.10) m(t) = VA(t)2 + p(t),

where A(t) is a positive monotone decreasing shape function ptdl is the perturb-
ation. Thus we suppose that

(1.11) p(t) = o(A(t))
ast — oo, which provides that
(1.12) m(t) =~ A(t).

Then we are interested in the interplay between the ogoifiatof p(t) and the condi-
tion to A(t) corresponding to (1.6). Here we shall consider only theatiffe mass in
order to avoid a delicate situation as in Theorem 1.2.

It is not the same equation of (1.1) but a different kind of iKie€Gordon type
equations with time dependent oscillating coefficientsalvhivas considered in [7, 11].
Indeed, they studied someP-LY type estimates for the Klein—Gordon type equations

(1.13) 82u — A(t)?a(t)*(A —mA(t)u = 0,
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where\ is a smooth, monotone increasing shape functéis a smooth function with
oscillations andm is a positive, decreasing function. We observe from theselte
that LP-L9 type estimates including.?>-L? type energy estimates are established under
a suitable interplay between the propertiesigfa and m. In the case that(t) = 1
and m = 0, that is, (1.13) is a wave equation with oscillating progtaan speed, it
was considered in [9] a sufficient condition to the osciligtispeed ofa(t) for LP-LA
type estimates. Moreover, in [5, 6] the contributions of theethness properties of the
coefficienta € CM with M > 2 anda € y©®, wherey® is the Gevrey class defined
in the next section, were studied for thé-L? type estimateEq(u)(t) ~ E(u)(0) with
m = 0. This is called the generalized energy conservation.

There are also relations between Klein—Gordon equatioriy @ind damped wave
equations with time dependent dissipation

(1.14) 82U — Au 4+ b(t)u; = 0.

In [12] there were studied some precise energy estimatesdale-invariant problem
(1.14) withb(t) = bo(1+t)~! taking into account a dependence on the congigbly the
application of properties of Bessel functions. Moreove(8iriL3] more general functions
b(t) including some oscillations as perturbation problemsl1® jwere investigated.

2. Main theorems

Let M > 2 be a positive integer, wherbl = oo is admissible. We consider the
massm(t) in the Cauchy problem of Klein—Gordon equations (1.1) ah®)( repre-
sented by (1.10) for some functiongt), p(t) € CM([0, o0)) satisfying (1.11) and

(2.1) At) >0, A(t)<0, |AR®)| < Cer(t)p(t)
and
(2.2) 1PN < Cr(t)*o ()

for a positive, continuous and monotone decreasing functii) and some positive
constantsCy, k=1, 2,..., M and all timet. Then one of our main theorems is rep-
resented as follows:

Theorem 2.1. If (2.1) and (2.2) are valid for any k=1,..., M with p(t) satis-
fying

(2.3) p(t) = o(r(t)) (t — o0)
and
(2.4) p(%)M_l el
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then £(v) satisfies the estimate of generalized energy conservtic).

We observe from Theorem 2.1 that the condition (2.4) is wealseM becomes
larger. It follows that smoothem(t) can allow faster oscillations of the perturbation
p(t) for the estimate (1.5).

Let b € CM([0, o0)) with M > 2 be a positive and periodic function. Then the
following examples ofm(t) are applicable for Theorem 2.1 to prove (1.5).

ExAMPLE 2.1. Leta and g be non-negative real numbers satisfying<Qr <
B < 1. We definexr(t) and p(t) by

At) =@+t and p(t) = A(t)*b((1 + t)1P).

Then (2.1), (2.2) and (2.3) are fulfilled fgs(t) = (1 +t)™* for anyk =1,..., M.
According to Theorem 2.1 the inequali/> o + (1—«)/M implies the estimate (1.5).
In particular, if M = oo, then (1.5) holds sincg > «.

EXAMPLE 2.2. Letv and u be real numbers satisfying < v < 0. We define
A(t) and p(t) by

At) = @ +t) Ylogle+t))™ and p(t) = A(t)’b((log(e+ t))1™).

Then (2.1), (2.2) and (2.3) are fulfilled fqr(t) = (1 + t)~*(log(e+ t))~" for any k =
1,..., M. According to Theorem 2.1 the inequality> n + (1 — ©)/M implies the
estimate (1.5). In particular, iIM = oo, then (1.5) holds since > pu.

In Example 2.1 we see that the oscillations f(t) are determined by the param-
eter B8, where smalleB means faster oscillations. That is, if the oscillations taie fast
with respect to the decreasing functiaft) (described by the paramete), in general
we cannot apply Theorem 2.1. Actually, we can state the iafig counter-example.

ExampLE 2.3. For 0< «a < 1 we consider the followingn(t):

(2.5) m(t) = (1 + t)~*v/2 + sin((1 + t)1-),

that is,
A2) =214+t and p(t) = (L +t) 2 sin((L+ t)F ).

