
Title The Study of Sigma Functions for Telescopic
Curves

Author(s) 綾野, 孝則

Citation 大阪大学, 2013, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/46091

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



The Study of Sigma Functions for Telescopic Curves

(Telescopic曲線に付随するシグマ関数の研究)

平成２５年３月７日

綾野孝則

大阪大学大学院　理学研究科　数学専攻



Abstract

The Weierstrass’s elliptic sigma functions are generalized to the case of hyperellip-
tic curves by Klein and to the case of (n, s) curves by Buchstaber, Enolskii, Leykin.
Nakayashiki gave a formula which expresses the sigma functions for (n, s) curves in terms
of algebraic integrals and showed the algebraic property of the series expansion of the
sigma functions for (n, s) curves by using this formula. In this paper, we consider fur-
ther generalization of the sigma functions to the case of telescopic curves introduced by
Miura. The telescopic curves contain the (n, s) curves and hyperelliptic curves as special
cases. The most important contribution of this paper is to construct explicitly a basis of
holomorphic one forms and the normalized fundamental form for the telescopic curves.
Consequently, we construct sigma functions for the telescopic curves as holomorphic func-
tions with the quasi periodicity and the algebraic property of the series expansion.
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1 Introduction

Let E be the elliptic curve defined by y2 = 4x3 − g2x − g3, (g2, g3 ∈ C), α, β a canonical
basis of H1(E,Z), 2ω1 :=

∫
α

dx
y , 2ω2 :=

∫
β

dx
y , and Λ = Z(2ω1) + Z(2ω2). The elliptic sigma

function for E is the holomorphic function on C defined by

σ(u) = u
∏

ω∈Λ\{0}

(
1− u

ω

)
exp

(
u

ω
+

u2

2ω2

)
.

The sigma function has the following important properties.

(i) σ(u+ 2ωi) = − exp {2ηi(u+ ωi)}σ(u), ηi = σ′(ωi)/σ(ωi). (quasi periodicity)

(ii) σ(u) = u− g2
240

u5 − g3
840

u7 − · · · , around u = 0. (algebraic property)

The property (ii) means that the sigma function does not depend on the choice of a
canonical basis of the homology group (modular invariance) and it can be constructed from
the coefficients of the defining equation of the curve. From this, it is known that the sigma
functions have many advantages in describing algebro-geometric solutions of integrable sys-
tems ([2],[3]). Klein [14],[15] extended the elliptic sigma functions to the case of hyperelliptic
curves from this point of view. Buchstaber et al. [3],[4],[6] extended Klein’s sigma func-
tions to the case of more general plane algebraic curves called (n, s) curves. Since they were
defined, it has been one of the central problem to determine the coefficients of the series ex-
pansion of the sigma functions. For elliptic curves, it is well-known that the coefficients can
be calculated by using a linear differential equation satisfied by the ℘-function. Buchstaber
and Leykin [1] determined the coefficients of the series expansion of the sigma functions for
hyperelliptic curves of genus 2 by constructing linear differential equations satisfied by the
sigma functions. Nakayashiki [21] gave a formula which expresses the sigma functions for
(n, s) curves in terms of algebraic integrals. By using this formula, Nakayashiki [21] showed
that the first term of the series expansion around the origin is Schur function determined
from the gap sequence at infinity and the coefficients of the series expansion become homo-
geneous polynomials of the coefficients of the defining equation of the curve with respect to
certain degree. Also, Nakayashiki [22] determined the series expansion of the sigma functions
for (n, s) curves by using the expression of the tau function of the KP-hierarchy in terms of
the sigma function. In this paper, we consider further generalization of the sigma functions.

For m ≥ 2, a sequence of positive integers (a1, ..., am) whose greatest common divisor
equals to one is called telescopic if

ai
di

∈ a1
di−1

Z≥0 + · · ·+ ai−1

di−1
Z≥0, 2 ≤ i ≤ m,

where di is the greatest common divisor of (a1, . . . , ai). For a telescopic sequence (a1, . . . , am),
Miura [19] introduced a nonsingular algebraic curve (telescopic curve) determined by the
sequence (a1, . . . , am). The idea is to express a nonsingular algebraic curve by affine equations
of m variables whose orders at infinity are (a1, . . . , am). The telescopic curves contain the
(n, s) curves and hyperelliptic curves as special cases.

The most important contribution of this paper is to construct explicitly a basis of holo-
morphic one forms and the normalized fundamental form for the telescopic curves. Let X
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be a telescopic curve defined by {F2(x1, . . . , xm), . . . , Fm(x1, . . . , xm)} and g the genus of X.
We arrange the monomials xα1

1 · · ·xαm
m , (α1, . . . , αm) ∈ B(Am), in the ascending order of pole

orders at ∞ and denote them by ϕi, i ≥ 1. Then, we show the following theorems (cf. section
4,6).

Theorem. Let

G(x) =

(
∂Fi

∂xj

)
2≤i,j≤m

and dui = − ϕg+1−i

detG(x)
dx1.

Then, {dui}gi=1 is a basis of holomorphic one forms.

Theorem. Let

hij =
Fi(y1, . . . , yj−1, xj , xj+1, . . . , xm)− Fi(y1, . . . , yj−1, yj , xj+1, . . . , xm)

xj − yj
,

H = (hij)2≤i,j≤m, and Ω(x, y) =
detH(x, y)

(x1 − y1) detG(x)
dx1.

Then, we can construct explicitly second kind differentials with a pole only at infinity {dri}gi=1

such that the algebraic bilinear form

ω̂(x, y) := dyΩ(x, y) +

g∑
i=1

dui(x)dri(y)

satisfies the following conditions.

• ω̂(x, y) = ω̂(y, x).

• ω̂(x, y) is holomorphic except ∆ = {(p, p) | p ∈ X} where it has a double pole.

• For a local coordinate t around p ∈ X, the expansion in t(x) at t(y) is of the form

ω̂(x, y) =

(
1

(t(x)− t(y))2
+ regular

)
dt(x)dt(y).

Consequently, when we define sigma functions σ(u) for the telescopic curves in terms of
Riemann’s theta function (cf. section 7), we can show the algebraic property of the series
expansion of the sigma functions. Namely, we show the following theorem (cf. section 10).

Theorem. The expansion of σ(u) at the origin takes the form

σ(u) = Sµ(Am)(T )|Twi=ui +
∑

bk1,...,kgu
k1
1 · · ·ukgg ,

where Sµ(Am)(T ) is Schur function determined from the gap sequence at infinity and {bk1,...,kg}
become homogeneous polynomials of the coefficients of the defining equations of the curve
with respect to certain degree.

From the above theorem, we find that the sigma functions for telescopic curves also have
the modular invariance.
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2 Preliminaries

In this section, we review necessary known results following [21].

2.1 Riemann’s theta function

For a positive integer g, let τ be a g × g symmetric matrix whose imaginary part is positive
definite. For a, b ∈ Rg, Riemann’s theta function with characteristics a, b is defined by

θ

[
a
b

]
(z) =

∑
n∈Zg

exp
(
πi t(n+ a)τ(n+ a) + 2πi t(n+ a)(z + b)

)
,

where z ∈ Cg. The theta functions have the following quasi-periodicity:

θ

[
a
b

]
(z +m1 + τm2)

θ

[
a
b

]
(z)

= exp
(
2πi(tam1 − tbm2)− πi tm2τm2 − 2πi tm2z

)
.

Also, we have

θ

[
a
b

]
(−z) = (−1)4

tabθ

[
a
b

]
(z), a, b ∈ 1

2
Zg. (1)

For α ∈ Cg, we can express α = τα′ + α′′ with α′, α′′ ∈ Rg uniquely. For simplicity, we

express θ

[
α′

α′′

]
(z) by θ[α](z). For n,m ∈ Zg, we have

θ

[
a+ n
b+m

]
(z) = exp(2πi tam)θ

[
a
b

]
(z).

