

Title	Fourier series of smooth functions on compact Lie groups			
Author(s)	Sugiura, Mitsuo			
Citation	Osaka Journal of Mathematics. 1971, 8(1), p. 33-47			
Version Type	VoR			
URL	https://doi.org/10.18910/4600			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

FOURIER SERIES OF SMOOTH FUNCTIONS ON COMPACT LIE GROUPS

MITSUO SUGIURA*)

(Received June 16, 1970)

Introduction

The purpose of the present note is to give an elementary proof of the following theorems. Any C^{2k} -function on a compact connected Lie group G can be expanded by the absolutley and uniformly convergent Fourier series of the matricial components of irreducible representations if $2k > \frac{1}{2} \dim G$ (Theorem 1). The Fourier transform is a topological isomorphism of $C^{\infty}(G)$ onto the space S(D) of rapidly decreasing functions on the set D of the classes of irreducible representations of G (Theorem 3 and 4).

The related results which the author found in the literature are as follows. In Séminaire Sophus Lie [1] exposé 21, it was proved that any C^{∞} -functions on G can be expanded by the uniformly convergent Fourier series. Zhelobenko [3] proved Theorem 3 for the group SU(2). R.A. Mayer [4] proved that the Fourier series of any C^{1} -function on SU(2) is uniformly convergent but there exists a C^{1} -function on SU(2) whose Fourier series does not converge absolutely.

1. The Fourier expansion of a smooth function

Throughout this paper we use the following notations. G: a compact connected Lie group, G_0 : the commutator subgroup of G, T: a maximal toral subgroup of G, l: the rank of $G = \dim T$, p: the rank of G_0 , n: the dimension of G = l + 2m, g: the Lie algebra of G, g^c : the complexification of g, g: the Lie algebra of g with respect to g: the Haar measure on g normalized as $\int_G dg = 1$, f: the Hilbert space of the complex valued square integrable functions on g with respect to g: the set of all g-times continuously differentiable complex valued functions on g: the Hilbert-Schmidt norm of a matrix g.

In this paper, a finite dimensional continuous matricial representation of G

^{*)} Senior Foreign Scientist of National Science Foundation

is simply called a representation of G. So a representation of G is a continuous and hence analytic homomorphism of G into $GL(k, \mathbf{C})$ for some $k \ge 1$. For any representation U of G, the differential dU of U is defined as

$$dU(X) = \left[\frac{d}{dt} U(\exp tX)\right]_{t=0}$$

for any X in g. The differential dU of U is a representation of the Lie algebra g. The representation dU of g is uniquely extended to a representation of the universal enveloping algebra U(g) of g. This representation of U(g) is also denoted by dU.

For any representation U of G, all the elements in dU(t) can be transformed simultaneously into the diagonal matrices. That is, there exists a non singular matrix Q and pure imaginary valued linear forms $\lambda_1, \dots, \lambda_k$ on t such that

$$QdU(H)Q^{-1} = \begin{pmatrix} \lambda_1(H) & 0 \\ \ddots & \\ 0 & \lambda_{I}(H) \end{pmatrix}$$

for all H in t. The linear forms $\lambda_1, \dots, \lambda_k$ are called the weights of U.

We fix once for all a positive definite inner product (X,Y) on $\mathfrak g$ which is invariant under Ad G. The norm defined by the inner product is denoted by $|X| = (X,X)^{1/2}$. The inner product (X,Y) is extended to a bilinear form on the complexification $\mathfrak g^c$ of $\mathfrak g$. A pure imaginary valued linear form (in particular a weight

of a representation) λ is identified with an element h_{λ} in t which satisfies

$$\lambda(H) = i(h_{\lambda}, H)$$

for all H in t. So we denote as $\lambda(H) = i(\lambda, H)$. Let $\Gamma = \Gamma(G) = \{H \in t : \exp_G H = 1\}$ be the kernel of the homomorphisim $\exp_G : t \to T$. Then Γ is a discrete subgroup of t of rank l. Let I be the set of all G-integral forms on t:

$$I = \{ \lambda \in \mathfrak{t} : (\lambda, H) \in 2\pi \mathbb{Z} \text{ for all } H \in \Gamma \}.$$

Then the set I coincides with the set of all the weights of the representations of G. We choose once for all a lexicographic order \mathcal{O} in \mathfrak{t} . Let P be the set of positive roots with respect to the order \mathcal{O} . Then the number m of elements in P is equal to $\frac{1}{2}(n-l)$. Let B be the set of simple roots in P, that is, B is the set of roots in P which can not be the sum of two elements in P. B consists of exactly P elements (P = rank P or P where P is denote the elements of P as P is a P in P consist of exactly P elements (P = rank P or P is denote the elements of P as P in P is P in P is P in P

Let $\lambda_1, \dots, \lambda_k$ be the weights of a representation U. Then the maximal element λ among λ_i 's in the order \mathcal{O} is called the highest weight of U. The set of all highest weights of the representations of G coincides with the set D of

all dominant G-integral forms on t:

$$D = \{ \lambda \in I ; (\lambda, \alpha_i) \ge 0 \ (1 \le i \le p) \}.$$

Since an irreducible representation of G is uniquely determined, up to equivalence, by its highest weight (cf. Serre [2] Ch. VII Théorème 1), there exists a bijection from D onto the set $\mathfrak D$ of equivalence classes of irreducible representations of G. $\mathfrak D$ is identified with D by this bijection. We choose, once for all, an irreducible unitary representation U^{λ} with the highest weight λ for each λ in D. The degree $d(\lambda)$ of the representation U^{λ} is given by Weyl's dimension formula:

(1.0)
$$d(\lambda) = \prod_{\alpha \in P} \frac{(\lambda + \delta, \alpha)}{(\delta, \alpha)}$$

where $\delta = 2^{-1} \sum_{\alpha \in P} \alpha$.

