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Abstract

The paper is devoted to classify all irreducible tempered representations ofSL(n)
p-adic which appear in the spectral side of J. Arthur’s local trace formula. We give
description of such representations which are elliptic or irreducibly induced from
elliptic representations of proper Levi subgroups with certain condition on the Weyl
group.

1. Introduction

Soit G le groupe des points rationnels d’un groupe algébrique réductif connexe
p-adique. NotonsGe l’ensemble des points réguliers elliptiques deG. Une représenta-
tion irréductible� de G est dite elliptique si elle est tempérée et si la restrictionde
son caractère àGe est non nulle. NotonsEell(G) l’ensemble des classes d’isomorphisme
des représentations irréductibles elliptiques deG.

On se donne une paire discrète (M, � ) de G, c’est-à-dire queM est un sous-groupe
de Lévi d’un sous-groupe parabolique rationnel deG et � une classe de représentation
irréductible de carré intégrable deM modulo la composante déployéeAM du centre de
M. On dit que� se ramifie dansG s’il existe un élément non trivial du groupe de Weyl,
WG(AM ), de (G, AM ) qui stabilise� . D’autre part un élément du groupeWG(AM ) est
dit elliptique s’il ne fixe aucun point du complémentaire deaG dansaM . La paire discrète
(M, � ) de G est alors dite ramifiée elliptique dansG s’il existe un élément elliptique du
groupe de Weyl de (G, AM ) qui stabilise� .

L’objet, principal de ce papier est la description de l’ensemble des classes d’équiv-
alence des représentations� de SL(n) qui sont composantes irréductibles des représenta-
tions induitesIndP=M N(� ), lorsque (M, � ) décrit les paires ramifiées elliptiques dans
SL(n), qu’on noteEdisc(SL(n)).

Ainsi, on verra (Théorème 2) que toute représentation� de Edisc(SL(n)) est ou bien
dansEell(G) ou bien elle est de la formeiG,L (� ) où L un Lévi propre deG et � 2
Eell(L) vérifiant une certaine condition de ramification elliptique.
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2. Préliminaire

Soit G un groupe algébrique connexe réductif défini sur un corps local non archiméd-
ien F de caractéristique 0. NotonsG := G(F) l’ensemble des pointsF-rationnels deG.
On fixe une composante de LéviF-rationnelleM0 d’un certain sous-groupe parabolique
minimal P0 deG défini surF .

Nous appellerons sous-groupe de Lévi deG la composante de LéviM , contenant
M0, d’un sous-groupe parabolique rationnelP deG. SoitL l’ensemble des sous-groupes
de Lévi deG contenantM0 et L0 = fL 2 L j L 6= Gg. La composante déployée deM
(resp.M0) est notéeAM (resp.A0) et aM désigne l’ “algèbre de Lie” deAM . On note8(G, A0) le système des racines deA0 dansG et1 � 8(G, A0) un système de racines
simples. LorsqueM = M� (� � 1) est dansL et ayantA = A� =:

T�2� (Ker � \ A0)0

pour composante déployée, on noteW(A) = WG(A) le groupe de Weyl de (G, A). Pourw 2 W(A), choisissons ˜w un représentant dew dansNG(A).
Soit (� , V) une représentation lisse irréductible deM dans un espaceV , on définit

une nouvelle représentationw� par :

w�(m) = �(w̃�1mw̃) ; m 2 M.

La classe dew� est indépendante du représentant ˜w. On définit :

W(�) := WG(�) = fw 2 W(A) ; w� �= �g
le stabilisateur de� dans W(A). On dit que� se ramifie dans G si W(�) est non
trivial. Notons IndG

P(�), P = P� = M�N� , la représentation deG unitairement induite
par � . Du moment que la classe de cette représentation dépend seulement deM et non
de P, elle sera notéeiG,M (�).

NotonsEtemp(G) l’ensemble de classes d’équivalence des représentationsirréducti-
bles tempéréesde G et E2(G) le sous-ensemble deEtemp(G), formé des représentations
irréductibles decarré intégrablede G modulo AG. On note, aussi,Eell(G) le sous-
ensemble des élémentselliptiquesdeEtemp(G), [2] et [7]. On sait queEell(G) est contenu
dansEtemp(G). On dit que (M, � ) est unepaire discrètede G si M 2 L et � 2 E2(M).

