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Introduction

In this paper, we shall discuss a problem of the pathwise uniqueness for
solutions of one-dimensional stochastic differential equations. Let a(x) and b(x)
be bounded Borel measurable functions defined on R. We shall consider the
following one-dimensional Itδ's stochastic differential equation;

( 1 ) dxt = a(xt)dBt + b(xt)dt.

K. Itό [1] proved that, if a{x) and b(x) are Lipschitz continuous, a solution

is unique and it can be constructed on a given Brownian motion Bt. On the

other hand, if | a(x) | is bounded from below by a positive constant (i.e. uniformly

positive), then a solution of (1) exists and it is unique in the law sense. This

follows easily from a general result of one-dimensional diffusions (cf. [2]). How-

ever, though the distribution of {x., B.} is unique, xt is not always expressed as

a measurable function of x0 and {Bs, s^t}. For example, if a(x) = sgn x, a(0) = 1

and xo = O, it is not difficult to see that σ{ |#J sf^t} = σ{Bs; s^t}.

Here, we will show that, if a(x) is uniformly positive and of bounded

variation on any compact interval, then the pathwise uniqueness holds for (1).

This implies, in particular, that xt is expressed as a measurable function of x0

and {Bs, s^t} (cf. [5]). In this direction, M. Motoo (unpublished) already

proved that the pathwise uniqueness holds for (1) if a(x) is uniformly positive

and Lipschitz continuous and if b(x) is bounded measurable. Also, T. Yamada

and S. Watanabe [5] proved the pathwise uniqueness of (1) if a(x) is Holder

continuous of exponent \ and b(x) is Lipschitz continuous. Our above mentioned

result may be interesting in a point that it applies for many discontinuous a(x).

It is still an open question whether only the uniform positivity of a(x) implies

the pathwise uniqueness.

Finally the author wishes to express his sincere gratitude to Professor S.

Watanabe for his invaluable suggestions.
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A precise meaning of the equation (1) is as follows: (Ω, ΞF, P; EFt) stands
for a probability space (Ω, £F, P) with an increasing family {EFt}t^io,^ °f sut>~
σ-algebras of £F.

DEFINITION 1. By a solution of (1), we mean a quadruplet (Ω, £?, P; £?,)
and a stochastic process £, = (xt, Bt) defined on it such that

( i ) with probability one, Tίt is continuous in t and Bo = 0>
(ii) Tίt is an {EFt} -adapted process and Bt is an {EFt} -Brownian motion,
(iii) Ht satisfies

5 t rt

a(xs)dBs+\ b(xs)ds a.s. ,
o Jowhere the integral by dBs is understood in the sense of the stochastic integral of

Itό.

DEFINITION 2. We shall say that the pathwise uniqueness holds for (1), for
any two solutions %t = (xty Bt)y tyt

 = {yt> B'e) defined on a same quadruplet
(Ω, £?, P; 3t\ xo = yo and Bt = Bf

t implies xt = yt.

REMARK 1. In Definition 2, it is sufficient to assume that xo = yQ = x for
some constant

REMARK 2. A definition of the pathwise uniqueness may be defined in a
stronger way as follows; the pathwise uniqueness holds if Xί = (xί, Bt) is a solu-
tion on (Ω, 3", P; 9]) and % = (yt, B't) is a solution on (Ω, 3", P; £F?) (£FJ and
£Ff may be different) such that x0 = y0 and Bt = B'ty then ΛĴ  = yt. It is not difficult
to show, using a result in [5], that this definition of the pathwise uniqueness is
equivalent to Definition 2.

Lemma, Let (Mty Vt)t^[Q T] be a pair of continuous real process defined on
a probability space (Ω, £F, P). Suppose that the total variation \ \ \ V(ω) \ 11 τ of Vt(ω)
on [0, T] has a finite expectation. Further, suppose Mt is a martingale satisfying
the following conditions

( i ) Mo = 0 a.s. ,
(ii) there exist positive constants mλ and m2 such that

( 2 ) m.M^ω) ^ Vt(ω) ^ m2Mt(ω) a.s. ,

for (t, ω)e{(ί, ω); ίe [0, Γ]

Proof. For j e i ? , let N^y, ω) be the number of ίe[0, T] such that
) = y. By a theorem of Banach (cf. [4] pp. 280), we have

(3) ll |F(ω)|| |Γ= Γ Nι{y,ω)dy.
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Obviously we may assume that m1<m2. For j>>0, let N2(y, ω) be the number

of y, y -downcrossings of Mt{ω) on [0, T\. The condition (2) implies
\-m2 tn1 J

that

( 4 ) N&, ω)>N2(y, ω) for y>0.