If G is abelian, the right hand side of (1.0) should be understood to express 1. Let X_1, \dots, X_n be a basis of \mathfrak{g} and $g_{ij} = (X_i, X_j)$ and $(g^{ij}) = (g_{ij})^{-1}$. Then the element Δ defined by

$$-\Delta = \sum_{i,j=1}^{n} g^{ij} X_i X_j$$

in the universal enveolping algebra U(g) of g is called the Casimir operator of g. Δ is independent of the choice of the basis X_1, \dots, X_n . As an element in U(g), Δ is regarded as a left invariant linear differential operator on G.

Let $u_{ij}^{\lambda}(g)$ be the (i, j)-element of the unitary matrix $U^{\lambda}(g)$. Then the following Lemma is well known.

Lemma 1.1. 1) Let dU^{λ} be the differential of the representation U^{λ} . Then we have

$$dU^{\lambda}(\Delta) = (\lambda, \lambda + 2\delta) 1.$$

2) The matricial element u_{ij}^{λ} is an eigenfunction of the Casimir operator Δ regarded as a differential operator on G:

$$\Delta u_{ij}^{\lambda} = (\lambda, \lambda + 2\delta) u_{ij}^{\lambda}$$

Proof. 1) Since the Casimir operator Δ belongs to the center of $U(\mathfrak{g})$, $dU^{\lambda}(\Delta)$ is a scalar operator c1 by Schur's lemma. The scalar c is determined as follows. We can choose a Weyl base E_{α} ($\alpha \in R$), $H_i(1 \le i \le l)$ of \mathfrak{g}^c satisfying $(E_{\alpha}, E_{-\alpha}) = 1$, $(H_i, H_j) = \delta_{ij}$ and $E_{\alpha} + E_{-\alpha}$, $i(E_{\alpha} - E_{-\alpha})$, $H_i \in \mathfrak{g}$. Then we have

$$-\Delta = \sum_{\alpha \in R} E_{-\alpha} E_{\alpha} + \sum_{i=1}^{l} H_{i}^{2} = \sum_{\alpha \in P}^{l} (2E_{-\alpha} E_{\alpha} + H_{\alpha}) + \sum_{i=1}^{l} H_{i}^{2},$$

because $[E_{\alpha}, E_{-\alpha}] = H_{\alpha}$ where H_{α} is the element in the space it satisfying $(H, H_{\alpha}) = \alpha(H)$ for every H in t^{c} . Let $x \neq 0$ be the weight vector corresponding to the highest weight λ : $dU^{\lambda}(E_{\alpha}) x = 0$ ($\alpha \in P$), $dU^{\lambda}(H_{\alpha}) x = \lambda(H_{\alpha}) x = -(\lambda, \alpha)x$. Then we have

$$cx = dU^{\lambda}(\Delta) x = \left\{ \sum_{\alpha \in P}^{l} (\lambda, \alpha) - \sum_{i=1}^{l} \lambda(H_i)^2 \right\} x = \left\{ (\lambda, 2\delta) + (\lambda, \lambda) \right\} x$$
$$= (\lambda, \lambda + 2\delta) x.$$

2) For any element X in \mathfrak{g} , we have

$$(Xu_{ij}^{\lambda})(g) = \left\lceil \frac{d}{dt} u_{ij}^{\lambda}(g \exp tX) \right\rceil_{t=0} = \sum_{k=1}^{d(\lambda)} u_{ik}^{\lambda}(g) \left\lceil \frac{du_{kj}^{\lambda}}{dt}(\exp tX) \right\rceil_{t=0}.$$

This equality can be expressed as

$$(XU^{\lambda})(g) = U^{\lambda}(g)dU^{\lambda}(X).$$

So we get

$$(\Delta U^{\lambda})(g) = U^{\lambda}(g)dU^{\lambda}(\Delta) = (\lambda, \lambda + 2\delta)U^{\lambda}(g)$$

by 1). q.e.d.

By Peter-Weyl's theorem, the set

$$\mathfrak{B} = \{d(\lambda)^{1/2}u_{i,j}^{\lambda}; \lambda \in D, 1 \leq i, j \leq d(\lambda)\}$$

is an orthonormal base of $L^2(G)$. Therefore any function f in $L^2(G)$ can be expanded by a mean convergent Fourier series of \mathfrak{B} :

$$(1.1) f = \sum_{\lambda \in D} d(\lambda) \sum_{i,j=1}^{d(\lambda)} (f, u_{ij}^{\lambda}) u_{ij}^{\lambda}.$$

The precise meaning of (1.1) is given by

(1.2)
$$\lim_{n \to \infty} ||f - \sum_{|\lambda| \le n} d(\lambda) \sum_{i=1}^{d(\lambda)} (f, u_{ij}^{\lambda}) u_{ij}^{\lambda}||_2 = 0.$$

(1.2) is equivalent to the Parseval's equality:

$$||f||_2^2 = \sum_{\lambda \in D} d(\lambda) \sum_{i,j=1}^{d(\lambda)} |(f, u_{ij}^{\lambda})|^2.$$