Fixons une paire discrète (M, � ) de G. Pour toutw 2 W(� ) on sait construire un
opérateur d’entrelacement normaliséA(w, � ) de IndG

P=M N(� ) dans elle-même [6]. On
note C(� ) l’algèbre commutante deIndG

P=M N(� ) et E� (G) l’ensemble des constituants
irréductibles deiG,M (� ). Pour � 2 8(P, A), soient A� le tore (Ker � \ A)0 et M� le
centralisateur deA� dansG ; alors M est un sous-groupe de Lévi propre maximal de
M� . Notons��(� ) la densité de Plancherel attachée ài M� ,M (� ) [8]. Définissons :

10(� ) = f� 2 8(P, A) ; ��(� ) = 0g,
<(� ) := <G(� ) = fw 2 W(� ) ; w� > 0, 8� 2 10(� )g.

Enfin notonsW0(� ) le sous-groupe deW(� ) engendré par les réflexionss� ; � 210(� ).
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On sait que :W(� ) = <(� )ÌW0(� ) [12] et que l’ensemblefA(w,� ) ; w 2 <(� )g forme
une base de l’algèbre commutanteC(� ), [9, 12].

De plus étant donnésw1, w2 2 <(� ), il existe un cocycle

� : <(� )�<(� )! C�
satisfaisant :

A(w1w2, � ) = �(w1, w2)A(w1, � )A(w2, � ).

Ainsi, vue comme algèbre,C(� ) est isomorphe à l’algèbreC[<(� )]� du groupe<(� )
tordue par le cocycle� [12]. De plus la multiplicité de chaque composante irréductible
est égale à 1 si est seulement si<(� ) est commutatif et� se déploie [9, 10]. Lorsque
le cocycle se déploie, on écriraC(� ) �= C[<(� )].

Pour toutw 2 <(� ) on définit :

awM := fH 2 aM ; wH = Hg,
<(� )ell = fw 2 <(� ) ; awM = aGg,

a
<(� )
M :=

\
w2<(� )

awM .

DÉFINITION 1. Soit (M, � ) une paire discrète deG.

1- Un élément deW(A) est dit elliptique (ou régulier) si ses seuls points fixes dans
aM sont ceux deaG. Ainsi on définit :

W(A)ell := WG(A)ell = fw 2 W(A) ; awM = aGg
l’ensemble des éléments elliptiques dansW(A), et

W(� )ell := WG(� )ell = W(� ) \W(A)ell.

2- La paire (M, � ) est dite ramifiée elliptique dansG si W(� )ell est non vide.

Dans le paragraphe suivant, on va déterminer la nature des représentations qui sont
dans l’ensemble des composantes irréductibles des :

IndG
P=M N(� )

où (M, � ) décrit toutes les paires discrètes ramifiées elliptiques de SL(n).
Appelons cet ensembleEdisc(G). Il est clair queEdisc(G) � Etemp(G). L’ensemble

Edisc(G) apparaît dans la partie spectrale de la formule des traces locale de J. Arthur [1].
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3. Edisc(SLn)

On fixe F comme dans§2, on noteGn = SLn, G̃n = GLn défini sur F . Aussi
on note Gn = Gn(F), G̃n = G̃n(F). Pour n fixé, on note ces deux derniers groupes
respectivementG et G̃.

Soit Ã0 � G̃ le sous-groupe des matrices diagonales ; posons :A0 = Ã0 \ G. Soit
U le sous-groupe des matrices unipotentes triangulaires supérieures deG̃, alorsU � G
et B̃ = Ã0U est un sous-groupe de Borel dẽG tandis queB = A0U en est un deG.
Notons8(G, A0) =8(G̃, Ã0) l’ensemble des racines deA0 dansG et 1 le système de
racines simples donné parB.

Soit � � 1, notons P̃� = M̃�N� le sous-groupe parabolique standard deG̃ associé
à � , alors P� = P̃� \ G = M�N� (où M� = M̃� \ G) est le sous-groupe parabolique
standard deG associé à� .

Rappelons qu’on paramétrise les sous-groupes paraboliques standard deG̃, soit à
l’aide des� � 1 soit à l’aide des partitions den.