2.2 Abel-Jacobi’s theorem

Let X be a compact Riemann surface of genus g and {αi, βi}gi=1 a canonical basis of the
homology group H1(X,Z), i.e., a basis of H1(X,Z) such that the intersection numbers satisfy
αi ◦ αj = βi ◦ βj = 0 and αi ◦ βj = δij for any i, j, where δij is the Kronecker delta. Let
{dvi}gi=1 be the basis of holomorphic one forms such that

∫
αj

dvi = δij . We define the period

matrix τ := (
∫
βj

dvi)ij , then τ is a symmetric matrix whose imaginary part is positive definite.

Set dv := t(dv1, . . . , dvg) and Lτ := τZg + Zg. The Jacobian variety Jac(X) is defined by
Jac(X) := Cg/Lτ . Let Pic0(X) be the linear equivalent classes of divisors of degree zero.
Then, Jac(X) can be identified with Pic0(X) by Abel-Jacobi map:

Pic0(X) → Jac(X),
d∑

i=1

pi −
d∑

i=1

qi 7→
d∑

i=1

∫ pi

qi

dv.
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2.3 Holomorphic line bundle and flat line bundle

Let O∗ be the sheaf of germs of nowhere-vanishing holomorphic functions and C∗ the sheaf
of germs of non-zero constant functions. The elements of the Čech cohomology groups
H1(X,O∗) and H1(X, C∗) are called holomorphic line bundles and flat line bundles on
X, respectively. We fix a base point p0 on X. Let π1(X, p0) be the fundamental group.
The set of flat line bundles H1(X, C∗) can be identified with Hom(π1(X, p0),C∗), where
C∗ is the multiplicative group of non-zero complex numbers (cf. [11] pp.184-189). Let
φ : H1(X, C∗) → H1(X,O∗) be the homomorphism induced by the inclusion map C∗ → O∗.
For χ ∈ Hom(π1(X, p0),C∗) ' H1(X, C∗), χ ∈ Ker(φ) if and only if there exists a holomor-
phic one form ω such that χ(γ) = exp(

∫
γ ω) for any γ ∈ π1(X, p0). Let Pic(X) be the linear

equivalent classes of divisors. It is well-known that there exists an isomorphism between
Pic(X) and H1(X,O∗). By this isomorphism, an element of Pic0(X) corresponds to that
of Im(φ) ⊂ H1(X,O∗). Therefore, by Abel-Jacobi’s theorem, Jac(X) can be identified with
H1(X, C∗)/Ker(φ). We denote the equivalent class of the flat line bundle corresponding to
α ∈ Jac(X) by Lα. There exists a unique unitary representation for Lα. Let α̃ ∈ Cg be a rep-
resentative of α. Take α̃′, α̃′′ ∈ Rg satisfying α̃ = τα̃′ + α̃′′. Then, the unitary representation
for Lα is given by

χ(αj) = exp(2πiα̃′
j), χ(βj) = exp(−2πiα̃′′

j ).

Let X̃ be the universal cover of X. A meromorphic section of the flat line bundle defined by
χ is described by a meromorphic function F on X̃ satisfying

F (γp̃) = χ(γ)F (p̃).

2.4 Prime form

Let δ0 be Riemann divisor for the choice {αi, βi} and L0 the corresponding holomorphic line
bundle of degree g − 1. For α ∈ Jac(X), set Lα = Lα ⊗ L0. There exists a non-singular odd

half period α, i.e., α ∈ 1
2Lτ/Lτ such that θ[α̃](z) is an odd function and ∂θ[α̃]

∂zi
(0) 6= 0 for some

i. There exists a unique divisor p1 + · · ·+ pg−1 such that

α =

∫ p1+···+pg−1

δ0

dv.

From [10] p.10 Corollary 1.4, the divisor of the holomorphic one form

g∑
i=1

∂θ[α̃]

∂zi
(0)dvi

is 2
∑g−1

i=1 pi. Since the divisor
∑g−1

i=1 pi corresponds to the holomorphic line bundle Lα, there
exists a holomorphic section hα̃ of Lα such that

hα̃(p)
2 =

g∑
i=1

∂θ[α̃]

∂zi
(0)dvi(p). (2)
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Let π : X̃ → X be the projection. We use the same symbol hα̃ for the pull back of hα̃ to X̃.
Then, the prime form is defined as

E(p̃1, p̃2) =
θ[α̃](

∫ p̃2
p̃1

dv)

hα̃(p̃1)hα̃(p̃2)
, p̃1, p̃2 ∈ X̃.

From [20] p.156, it vanishes to the first order at π(p̃1) = π(p̃2) and at no other divisors. Let
πj : X × X → X be the projection to the j-th component and I : X × X → Jac(X) the
map defined by I(p1, p2) =

∫ p2
p1

dv. Then, the prime form can be considered as a holomorphic

section of the line bundle π∗
1L

−1
0 ⊗ π∗

2L
−1
0 ⊗ I∗Θ on X × X, where Θ is the line bundle on

Jac(X) defined by the theta divisor Θ = {z ∈ Jac(X) | θ(z) = 0}. The prime form has the
following properties.

(i) E(p̃2, p̃1) = −E(p̃1, p̃2).

(ii) E(p̃1, p̃2) = 0 ⇐⇒ π(p̃1) = π(p̃2).

(iii) If we take a local coordinate t around p̃ ∈ X̃, then the expansion in t(p̃2) at t(p̃1) is of
the form ∗

E(p̃1, p̃2)
√

dt(p̃1)dt(p̃2) = t(p̃2)− t(p̃1) +O
(
(t(p̃2)− t(p̃1))

3
)
.

(iv) For p̃1, p̃2 ∈ X̃, consider the function

F (p̃) =
E(p̃, p̃2)

E(p̃, p̃1)
, p̃ ∈ X̃.

For γ ∈ π1(X, p0), we call the image of γ in the homology group H1(X,Z) the abelian image
of γ. If the abelian image of γ ∈ π1(X, p0) is expressed by

∑g
i=1miαi +

∑g
i=1 niβi, then

F (γp̃) = exp

(
2πi tn

∫ p̃2

p̃1

dv

)
F (p̃),

where n = t(n1, . . . , ng).

2.5 Normalized fundamental form

Let KX be the canonical bundle of X. A section of π∗
1KX ⊗ π∗

2KX is called a bilinear form
on X × X and a bilinear form w(p1, p2) is called symmetric if w(p2, p1) = w(p1, p2). Any
holomorphic bilinear form w(p1, p2) can be written as

w(p1, p2) =

g∑
i,j=1

cijdvi(p1)dvj(p2) (3)

with cij ∈ C uniquely. The bilinear form w(p1, p2) is symmetric if and only if cij = cji. Let
∆ := {(p, p) | p ∈ X} ⊂ X ×X.

∗O(tk) denotes a power series of t starting from tk : O(tk) =
∑∞

i=k cit
i with some constants {ci}.
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Definition 1 A meromorphic symmetric bilinear form ω(p1, p2) on X ×X is called a nor-
malized fundamental form if the following conditions are satisfied.

(i) ω(p1, p2) is holomorphic except ∆ where it has a double pole. If we take a local coordinate
t around p ∈ X, then the expansion in t(p1) at t(p2) is of the form

ω(p1, p2) =

(
1

(t(p1)− t(p2))
2 + regular

)
dt(p1)dt(p2). (4)

(ii)
∫
αi

ω = 0, where the integration is with respect to any one of p1, p2.

The normalized fundamental form exists and unique. We have the following proposition.

Proposition 2 [10] For ã, b̃, c̃, d̃ ∈ X̃,

exp

(∫ b̃

ã

∫ d̃

c̃
ω

)
=

E(b̃, d̃)E(ã, c̃)

E(ã, d̃)E(b̃, c̃)
.

3 Telescopic curves

Here, we give the definition of telescopic curves introduced by Miura [19].
Let m ≥ 2, (a1, ..., am) a sequence of positive integers such that gcd(a1, ..., am) = 1, and

di = gcd(a1, ..., ai) for 1 ≤ i ≤ m. We call (a1, ..., am) telescopic if

ai
di

∈ a1
di−1

Z≥0 + · · ·+ ai−1

di−1
Z≥0, 2 ≤ i ≤ m. (5)

For a telescopic sequence Am = (a1, ..., am), let

B(Am) = {(l1, ..., lm) ∈ Zm
≥0 | 0 ≤ li <

di−1

di
for 2 ≤ i ≤ m}. (6)

Proposition 3 ([19]) For any x ∈ a1Z≥0+ · · ·+amZ≥0, there exists a unique (k1, . . . , km) ∈
B(Am) such that

m∑
i=1

aiki = x.