For an arbitrary function f in $L^2(G)$, the right hand side of (1.1) does not, in general, converge at every point of G. We shall show that if f is sufficiently smooth, then the series(1.1) converges uniformly on G. First we give a convenient expression of the series (1.1). Let f be a function in $L^1(G)$ and $\lambda \in D$. Then the λ -th Fourier coefficient $\mathcal{F}f(\lambda)$ of f is defined by

$$\mathscr{F}f(\lambda) = \int_{\mathcal{G}} f(g) U^{\lambda}(g^{-1}) dg.$$

 $\mathcal{F}f(\lambda)$ is a matrix of degree $d(\lambda)$ and its (i,j)-element $\mathcal{F}f(\lambda)_{i,j}$ is given by

Therefore we have

(1.4)
$$\sum_{i,j=1}^{d(\lambda)} (f, u_{ij}^{\lambda}) u_{ij}^{\lambda}(g) = \sum_{i,j=1}^{d(\lambda)} \mathcal{F}f(\lambda)_{ij} u_{ij}^{\lambda}(g) = \operatorname{Tr}(\mathcal{F}f(\lambda)U^{\lambda}(g)).$$

By (1.3) the Parseval equality can be expressed as

(1.5)
$$||f||_2^2 = \sum_{\lambda \in D} d(\lambda) ||\mathcal{F}f(\lambda)||^2.$$

Lemma 1.2. If f belongs to $C^2(G)$, then we have

$$\mathcal{F}(\Delta f)(\lambda) = \omega(\lambda)\mathcal{F}f(\lambda)$$

where

(1.6)
$$\omega(\lambda) = (\lambda, \lambda + 2\delta).$$

Proof. Let φ and ψ be any C^1 -functions on G. Then for any element X in \mathfrak{g} , we have

$$(X\varphi, \psi) = \int_{G} \left[\frac{d}{dt} \varphi(g \exp tX) \right]_{t=0} \overline{\psi(g)} \, dg = \frac{d}{dt} \left[\int_{G} \varphi(g \exp tX) \overline{\psi(g)} \, dg \right]_{t=0}$$
$$= \frac{d}{dt} \left[\int_{G} \varphi(g) \overline{\psi(g \exp(-tX))} \, dg \right]_{t=0} = -(\varphi, X\psi).$$

Let X_1, \dots, X_n be an orthonormal base of \mathfrak{g} : $(X_i, X_j) = \delta_{ij}$. Then we have $\Delta = -\sum_{i=1}^n X_i^2$ and by the above equality we get

(1.7)
$$(\Delta \varphi, \psi) = (\varphi, \Delta \psi)$$

for any C^2 -functions φ and ψ . By (1.3), (1,7) and Lemma 1.1, 2), we have

$$\mathcal{F}(\Delta f)(\lambda)_{ij} = (\Delta f, u_{ji}^{\lambda}) = (f, \Delta u_{ji}^{\lambda}) = \omega(\lambda) \mathcal{F}f(\lambda)_{ij}.$$

q. e. d.

Lemma 1.3. Let $D_0 = D - \{0\}$. Then the series

$$\zeta(s) = \sum_{\lambda \in D_0} (\lambda, \lambda)^{-s}$$

converges if 2s > l.

Proof. Let I be the set of all G-integral form on t and $I_0 = I - \{0\}$. It is sufficient to prove the series

$$\sum_{\lambda \in I_0} (\lambda, \lambda)^{-s}$$

converges if 2s > l. Let $\lambda_1, \dots, \lambda_l$, be a basis of the lattice I and $\langle x, y \rangle$ be the inner product on t defined by $\langle \sum x_i \lambda_i, \sum y_i \lambda_i \rangle = \sum x_i y_i$. Then it is well known that the series

(1.8)
$$\sum_{\lambda \in I_0} \langle \lambda, \lambda \rangle^{-s} = \sum_{n \in \mathbb{Z}^{I-}[0]} (n_1^2 + \dots + n_l^2)^{-s}$$

converges if and only if 2s > l. On the other hand, there exists a positive definite symmetric operator A such that $(x, y) = \langle Ax, y \rangle$ for all x, y in t. Let a and b be the maximal and minimal eigenvalues of A. Then we have

$$b\langle \lambda, \lambda \rangle \leq (\lambda, \lambda) \leq a\langle \lambda, \lambda \rangle$$

for all λ in t. Therefore the series $\sum_{\lambda \in I_0} (\lambda, \lambda)^{-s}$ converges if and only if the series $\sum_{\lambda \in I_0} \langle \lambda, \lambda \rangle^{-s}$ converges. So we have proved that $\sum_{\lambda \in D_0} (\lambda, \lambda)^{-s}$ converges if 2s > l.

Theorem 1. Let f be a continuous function on a compact connected Lie group G and let l = rank G, n = dim G = l+2m. If f satisfies one of the following conditions (1) and (2), then the Fourier series of f,

$$\sum_{\lambda \in \mathcal{D}} d(\lambda) \operatorname{Tr}(\mathcal{F}f(\lambda) U^{\lambda}(g))$$

converges to f(g) absolutely and uniformly on G:

- (1) f is 2k-times continuously differentiable and $2k > \frac{l}{2} + m = \frac{n}{2}$,
- (2) $||\mathcal{F}f(\lambda)|| = O(|\lambda|^{-h}) (|\lambda| \to \infty)$ for some integer $h > l + \frac{3}{2}m$.