Then settingp(t) = (1 +t)~ the conditions (2.3) and (2.4) are not valid fdt = oo;
moreover, we can prove that (1.9) does not hold.
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0 1o
Fig. 1. Examples 2.1 and 2.3 and Example 2.2.

Example 2.3 is a consequence of the following theorem ini#ilich is proved by
applying Floquet's theory as in [10].

Theorem 2.2([3]). Let m(t) be given by(2.5). There do not exist positive con-
stants C ands such that for every initial timegte [0, co) and for every initial data
Ug, Uy € C°(R") the estimate

Eo(u)(t) < C exp(C(L + t)* ™) Eo(u)(to)
is fulfilled for all t € [to, 00).

Theorem 2.1 is applicable essentially for a finkg thus we have no conclusion
in the limit cases of slowly decaying(t)/A(t), for instance, in the casg$ — « with
a <1 in Example 2.1.

Let us consider in the limit case a4 — oo the Gevrey clasy® with s> 1:

y® = {f € C®((0, )); [ FO(t) < CkiSpk, 3p >0, k=0,1,...}.

REMARK 2.1. y® is not usually called the Gevrey class but real-analytissla
However, we do not particularly distinguish both cases is ffaper.

Let me y©® with s > 1 represented by (1.10). Then we suppose it and p(t)
satisfy (2.1) and (2.2) witlCy = Ck!® for any k € N. Then our second main theorem
is represented as follows:
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Theorem 2.3. Let m(t) € y© represented by1.10) satisfy (2.1) and (2.2) with
Cx = «k!® for a positive constant and for any ke {0, 1,...}. If (2.3),

p'(t)y _ M)
(2.6) o0 < 570}
and
(2.7) % < (logt)~®

are valid as t— oo, then £(v) satisfies the estimate of generalized energy conserva-
tion (1.5).

By Theorem 2.3 we can conclude the estimate (1.5) to thewaollp example:

EXAMPLE 2.4. Let 0<a <1,s>1 andb e y©® be a positive and periodic
function. We definer(t) and p(t) by

At) =@+t and p(t) = At)2((L + t)* “(log(e+ t)) ).

Then (2.1), (2.2) and (2.3) are fulfilled fa&Zx = «k!S, p(t) = (1 + t) “(log(e + t))™"
and for anyk € N. According to Theorem 2.3 the inequality> s implies the esti-
mate (1.5).

3. Proof of Theorem 2.1

3.1. Estimate on a finite time interval. Let T > 0 be an arbitrarily fixed time.
Then the derivative of the energy (1.3) can be estimated by

BEOE ) = MO, £)F £ £ 25 e o).

The application of Gronwall's inequality yields

L 2m'(7)]
) dr)é‘o(O, £)

2|m'(7)]
m()

o), ) S exp (& [

Sexp|£T max
> €Xp r€[0,T]

})eo(v)(o, &)

for any ¢,£) € [0, T] xR". Moreover, noting(&),q)/(€)x0) =~ 1 for (t,&) € [0, T] xR",
we have the estimate (1.5) in [0} xR". Therefore, we only have to discuss for latge
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3.2. Refined diagonalization procedure for large times. Let us consider the
equivalent reduced system for the equation of (1.2)

9Vo = QoVo,
where
HE)mey
VO = Vo(t’ E) = <‘§>_m(t)U(t, %-) and QO _ Qo(t, %_) — (g)m(t) |($)m(t) .
— Btv(t, %-) i (g)m(t) 0

Let us carry out the first step of diagonalization proceduith the diagonalizet\y

for diag Qg, where
1 1
(4 1)

Q1 := 0 —No_l(at — QO)NQ, b, = dlag Q1 and Ry:=Q1— D,

Denoting

we have
L a 0 L 0 Il
q)l(t, E) = ( 0 d)]_) and Rl(t, 5) i (rl 0 )’
where
& (E)me) | - (&) met)
3.1 = 1,8)i= ———— m d =rqt, &) = —.
(3.1) 1= ¢a(t, &) 2E)me +i{E)mey and ry=ra(t, &) 2E) e
Moreover, we denote from now on thaj s := N{¢;} and¢; 5 := J{¢;} for the func-
tions ¢1, ¢o, . . ..

Indeed, we can derive the hyperbolicity of the equation fog £nergy estimate
by the diagonalization procedure due A§. However, this step of the diagonalization
procedure is not sufficient to prove (1.5) fpr¢ L. Thus we introduce further steps
of diagonalization procedure by use of the smoothness(bf, which is calledrefined
diagonalization proceduréntroduced in [5].