For the telescopic sequence Am = (a1, ..., am), let us define m − 1 polynomials in m
variables X1, ..., Xm by

Fi(X1, . . . , Xm) = X
di−1/di
i −

m∏
j=1

X
lij
j −

∑
λ
(i)
j1...jm

Xj1
1 · · ·Xjm

m , 2 ≤ i ≤ m, (7)

where (li1, ..., lim) is the element of B(Am) satisfying

m∑
j=1

ajlij = ai
di−1

di
, (8)
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and the sum is over all (j1, ..., jm) ∈ B(Am) such that

m∑
k=1

akjk < ai
di−1

di
.

Let
Xaff = {(z1, ..., zm) ∈ Cm | Fi(z1, ..., zm) = 0, 2 ≤ i ≤ m}.

Then, Xaff is an affine algebraic curve (cf. [19]). We assume that Xaff is nonsingular. Let
X be the compact Riemann surface corresponding to Xaff . Then, X is obtained from Xaff

by adding one point, say ∞ (cf. [19]). The genus of X is given by (cf. [19])

g =
1

2

{
1− a1 +

m∑
i=2

(
di−1

di
− 1

)
ai

}
. (9)

We call X the telescopic curve associated with (a1, ..., am). Let R be the coordinate ring of
Xaff , xi the image of Xi for the projection C[X1, . . . , Xm] → R, K the quotient field of R,
and L(k∞) = {f ∈ K | div(f) + k∞ ≥ 0}. We regard xi as a meromorphic function on X.
For a meromorphic function f on X and p ∈ X, we denote by ordp(f) the order of f at p.

Proposition 4 ([19]).

(i) The set {xα1
1 · · ·xαm

m | (α1, . . . , αm) ∈ B(Am)} is a basis of R over C.
(ii) R =

∪∞
k=0 L(k∞).

(iii) ord∞(xi) = −ai.

We arrange the monomials xα1
1 · · ·xαm

m , (α1, . . . , αm) ∈ B(Am), in the ascending order of
pole orders at ∞ and denote them by ϕi, i ≥ 1. In particular, ϕ1 = 1. Let (w1, ..., wg) be
the gap sequence at ∞:

{wi | 1 ≤ i ≤ g} = Z≥0\{ord∞(ϕi) | i ≥ 1}, (1 = w1 < · · · < wg).

Proposition 5 ([13]) wg = 2g − 1.

Proposition 6 For the element (li1, ..., lim) ∈ B(Am) satisfying (8), we have lii = · · · =
lim = 0.

Proof of Proposition 6. Since Am is telescopic, there exist k1, . . . , ki−1 ∈ Z≥0 such that
0 ≤ kj < dj−1/dj for any j = 2, . . . , i− 1 and

ai
di−1

di
= a1k1 + · · ·+ ai−1ki−1.

From (6), we have (k1, . . . , ki−1, 0, . . . , 0) ∈ B(Am). Since the element of B(Am) satisfying
(8) is unique, we have (li1, ..., lim) = (k1, . . . , ki−1, 0, . . . , 0).

�
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From Proposition 6, the defining equations of telescopic curves have the following forms:

Fi(X1, . . . , Xm) = X
di−1/di
i −

i−1∏
j=1

X
lij
j −

∑
λ
(i)
j1...jm

Xj1
1 · · ·Xjm

m . (10)

For the defining equations (10), we assign degrees as

degXk = ak, deg λ
(i)
j1,...,jm

= aidi−1/di −
m∑
k=1

akjk.

Example 1. A2 = (2, 3).

F2(X1, X2) = X2
2 −X3

1 − λ
(2)
1,1X1X2 − λ

(2)
2,0X

2
1 − λ

(2)
0,1X2 − λ

(2)
1,0X1 − λ

(2)
0,0,

which expresses the elliptic curves.

Example 2. A2 = (2, 2g + 1).

F2(X1, X2) = X2
2 −X2g+1

1 −
g∑

i=0

λ
(2)
i,1X

i
1X2 −

2g∑
i=0

λ
(2)
i,0X

i
1,

which expresses the hyperelliptic curves of genus g.

Example 3. A2 = (n, s), n, s ∈ N>0, gcd{n, s} = 1.

F2(X1, X2) = Xn
2 −Xs

1 −
∑

nj1+sj2<ns

λ
(2)
j1,j2

Xj1
1 Xj2

2 ,

which expresses the (n, s)-curves (cf. [3] [4] [6]).

Example 4. A3 = (4, 6, 5).

F2(X1, X2, X3) = X2
2 −X3

1 − λ
(2)
0,1,1X2X3 − λ

(2)
1,1,0X1X2 − λ

(2)
1,0,1X1X3 − λ

(2)
2,0,0X

2
1

−λ
(2)
0,1,0X2 − λ

(2)
0,0,1X3 − λ

(2)
1,0,0X1 − λ

(2)
0,0,0

and

F3(X1, X2, X3) = X2
3 −X1X2 − λ

(3)
1,0,1X1X3 − λ

(3)
2,0,0X

2
1 − λ

(3)
0,1,0X2 − λ

(3)
0,0,1X3

−λ
(3)
1,0,0X1 − λ

(3)
0,0,0.
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4 Holomorphic one forms for telescopic curves

Let X be a telescopic curve associated with (a1, . . . , am) and Γ(X,Ω1
X) the linear space

consisting of holomorphic one forms on X. In this section, we construct a basis of Γ(X,Ω1
X).

Let G be the matrix defined by

G :=


∂F2

∂X1
. . .

∂F2

∂Xm
. . . . . . . . . . . . . . . . .
∂Fm

∂X1
. . .

∂Fm

∂Xm

 ,

Gi the matrix obtained by removing the i-th column from G, and

dui = − ϕg+1−i

detG1(x)
dx1. (11)

Then, we have the following theorem.

Theorem 7 The set P := {dui}gi=1 is a basis of Γ(X,Ω1
X) over C.

In order to prove Theorem 7, we need some lemmas.

Lemma 8 If detGi(p) 6= 0 for p = (p1, . . . , pm) ∈ Xaff and 1 ≤ i ≤ m, then ordp(xi−pi) = 1.

Proof of Lemma 8. Without loss of generality, we assume i = 1. Suppose ordp(x1−p1) ≥ 2.
Then, there exists k (2 ≤ k ≤ m) such that ordp(xk − pk) = 1. In fact, if ordp(xk − pk) ≥ 2
for any k, then ordp(f) ≥ 2 or ordp(f) = 0 for any f ∈ R. Then, ordp(g) ≥ 2 or ordp(g) = 0
for any g ∈ Rp, where Rp is the localization of R at p. This contradicts that Rp is a discrete
valuation ring.

There exist {γij , δ(i)j1,...,jm
} ∈ C such that for 2 ≤ i ≤ m

Fi(X1, . . . , Xm) =
m∑
j=1

γij(Xj − pj) +
∑

j1+···+jm≥2

δ
(i)
j1,...,jm

(X1 − p1)
j1 · · · (Xm − pm)jm ,

where γij =
∂Fi
∂Xj

(p). Since Fi(x1, . . . , xm) = 0 and ordp(x1 − p1) ≥ 2, we have

ordp

 m∑
j=2

γij(xj − pj)

 = ordp

(xk − pk)(
m∑
j=2

γij
xj − pj
xk − pk

)

 ≥ 2.

Since ordp(xk − pk) = 1, we have
∑m

j=2 γijbj = 0, where bj =
(

xj−pj
xk−pk

)
(p). Therefore, we

obtain

G1(p)


b2
·
·
bm

 =


0
·
·
0

 .
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Since bk = 1( 6= 0), we have detG1(p) = 0. This contradicts the assumption of Lemma 8.
Therefore, we obtain ordp(x1 − p1) = 1.