Proof. (1) Suppose f belongs to $C^{2k}(G)$. Then we have, by Lemma 1.2,

(1.9)
$$\mathcal{F}f(\lambda) = \omega(\lambda)^{-k} \mathcal{F}(\Delta^k f)(\lambda) \qquad (\lambda \in D_0).$$

On the other hand we have an inequality

(1.10)
$$\omega(\lambda) = (\lambda, \lambda + 2\delta) \ge |\lambda|^2.$$

By (1.9) and (1.10), we have

$$(1.11) ||\mathcal{F}f(\lambda)|| \leq ||\mathcal{F}(\Delta^k f)(\lambda)|| ||\lambda||^{-2k} \text{ for all } \lambda \in D_0 = D - \{0\}.$$

Since $(A, B) = \operatorname{Tr}(AB^*)$ is an inner product on the space $M_n(C)$ of the matrices

of order n, we have the Schwarz inequality

$$|\operatorname{Tr}(AB)| \le ||A|| \, ||B||.$$

Since $U^{\lambda}(g)$ is a unitary matrix of order $d(\lambda)$, the Hilbert-Schmidt norm of $U^{\lambda}(g)$ is equal to

(1.13)
$$||U^{\lambda}(g)|| = d(\lambda)^{1/2}.$$

By (1.12), (1.13) and (1.11), we have

(1.14)
$$\sum_{\lambda} d(\lambda) |\operatorname{Tr}(\mathcal{F}f(\lambda)U^{\lambda}(g))| \leq \sum_{\lambda} d(\lambda)^{3/2} ||\mathcal{F}f(\lambda)||$$
$$\leq \sum_{\lambda} d(\lambda)^{3/2} |\lambda|^{-2k} ||\mathcal{F}(\Delta^{k}f)(\lambda)||.$$

By the Schwarz inequality, the right hand side of (1.14) is

$$(1.15) \qquad \leq \left(\sum_{\lambda} d(\lambda)||\mathcal{F}(\Delta^{k}f)(\lambda)||^{2}\right)^{1/2} \left(\sum_{\lambda} d(\lambda)^{2} |\lambda|^{-4k}\right)^{1/2}.$$

Since $\Delta^k f \in C^0(G) \subset L^2(G)$, we have the Parseval equality

$$(1.16) ||\Delta^{k}f||_{2}^{2} = \sum_{\lambda \in D} d(\lambda) ||\mathcal{F}(\Delta^{k}f)(\lambda)||^{2}.$$

Moreover by Weyl's dimension formula, we have for any $\lambda \in D_0$

$$(1.17) d(\lambda) \le C(|\lambda| + |\delta|)^m \le N|\lambda|^m$$

where $C = \prod_{\alpha \in P} |\alpha| (\delta, \alpha)^{-1}$ and N are positive constants. By (1.16) and (1.17), the right hand side of (1.15) is

(1.18)
$$\leq ||\Delta^{k} f||_{2} (N^{2} \sum_{\lambda} |\lambda|^{2m-4k})^{1/2}.$$

Since 4k-2m>l+2m-2m=l by condition (1), the series in (1.18) converges (Lemma 1.3). So we have proved that the Fourier series of f converges absolutely and uniformly on G, if f satisfies the condition (1). The sum s(g) of the Fourier series of f is a continuous function and equal to f(g) almost everywhere on G by the Parseval equality. Since f and g are continuous, the sum g(g) is equal to g(g) everywhere on g(g).

If a function f satisfies the condition (2), then there exists a positive constant M such that

$$(1.19) ||\mathcal{F}f(\lambda)|| \leq M|\lambda|^{-h} \text{for all } \lambda \in D_0.$$

So we have

(1.20)
$$\sum_{\lambda} d(\lambda) |\operatorname{Tr}(\mathcal{F}f(\lambda)U^{\lambda}(g))| \leq \sum_{\lambda} d(\lambda)^{3/2} ||\mathcal{F}f(\lambda)||$$
$$\leq L \sum_{\lambda} (|\lambda| + |\delta|)^{3m/2} |\lambda|^{-h}$$

where $L = M(\prod_{\alpha \in P} |\alpha|(\delta, \alpha)^{-1})^{3/2}$ is a positive constant. Therefore the series on the right hand side of (1.20) converges if h-3m/2>l, i.e., h>l+3m/2 (Lemma 1.3). q.e.d.

Corollary to Theorem 1. If f is a C^{2k} -function on G, then we have $||\mathcal{F}f(\lambda)|| = o(|\lambda|^{-2k})$ ($|\lambda| \to \infty$), that is,

$$\lim_{|\lambda|\to\infty} |\lambda|^{2k} ||\mathcal{F}f(\lambda)|| = 0.$$

Proof. By the inequality (1.11), we have

$$(1.21) |\lambda|^{2k} ||\mathcal{F}f(\lambda)|| \leq ||\mathcal{F}(\Delta^k f)(\lambda)||.$$

Since $\Delta^k f$ belongs to $C^0(G) \subset L^2(G)$, we have

(1.22)
$$\lim_{\lambda \downarrow \Delta^{\infty}} ||\mathcal{F}(\Delta^{k}f)(\lambda)|| = 0$$

by the Parseval equality (1.16). (1.21) and (1.22) prove the Corollary.