For y>Oy we define a sequence of stopping times {Tk) in the following way;

»T n = 0,l,2, . ,

T2H+2 = inf \t^ T2H+1; Mt < -Ly] AT n = 0,1,2, - .
l m2 )

Then, for n~ 1, 2, •••, we can obtain the following inequality;

( — y~— y)(N2(y,ω)Λn+l)
\tnι m2 '

^ Σ {^r2*-1(ω)-MT 2,(ω)} J

Taking the expectation, we have

7 t
\ m1 m2 )

Letting w-»oo, we have

[ ( T ) ]

( 5 ) g[AΓ,(jr)]^ V

 1

 m\ ' - 1 .

\ m1 m2 r

Now, we assume that P(MT#=0)>0. Then, there exist positive constants £ and

δ such that

( 6 ) E[(MT-—y)v0]>6 for 0<y<8 .
\ m1 I

The inequalities (5) and (6) provide us with the equality

1) Let x and y be real numbers. xΛy means min(#,;y).

2) Λ V^V means max(Λ:,;y).

3) XA denotes the indicator function of a set A.
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\*E[N2(y)]dy = oo .
Jo

But this is a contradiction since, by (3) and (4),

f E[N2(y)]dy£[°° E[N\(y)]dy<oo .
Jo J-°°

Therefore we have

This completes the proof.

REMARK 3. In the above lemma, we may suppose the following condition

instead of (2) there exist positive constants m1 and m2 such that

( 7 ) mx\Mt\^\Vt\^m2\Mt\ a.s. for O^t^T.

Now we will state our main result.

Theorem. Let a(x) and b{x) be bounded Borel measurable. Suppose a(x)

is of bounded variation on any compact interval. Further, suppose there exists a

constant c>0 such that

( 8 ) a(x)^c for x<=R.

Then, the pathwίse uniqueness holds for (1).

Proof. We assume that \a(x)\^M and \b(x)\^M for x^R. Let

Xί = (̂ > Bt) and (S)t = (yt, Bt) be solutions of (1) such that xo = yo is a constant.

For N> I x01, we define that

inf {t^O; \xt\ = N}

if { } = Φ ,

\yt\=N}
VN

L o i f { } = φ ,

ΎN = TN
 Λ VN .

Let, for Λ G S ,

5
X b( v) ΐx

2

κy) dy , ψ(x) = \ exp [f(y)]dy .

By the time substitution and Cameron-Martin's formula (cf. [3]), there exists a

constant K^O depending only on c, M, N and t such that

( 9 ) EftM"g[xM)ds\<Kί\\g\\Lhι-ιr,*π> for geL\[-N, N]).
Jo

Since φ'(x) is absolutely continuous and φ'\x) is locally integrable, the inequality

(9) assures us that Itό's formula applies to φ and we have
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φ'a(xs)dBs a.s. .
o

Since φ is a homeomorphism R onto I = {φ( — °°), φi00))) we can define that

dy for x^I.

o σ ( j )

Obviously σ is of bounded variation on any compact interval of /. Let |||<H||;v
be the total variation of σ on [φ( — N), <p(N)].

We can take an approximate sequence {<rn(x)}n=1 >2... such that

(i) σn{x)^C\R) and c exp [ - ^ ]

for

( i i ) \\σ — σn\\Lιaφί_N^φCNW^—— and

Let

*,(*) = Γ—|-r<fy for

)oσn(y)

Since hn(x)^C\R), we can apply Itό's formula to Λβ and have

o σn(φ(xs))

a-2

n{φ(xs))

It follows from (ii) that there exists a constant K2>0 depending only on c, M
and N such that

\h(x)-hn(x)\^K2-L for *e[>(-iV),<KJV)]
/z!

From this, we see that hn(φ(xtAyir)) converges almost surely to h(φ(xtAyif)).
There exists a constant K3>0 depending only on c, M, N> and t such that

n\

Therefore Ln

t converges almost surely to BtAyy. Let

Wt = h(φ(xtMN)) - h(φ(x0)) -

From the above results, Wn

t converges almost surely to Wt.
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It is easy to see that there exists a constant K4>0 depending only on c, M,
and N such that

E[\ 11 W\\ IJ ̂ KtE[\tM" I σ'n{φ{xs)) \ ds],
Joo

where |||WΛ|||f is the total variation of Wn

g on [0, t\. Using the time substitu-
tion, we easily see that there exists a constant K5>0 depending only on cy M, N9

and t such that

Hence it holds that

E[\\\W\\\i]£KtK.\\\σ\\\N ,

where | | | W|||# is the total variation of Ws on [0, t].

From the definition of h(x), there exists positive constants m1 and m2 such that

m1(x—y)^h(x)—h(y)^m2(x—y) for y^x and xf y^[φ(-N), φ(N)].

Let

i tΛY ΛΓ

'(σ<9<*,))-σ(9<
0

F, = h(φ(xtAyir))-h(φ(ytAyjί)).

We can apply Lemma to (Mti Vt) and it follows that

Therefore we have

Since lim JN— oo a.s., we obtain that P(Λ?ί = y ί) = 1 and the proof is complete.

REMARK 4. In Theorem, if a(x) is continuous, we may assume that a(x) is
positive instead of (8).
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