|

) <

The University of Osaka
Institutional Knowledge Archive

Tale On the pathwise uniqueness of solutions of one-
dimensional stochastic differential equations

Author(s) |Nakao, Shintaro

Osaka Journal of Mathematics. 1972, 9(3), p.

Citation £13-518

Version Type|VoR

URL https://doi.org/10.18910/4602

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Nakao, S.
Osaka J. Math.
9 (1972), 513-518

ON THE PATHWISE UNIQUENESS OF
SOLUTIONS OF ONE-DIMENSIONAL STOCHASTIC
DIFFERENTIAL EQUATIONS

SuinTaARO NAKAO

(Received December 13, 1971)

Introduction

In this paper, we shall discuss a problem of the pathwise uniqueness for
solutions of one-dimensional stochastic differential equations. Let a(x) and b(x)
be bounded Borel measurable functions defined on R. We shall consider the
following one-dimensional It6’s stochastic differential equation;

(1) dx; = a(x;)dB,+ b(x,)dt.

K. Ito [1] proved that, if a(x) and b(x) are Lipschitz continuous, a solution
is unique and it can be constructed on a given Brownian motion B,. On the
other hand, if |a(x)|is bounded from below by a positive constant (i.e. uniformly
positive), then a solution of (1) exists and it is unique in the law sense. This
follows easily from a general result of one-dimensional diffusions (cf. [2]). How-
ever, though the distribution of {x., B.} is unique, x, is not always expressed as
a measurable function of x,and {B,, s<t}. For example, if a(x)=sgn x, a(0)=1
and x,=0, it is not difficult to see that o {|x,|; s<t} =0 {B,; s<t}.

Here, we will show that, if a(x) is uniformly positive and of bounded
variation on any compact interval, then the pathwise uniqueness holds for (1).
This implies, in particular, that x, is expressed as a measurable function of x,
and {B,, s=<t} (cf. [5]). In this direction, M. Motoo (unpublished) already
proved that the pathwise uniqueness holds for (1) if a(x) is uniformly positive
and Lipschitz continuous and if b(x) is bounded measurable. Also, T. Yamada
and S. Watanabe [5] proved the pathwise uniqueness of (1) if a(x) is Holder
continuous of exponent § and b(x) is Lipschitz continuous. Our above mentioned
result may be interesting in a point that it applies for many discontinuous a(x).
It is still an open question whether only the uniform positivity of a(x) implies
the pathwise uniqueness.

Finally the author wishes to express his sincere gratitude to Professor S.
Watanabe for his invaluable suggestions.
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A precise meaning of the equation (1) is as follows: (Q, &, P; ;) stands
for a probability space (Q, &, P) with an increasing family {Z}c, ., of sub-
a-algebras of &F.

DeFiniTION 1. By a solution of (1), we mean a quadruplet (Q, &, P; ¥,)
and a stochastic process %,=(x,, B,) defined on it such that

(i) with probability one, %, is continuous in ¢ and B,=0,

(ii) %,is an {Z,}-adapted process and B, is an {&,}-Brownian motion,

(iii) %, satisfies

X, = X+ St a(x,)dB,+ Stb(xs) ds a.s.,
0 0

where the integral by dB, is understood in the sense of the stochastic integral of
Ito.

DeriNITION 2. We shall say that the pathwise uniqueness holds for (1), for

any two solutions X,=(x,, B,), 9:=(,, Bi) defined on a same quadruplet
Q, &, P; 4,), x,=y, and B,=B; implies x,= y,.

RemaRk 1. In Definition 2, it is sufficient to assume that x,=y,=x for
some constant x& R.

REMARK 2. A definition of the pathwise uniqueness may be defined in a
stronger way as follows; the pathwise uniqueness holds if ¥,=(x,, B,) is a solu-
tion on (Q, &, P; &}) and 9,=(y,, B}) is a solution on (Q, &F, P; ¥3) (¥} and
% may be different) such that x,= y,and B,=B/, then x,= y,. Itisnot difficult
to show, using a result in [5], that this definition of the pathwise uniqueness is
equivalent to Definition 2.

Lemma. Let (M,, V,)icr, 71 be a pair of continuous real process defined on
a probability space (Q, F, P). Suppose that the total variation |||V(w)|||7 of V(o)
on [0, T has a finite expectation. Further, suppose M, is a martingale satisfying
the following conditions;

(1) M,=0 a.s.,
(ii) there exist positive constants m, and m, such that
(2) mM(0)SV (0)<m,M (o) a.s.,

for (¢, 0)E{(t, 0); t[0, T] and M (0)=0}.
Then, M,=0 a.s. for 0=<t<T.

Proof. For yeR, let N,(y, ) be the number of t&[0, T] such that
Vi{w)=y. By a theorem of Banach (cf. [4] pp. 280), we have

(3) V@)l = |~ Ny, @)y
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Obviously we may assume that m, <m, For y>0, let N,(y, o) be the number

of linlz ¥ "1 y]—downcrossings of M(w)on [0, T]. The condition (2) implies

that 2 1

(4) Ny, ©)=N,(y, ) for y>0.

For y>0, we define a sequence of stopping times {7} in the following way;
T,=0,

Ty = inf {tz Tons M, > 1

1

1 y}/\T n=0,1,2, .

