

Title	Sector Based Material Flow Analysis : The Case of the Petrochemical Industry in Japan
Author(s)	Yabar, Mostaceto Helmut Friedrich
Citation	大阪大学, 2005, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/45887
rights	
Note	著者からインターネット公開の許諾が得られていないため、論文の要旨のみを公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

氏名	ヤバール ヘルムート フリードリッヒ Yabar Helmut Friedrich
博士の専攻分野の名称	博士(工学)
学位記番号	第 19549 号
学位授与年月日	平成17年3月25日
学位授与の要件	学位規則第4条第1項該当 工学研究科環境工学専攻
学位論文名	Sector Based Material Flow Analysis : The Case of the Petrochemical Industry in Japan (部門別マテリアルフローの分析：石油化学産業のケーススタディ)
論文審査委員	(主査) 教授 盛岡 通 (副査) 教授 宮本 欽生 教授 竹本 正 助教授 下田 吉之

論文内容の要旨

In this thesis, the author proposed a viable way to find sustainable opportunities for the petrochemical industrial sector in Japan with the use of material flow analysis. MFA is a powerful tool that helps us have a comprehensive view of any system. With that approach it is easier to identify the most appropriate improvement opportunities towards closing the loop in that system. With the use of MFA the author were able to propose viable ways to streamline the sector both environmentally and economically. The sector improvement opportunities were in the upstream side, with the alternative feedstock and production improvement approach and in the downstream side with the material and energy recovery increase approach.

In chapter 1 a brief introduction of sustainable development is explained. The scope and objectives of the thesis are addressed as well as the contribution of the thesis to the environmental management science.

Chapter 2 makes an outline of the petrochemical industry in general : feedstocks, production and consumption. At the same time a detailed analysis, of the Japanese petrochemical industry is addressed. Since plastics are the largest product of the petrochemical industry, special emphasis is given to this commodity. The upstream material balance is described and the main material and energy recovery options are explained.

Chapter 3 gives a detailed explanation of material flow analysis : overview, input and output indicators and also based on economy wide MFA the main sustainability indicators are addressed. These indicators relate the resource consumption with economic growth and include factor 4/10, resource productivity, MIPS and eco-efficiency. The MFA input, output and sustainability indicators in Japan are also explained and a comparison of these values with developed industries is made as well.

Chapter 4 addresses the main options to close the loop in the petrochemical sector. With the help of MFA we could identify these options along the process chain. Basically, the main options in the upstream side are the feedstock substitution and the streamline of production and in the downstream side the options were identified in the end of life strategies.

Chapter 5 outlines the main factors that drive the petrochemical sector and to what extent these are important. One important driving force is the domestic environmental law and international environmental agreements. The Japanese law new targets for sustainability indicators are based on MFA. These include resource productivity increase, cyclical use ratio and final disposal waste. Another important driving force is the domestic and international market. Since the domestic market is shrinking, the alternative is export to Asian markets, especially China.

Chapter 6 addresses the scenario setting based on two socio-economic approaches. The first one is based on current situation where the improvement alternatives are in the end of life approach only. The second one assumes a high demand of petrochemicals from China. In this case the author introduced improvement strategies along the whole process.

Chapter 7 summarizes the results and most relevant conclusions of this thesis. At the same time further research topics are mentioned.

論文審査の結果の要旨

本研究は、資源循環の上流側の石油精製での技術政策と化成品等の使用後の下流側での再資源化の技術政策を組み合わせ、マネジメントのツールとして開発してきた MFA（マテリアル・フロー分析）やエコ効率評価などを用いて、生産システムの技術改善がもたらす環境負荷削減効果を推定し、それらの代替案を比較する方式を考察した一連の研究をとりまとめたものであり、その成果を要約すると以下のようになる。

(1) 石油化学・化成品産業で生じた端財や使用済み化成品のケミカルリサイクルとしてモノマーに戻す (BTM)、マテリアルリサイクルとして樹脂ポリマーに戻す (BTP)、それにコークス代替の脱炭材利用などの資源に転換する、熱回収を図るという 4 つのシナリオとインパクトモデルを示し、それらを実施したときの環境負荷の増減を明らかにしている。二酸化炭素排出、資源消費、エネルギー消費、埋立地の容量消耗の 4 つの指標をとり、日本国内の負荷トータルに対する相対値に重み係数を乗じる方式を示し、埋立容量への重み係数を 3 分の 1 程度まで変化させる感度解析でも、埋立地の容量消耗が現状では 70% をこえる影響力を持ち、容量消耗を回避するサーマルリサイクルが温室効果ガス排出のインパクトを約 3 倍程度増加させることなどのトレードオフ状況を定量的に示している。

(2) 石油代替としての LNG 利用、熱化学反応技術を用いたバイオマス利用を想定し、あるいは国際的な化成品の需給に応じて上流側の生産を調整するシナリオのもとで、4 % の需要増加に対して 25 % のマテリアルリサイクルをおこなえば、現在価値を資源消費量で割った「資源生産性」では 7 % の上昇が得られることを示し、バイオマス利用では市場価値の増大が相対的に低いので炭素中立による温室効果ガス量を分母にとる「エコ効率」のみに効果が現れるこことを示している。

(3) 資源フロー量あたりの二酸化炭素負荷が大きい石油化学産業を対象に MFA と資源生産性（エコ効率）で評価する方法論を提示し、実際に上流と下流側の双方で施策連携を図った際の効果を定量的に明らかにしている。国の資源循環計画の対象 4 類型の内の化石資源系の物質フローを定量的に明らかにし、産業の持続可能性を高める道筋を示している。

以上のように、本論文は環境工学、特に持続可能な産業システムに関する技術マネジメントの発展に寄与するところが大きく、本論文は博士論文として価値あるものと認める。