The refined diagonalization procedure is inductively eatrout by the following
diagonalizers\i:

M=+ s (07
fork=1,..., M —1, where
Okr1 = Oksalt, &) := 3 — N 1 — Q) Nk,
Dyi1 = Puya(t, §) :=diag Qw1 and Rirar = Rira(t, §) := Qi1 — Prta-
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Here we note tha,,1 € CM—%-1 with respect tot. Hence, such diagonalization pro-
cedure is valid sinceVy, . .., N are invertible. Then the benefit of the refined diago-
nalization procedure is represented in the following lemma

Lemma 3.1. Assume thaiVi, ..., N are invertible. Then we have
(3.2) @x+1)22 = (Pry1)11 and  (Riy1)21 = (Ris1)12:

Moreover denotingéx+1 = ¢i+1(t, §) := (Pur1)22, ki1 = kta(t, &) := (Ri+1)21, and

r 2
ik = pult, £) = 1— deth = %

the functionsgxi1m, ¢dk+1,5 and rep1 are inductively given by

k

3 (€)miy Gty

(3.3) i = * ’
N By 2 2 )

1 Ik Tk
3.4 3=y + | T2y + S 50
(3.4) Prr1y = Pk + 1—,U~k( s + q{2¢k,:\ 201 })
and

1 il’k

35 M1 = =9
(3.5) S P, (Mk ‘ tz‘p“)

fork=1,..., M -1

Proof. Let us prove this lemma by induction. By the definitmin®; and R; in
(3.1) we see that®;)11 — (P1)22 = —2i¢1 5 and (R1)12 =r1 =1 = (R1)21. Therefore,

we have
1 0 irp
=14+ — . )
M * 2¢>1,~3(”’1 0 )

Then straightforward calculations give

Ot —N]__lat./\/l

T r 3 Iry
EREY) _
1 2p15 2013 B = , 2615
1— e 0 5 ) M 1— 1 ir
2015 2013 261 5

and

_ 1 (2ipigis 0 K1
NTTON = 1 + ( , + Ri.
M YT 0 =2 pag1 s 1o
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They imply that (3.2) is valid fok = 1. Moreover, we have

1 r I Ot i1
- SR 8 = 9 T ’
G2 = Puon+ {2¢1 3 t2¢>1 3 } Pt o )

: A
-2 5 0\
1_;“( Hids + {2¢10 t2¢10})

r 1 ( r 5 ir]_ )
= n — ,
21—\ 2014

which are (3.3), (3.4) and (3.5) witk = 1. Thus the lemma is valid fok = 1.
Assume that ;)11 — ()22 = —2i¢j 5 and Rj)21=r; = (Rj)12 for j =2,... k.
Then we immediately achieve the representations

P25 = P13 +

and

Ot fk

3.6 W= o
(3.6) i = e+ 50—

(3.4) and (3.5) by the same way as in the cas&kef 1. Moreover, assuming the
representation

(& Y mety QL |
3 = +
P = 2y 2 2(1—u)

we conclude (3.3) by (3.6). O

If the refined diagonalization procedure By for k =1,..., M —1 holds true as
in Lemma 3.1, then we can state the following lemma for therggnestimates:

Lemma 3.2. Assume thafVy, ..., Ny_1 are invertible for te [1g, T1]. Then the
following energy estimates are valid

Eo(v)(t, £) = é;m“’ (4t 70, ) exp(i4 / I, s)|dr)so(v)(ro, &)

for t € [0, Ta], where¢d = 1 and

1—[ (A £ Vi, §))(1 + V(. §))

e
=¢(t T, ) = L (A F Vit 8)A F Viudr, £))

for j > 1.
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Proof. Let us defineVy = Vu(t, &) by Vi := Nyt, - NyVo. ThenVy is a
solution of

% Vm = (Pm + Rm)Vn.
Therefore, we deduce

*|Vm |2 = 20%(3 Vi, Vm)cz = 2R(PmVm, V)ez + 2% (RmVm, Vi)ez
= 2¢m.0| V|2 + 4R (0 Vi1, Viv2)cz
S 2(¢mn £ 2rm )V

Noting the equality

! 1 (&) mty 1 — (o, £)
N 1 d =3 I !
/,0 ua(z. 8 dr =3 °g<<s>m<f0) ) o

Gronwall's lemma yields the following estimates:

2< (E)my N1 — (o, £) ! 2
B.7) [Vm(t. &) = ( - l_[ Tt 8) expl £4 [ [ru(z,§)ldt |[Vm(zo, §)I°.

Denoting Vi1 = Via(t, &) := N 1V for k =0,..., M — 1, we achieve

1 1 0 —ﬂ ) ( Vi1 )
Vi1 = | + . :
T T ( VIR ( —iry, 0 ) Vi, 2

irg
Vi Vi
1 k1 2rn k.2
1 irg
Vi,2 — Vi1
26,3
Noting the estimates
— 2 . 2
1 irg irg
Vigil? = —— | [V Vk,2| + [Vk2— Vi1
Vice (1 — pk)? Y 2013

(3.8)

1 .
= A=) ((1 + )| Vi [? — 2% (ng: Vi1, Vk,2)C2)

2
= (tl Q IVil? = (15 /i) I
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fork=1,..., M — 1 and the equalities

(3.9) Va(t, §)1 = %IVo(t, §)? = &()(t, €)

we have
M-1
IVm(t, §)I7 S (1‘[(1 F Vi, 5))2>60(v)(t, £).
k=1

Therefore, by (3.7) we obtain

M-1
Eo(v)(t, §) = (1‘[ (1+ Vit s))2)|vM(t, 9l
k=1

_ Emo (17 Q= mlmo, E)Q + Vi, )
" (Em) \ g 1- Vit §)

t
x exp(4/ Irm(z, &) df)lvlvl(fo. £)1?

t
((;)n:(:j) o a(t, 70, §) exp(4 / 0 rm(t, £)| dr)so(v)(ro, §)-

=

Analogously, we have

(E)m)

Eo()(t, §) = ey

t
(ot 70, ) exp(—4 [ dr)so<v)(ro, ).