2. Fourier coeffcients of a smooth function

Theorem 2. Let G be a compact connected Lie group and D be the set of all dominant G-integral forms on the Lie algebra t of a maximal toral subgroup T of G. Let U^{λ} be an irreducible unitary representation of G with the highest weight $\lambda \in D$ and $d(\lambda)$ be the degree of U^{λ} . Then we have the following inequality for every X in the Lie algebra \mathfrak{g} of G:

where N is a positive constant and m is the number of the positive roots.

Proof. First we show that the inequality (2.1) is valid for every X in $\mathfrak g$ if (2.1) is valid for every X in the Cartan subalgebra $\mathfrak t$. Since every element X in $\mathfrak g$ is conjugate to an element H in $\mathfrak t$, that is, there exists an element g in G such that $(\operatorname{Ad} g)X = H$, we have

(2.2)
$$||dU^{\lambda}(H)|| = ||U^{\lambda}(g)dU^{\lambda}(X)U^{\lambda}(g^{-1})|| = ||dU^{\lambda}(X)||$$
 and

$$(2.3) |H| = |X|.$$

The equalities (2.2) and (2.3) prove that if the inequality (2.1) is valid for any H in t, then (2.1) is valid for every X in g.

Now let X be any element in t and $W(\lambda)$ be the set of weights in the representation U^{λ} . Then the linear transformation $dU^{\lambda}(X)$ is represented by a diagonal matrix whose diagonal elements are $\{i(\mu, X): \mu \in W(\lambda)\}$ with respect to some orthonormal base of the representation space. Therefore we have

$$(2.4) ||dU^{\lambda}(X)||^{2} = \sum_{\mu \in W(\lambda)} |i(\mu, X)|^{2} \leq \sum_{\mu \in W(\lambda)} |\mu|^{2} |X|^{2}.$$

On the other hand every weight μ in $W(\lambda)$ has the form

where m_i 's are non negative integers. (cf. Serre [2] Ch. VII Théorème 1). If $\mu \in W(\lambda)$ is dominant, that is, $(\mu, \alpha_i) \ge 0$ $(l \le i \le p)$, then we have by (2.5)

$$(2.6) \quad |\mu|^2 \leq |\mu|^2 + \sum_{i=1}^{p} m_i(\mu, \alpha_i) = (\lambda, \mu) = |\lambda|^2 - \sum_{i=1}^{p} m_i(\lambda, \alpha_i) \leq |\lambda|^2.$$

Since every weight μ in $W(\lambda)$ is conjugate to a dominant weight in $W(\lambda)$ under the Weyl group, (cf. Serre [2] Ch. VII-12 Remarque), we have the inequality

$$(2.7) |\mu| \leq |\lambda| \text{for all } \mu \in W(\lambda)$$

by (2.6). The inequalities (2.4) and (2.7) prove the inequality

$$(2.8) ||dU^{\lambda}(X)||^2 \leq d(\lambda) |\lambda|^2 |X|^2.$$

Since the degree $d(\lambda)$ of U is given by Weyl's dimension formula

$$d(\lambda) = \prod_{\alpha \in \mathcal{D}} (\lambda + \delta, \alpha)(\delta, \alpha)^{-1},$$

 $d(\lambda)$ is estimated by (1.17) as

(2.9)
$$d(\lambda) \le C(|\lambda| + |\delta|)^m \le N|\lambda|^m \text{ for any } \lambda \in D_0$$

where C and N are positive constants and m is the number of positive roots. So we have proved Theorem 2 completely.

Lemma 2.1. Let G be a connected Lie group and g be the Lie algebra of G. Moreover let f be a complex valued function on G, and k be a positive integer. Then the function f belongs to $C^{k}(G)$ if and only if

$$(Xf)(g) = \left[\frac{d}{dt}f(g \exp tX)\right]_{t=0}$$

can be defined for every X in \mathfrak{g} and g in G, and it belongs to $C^{k-1}(G)$.

Proof. II a function f belongs to $C^{k}(G)$, then $\varphi(g, t) = f(g \exp tX)$ belongs to $C^{k}(G \times \mathbf{R})$. So $(Xf)(g) = \frac{\partial \varphi}{\partial t}(g, 0)$ exists and belongs to $C^{k-1}(G)$.

Conversely suppose that Xf is defined and belongs to $C^{k-1}(G)$ for every $X \in \mathfrak{g}$. Then for any real number t, $(df/dt)(g \exp tX)$ exists and is equal to $(Xf)(g \exp t X)$. Moreover for any element h in G, $(df/dt)(g \exp t Xh)$ exists and is equal to

(2.10)
$$\frac{d}{dt}f(g \exp t Xh) = \frac{d}{dt}f(gh \exp (t \operatorname{Ad} h^{-1}X))$$
$$= ((\operatorname{Ad} h^{-1}X)f)(g \exp t Xh).$$

Let X_1, X_2, \dots, X_n be a base of g and

$$\varphi(t) = \varphi(t_1, \dots, t_n) = \exp tX_1 \dots \exp t_n X_n$$

Then φ is an analytic diffeomorphism of an open neighbourhood W of 0 in \mathbb{R}^n onto an open neighbourhood V of the identity element e in G. Let

(2.11)
$$(\text{Ad}(\exp t_1 X_1 \cdots \exp t_n X_n)^{-1}) X_i = \sum_{j=1}^n a_{i,j}(t) X_j.$$