Dire M̃ = M̃� signifie qu’il existe une partitionm1 + m2 + : : : + mq = n telle que :

M̃ =

8>>>>>>>>><
>>>>>>>>>:

0
BBBBBBBBB�

g1 0
0 g2 0

.
.

.
. . 0
0 0 gq

1
CCCCCCCCCA

; gi 2 G̃mi , 1� i � q

9>>>>>>>>>=
>>>>>>>>>;

alors que :

M = M̃ \ G

=

8>>>>>>><
>>>>>>>:

0
BBBBBBB�

g1 0
0 g2 0

.
.

.
0 0 . . 0 gq

1
CCCCCCCA

; gi 2 G̃mi , 1� i � q et detg1: : : detgq = 1

9>>>>>>>=
>>>>>>>;

.
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Notons Ã la composante déployée dẽM et A = Ã\ G celle deM, alors :

Ã =

8>>>>>>>>><
>>>>>>>>>:

0
BBBBBBBBB�

�1Im1 0
0 �2Im2 0

.
.

.
. 0

0 0 �q Imq

1
CCCCCCCCCA

; �i 2 F�, 1� i � q

9>>>>>>>>>=
>>>>>>>>>;

et

A =

8>>>>>>>>><
>>>>>>>>>:

0
BBBBBBBBB�

�1Im1 0
0 �2Im2 0

.
.

.
. 0

0 0 �q Imq

1
CCCCCCCCCA

; �m1
1 : : : �mq

q = 1

9>>>>>>>>>=
>>>>>>>>>;

Imi étant la matrice unitémi �mi .
Un élément deA, sera écrit (�1, : : : , �q) et le groupe de WeylW(A) = W(Ã) est

isomorphe à un sous-groupe deSq, le groupe des permutations deq éléments. Plus
précisémentW(A) est engendré par les transpositions (i j ) sur f1, 2,: : : , qg pour les-
quellesmi = m j , et alors :

(i j ) . (�1, : : : , �i , : : : , � j , : : : , �q) = (�1, : : : , � j , : : : , �i , : : : , �q).

Soit � 2 E2(M), on sait, [11, Lemma 1.3] et [4], qu’il existe�� 2 E2(M̃) tel que �
soit un constituant irréductible de la restriction de�� à M. De plus si� 0� 2 E2(M̃)
est une autre telle représentation, alors il existe un caractère� 2 (F�)^ tel que� 0� �=�� 
 �(det). Afin de simplifier on écrira� 0� �= �� 
 �.

Ecrivons�� = �1 
 �2 
 : : :
 �q 2 E2(M̃) où chaque�i 2 E2(G̃mi ) ; lorsquew 2
W(A) est vu comme une permutation deq lettres alors :

w�� = �w(1)
 �w(2)
 : : :
�w(q).

Soit (M,� ) une paire discrète deG. Alors le groupe de réductibilité<(� ) est com-
mutatif et C(� ) �= C[<(� )], [5, Corollaire 3-2, Théorème 2.4].

Remarquons qu’une condition nécessaire et suffisante pour que WG(A)ell soit non
vide est queM doit être associé à une partition homogène den, i. e. il existe p=n (n =
pq) tel que M = M� avec� = (p, p, : : : , p)| {z }

q-fois

. Dans toute la suite on noteraMp = Mn
p

le Lévi de G associé à la partition homogène den, dont le pas estp.



322 K. BETTAÏEB

Soit � 2 Etemp(L) où L 2 L. On sait que, modulo conjugaison, il existe une unique
paire discrète (M, � ) de L tel que� soit une composante irréductible dei L,M (� ) et par
suite, [3, Proposition 3], on peut définir :

W0(� ) := fwjaL j w 2 W0(� ), w(aL ) = aLg
ainsi que l’ensembleW0(� )ell := W0(� ) \W(AL )ell.

Définissons :
Eirr,ell(G) l’ensemble (des classes d’équivalence) des représentations � de G qui

sont de la formeiG,L (� ) où � 2 Eell(L) et L 2 L0 vérifiant W0(� )ell non vide.

Théorème 2.

Edisc(G) = Eell(G) [ Eirr,ell(G).