Thus the proof of the lemma is concluded. O

3.3. Symbol calculus. Let us discuss the invertibility ol fork =1,...,M—1
and a benefit of the refined diagonalization procedure todiite some symbol classes.
More precisely, we shall prove that the invertibility dfy, the propertyry(t, &) €
LY((T, o0); L“(Rg)) for a largeT and Lemma 3.2 conclude the proof of Theorem 2.1.

Let I, p and g be integers satisfyingg > 0, p < 0 andg > 0. A function f =
f(t, &) € C'([0, o0) x R") belongs to the symbol clas$'{p, q} if there exist positive

constantsCy, ..., C¢ such that the estimates
(3.10) |0 F (¢, §)] < Cu(&) o)+
are valid for (,£) € [T,00) xR" andk = 0, 1,...,1. By the definition of the symbol

classes and straightforward estimates we can immediatelg the following lemma:
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Lemma 3.3. (i) If f €S'{p,q}, thendff € S'*{p,q+k} for k <I.
(i) If f1eS"{p,q} and K € S'*{p, q}, then f + f, € SMlull{p q}.
(iii) If f1 € S"{p1, qu} and § € S2{py, 02}, then ff, € SMMl2l{py + Py, 1 + o).
(iv) If f €S'{p,q}, then feS'{p+o,q—c} for all non-negative integers satisfying
p+o <0and g—o >0.

Proof. The properties (i)—(iii) are valid by the definition$ the symbol classes.
Property (iv) follows from (2.3) and the natural propedtft) < (&).). ]

Here we note that the following property holds:

Lemma 3.4. Under the assumption§l.12), (2.1)and (2.2) we have(é);%t) €
SM-1{-1, 0.

Proof. Letk be an integer satisfying ¥ k < M — 2. We will prove that the
estimate

(3.11) 10K (& )t < Ci(&) iz o)
isvalid fork=1,..., M — 1 by induction. The estimate (3.11) is evident for= 1.
Assume that the estimates (3.11) fpe=1,.. ., k are valid. Leibniz rule gives
kel el
_ k— _
0= 3tk+1((‘§)m(t)<%-)m2})) = (é)m(t)Btk (&) m(t) + Z ( J )(8t (&)Ym()) (0 J+l( )m%t)).
j=1
It follows that
(3.12)
k+1
k+1
oFtHE) m(t)—— m(t) ( )(at m(t))(at e )n_q(lt))
j=1
k-+
(KLY (i 1(m(t)2) i1
m(t) at <§>m(t))
(€)
i=1 m(t)

o - |
Z_%(E)mﬁ)zz( Tl) (J I 1)(m('f)z)('“)(at" HE) m) O HE miy)-
=1 1=0

Therefore, noting the estimate

I+1
(3.13) [(m®)" V) <" (' T 1) OO + | p )] < Car)?o(t)
j=0
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which follows from (2.1) and (2.2), we have
10 (E )ty | = Crera (6D (6) oA O P ()T = Cresa (6)5 00 (O,

Thus the estimate (3.11) is valid f&r+ 1, which concludes the proof of the lemma.
O]

According to the definition of the symbol classes we can prtwe following
statements which imply the invertibility ol for k =1,..., M —1 andry(t, &) €
LY((T, 00): L¥(R})).

Lemma 3.5. There exists a large time T such that

1
(3.14) ik € SMK(—2k, 2k} with mugz
fork=1,...,M—1 and

(3.15) nce SM ¥ {—k+1,k} and ¢ eSY*-1,0

fork=1,..., M.

Proof. By (1.12), (2.1), (2.2) and Lemma 3.4 we see that
A9 p() At)
, e SMk0,k} and
At A)? (&)m)
Therefore, by Lemma 3.3 and the representation

CAOM) P
8= ez, AR,

e SM{0, 0.

we have (3.15) fork = 1. Moreover, by the definition of; y we concludeq&;}\ €
SMH—1, 0 and 1 = |r1f?/(492 ) € SM1{—2, 2. Therefore, by (2.3) we estimate

_ Py 1

a2 T2

il < (E);5p(t)

for anyt > T; with a largeT;. Thus the invertibility of A is valid fort > T;.