�

Lemma 9 (i) As an element of K, we have detG1(x) 6= 0.

(ii) div

(
dx1

detG1(x)

)
= (2g − 2)∞.

Proof of Lemma 9. Since the differential d (Fi(x1, . . . , xm)) = 0 for any i, we have

G(x)


dx1
·
·

dxm

 =


0
·
·
0

 .

By multiplying some elementary matrices on the left, the above equation becomes
w2 z22 z23 · · · z2m
w3 0 z33 · · · z3m

. . .
wm 0 · · · zmm




dx1
·
·

dxm

 =


0
·
·
0

 .

Since Xaff is non-singular, for any p ∈ Xaff there exists i such that detGi(p) 6= 0. Therefore,
we have wm 6= 0 or zmm 6= 0 as elements of K. Since ord∞(xj) = −aj , we have xj /∈ C,
therefore, dxj 6= 0 for any j. Since wmdx1 = zmmdxm, we have wm 6= 0 and zmm 6= 0.
Therefore, by multiplying some elementary matrices on the left, the above equation becomes

w′
2 z22 z23 · · · 0

w′
3 0 z33 · · · 0

. . .
wm 0 · · zmm




dx1
·
·

dxm

 =


0
·
·
0

 .

Similarly, we obtain 
w′′
2 z22 0 · · · 0

w′′
3 0 z33 · · · 0

. . .
w′′
m 0 · · · zmm




dx1
·
·

dxm

 =


0
·
·
0

 ,

where w′′
2 , . . . , w

′′
m, z22, . . . , zmm ∈ K are non-zero.

Therefore, we obtain detG1(x) = ±z22 · · · zmm 6= 0, which complete the proof of (i).
Next, we prove that the one form dx1/detG1(x) is both holomorphic and non-vanishing

onXaff. When detG1(p) 6= 0 for p ∈ Xaff, from Lemma 8, dx1/detG1(x) is both holomorphic
and non-vanishing at p. Suppose detG1(p) = 0 for p ∈ Xaff. Since Xaff is non-singular,
there exists i (2 ≤ i ≤ m) such that detGi(p) 6= 0. Since w′′

i dx1 + ziidxi = 0, we have

12



w′′
i z22 · · · ẑii · · · zmmdx1 + z22 · · · zmmdxi = 0, where ẑii denotes to remove zii. Therefore, we

obtain
(−1)i−2 detGi(x)dx1 + detG1(x)dxi = 0.

Since detG1(x) 6= 0 and detGi(x) 6= 0, we have

dx1
detG1(x)

= (−1)i−1 dxi
detGi(x)

.

Therefore, from detGi(p) 6= 0 and Lemma 8, dx1/ detG1(x) is holomorphic and non-vanishing
at p. On the other hand, by Riemann-Roch’s theorem, we have

deg div(dx1/detG1(x)) = 2g − 2,

which complete the proof of (ii).
�

Proof of Theorem 7. From Lemma 9 and Proposition 3, 4, 5, we have P ⊂ Γ(X,Ω1
X)

and the elements of P are linearly independent. Since dimC Γ(X,Ω1
X) = g, P is a basis of

Γ(X,Ω1
X).

�

5 Series expansion of xi around ∞
In this section, we show the following proposition.

Proposition 10 (i) It is possible to take a local parameter t around ∞ such that

x1 =
1

ta1
, xk =

1

tak
(1 +

∞∑
l=1

cklt
l), 2 ≤ k ≤ m, (12)

where ckl belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree l if ckl 6= 0.

(ii) For the local parameter t of (i), we have, around ∞,

dx1
detG1(x)

= −t2g−2(1 +

∞∑
l=1

c′lt
l)dt,

where c′l belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree l if c′l 6= 0.

(iii) For the local parameter t of (i), we have, around ∞,

dui =
(
twi−1 +O(twi)

)
dt.

Proof of Proposition 10. (i) It is possible to take a local parameter t around ∞ such that

x1 =
1

ta10
.
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Let ζ = exp(2π
√
−1/a1) and i ≥ 0. Then, ti := ζit0 is also a local parameter around ∞. Let

c
(i)
k be the coefficient of the series expansion of xk around ∞ with respect to ti:

xk =
c
(i)
k

taki
(1 +O(ti)), 2 ≤ k ≤ m.

We prove that there exists i such that c
(i)
2 = · · · = c

(i)
m = 1. Let c(i) = (c

(i)
2 , . . . , c

(i)
m ) for

0 ≤ i < a1. First, we show c(i) 6= c(j) for i 6= j. Suppose c(i) = c(j). Since c
(i)
k = ζakic

(0)
k , we

have ζak(i−j) = 1 for any k = 2, . . . ,m. From gcd(a1, . . . , am) = 1 and 0 ≤ i, j < a1, we have
i = j.

Let

Z = {(z2, . . . , zm) ∈ Cm−1 | zd1/d22 = 1, z
di−1/di
i = zli22 · · · zlii−1

i−1 , 3 ≤ i ≤ m}.

Since ]Z = (d1/d2) · · · (dm−1/dm) = (d1/dm) = a1 and c(i) ∈ Z for any i = 0, . . . , a1 − 1, we
have

Z = {c(0), . . . , c(a1−1)}.

Since (1, . . . , 1) ∈ Z, there exists j such that c(j) = (1, . . . , 1). For t := tj , xk is expanded as

x1 =
1

ta1
, xk =

1

tak
(1 +

∞∑
l=1

cklt
l), ckl ∈ C.

Let us prove that ckl belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree l if ckl 6= 0.
We define the order < in the set {ckl} so that ck′l′ < ckl if

1. l′ < l or

2. l′ = l and k′ < k.

We prove the statement by transfinite induction with respect to the well-order <.
From (10), we have

1 +
∞∑
j=1

ckjt
j


dk−1
dk

=
k−1∏
s=2

1 +
∞∑
j=1

csjt
j

lks

+
∑

λ
(k)
j1...jm

t
akdk−1

dk
−
∑m

s=1 asjs
m∏
s=2

1 +
∞∑
j=1

csjt
j

js

,

(13)

where we define
∏1

s=2

(
1 +

∑∞
j=1 csjt

j
)l2s

= 1.

In (13) for k = 2, the coefficient of t of the left hand side is (d1/d2)c21 and that of the right

hand side is λ
(2)
j1,...,jm

with (j1, . . . , jm) satisfying (a2d1/d2) −
∑m

s=1 asjs = 1. Therefore, the
statement is correct for the minimal element c21. Assume that the statement is correct for
ck′l′ satisfying ck′l′ < ckl. The coefficient of tl of the left hand side of (13) is (dk−1/dk)ckl+T ,
where T is a sum of

∏
i ckqi satisfying

∑
i qi = l and qi < l. The coefficients of tl of the first

and second terms of the right hand side of (13) is a sum of
∏

i cpiqi satisfying 2 ≤ pi < k

and
∑

i qi = l, and a sum of λ
(k)
j1...jm

∏
i cpiqi satisfying

∑
i qi = l − (akdk−1/dk) +

∑m
s=1 asjs,
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respectively. Therefore, by the assumption of the induction, we find that ckl belongs to

Q[{λ(i)
j1...jm

}] and is homogeneous of degree l if ckl 6= 0.

(ii). From (10) and (i), we have, around ∞,

detG1(x) = a1t
−

∑m
i=2((di−1/di)−1)ai(1 +

∞∑
l=1

clt
l)dt,

where cl belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree l if cl 6= 0. Therefore, from
(9), we obtain the assertion.

(iii) Let w∗
i = ord∞(ϕi). Note that {w∗

i , wi | i = 1, . . . , g} = {0, 1, . . . , 2g − 1}. Since
wg = 2g − 1, we have 2g − 1 − w∗

g+1−i = wi for any i. Therefore, from (11), we obtain the
assertion.