Then $a_{ij}(t)=a_{ij}(t_1,\cdots,t_n)$ is an analytic function on \mathbf{R}^n . Let g be a fixed element in G. Then the mapping $g\varphi(t)\mapsto t=(t_1,\cdots,t_n)$ defines a local coordinates on gV, the canonical coordinates of the second kind. Let $\partial/\partial t_i$ be the partial derivalive with respect to t_i just introduced. Then by the equalities (2.10) and (2.11), $\frac{\partial f}{\partial t_i}(g\varphi(t))$ exists and is equal to

(2.12)
$$\frac{\partial}{\partial t_i} f(g\varphi(t)) = \left[\operatorname{Ad}(\exp t_{i+1} X_{i+1} \cdots \exp t_n X_n)^{-1} X_i \right] f(g\varphi(t))$$
$$= \sum_{i=1}^n a_{i,j}(0, \dots, 0, t_{i+1}, \dots, t_n) (X_j f) (g\varphi(t)).$$

By the assumption, the right hand side of (2.12) regarded as a function of t is a C^{k-1} -function on W. So f is a C^k -function on gV. Since g is arbitrary, this proves that f is a C^k -function on G.

Lemma 2.2. Let G, g, f, k be as in Lemma 2.1. Then f is a C^k -function on G if and only if $X_k X_{k-1} \cdots X_1 f$ can be defined and is continuous for any k elements X_1, \dots, X_k in g.

Proof. This Lemma is easily proved by the induction with respect to k using Lemma 2.1.

Theorem 3. For any continuous function f on a compact connected Lie group G, the following two conditions (1) and (2) are mutually equivalent.

- (1) f is a C^{∞} -function on G.
- (2) The Fourier coefficients $\mathcal{F}f(\lambda)$ is rapidly decreasing: $\lim_{|\lambda| \to \infty} |\lambda|^{|h|} |\mathcal{F}f(\lambda)|| = 0$ for every non negative integer h.

Proof. (1) \Rightarrow (2). This part of Theorem 3 is proved in Corollary to Theorem 1.

(2) \Rightarrow (1). Suppose that $\mathcal{F}f(\lambda)$ is rapidly decreasing. Then f satisfies the condition (2) in Theorem 1. So the Fourier series of f converges uniformly to f. Thus for every $g \in G$, $X \in \mathfrak{g}$ and $t \in \mathbb{R}$ we have

(2.13)
$$f(g \exp tX) = \sum_{\lambda \in D} d(\lambda) \operatorname{Tr}(\mathcal{F}f(\lambda) U^{\lambda}(g \exp tX)).$$

The series obtained from the right hand side of (2.13) by termwise differentiation with respect to the variable t is

(2.14)
$$\sum_{\lambda \in \mathcal{D}} d(\lambda) \operatorname{Tr}(\mathcal{F}f(\lambda) U^{\lambda}(g \exp tX) dU^{\lambda}(X)).$$

By Theorem 2 and the rapidly decreasingness of $\mathcal{F}f(\lambda)$, the series (2.14) converges absolutely and uniformly with respect to t, when t runs through any bounded set in R. Therefore the series (2.13) can be differentiated termwise and the function $f(g \exp tX)$ is differentiable with respect to t. So

$$(Xf)(g) = \left[\frac{d}{dt}f(g \exp tX)\right]_{t=0}$$

is defined and equal to

(2.15)
$$\sum_{\lambda \in D} d(\lambda) \operatorname{Tr}(\mathcal{F}f(\lambda) U^{\lambda}(g) dU^{\lambda}(X)).$$

Since (2.15) is uniformly convergent on G, the sum Xf is a continuous function on G. Therefore f is a C^1 -function by Lemma 2.1.

By the same argument, $X_1 \cdots X_k f$ is defined and continuous for any $k \in \mathbb{N}$ and $X_1, \cdots, X_k \in \mathfrak{g}$ and it has the following uniformly convergent expansion;

$$(2.15) (X_1 \cdots X_k f)(g) = \sum_{\lambda \in \mathcal{D}} d(\lambda) \operatorname{Tr}(\mathcal{F}f(\lambda) U^{\lambda}(g) dU^{\lambda}(X_1) \cdots dU^{\lambda}(X_k)).$$

So f is a C^k -function for any $k \in N$ by Lemma 2.2, i.e., f is a C^{∞} -function on G.

3. The topology of $C^{\infty}(G)$ and S(D)

Let G be a compact connected Lie group as before. The space $C^{\infty}(G)$ of all complex valued C^{∞} -functions on G is topologized by the family of seminorms:

$$\{p_U(f) = ||Uf||_{\infty} : U \in U(\mathfrak{g})\}.$$

 $C^{\infty}(G)$ is a complete locally convex topological vector space by this topology. It is clear that the topology of $C^{\infty}(G)$ is coincides with the one which is determined by the subfamily of seminorms:

$$\{p_{X_1, \dots, X_k}(f) = ||X_1 \dots X_k f||_{\infty} : k = 0, 1, 2; \dots, X_1, \dots X_k \in \mathfrak{g}\}.$$

Let S(D) be the space of matrix valued functions F on the lattice D which satisfies the following two conditions:

- (1) $F(\lambda)$ belongs to the space $M_{d(\lambda)}(C)$ of complex matrices of order $d(\lambda)$ for each $\lambda \in D$.
- (2) $F(\lambda)$ is a rapidly decreasing function of λ : i.e., $\lim_{|\lambda| \to \infty} |\lambda|^{k} ||F(\lambda)|| = 0$ for all $k \in \mathbb{N}$.