Let us suppose that (3.14) and (3.15) are satisfiedjfer1,..., k with k < M.
Thus there exists a large ting such that\j is invertible for anyj =1,..., k. We
see forj =1,...,k that (1-pj)t e SM-i{0,0}. This follows from the representation

AA-p)F= 30 Cin@— ) P P,
ahy ety =l
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whereh = (hy,...,h) € {0,1,....1}), 1 =0,...,M—j, |hf=hy+---+h;, andC ,
are constants. Indeed, hy; € SM-i{-2j, 2j} and [nj] <1/2 we deduce

— —2jh1—2jhy—-=2jh i i i
|at|(1_ﬂj) 1| s (%-)}L(t)J 1—2]h2 J Ip(t)(21+1)h1+(21+2)h2+ +(2j+1)hy

= ©00 " PO < (1)

Therefore, by Lemma 3.3 and the representation (3.5) we mayes SM*1{—k k+1}.
Moreover, by the representation (3.4) we conclude

bty = drs@+8) 7

where

bess = bt ) = o (~2mc+ oaf o a ) e svta ),
By the same argument as to shpw € SM~1{-2j,2j} we get (1+8) "t € SM*1{0,0}.
Thus we obtainp !, € SM™*"1{—1,0}. Consequently, we haye 1 € SM*H{—2(k+
1), 2k + 1)}. It follows that there exists a large timk, 1 such that|uy, 1| < 1/2 for
anyt > Tyy1.
Therefore, the proof of the lemma is concluded by induction. ]

3.4. Conclusion of the proof of Theorem 2.1. Lemma 3.5 ensures that there
exists a positive constaffy, such thatV,...,Ny_1 are uniformly invertible for {,£) €
[Twm, o) x R™; thus the estimates of Lemma 3.2 is valid. By Lemma 3.5 we Icolec

B A M
ru(t, &) < (& M“ptMSpt(—) :
Irt )1 < (€0, e O < o0 75
Therefore, the assumption (2.4) givtﬁ;’ [rm(z, €)|dt < oco. Moreover, recalling
[j(t, )] < 1/2 we achieve|¢m-1(t, Tm, §)] =~ 1 for t > Ty. Consequently, since
(1.5) is valid fort < Tyy we finish the proof of Theorem 2.1. ]

4. Proof of Theorem 2.3

4.1. Division of the zones. Theorem 2.1 was proved by dividing the phase space
into two zones; fot < Ty, andt > Ty. On the other hand Theorem 2.3 will be proved
by estimating the energy in different ways in infinitely margnes of the divided phase
space. The basic idea of the proof is introduced in [6].

For a large constani we definety = to(&) implicitly by

(€)rto) = Np(to).
Then we defineZy = Zy(N), which is called the pseudo-differential zone, by

Zy = {(t, &) € [0, 00) x R"; t < to(£)}.
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Here we note thaZy is bounded.
Let us defineZzy = Zy(N), which is called the hyperbolic zone, by

ZH = {(t! E) € [0! OO) X Rn; (t! g) ¢ le’}
Moreover, we divideZy by an infinite number of zone&y 1, Zn 2, . . . defined by

Znk = {(t, &) € Zn: NKp(t) < (§)ay = N(k+ 1P°p(t)},

wherety = t«(¢) is implicitly defined by

&)y = N(k+ 1)°o(t)

for k =1, 2,.... Here we note thaftc} is uniquely determined by (2.6) for any fixed
&. Then we immediately have the following lemma:

Lemma 4.1. If (2.7) holds then there exists a positive constagtsuch that t <
ek for any ke N.

Proof. Noting (2.7), we have the estimates
1
N(k + 1)°0(t) = (E)awo = M) = ap(tk)(log(e + 1))°.

They imply the conclusion of the lemma. []

4.2. Gevrey symbol class inZy k. Firstly, we note the following factif there
exists a positive constant C such thatefy® satisfies

[ F®@)] < Cisp(t)* (Vk € N),

then the following estimates also hold

kI*(4p(1))"

k) < NPV
190l =

(Vk € N).

Therefore, we can replace the definition of the const&isn Theorem 2.3 by
Cx = kok!S/(k + 1)? with a positive constanty without loss of generality.

We have introduced the symbol clas${p, q} for the proof of Theorem 2.1, but
this is not sufficient for the proof of Theorem 2.3. In the drad Theorem 2.3 we
have to derive a benefit of a property of the Gevrey functievisich is represented by
order of the constant€y in (3.10) ask — oco. Therefore, the new symbol class for
the Gevrey functions has to be precise as follows.
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We fix a positive integerK from now on. LetN, « and po be positive con-
stants andp(t) a positive monotone decreasing function. A functibn= f(t, &) €
C*(J0, o0) x R") belongs to the symbol clasSk {p, g «, po, N} with integersp and
g satisfyingp < 0 andqg > O if the estimates

(g + k)