�

6 Symplectic basis of the first cohomology group of telescopic
curves

In this paper, we call a meromorphic differential on X second kind if it is locally exact. Let
H1(X,C) be the space of second kind differentials modulo meromorphic exact forms. We
define the intersection form on H1(X,C) by

η ◦ η′ =
∑
p

Res(

∫ p

η)η′(p).

for second kind differentials η, η′ (the summation is over all singular points of η and η′, and
Res means taking a residue at a point). Let {αi, βi}gi=1 be a canonical basis of the homology
group H1(X,Z). Then, we have (Riemann’s bilinear relation)

η ◦ η′ = 1

2πi

g∑
i=1

(∫
αi

η

∫
βi

η′ −
∫
αi

η′
∫
βi

η

)
. (14)

For 2 ≤ i ≤ m and 1 ≤ j ≤ m, let

hij =
Fi(Y1, . . . , Yj−1, Xj , Xj+1, . . . , Xm)− Fi(Y1, . . . , Yj−1, Yj , Xj+1, . . . , Xm)

Xj − Yj

and

H =

h22 . . . h2m
. . . . . . . . . . . . . . .
hm2 . . . hmm

 .

We consider the one form

Ω(x, y) :=
detH(x, y)

(x1 − y1) detG1(x)
dx1

15



and the bilinear form

ω̂(x, y) := dyΩ(x, y) +
∑

ci1,...,im;j1,...,jm

xi11 · · ·ximm yj11 · · · yjmm
detG1(x) detG1(y)

dx1dy1 (15)

onX×X, where x = (x1, . . . , xm), y = (y1, . . . , ym), ci1,...,im;j1,...,jm ∈ C, (i1, . . . , im) ∈ B(Am)
satisfying 0 ≤

∑m
k=1 akik ≤ 2g − 2, and (j1, . . . , jm) ∈ B(Am).

Then, we have the following theorem.

Theorem 11 (i) There exists a set of ci1,...,im;j1,...,jm such that ω̂(x, y) = ω̂(y, x), non-zero

ci1,...,im;j1,...,jm is a homogeneous polynomial of {λ(i)
l1,...,lm

} of degree

2

m∑
k=2

dk−1

dk
ak −

m∑
k=1

(ik + jk + 2)ak,

and ci1,...,im;j1,...,jm = 0 if 2
∑m

k=2
dk−1

dk
ak −

∑m
k=1(ik + jk + 2)ak < 0.

For a set of ci1,...,im;j1,...,jm such that ω̂(x, y) = ω̂(y, x), we have the following properties.

(ii) The bilinear form ω̂ satisfies the condition (i) of Definition 1.

(iii) For dui(x) := (xki11 · · ·xkimm /detG1(x))dx1, we define

dri(y) =
∑

j1,...,jm

cki1,...,kim;j1,...,jm

yj11 · · · yjmm
detG1(y)

dy1.

Then, dri is a second kind differential which is singular only at ∞, and the set {dui, dri}gi=1

is a symplectic basis of H1(X,C), i.e., {dui, dri}gi=1 is a basis of H1(X,C) such that

dui ◦ duj = dri ◦ drj = 0 and dui ◦ drj = δij for each i, j. (16)

Let B be the set of branch points for the map x1 : X → P1, (x1, . . . , xm) 7→ [x1 : 1].
Since the ramification index of the map x1 at ∞ is a1, we have deg x1 = a1 (cf. [24], p.28,
Proposition 2.6). For p ∈ X, we set x−1

1 (x1(p)) = {p(0), p(1), . . . , p(a1−1)} with p = p(0), where
the same p(i) is listed according to its ramification index.

Lemma 12 Let U be a domain in C, f(z1, z2) a holomorphic function on U×U , and g(z) =
f(z, z). If g ≡ 0 on U , then there exists a holomorphic function h(z1, z2) on U ×U such that
f(z1, z2) = (z1 − z2)h(z1, z2).

Proof of Lemma 12. Let h(z1, z2) = f(z1, z2)/(z1−z2). Given z1, h(z1, · ) has a singularity
only at z1, where its singularity is removable. Therefore, h(z1, · ) is holomorphic on U .
Similarly, h( ·, z2) is holomorphic on U . Therefore, h is holomorphic on U × U .

�

Lemma 13 The one form Ω(x, y) is holomorphic except ∆∪{(p(i), p) | i 6= 0, p ∈ B or p(i) ∈
B} ∪X × {∞} ∪ {∞} ×X.
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Proof of Lemma 13. Since dx1/detG1(x) is holomorphic on X, Ω(x, y) is holomorphic
except ∆ ∪ {(p(i), p) | p ∈ X, i 6= 0} ∪ X × {∞} ∪ {∞} × X. We prove that Ω(x, y) is
holomorphic on {(p(i), p) | i 6= 0, p /∈ B, p(i) /∈ B}. We have

Fi(X1, . . . , Xm) =
m∑
j=1

hij · (Xj − Yj) + Fi(Y1, . . . , Ym). (17)

Set Xi = xi and Yi = yi, then we have

m∑
j=1

hij(x, y) · (xj − yj) = 0.

Take (p(i), p) ∈ X ×X such that i 6= 0, p /∈ B, and p(i) /∈ B, then we haveh21 . . . h2m
. . . . . . . . . . . . . . .
hm1 . . . hmm


Xj=p

(i)
j ,Yj=pj ,1≤j≤m

p
(i)
1 − p1

·
p
(i)
m − pm

 =

0
·
0

 .

Since p
(i)
1 − p1 = 0, we have

H(p(i), p)

p
(i)
2 − p2

·
p
(i)
m − pm

 =

0
·
0

 .

Since (p
(i)
2 − p2, . . . , p

(i)
m − pm) 6= (0, . . . , 0), we have detH(p(i), p) = 0. Since p /∈ B and

p(i) /∈ B, we can take (x1, y1) as a local coordinate around (p(i), p). Therefore, from Lemma
12, there exists a holomorphic function h(x1, y1) around (p(i), p) such that detH(x, y) =
(x1 − y1)h(x1, y1). Therefore, Ω(x, y) is holomorphic at (p(i), p).

�

Lemma 14 Let p /∈ B, t a local coordinate around p. Then, the expansion of Ω(x, y) in t(y)
at t(x) is of the form

Ω(x, y) =

(
−1

t(y)− t(x)
+ regular

)
dt(x).

Proof of Lemma 14. Set Y = y in (17), then we have

Fi(X1, . . . , Xm) =
m∑
j=1

hij(X1, . . . , Xm, y1, . . . , ym) · (Xj − yj).

Therefore, we obtain

∂Fi

∂Xk
(x1, . . . , xm) =

m∑
j=1

∂hij
∂Xk

(x, y) · (xj − yj) + hik(x, y).
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Set x = y, then we have
∂Fi

∂Xk
(x1, . . . , xm) = hik(x, x).

Therefore, we obtain detG1(x) = detH(x, x). On the other hand, since p /∈ B, we can take
(x1, y1) as a local coordinate around (p, p). Since p /∈ B, we have detG1(p) 6= 0. In fact,
if detG1(p) = 0, then dx1/detG1(x) is not holomorphic at p, which contradicts Lemma 9
(ii). Therefore, detH(x, y)/detG1(x) is holomorphic at (p, p). Therefore, from Lemma 12,
there exists a holomorphic function h̃(x1, y1) around (p, p) such that detH(x, y)/ detG1(x) =
1 + (x1 − y1)h̃(x1, y1). Therefore, we obtain Lemma 14.

�

Lemma 15 When we express

detH(X1, . . . , Xm, Y1, . . . , Ym) =
∑

εl1,...,lm,n1,...,nmX
l1
1 · · ·X lm

m Y n1
1 · · ·Y nm

m ,

we have
∑m

k=1 ak(lk + nk) ≤
∑m

k=2 ak ((dk−1/dk)− 1).