In the following, we use the inner product (X, Y) which satisfies the following condition:

$$(3.3) (\lambda, \lambda) \ge 1 \text{ for all } \lambda \in D_0 = D - \{0\}.$$

The vector space S(D) is topologized by the family of seminorms

$${q_s(F) = \operatorname{Max}_{\lambda \in \mathcal{D}} |\lambda|^s ||F(\lambda)|| :; \ge 0}.$$

By the condition (3.3), we get the following inequality for the seminorms on S(D):

$$(3.4) q_s(F) \le q_t(F) \text{if } 0 < s \le t$$

for all F in S(D).

Using these topologies, the result in Theorem 3 can be reformulated more precisely in the following Theorem 4.

Theorem 4. The Fourier transform $\mathcal{F}: f \to \mathcal{F}f$ is a topological isomorphism of $C^{\infty}(G)$ onto S(D).

Proof. By Theorem 3, the Fourier transform \mathcal{F} mapps $C^{\infty}(G)$ into S(D). Since any continuous function f on G is uniquely determined by its Fourier coefficients $\mathcal{F}f(\lambda)$ by (1.5), the mapping \mathcal{F} is injective. The mapping \mathcal{F} is also surjective. Let F be a function in S(D). Then the series

(3.5)
$$\sum_{\lambda \in D} d(\lambda) \operatorname{Tr}(F(\lambda) U^{\lambda}(g))$$

converges uniformly on G, because the function F satisfies the condition (2) in Theorem 1. Let f(g) be the sum of the series (3.5). Then f is a continuous function on G and the Fourier transform $\mathcal{F}f$ of f coincides with the original function

F by the orthogonality relations. Since $F(\lambda) = \mathcal{F}f(\lambda)$ is rapidly decreasing, the function f is a C^{∞} -function on G by Theorem 3. Thus we have proved that the Fourier transform \mathcal{F} is a linear isomorphism of $C^{\infty}(G)$ onto S(D).

Now we shall prove that the Fourier transform \mathcal{F} is a homeomorphism. First we show that \mathcal{F} is continuous. Since $(\Delta^k f)(\lambda) = \omega(\lambda)^k \mathcal{F} f(\lambda)$ (Lemma 1.2), we have

(3.6)
$$\omega(\lambda)^{k}||\mathcal{F}f(\lambda)|| = ||\mathcal{F}(\Delta^{k}f)(\lambda)|| \leq \int_{G} |\Delta^{k}f(g)| ||U^{\lambda}(g^{-1})||dg$$
$$\leq d(\lambda)^{1/2}||\Delta^{k}f||_{\infty}.$$

Since $|\lambda|^2 \leq \omega(\lambda)$ and there exists a constant M>0 such that $d(\lambda)^{1/2} \leq M |\lambda|^{m/2}$ for all $\lambda \in D_0$, we have

$$|\lambda|^{2k-m/2}||\mathcal{F}f(\lambda)|| \leq M||\Delta^k f||_{\infty}$$

by (3.6). Therefore we have

$$q_{2k-m/2}(\mathcal{F}f) \leq M||\Delta^k f||_{\infty}$$

for all f in $C^{\infty}(G)$ and all $k > \frac{1}{4}m$. Since k can be taken arbitrarily large, we have proved by (3,4) and (3,8) that for any s>0 there exists an integer k>0 such that the inequality

$$q_s(\mathcal{F}f) \leq M||\Delta^k f||_{\infty}.$$

is valid. On the other hand, since $||\mathcal{F}f(0)|| \leq ||f||_{\infty}$ by the definition of $\mathcal{F}f$, we have

$$(3.10) q_0(\mathcal{F}f) \leq ||\mathcal{F}f(0)|| + \underset{\lambda \in \mathcal{D}_0}{\operatorname{Max}} ||\mathcal{F}f(\lambda)|| \leq ||f||_{\infty} + M||\Delta^k f||_{\infty}$$

for $k > \frac{1}{4}m$ by (3.3) and (3.7). The inequalities (3.8) and (3.10) prove that the Fourier transform \mathcal{F} is a continuous mapping of $C^{\infty}(G)$ into S(D).

Next we shall prove that the inverse Fourier transform \mathcal{F}^{-1} : $\mathcal{F}f \to f$ is continuous. Since $|\lambda|^2 \leq \omega(\lambda)$ and there exists a constant M > 0 such that $d(\lambda) \leq M^2 |\lambda|^m$, the series