K
lof f(t, &)] < Km

(g);?(t)(POP(t))q+k

hold true for any {, &) € Zyk and allk € {0, 1,...}. We shall denoteSx{p, q} =
Ski{p, 9:k} = Sk{p, 9: k, po} = Sk{p, q; k, po, N} according to need without any
confusion. Moreover, for two functions € Sk{p1, 91} and g € Sk{p2, 02} we de-
note the symbol class of the produty by fg e Sk{p1, q1}Sk{p2 92} as a matter of
convenience. By the definition of zori&,; x and the symbol class we have the follow-
ing properties:

Lemma 4.2. (i) If f € Sk{p,q}, thendkf € Sx{p, q +k}.
(i) If f1 € Skip, q: k1), f2 € Sk{p, q: k2}, then i + f2 € Sk{p, q; k1 + k2} and
f1, f2 € Sk{p, d; maxka, k2}}.
(iii) If f1 € Sk{p1, a1: k1) and & € Sk{p2, U2; k2}, then fify € Sk{p:1 + P2, Q1 +
Oo; 4m2k1k2/3).
(iv) If f eSk{p q;«) forq<2K,then feSk{p+o,q—o;«k(3pN1)} for all
positive integerss satisfying p+o <0 and g—o > 0.

Proof. The items (i) and (ii) are trivial from the definition$ the symbol classes.

(iii): Let f; e Sk{p1, a1} and f; € Sk{p2, 92}. We assume thaf; < g, without
loss of generality. By Leibniz rule for ank € {0, 1,...} we calculate

|0K(f1 12)]
kL /K
< Z | k=1
= L (I)|at fl||8t f2|

Ky (@D (@ k-
= @0y ()
®) ;

[ @+ +212(+k—1+1)

(0 + o2 + K)!° 3 4
T (At G+ K+ 17 ()7 o)

Kook (0 + 1! (G + k=DN\S G+ G+k+1 2
Xgn( (1 : )( P )

k—1)! (91 + g2 + K)! (@ +1+D@+k-1+1)
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Then, noting

k! (ar + D! (g + k—DN° k! 1=s
1) I!(k—l)!( @+ G 1K) )f(n(k—l)!) =1
and

i( G+ +k+1) )2
=\ @+ +D@+k-1+1)
4.2)

( 2 [k/2]

202 +k+1 1 =1 4,
52(qz+[(k+1)/21+1) Z(|+1)2— 2_255”'

where [-] denotes Gaussian symbol, we deduce (iii) for= 472/3.
(iv): Let f € Sk{p,q; «} with o > 1, p+ 0 <0 andq — o > 0. Noting
NKSp(t) < (£§)xpy We have

e
m@)&op(t)w

po(A+KYY _@=0+ R oo o
SK(N( K )) (q—a+k+1)2(%->k(t) p(t)?

(-0 +Kk)*
(q—o0 +k+ 1y

|0KF] <«

(€) P

< K(3SPON_1)G ) P

Thus the proof of the lemma is concluded. []

Let us denote

Then the properties Lemma 4.2 (iii) and (iv) are represeigd

(4.3) Sk {P1, O1: k1}Sk{ P2, G2: K2} C Sk{pP1+ P2, 1 + 02: viikz}
and
(4.4) Sk{p. dik, po} CSki{p+o,d—0; k(N po}

for o < min{—p, q} andqg < 2K.
By using Lemma 4.2 we have the following lemma, correspapdin Lemma 3.4
in the proof of Theorem 2.1:
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Lemma 4.3. Suppose thatl.12), (2.1)and(2.2) are valid with G = kok!S/(k+1)%.
Then we havés), ) € Sk{—1,0; k1, p1}, wherexy = 1/infe & {(§)mw)/(§)20)} @nd p1 =
V21K /2 With Ko = w(g + Ko.

Proof. Let us prove that there exist positive constantsand p; such that the
estimates

(4.5) ¢ (E) mi

kls _
m| = Klm(é)x&)(ﬂlp(t))k

are valid for anyk € {0, 1,...} by induction. Clearly, (4.5) holds fok = 0. Assume
that (4.5) is valid for anyj < k. Then we can represedf (&) m(t) by (3.12) for the
proof of Lemma 3.4 and therefore the estimate (3.13) can beigw as follows:

I+1

GO ERIEDY (' Tl) PO+ p' ()]

j=0

I+1 . N . ]
< )»(t)zp(t)l+1(Kg Z (I +1)! J! (I=j+1)! iy (I+21) )

=+ (+12 (=) +22  (+27

(+ne

rop 070"

< (wco + ko)

Noting the representation @f**(&) ¢, in the proof of Lemma 3.4 we obtain
|3k+1( );1%0|

7( Ym0

L (k1) (k-] |+ 1)I5(k — j —1)ISj1s

JZ,X(;( | )( l J)(I +(2)J2r(|<)_(J |]Jr 1))2(JJ n 1)20( 1) (op(t))<
K+

0
leo( 1)

=

X

(&)t (1o (D)

1 (k+2)
k k-
(I+1y (k+ 2y .
Jz(:); K—j+10+22%Kk—j—1+1)%(j +1)2p1
k 12
< m%mwplpa»kﬂ

where we used (4.2) withg(, gz, k, j) = (0, 0, ], k—1) and @, 02, k, j) = (1, 0,1, k)



GENERALIZED ENERGY CONSERVATION FOR KLEIN—GORDON EQUATIONS 317

in order to estimate

il (k + 2)2

(I +2P(k—j—1+1)2(j + 1y

j=0 1=0

(k + 2 - (k—1+ 1y
2 = v
j=0

o+ 2Pk —1+1 e

Thus the lemma is inductively proved. O

Finally, we introduce a lemma corresponding to Lemma 3.5ickviis crucial for
the proof of Theorem 2.3.