Proof of Lemma 15. When we express

Fi(X1, . . . , Xm) =

s∑
k=0

F̃
(j)
ik (X1, . . . , Xj−1, Xj+1, . . . , Xm)Xk

j ,

we have hij =
∑s

k=1 F̃
(j)
ik (Y1, . . . , Yj−1, Xj+1, . . . , Xm)

∑k−1
l=0 X l

jY
k−l−1
j . Assign degrees as

deg Yk = ak, then hij is a homogeneous polynomial of {λ(i)
j1,...,jm

, Xk, Yk} of degree aidi−1/di−
aj . Therefore, we obtain Lemma 15.

�

Lemma 16 The meromorphic bilinear form dyΩ(x, y) is holomorphic except ∆∪{(p(i), p) | i 6=
0, p ∈ B or p(i) ∈ B} ∪X × {∞}.

Proof of Lemma 16. It is sufficient to prove that dyΩ(x, y) is holomorphic at (∞, y),
y 6= ∞. From Lemma 15, with respect to x, we obtain

ord∞ (detH(x, y)) ≥ −
m∑
k=2

ak ((dk−1/dk)− 1) .

If ord∞ (detH(x, y)) > −
∑m

k=2 ak ((dk−1/dk)− 1), then from Lemma 9 (ii) and (9) we obtain
ord∞ (Ω(x, y)) ≥ 0. Therefore, dyΩ(x, y) is holomorphic at (∞, y). If ord∞ (detH(x, y)) =
−
∑m

k=2 ak ((dk−1/dk)− 1), then ord∞ (Ω(x, y)) = −1. Let t be a local coordinate around ∞,
then from Lemma 15 there exists a constant e (which does not depend on y) such that

Ω(x, y) =
(e
s
+ regular

)
ds.

Therefore, dyΩ(x, y) is holomorphic at (∞, y), y 6= ∞.
�
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Lemma 17 Let ω be the normalized fundamental form. Then, there exist second kind def-
ferentials dr̂i (1 ≤ i ≤ g) which are holomorphic except {∞} and satisfy the equation

ω(x, y)− dyΩ(x, y) =

g∑
i=1

dui(x)dr̂i(y).

Proof of Lemma 17. The method of proof is similar to the case of (n, s) curves (cf. [21]
Lemma 5). Let us set

ω1(x, y) = ω(x, y)− dyΩ(x, y).

From Lemma 14, 16 and (4), the singularities of ω1 are contained in B2 ∪X × {∞}, where
B2 = {(p(i), p) | p ∈ B\{∞} or p(i) ∈ B\{∞}}. Since B2 is a finite set and B2∩ (X×{∞}) =
φ, ω1 is holomorphic except X × {∞}. Therefore, there exists one forms dr̃i(y) on X\{∞}
such that

ω1(x, y) =

g∑
i=1

dui(x)dr̃i(y)

on X × (X\{∞}). Let us take q1, . . . , qg such that
∑g

i=1 qi is a general divisor and qi’s are
in some small neighborhood of ∞. Take the local coordinate t of (12) around ∞ and write

dui(x) = hi(t)dt,

ω1(x, y) = K1(t(x), y)dt(x).

Then, we have a set of linear equations

g∑
i=1

hi(t(qj))dr̃i(y) = K1(t(qj), y).

Since
∑g

i=1 qi is a general divisor, we have det(hi(t(qj))) 6= 0. Therefore, there exist some
constants cij ∈ C such that

dr̃i(y) =

g∑
j=1

cijK1(t(qj), y).

on X\{∞}. Notice that K1(t(qj), y) is a second kind differential whose only singularity is
∞. Let us set

dr̂i(y) =

g∑
j=1

cijK1(t(qj), y),

which is a second kind differential on X singular only at ∞, and set

ω2(x, y) = ω1(x, y)−
g∑

i=1

dui(x)dr̂i(y).

Then, we have ω2 = 0 on X × (X\{∞}). Therefore, we have ω2 = 0 on X ×X, which proves
the lemma.

�
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Lemma 18 Let Q be the linear space consisting of meromorphic differentials on X which
are singular only at ∞ and

S =

{
ϕi

detG1(x)
dx1 | i ≥ 1

}
.

Then, S is a basis of Q over C.

Proof of Lemma 18. For η ∈ Q, we consider the meromorphic function η/ dx1
detG1(x)

. From

Lemma 9 (ii), it may have a pole only at ∞. From Proposition 4, η/ dx1
detG1(x)

is a linear
combination of ϕi and the elements of S are linearly independent.

�

Proof of Theorem 11. (i) We have

dyΩ(x, y) =
{
∑m

k=1(−1)k+1(x1 − y1)
∂ detH
∂Yk

(x, y) detGk(y)}+ detG1(y) detH(x, y)

(x1 − y1)2 detG1(x) detG1(y)
dx1dy1.

Then, detGk, detH, and (∂ detH/∂Yk) are homogeneous polynomials of {λ(i)
j1,...,jm

, Xj , Yj}
of degree

∑m
i=2

di−1

di
ai−

∑
i6=k ai,

∑m
i=2(

di−1

di
−1)ai, and {

∑m
i=2(

di−1

di
−1)ai}−ak, respectively.

Let us write

dyΩ(x, y) =

∑
qi1,...,im;j1,...,jmx

i1
1 · · ·ximm yj11 · · · yjmm

(x1 − y1)2 detG1(x) detG1(y)
dx1dy1,

where (i1, . . . , im), (j1, . . . , jm) ∈ B(Am), and qi1,...,im;j1,...,jm ∈ C. Then, qi1,...,im;j1,...,jm ∈
Z[{λ(i)

l1,...,lm
}] and qi1,...,im;j1,...,jm is homogeneous of degree 2

∑m
k=2(

dk−1

dk
− 1)ak −

∑m
k=1(ik +

jk)ak. Note that if (n1, . . . , nm) ∈ B(Am), then (n1 + n, n2, . . . , nm) ∈ B(Am) for n ∈ Z≥0.
Therefore, we obtain ∑

ci1,...,im;j1,...,jm

xi11 · · ·ximm yj11 · · · yjmm
detG1(x) detG1(y)

=

∑
(ci1−2,...,im;j1,...,jm − 2ci1−1,...,im;j1−1,...,jm + ci1,...,im;j1−2,...,jm)x

i1
1 · · ·ximm yj11 · · · yjmm

(x1 − y1)2 detG1(x) detG1(y)
,

where (i1, . . . , im), (j1, . . . , jm) ∈ B(Am). Therefore, ω̂(x, y) = ω̂(y, x) is equivalent to

ci1−2,...,im;j1,...,jm − 2ci1−1,...,im;j1−1,...,jm + ci1,...,im;j1−2,...,jm − cj1−2,...,jm;i1,...,im

+2cj1−1,...,jm;i1−1,...,im − cj1,...,jm;i1−2,...,im = qj1,...,jm;i1,...,im − qi1,...,im;j1,...,jm .

By Lemma 17,18, the system of the above linear equations has a solution. Moreover, it has
a solution such that each ci1,...,im;j1,...,jm is a linear combination of qi′1,...,i′m;j′1,...,j

′
m

satisfying
i′1+ j′1 = i1+ j1+2, (i′k, j

′
k) = (ik, jk) or (i

′
k, j

′
k) = (jk, ik) for k = 2, . . . ,m. In particular, one

can take ci1,...,im;j1,...,jm such that ci1,...,im;j1,...,jm = 0 if 2
∑m

k=2
dk−1

dk
ak−

∑m
k=1(ik+jk+2)ak < 0

and

deg ci1,...,im;j1,...,jm = 2

m∑
k=2

dk−1

dk
ak −

m∑
k=1

(ik + jk + 2)ak
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if ci1,...,im;j1,...,jm 6= 0.
�

(ii) From Lemma 17, dyΩ(x, y) is holomorphic except ∆ ∪X × {∞} and so is ω̂. Since
ω̂(x, y) = ω̂(y, x), ω̂ is holomorphic except ∆. From the definition of dri, we obtain

ω̂ − ω =

g∑
i=1

dui(x)(dri(y)− dr̂i(y)).

On the other hand, ω̂ − ω is holomorphic except ∆ and
∑g

i=1 dui(x)(dri(y) − dr̂i(y)) is
holomorphic except X×{∞}. Therefore, ω̂−ω is holomorphic except {∞}×{∞}. Therefore,
ω̂ − ω and dri − dr̂i are holomorphic on X × X and X, respectively, which completes the
proof.