(3.11)
$$\sum_{\lambda \in \mathcal{D}_0} d(\lambda)^{(3+k)/2} \omega(\lambda)^{-s}$$

converges to a positive real number K if $s>2^{-1}l+4^{-1}(k+3)m$ by Lemma 1.3. Let k be a positive integer and X_1, \dots, X_k be k elements in \mathfrak{g} . Then by (2.15) and Theorem 2, we have the inequality

$$(3.12) ||X_1 \cdots X_k f||_{\infty} \leq \sum_{\lambda \in \mathcal{D}_0} d(\lambda)^{(3+k)/2} ||\lambda||^k ||\mathcal{F} f(\lambda)|| ||X_1| \cdots ||X_k||$$

$$= |X_{1}| \cdots |X_{k}| \sum_{\lambda \in \mathcal{D}_{0}} d(\lambda)^{(3+k)/2} \omega(\lambda)^{-s} |\lambda|^{k} ||\mathcal{F}(\Delta^{s}f)(\lambda)||$$

$$\leq K |X_{1}| \cdots |X_{k}| q_{k}(\mathcal{F}(\Delta^{s}f))$$

$$= K |X_{1}| \cdots |X_{k}| \max_{\lambda \in \mathcal{D}_{k}} \omega(\lambda)^{s} |\lambda|^{s} ||\mathcal{F}f(\lambda)||.$$

if
$$s > \frac{1}{2}l + \frac{1}{4}(k+3)m$$
. Since $\omega(\lambda) = (\lambda, \lambda + 2\delta) \le |\lambda|^2 + 2|\lambda| |\delta|$
and $\omega(\lambda)^s \le \sum_{r=0}^s {}_sC_r |\lambda|^{s+r} (2|\delta|)^{s-r}$,

we have

$$(3.13) ||X_1 \cdots X_k f||_{\infty} \leq K |X_1| \cdots |X_k| \sum_{r=0}^{s} {}_{s} C_r (2|\delta|)^{s-r} q_{s+n+r} (\mathcal{F} f).$$

Similarly we have the inequality

$$(3.14) ||f||_{\infty} \leq ||\mathcal{F}f(0)|| + \sum_{\lambda \in \mathcal{D}_{0}} d(\lambda) ||\operatorname{Tr}(\mathcal{F}f(\lambda)U^{\lambda}(g))|$$

$$\leq q_{0}(\mathcal{F}f) + \sum_{\lambda \in \mathcal{D}_{0}} d(\lambda)^{3/2} ||\mathcal{F}f(\lambda)||$$

$$\leq q_{0}(\mathcal{F}f) + \sum_{\lambda \in \mathcal{D}_{0}} d(\lambda)^{3/2} \omega(\lambda)^{-s} ||\mathcal{F}(\Delta^{s}f)(\lambda)||$$

$$\leq q_{0}(\mathcal{F}f) + K \operatorname{Max}_{\lambda \in \mathcal{D}_{0}} \omega(\lambda)^{s} ||\mathcal{F}f(\lambda)||$$

$$\leq q_{0}(\mathcal{F}f) + K \sum_{r=0}^{s} {}_{s}C_{r}(2|\delta|)^{s-r} q_{s+r}(\mathcal{F}f).$$

for $s > \frac{1}{2}l + \frac{3m}{4}$.

The inequalities (3.13) and (3.14) prove that the inverse Fourier transform \mathcal{F}^{-1} : $\mathcal{F}f \to f$ is a continuous mapping from S(D) into $C^{\infty}(G)$. q.e.d.

Corollary to Theorem 4. The topology of $C^{\infty}(G)$ defined by the family of seminorms (3.0) (or (3.1)) coincides with the topology defined by the family of seminorms

$${r_m(f) = ||\Delta^m f||_{\infty}; m = 0, 1, 2, \cdots}.$$

Proof. This Corollary is clear from the inequalities (3.10) and (3.9) and Theorem 4.

New Mexico State University and University of Tokyo

References

- [1] Séminaire Sophus Lie: Théorie des Algèbres de Lie, Topologie des Groupes de de Lie, Paris, 1955.
- [2] J.-P. Serre: Algèbres de Lie Semi-simples Complexes, W.A. Benjamin, New York, 1966.
- [3] D.P.Zhelobenko: On harmonic analysis of functions on semisimple Lie groups I, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 1343-1394. (in Russian). (A.M.S. Translations, series 2, vol. 54, 177-230).
- [4] R.A. Mayer, Jr: Fourier series of differentiable functions on SU(2), Duke Math. J. 34 (1967), 549-554.

Added in proof

The Fourier series in Theorem 1 is obtained from the series (1.1) by first taking the partial sum $\sum_{i,j=1}^{d(\lambda)}$. However we can prove that the original series (1.1) converges absolutely and uniformly if f belongs to $C^{2k}(G)$ and $2k > \frac{n}{2}$. This fact can be seen from the following inequalities:

$$\begin{split} &\sum_{\lambda \in \mathcal{D}_0} \sum_{i,j=1}^{d(\lambda)} d(\lambda) |(f,u_{ij}^{\lambda})| \ |u_{ij}^{\lambda}(g)| \leq \sum_{\lambda \in \mathcal{D}_0} \sum_{i,j=1}^{d(\lambda)} d(\lambda) |\lambda|^{-2k} |(\Delta^k f, u_{ij}^{\lambda})| \ |u_{ij}^{\lambda}(g)| \\ &\leq (\sum_{\lambda \in \mathcal{D}_0} \sum_{i,j=1}^{d(\lambda)} d(\lambda) |(\Delta^k f, u_{ij}^{\lambda})|^2)^{1/2} (\sum_{\lambda \in \mathcal{D}_0} \sum_{i,j} d(\lambda) |\lambda|^{-4k} |u_{ij}^{\lambda}(g)|^2)^{1/2} \\ &\leq ||\Delta^k f||_2 (\sum_{\lambda \in \mathcal{D}_0} d(\lambda)^2 |\lambda|^{-4k})^{1/2} \leq ||\Delta^k f||_2 N(\sum_{\lambda \in \mathcal{D}_0} |\lambda|^{2m-4k})^{1/2}. \end{split}$$