Lemma 4.4. There exist positive constangg and N independent of K such that
forj=1,...,K—-1and
for ] =1,...,Kin ZH,K-

Proof. The key difference from the proof of Lemma 3.5 is toivieithe restric-
tion in Zy k. For a philosophy of the proof we refer to [6].

Let us apply (4.1), (4.2), Lemma 4.2 (iii) and Lemma 4.3, tlséimeate

(o) _ - (D)
)] = fog

M)
in the proof of Lemma 4.3 and the equality

O (Edmey _ (m(t)*)
Emo 28

in order to estimate

3 (&)m 1 | . o
‘at'( t(g)m(t()t))‘ =5 2 (j)l(m(t)z)(1+1)||at' HE):2)|

IA

VROKY 5. o I+1 : (') (=g +1e
o EVHMO(er0(0) ,go i+ a7
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vRg2 (I + 1)1 e (+ 1y (I + 22
= 21(|+2)2(p1p(t))+1§(|+1)s (=] + 17 + 27

|
< ((I _:_Jé))z ( ( ))|+1

where; ;== v K0K1/2 It follows that

ri € Sk{0, 1; u1, p1}

for y1 > 11. Therefore, by (4.3), (4.4), Lemma 4.2 (iv) and Lemma 4.3 \aeeh

Iraf? 1 5.2 L2

H1 = 297, = Z|r1| (&) € Sk10, 25 vif, p1}Sk =2, 0; 4 —1m
32,2

cSK{ -2, 2 4“,p1} C Sk {0, 0: 12N7H?, pa},

where, := v3c111/2. Hence, this implies (4.6) fojf = 1 with N > +/2,. Moreover,

we introduce
dj =dj(t, &) :=oj 5 — (E)me)-

By Lemma 3.1 and noting

1 v2i2k V3N
—2u1p15 = —§|r1|2(§);]%t) € Sk {—1, 2 Tll 1} C Sk {0, 1 % ,01},
V3122 V222N 2
9 eSki—2,3 22, Ueglo 2T, L
2¢>1 t2¢>1 K{ 4 P 1} K 16 '~

1-p)t= ZMESK{O : 2, p1},

we get

1
h=—-2 5 0 Sk{0,11-272
I ( wid1y + {2¢1 b 2¢>1 }) € Sk{0, L p1}

for any sufficiently largeN. Let us assume that

rieSki—j+1,0:9, o1}

and
dj € Sk(0, L, 1—-27, py)
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for j > 2. By (4.3) and (4.4) we have
d; ()i € Sk{—1, L vk1, pa}.
It follows that

(—d; (E)m) € Sk {1, 1: (V1) p1} € Sk {0, 0: (V¥aNY', p1} € Sk {0, 0: 27, o}

for N > 2v3k,. Therefore, noting

1 &)my
4.7 — = = dj( € Sk{-1, 0; 2vk
(4.7) PO F AT &)t Z( (E)miy)' € Ski- 1 o1},
we obtain

Irjl?

pj=-——€8ki{-2] +2,2j; vyf L, p1)Sk (=2, 0; v3eZ, p1)

(4.8) 497 5
C Ski=2j, 2j; vy, pal,

moreover,

1 € Sk{0, 0; (3k1)?(yivN™1, p1} € Sk {0, 0; (*e1ytN~HZ, py).
Thus
iy € k10, 0 (Wit N, i} € Sk {0, 0; (277), pa)

for N > v3k1y1/+/2. This implies

GSK{O 0; (L—27)7 p1} € k{0, 0; 2, pa).

1_
Consequently, by (4.2), (4.7) and (4.8) we have
ity € Ski=2j, 2i: viy!, piySki=i +1,i: vi, pa}
C Sk{—1, L vy NI o) Ski—i + 1, )1 ¥/, o)
C Sk{—i,j+1: o2y (WNH2L oy
and
i € Ski—i, j: v¥ay], ;)
2¢J N ’ 1

for N > v. According to representation (3.5) we get

1
rj+1:ﬁ(ﬂjrj +3t2¢] )
€ Skl—i, j +1; 20052y, JN=H2-L )2 K17/1) p1}-
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As well, we conclude

ril? . . i 13
2|d>1'| €Sk{=2] +1,2); "3"17’12J , p1} C Sk{0, L; viayi(yavN 2, pg)
IR
and
T r . ' —1y2j
2¢]. 0 2¢J. - € Skl=2j, 2 + 1 vy, o) € Skl0, L v3kE(avNTH, pa).
I IR