�
In order to prove (iii), we need some lemmas.

Lemma 19 ([21]) Let ω1 and ω2 be meromorphic symmetric bilinear form satisfying the
condition (i) of Definition 1. Then, there exist some constants cij ∈ C such that cij = cji
and

ω1(x, y)− ω2(x, y) =

g∑
i,j=1

cijdui(x)duj(y). (18)

Proof of Lemma 19. The left hand side of (18) is holomorphic symmetric bilinear form.
Therefore, from (3), we obtain the assertion.

�
We define the period matrices by

2ω1 =

(∫
αj

dui

)
, 2ω2 =

(∫
βj

dui

)
, −2η1 =

(∫
αj

dri

)
, −2η2 =

(∫
βj

dri

)
.

Then, ω1 is invertible. Set τ = ω−1
1 ω2, then τ is symmetric and Im τ > 0.

Lemma 20 We have
ω(x, y) = ω̂(x, y) + tdu(x)η1ω

−1
1 du(y),

where du = t(du1, . . . , dug). In particular, η1ω
−1
1 is symmetric.

Proof of Lemma 20. The method of proof is similar to the case of (n, s) curves (cf. [21]
Lemma 8). By Lemma 19, there exists a constant symmetric g × g matrix C = (cij) such
that

ω(x, y)− ω̂(x, y) = tdu(x)Cdu(y).

Since
∫
αk

ω(x, y) = 0 and
∫
αk

dyΩ(x, y) = 0, we have

g∑
i=1

dui(x)(η1)ik =

g∑
i,j=1

cijdui(x)(ω1)jk.
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Since {dui}gi=1 are linearly independent, we have

(η1)ik =

g∑
j=1

cij(ω1)jk.

Therefore, we have
C = η1ω

−1
1 .

�
Proof of Theorem 11 (iii). The method of proof is similar to the case of (n, s)-curves (cf.

[21] Proposition 3). The one form dri is a second kind differential which is singular only at
∞. In fact, dri − dr̂i is holomorphic one form as is just proved in the proof of Theorem 11
(ii) and dr̂i is a second kind differential which is singular only at ∞ from Lemma 17. The
relation dui ◦ duj = 0 is obvious. Let us prove dui ◦ drj = δij . By Theorem 11 (ii), we have

ω̂(x, y) ◦ duj(y) = Resy=x(

∫ y

ω̂)duj(y) = −duj(x). (19)

On the other hand, from (14), we have

ω̂(x, y) ◦ duj(y) =

(
dyΩ(x, y) +

g∑
i=1

dui(x)dri(y)

)
◦ duj(y) =

g∑
i=1

dui(x)(dri ◦ duj). (20)

Since {dui}gi=1 are linearly independent, we have dui◦drj = δij . Next, let us prove dri◦drj =
0. Similarly to (20), we have

ω̂(x, y) ◦ drj(y) =
g∑

i=1

dui(x)(dri ◦ drj). (21)

From Lemma 20 and dui ◦ drj = δij , we have

ω̂(x, y) ◦ drj(y) = ω(x, y) ◦ drj(y)−
g∑

i=1

dui(x)(η1ω
−1
1 )ij . (22)

From (14) and
∫
αk

ω = 0, we have

2πi ω(x, y) ◦ drj(y) =
g∑

k=1

(∫
αk

ω

∫
βk

drj −
∫
αk

drj

∫
βk

ω

)
= 2

g∑
k=1

(η1)jk

∫
βk

ω. (23)

Lemma 21 We have ∫
βk

ω = πi

g∑
i=1

(ω−1
1 )kidui(x).
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Proof of Lemma 21. Similarly to (19), we have

ω(x, y) ◦ dui(y) = −dui(x).

Similarly to (23), we have

2πi ω(x, y) ◦ dui(y) = −2

g∑
k=1

(ω1)ik

∫
βk

ω.

From these, we obtain the assertion.
�

By Lemma 21, we obtain

ω(x, y) ◦ drj(y) =
g∑

i=1

(η1ω
−1
1 )jidui(x).

From (22) and Lemma 20, we have

ω̂(x, y) ◦ drj(y) =
g∑

i=1

dui(x)
(
(η1ω

−1
1 )ji − (η1ω

−1
1 )ij

)
= 0.

From (21), we obtain dri ◦ drj = 0.

From (16), we find that {dui, dri}gi=1 are linearly independnet. Since dimCH
1(X,C) = 2g

(cf. [16], pp. 29-31, Theorem 8.1,8.2), {dui, dri}gi=1 are a basis of H1(X,C).
�

7 Sigma functions for telescopic curves

In this section, we define the sigma function for the telescopic curve X.
From (16) and (14), for the matrix

M :=

(
ω1 ω2

η1 η2

)
,

we have

M

(
0 Ig

−Ig 0

)
tM = −πi

2

(
0 Ig

−Ig 0

)
,

where Ig denotes the unit matrix of degree g. Since η1ω
−1
1 is symmetric, we obtain the

following proposition.

Proposition 22 (generalized Legendre relation)

tM

(
0 Ig

−Ig 0

)
M = −πi

2

(
0 Ig

−Ig 0

)
.
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Let δ = τδ′+δ′′ be the Riemann’s constant ofX with respect to our choice (∞, {αi, βi}gi=1).
Since the divisor of the holomorphic one form dug is (2g − 2)∞, the Riemann’s constant δ
becomes a half period. Then, the sigma funtion σ(u) associated with X is defined as follows.

Definition 23 For u ∈ Cg, we define

σ̂(u) = exp

(
1

2
tuη1ω

−1
1 u

)
θ

[
δ′

δ′′

]
((2ω1)

−1u, τ).

By Proposition 22, we obtain the following proposition.

Proposition 24 For any m1,m2 ∈ Zg and u ∈ Cg, we have

σ̂(u+ 2ω1m1 + 2ω2m2)/σ̂(u) = exp
(
πi (tm1m2 + 2 tδ′m1 − 2 tδ′′m2)

)
× exp

(
t(2η1m1 + 2η2m2)(u+ ω1m1 + ω2m2)

)
.

8 Algebraic expression of sigma functions

8.1 Algebraic expression of prime form

Let X̃ be the universal cover of the telescopic curve X and π : X̃ → X the projection.
Hereafter, for p̃ ∈ X̃, we denote π(p̃) by p. Let {dvi}gi=1 be the basis of holomorphic one
forms such that

∫
αj

dvi = δij .

Lemma 25 For p1, p2 ∈ X, we have

a1−1∑
i=0

∫ p
(i)
2

p
(i)
1

dv ∈ Zg + τZg.

Proof of Lemma 25. We define the meromorphic function f on X by

f(z) =


(x1(z)− x1(p2))/(x1(z)− x1(p1)) if p1 6= ∞, p2 6= ∞
1/(x1(z)− x1(p1)) if p1 6= ∞, p2 = ∞
x1(z)− x1(p2) if p1 = ∞, p2 6= ∞
1 if p1 = ∞, p2 = ∞ .

Since div(f) =
∑a1−1

i=0 p
(i)
2 −

∑a1−1
i=0 p

(i)
1 ,
∑a1−1

i=0 p
(i)
2 −

∑a1−1
i=0 p

(i)
1 is a principal divisor. There-

fore, by the Abel-Jacobi’s theorem, we obtain the assertion.
�

For p̃1, p̃2 ∈ X̃, take p̃
(i)
1 , p̃

(i)
2 ∈ X̃, 0 ≤ i < a1, p̃

(0)
1 = p̃1, p̃

(0)
2 = p̃2 such that π(p̃

(i)
1 ) =

p
(i)
1 , π(p̃

(i)
2 ) = p

(i)
2 and

a1−1∑
i=0

∫ p̃
(i)
2

p̃
(i)
1

dv = 0. (24)
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Proposition 26 [10] For p̃1, p̃2 ∈ X̃, we have

E(p̃1, p̃2)
2 =

(x1(p2)− x1(p1))
2

dx1(p1)dx1(p2)
exp

(
a1−1∑
i=1

∫ p̃
(i)
2

p̃
(i)
1

∫ p̃2

p̃1

ω

)
.