Démonstration. Soit� 2 Eell(G). on sait, [1, Proposition 2.1], qu’il existe une
unique paire (Mp, � ) où Mp est un sous-groupe de Lévi deG correspondant à la par-
tition � = (p, p, : : : , p)| {z }

q-fois

de n et � 2 E2(Mp) vérifiant<(� )ell non vide telle que� soit

une composante irréductible deiG,Mp(� ). Comme<(� )ell � W(� )ell, cela implique en
particulier queW(� )ell est non vide, d’où� 2 Edisc(G).

Pour compléter la description deEdisc(G), on va préciser le complémentaire de
Eell(G) dansEdisc(G). La démonstration du théorème revient alors de prouver que:

Edisc(G) n Eell(G) = Eirr,ell(G).

Montrons l’inclusion :Edisc(G) n Eell(G) � Eirr,ell(G).
Soit � 2 Edisc(G) n Eell(G), alors modulo conjugaison, il existe une unique paire

(Mp, � ), � 2 E2(Mp) et Mp 2 L correspondent à la partition� = (p, p, : : : , p)| {z }
q-fois

de n

tel que� 2 E� (G). Le fait que� 2 Edisc(G) n Eell(G) implique que :W(� )ell est non
vide et<(� )ell est vide à partir de la définition deEdisc(G) et Proposition 2.1 de [1].

Notre premier but est de prouver l’existence der0 2 <(� ) satisfaisant à :ar0
Mp

= a
<(� )
Mp

.

Fixons une�� 2 E2(M̃p) (voir §2) et prenonst 2 W(� )ell. Il existe, alors,� 2
(F�)^ tel que�� 
 � = t�� [5, Lemma 2.3]. Sans perte de généralité supposons que
t = (12 : : : q). Ainsi, [11, Lemme 2-2], il existe ˜� 2 E2(gGLp) vérifiant : �̃ 
 �q �= �̃
telle que :

�� = �̃ 
 (�̃ 
 �)
 (�̃ 
 �2)
 : : :
(�̃ 
 �q�1).

Décomposons t sous la forme :

t = w0r , w0 2 W0(� ), r 2 <(� ),
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ainsi, w0 est forcément non trivial parceque sinon on auraitt = r est doncr 2 <(� )ell.
Comme<(� )ell est vide, on aura10(� ) 6= ;, [1, §2].

Or 10(� ) 6= ; équivaut à l’existence dej < q tel que �̃ 
 � j �= �̃ [5, Corol-
laire 2-2]. Posons :

j0 = inff j < q ; �̃ 
 � j = �̃ g.
Remarquons quej0 divise q. Supposons queq = s j0, ainsi �� s’ écrira :

�� = [�̃ 
 (�̃ 
 �)
 : : :
 (�̃ 
 � j0�1)]| {z }
1-fois


 : : :
 [�̃ 
 (�̃ 
 �)
 : : :
 (�̃ 
 � j0�1)]| {z }
s-fois

.

Ainsi on retrouve que [5, Théorème 2-6] :

<(� ) = fw�k ; 1� k � j0g,
où w�k 2 <(� ) est associé à�k ; 1� k � j0, [5, Théorème 2-6].

Un calcul facile nous donne que :a
w�
Mp

=
Tk= j0

k=1 a
w�k

Mp
. De ce fait, [6, Lemma 1.3],�

est de la formeiG,L (� ) où � 2 Eell(L j0)\ E� (L j0) et L j0 2 L0. Il nous reste maintenant
à montrer queW0(� )ell est non vide. En effet, remarquons que la représentation :

�� := i L̃ j0 ,M̃p
(�� )

est de la forme :

�� = �̃ 
 : : :
 �̃| {z }
s-fois

où :

�̃ = i
G̃ j0 ,M̃

j0
p

[�̃ 
 (�̃ 
 �)
 : : :
 (�̃ 
 � j0�1)].

De plus on a :

� ,! i L j0 ,Mp(� ) ,! i L j0 ,Mp(�� jM ) �= i L̃ j0 ,M̃p
(�� )jL j0

= �� jL j0

ce qui implique que la restriction de�� à L j0 contient� et donc, [11, Lemma 10] :

W0(� ) =
�wjaL j0

�� w 2 W0(� ), w(aL j0
) = aL j0

	
=
�wjaL j0

�� w�� �= �� , w(aL j0
) = aL j0

	
.