This leads to

— + 3 o
1—uj\ 293 2¢i5 203

€ Sk{0, L 2v(3k1y1(ivN"HH 1 + 03 2(vN~H), o1}

As consequence we have,; € Sk{—j, j + 1; yl”l, p1} and

1 Irj|? r 51 L
diyi=di + —— (-2 R A Sx{0,1;1—27171,
j+1 j+ 1—Mj( 26,5 + ‘{2(1)]13 t2¢j,3 € Sk{ p1)

if the constantsN and y; exist such that
(4.9) 2072y (vN=H2=t 4 203y) < y1j+1,_ _
20411 (v N2 71 4 208k 2(3 N2 < 27070,

Indeed, we easily observe that fpr := 4v3«; there exists a positive constaNy such
that for anyN > Np the estimates (4.9) are valid uniformly with respectjtg 2. []

4.3. Conclusion of the proof of Theorem 2.3. We shall prove the estimate from
above for€(v)(t, &) of (1.5); the other case is analogously proved.

Let us fix @, n) € Zy arbitrarily. Then we can suppose that there exists a posi-
tive integerK such that €, n) € Zy k+1. We restrict ourselves that the ordg(n) <
ti(n) < --- <tk (n) < < tks1(n) is valid, because in the other cases we would have
better estimates.

Let us denotery := [i* (T, n)d7, pju = pj(te,n) and vy == [15 5 (1—pj)(A—
wik+1)"t By (3.7) and (3.8) we derive the estimates

Va(r, M < (L4 vl m)?Va(z, n)2

<|I1 (1+ \/N«j(faﬂ))z Vi +1(z, )%,

j=1
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(n) K 1=, ) ‘
Vi sa(z, n)|? < o 820 ) expl 4 / Iresa(z, m) de | [Vicalte, mI?
{Mmeo \ jp 1= wile,n) t

1)m() 15[ 1—pjk | exp(4Ak+1)
77m(t.<) j:ll—Mj(T.'?) (11— ik K)?

Vi, )2
and
Vic(t, )P < —(f?’;*'(‘f“) D1 exp(d ) Vi (tx 1. m)I2
Mtk -1

- (Mme)  Px—1exp(dik)

T (Mme) (L= /HK-1K—1
_ Mmey  Ix10k28xXp(dAk + 4Ak 1)
T (Mmoo (1 — /Irk—1xk—1)*(1 — /IKk—2,k-2)?

5 Vi alte 1, m)I?

|Vic_2(tk 2, )|?

(Mo (et 2i) €xp(4 Yok, Ax)

h - [Va(ts, )I%.
(Mmey — T1[S (= 75)?
Here we note that
K-1 K-1 K—1K-1
_ 1-pje 1—pjk 1—pj
[T7=T1T1 1 =I111 1 — 117
ket K1 j=1 — Mjk+1 =1 k=j — Mjk+1 =1 — MjK

Hence, we calculate

1 Ok :Ii—_[l 1-nii l—[ 1+ Vi
l_[:-(:_f(l—a/ﬂj‘jz i1 (1= pj )= /15 5)? (1—pj)A— /i)

K-1

Moreover, we have

K K K-1
_ 2 1-pjk 1+ /A
(J.Ul(” Vit I =) e I a=aa= v
ﬁl-}-‘/uj(rr] 1—[1+W
Vi, n) -1 VML

=: Bk (t, n).
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By Lemma 4.4 we estimate

K K i
1427172 212
uK('L' T]) (l_[ = J/Z) = eXp(ZZ |Og (1+ m)

i=1

K i K
21-j/2 4 . 4«/2
_r -i/2 _ave
(22 1-2- ”2) : exp<1—2”2 122 ) - exp((fz—l)Z)

j=1

<e¥®

Then, by Lemma 4.1, Lemma 4.4, definition @ ; and Stirling’s formulak! =
ovke kKX, whereoy satisfieso_ < oy < o, by positive constants, we achieve

IS

ty
M= Vi / (€)75 oot dt

ks b
<M
(k+1) Ji,

kIS ks Vipink
SP(O)N(W) m( z ) .
k

< p(0)No* k(33/2)2esk( % )

<CN2X

(NKp ()™ (orp(t))* dt

for N > 2y;p16%, whereC = p(0)o sup {j©®¥?2e°l}. Summarizing the estimates
above we obtain

IVi(z, n)> < E(z, n) eXp<4ZA )(”)m(r) Va(z, )2
k=2 ’7)m(t1
< e33+CN (n)m(f) |V ( )|
(ﬂ)m(tl
~ (1 )m(r) IVa(z, )|

(U)m(tl

The functiont; = t;(&) is uniformly bounded with respect tp € R", hence (1.5) with
t =ty is trivial. Consequently, recalling (3.9) the proof of Them 2.3 is concluded.
O
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