2

y}Al)T n=0,12,.-,

T:uio = inf {tz Tonsis M, <

Then, for n=1, 2, .-, we can obtain the following inequality;

(y——1y )iy, @) Ant 1)

1 2

d 1 2 3
= gl {MTzk—l(m) - MTzk(w)} + {(MT((D) - 73’) \% )O}X )(Nz(y,m)<n] .

1

Taking the expectation, we have

1
E[{(MT“‘“-;n——y) Vv O}X(Nz(y)<n)]

E[N{(y)An]= 7 -1
(71‘ mz)y
Letting n— oo, we have
1
E[(Mr——y)v0]
(5) E[N,(y)]z ( , ) ~1.

e
ml mZ y
Now, we assume that P(M+=30)>0. Then, there exist positive constants & and

S such that

(6) Bi(M,—-L

y>v0]>8 for 0<y<3.

1

The inequalities (5) and (6) provide us with the equality

1) Let x and y be real numbers. x Ay means min(x,y).
2) xVy means max(x,y).
3) x4 denotes the indicator function of a set 4.
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[ BN dy = oo

But this is a contradiction since, by (3) and (4),

[Evonas| Bvona<e.
Therefore we have
PM, =0)=1 for 0=:<T.
This completes the proof.
ReMARk 3. In the above lemma, we may suppose the following condition
instead of (2); there exist positive constants m, and m, such that
(7) m|M,|<|V,|<m|M,|  as. for 0<t<T.
Now we will state our main result.
Theorem. Let a(x) and b(x) be bounded Borel measurable. Suppose a(x)

is of bounded variation on any compact interval. Further, suppose there exists a
constant ¢> 0 such that

(8) a(x)=c  for x=R.
Then, the pathwise uniqueness holds for (1).
Proof. We assume that |a(x)|<M and |b(x)|<M for x=R. Let

X, =(x;, B;) and Y,=(y,, B;) be solutions of (1) such that x,=y, is a constant.
For N> |x,|, we define that

B {inf {t=0; |x,| = N}
Yl if { }=¢,
{inf{tZO; |y:| = N}

N =

YN = TaN7y.
Let, for x&R,
fwy = —2[ Xy, i) = [ exp L)1 dy -
0a(y) 0

By the time substitution and Cameron-Martin’s formula (cf. [3]), there exists a
constant K,>0 depending only on ¢, M, N and ¢ such that

Ay
(9) B eI SKlglloan,np  for gEL((—N, N).
Since @’(x) is absolutely continuous and ¢"(x) is locally integrable, the inequality
(9) assures us that It6’s formula applies to @ and we have
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thy
Prrog) = Pla) | a(x)dB, as..

Since @ is a homeomorphism R onto I =(@(—0), ¢(0)), we can define that

x——l—dy for x=I.

o(3) = placp™(),  hx) = | 5

Obviously o is of bounded variation on any compact interval of 1. Let |||o||| 5
be the total variation of o on [@(—N), @(N)].
We can take an approximate sequence {o,(x)},-, ... such that

(i) olx)eC'(R) and cexp [_%ﬂf%v}gdn(x)é M exp [ZJlCJZN:l

for x=R,

.. 1
(ii) |lo— 6n“L‘([¢(-N),¢(N)])=7 and  ||odl| oo, ecnon = oy -
Let
!
°ou(y)
Since k,(x)e C*R), we can apply It6’s formula to %, and have

ha(%) = S dy for xel.

Bl @(®epny)) = Pl p(%0)) + S :MN}G—(((%?S)T))MS

_1 XWN oule(xs) (@) 4
0 g ?n(‘]’(xs»

2
= ho(p(%,)) + LI+ W7

It follows from (ii) that there exists a constant K,>0 depending only on ¢, M
and N such that

1

|(x)— ho(w)| <K,
n!

for xefp(—N), p(N)] .

From this, we see that A,(p(x:ry,)) converges almost surely to A(@(x:ayy))-
There exists a constant K,>0 depending only on ¢, M, N, and ¢ such that

1

n! ’

E[(L?—Bipyy) 1=K,

Therefore L7 converges almost surely to B,ry,. Let

Wi = W@(%ipry)) —1P(%0)) = Bipay -

From the above results, W7} converges almost surely to W,.
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It is easy to see that there exists a constant K,>0 depending only on ¢, M,
and N such that

ENIWIISKEL " ool 4],

where |||W?|||; is the total variation of W7} on [0, #]. Using the time substitu-
tion, we easily see that there exists a constant K;>0 depending only on ¢, M, N,
and ¢ such that

Ny
E [So [on(@(x,)) | ds] < Kl|oal IL‘([‘P(—N),W(N)])
=Killlollly -
Hence it holds that
ENIW I ]=K Klllolllx

where |||]||, is the total variation of W on [0, #].
From the definition of A(x), there exists positive constants m, and m, such that

m,(x—y)Sh(x)—h(y)Sm(x—y) for y<x and x ye[p(—N), p(N)].
Let

-~

Ay
M, = | (o(p(x)) — o(p(y.)) 4B, ,
Vi = hp(®ipy)) —HP(Yinay) -
We can apply Lemma to (M, V) and it follows that

P(p(xepnny) = P(Yenvg)) = 1.
Therefore we have

Pxepyy = Yeram) = 1.
Since lim 7y, = oo a.s., we obtain that P(x,=y,)=1 and the proof is complete.
N->oo
ReEMARK 4. In Theorem, if a(x) is continuous, we may assume that a(x) is
positive instead of (8).
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