Ainsi (12 : : : s) 2 W0(� )ell.
Ce qui montre bien queEdisc(G) n Eell(G) � Eirr,ell(G).
Montrons maintenant queEirr,ell(G) � Edisc(G) n Eell(G).
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Soit � = iG,L (� ) 2 Eirr,ell(G). Il est clair que� = iG,L (� ) 62 Eell(G). Montrons que� 2 Edisc(G).
Par hypothèseW0(� )ell est non vide, doncL est associé à une partition homogène

de n ; i. e., L = Lm = L� où � = (m, m, : : : , m)| {z }
q-fois

avecn = mq.

D’autre part� 2 Eell(L), implique l’existence d’une paire discrète (M� , � ) de L,
vérifiant <L (� )ell non vide et que� est une composante irréductible dei Lm,M� (� ), [1,
Proposition 2.1]. Or<L (� )ell non vide implique que la partition� doit être de la forme :

� = (d1, d1, : : : , d1| {z }
q1-fois

, d2, d2, : : : , d2| {z }
q2-fois

, : : : , dp, dp, : : : , dp| {z }
qp-fois

)

où di =m, 81� i � p.
Sans perte de généralité prenonsr = (1 . 2 : : : q1)(q1 + 1 .q1 + 2 : : : q2) : : : (qp�1 +

1 : : : qp) 2 <L (� )ell et fixons�� 2 E2(M̃�) où M� = M̃� \ G tel que la restriction de�� à M� contient� . Ainsi, pour un certain� 2 (F�)^, la représentation�� est de la
forme :

�� = (�̃1
 �̃1
 � 
 : : :
 �̃1
 �q1�1)
 : : :
 (�̃p 
 �̃p 
 � 
 : : :
 �̃p 
 �qp�1)

où �̃i 2 E2(G̃di ) vérifiant �̃i 
�qi �= �̃i et �̃i 
�qi� j 6�= �̃i ; 1� j � qi �1, et 1� i � p.
Remarquons que :�� := i L̃m,M̃� (�� ) �= �̃1
 �̃2
 : : :
 �̃p où

�̃i
�= i G̃m,M̃m

di
[�̃i 
 (�̃i 
 �)
 : : :
 (�̃i 
 �qi�1)]

or

� ,! �� jM�
ce qui implique :

� ,! i Lm,M� (� ) ,! i Lm,M� (�� jM� ) �= i L̃m,M̃� (�� )jLm.

D’où

� ,! �� jLm.

Or W0(� )ell est non vide, ce qui implique que ˜�i
�= �̃ j , 81 � i � j � p et par suite�i

�= � j , 1� i � j � p.
Ainsi �� est de la forme :

�� = [�̃ 
 (�̃ 
 �)
 : : :
 (�̃ 
 �q1�1)] 
 : : :
 [�̃ 
 (�̃ 
 �)
 : : :
 (�̃ 
 �qp�1)]

et alors r = (1 . 2 : : : q1)(q1 + 1 . q1 + 2 : : : q2) : : : (qp�1 + 1 : : : qp) 2 <(� ), wo =
(1 .q1 + 1 .q2 + 1 : : : qp�1 + 1) 2 W0(� ) et quew0r 2 W(� )ell et alors� 2 Edisc(G).
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On vient de voir queEdisc(G) = Eell(G) [ Eirr,ell(G). Ainsi afin de décrireEdisc(G)
il nous reste à déterminerEirr,ell(G).

Proposition 3. Soit � 2 Eirr,ell(G) alors il existe un entier p, p 6= n qui divise n
(n = pq), �̃ 2 E2(GLp) et

L̃ = GLp �GLp � : : :�GLp| {z }
q-fois

tel que� soit une composante irréductible de la restriction de��̃ =: i G̃, L̃ (�̃
 �̃
 : : :
 �̃| {z }
q-fois

)

à G.

Démonstration. Se déduit à partir de la définition deEirr,ell(G), de [11, Lemma 1.3]
et du fait queEell(GLp) = E2(GLp).
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