Proof of Proposition 26. For the sake to be complete and self-contained, we give a proof
of this proposition. The method of the proof is similar to [21].

Lemma 27 We have

(x1(w)− x1(p2)) (x1(z)− x1(p1))

(x1(w)− x1(p1)) (x1(z)− x1(p2))
= exp

(
a1−1∑
i=0

∫ w̃

z̃

∫ p̃
(i)
2

p̃
(i)
1

ω

)
.

Proof of Lemma 27. By Proposition 2,

exp

(
a1−1∑
i=0

∫ w̃

z̃

∫ p̃
(i)
2

p̃
(i)
1

ω

)
=

a1−1∏
i=0

E(w̃, p̃
(i)
2 )E(z̃, p̃

(i)
1 )

E(w̃, p̃
(i)
1 )E(z̃, p̃

(i)
2 )

.

Let us consider the right hand side of this equation as a function of w̃ and denote it by
F (w̃). By the property (iv) of the prime form, if the abelian image of γ ∈ π1(X,∞) is∑g

i=1miαi +
∑g

i=1 niβi, then

F (γw̃) = F (w̃) exp

2πi

a1−1∑
j=0

tn

∫ p̃
(j)
2

p̃
(j)
1

dv

 .

From (24), F (w̃) is π1(X,∞)-invariant and can be considered as a meromorphic function on
X. By comparing zeros and poles, there exists a constant C such that

F (w̃) = C
x1(w)− x1(p2)

x1(w)− x1(p1)
.

Since F (z̃) = 1, we have

C =
x1(z)− x1(p1)

x1(z)− x1(p2)
,

which proves the lemma.
�

Proof of Proposition 26. In Lemma 27, take the limit z̃ → p̃1, w̃ → p̃2 and use

lim
w̃→q̃

x1(w)− x1(q)

E(w̃, q̃)
= −dx1(q),

exp

(∫ w̃

z̃

∫ p̃2

p̃1

ω

)
=

E(w̃, p̃2)E(z̃, p̃1)

E(w̃, p̃1)E(z̃, p̃2)
.

Then, we obtain the desired result.
�
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8.2 Prime function

Since dug has a zero of order 2g − 2 at ∞, we can define, as in the case of (n, s) curves, the
prime function Ẽ(p̃1, p̃2) by

Ẽ(p̃1, p̃2) = −E(p̃1, p̃2)
√

dug(p1)
√

dug(p2) exp

(
1

2

∫ p̃2

p̃1

tdu · η1ω−1
1 ·

∫ p̃2

p̃1

du

)
,

where
√

dug is the holomorphic section of the line bundle onX defined by the divisor (g−1)∞
satisfying

(
√
dug)

2 = dug,√
dug = tg−1(1 +O(t))

√
dt, (25)

(t is the local parameter (12) around ∞).

Since

δ =

∫ δ0

(g−1)∞
dv =

∫ (g−1)∞

δ0

dv in Jac(X),

Ẽ(p̃1, p̃2) can be considered as a holomorphic section of the line bundle π∗
1Lδ ⊗ π∗

2Lδ ⊗ I∗Θ
on X ×X. From (24), Proposition 26, and Lemma 20, we have

Ẽ(p̃1, p̃2)
2 =

(x1(p2)− x1(p1))
2

detG1(p1) detG1(p2)
exp

(
a1−1∑
i=1

∫ p̃
(i)
2

p̃
(i)
1

∫ p̃2

p̃1

ω̂

)
. (26)

Fix ∞̃ ∈ X̃ such that π(∞̃) = ∞. We define Ẽ(∞̃, p̃), as in the case of (n, s) curves, in the
following manner. Take the local coordinate t (12) and the local frame

√
dt as above and

define
E(∞̃, p̃2) = E(p̃1, p̃2)

√
dt(p1)|t(p1)=0,

Ẽ(∞̃, p̃) = E(∞̃, p̃)
√
dug(p) exp

(
1

2

∫ p̃

∞̃

tdu · η1ω−1
1 ·

∫ p̃

∞̃
du

)
.

Notice that E(∞̃, p̃) and Ẽ(∞̃, p̃) can be considered as holomorphic sections of L−1
0 ⊗ I∗1Θ

and Lδ ⊗ I∗1Θ, respectively, where I1(p) =
∫ p
∞ dv. From (25) and the property (iii) of the

prime form, we have

−Ẽ(p̃1, p̃2) = Ẽ(∞̃, p̃2)t(p1)
g−1 +O(t(p1)

g). (27)

From the properties (i)(ii)(iii) of the prime form, we obtain the following proposition.

Proposition 28 (i) Ẽ(p̃2, p̃1) = −Ẽ(p̃1, p̃2).
(ii) As a section of a line bundle on X ×X, the zero divisor of Ẽ(p̃1, p̃2) is

∆+ (g − 1)({∞} ×X +X × {∞}).

(iii) As a section of a line bundle on X, the zero divisor of Ẽ(∞̃, p̃) is g∞.
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Proposition 29 Let the abelian image of γ ∈ π1(X,∞) be
∑g

i=1miαi +
∑g

i=1 niβi. Then,
we have

(i) Ẽ(p̃1, γp̃2)/Ẽ(p̃1, p̃2) = (−1)
tmn+2(tδ′m−tδ′′n)×exp

(
t(2η1m+ 2η2n)(

∫ p̃2

p̃1

du+ ω1m+ ω2n)

)
.

(ii) Ẽ(∞̃, γp̃)/Ẽ(∞̃, p̃) = (−1)
tmn+2(tδ′m−tδ′′n)×exp

(
t(2η1m+ 2η2n)(

∫ p̃

∞̃
du+ ω1m+ ω2n)

)
.

Proof of Proposition 29. The method of proof is similar to the case of (n, s)-curves (cf.
[21] Proposition 8).

(i) Let

F1(p̃1, p̃2) =

√
dug(p1)

√
dug(p2)

hα̃(p1)hα̃(p2)
,

which is a section of the bundle π∗
1Lδ−α ⊗ π∗

2Lδ−α. Then, we have

F1(p̃1, γp̃2) = χ(γ)F1(p̃1, p̃2), γ ∈ π1(X,∞),

where χ ∈ Hom(π1(X, p0),C∗) corresponding to Lδ−α. Since dug/h
2
α̃ is a function on X, we

have χ(γ)2 = 1, i.e., χ is a unitary representation. Therefore, if the abelian image of γ is∑g
i=1miαi +

∑g
i=1 niβi, we have

χ(γ) = exp
(
2πi(t(δ′ − α′)m− t(δ′′ − α′′)n)

)
.

Let

F2(p̃1, p̃2) = θ[α̃](

∫ p̃2

p̃1

dv).

Then, we have

F2(p̃1, γp̃2)

F2(p̃1, p̃2)
= exp

{
2πi(tα′m− tα′′n)− πi tnτn− 2πi tn

∫ p̃2

p̃1

dv

}
.

Let

F3(p̃1, p̃2) = exp

(
1

2

∫ p̃2

p̃1

tdu · η1ω−1
1 ·

∫ p̃2

p̃1

du

)
.

Then, we have

F3(p̃1, γp̃2)

F3(p̃1, p̃2)
= exp

(
t(2η1m+ 2η2n)(

∫ p̃2

p̃1

du+ ω1m+ ω2n) + πi tmn

)

× exp

(
πi tnτn+ 2πi tn

∫ p̃2

p̃1

dv

)
.

Here, we use Proposition 22 and the relation

dv = (2ω1)
−1du.

Therefore, we obtain the desired result.

(ii) We can prove the statement in a manner similar to (i).
�
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8.3 Algebraic expression of sigma functions

We have the following theorem.

Theorem 30 There exists c ∈ C such that for N ≥ g

σ̂(
N∑
i=1

∫ p̃i

∞̃
du) = c ·

∏N
i=1 Ẽ(∞̃, p̃i)

N∏
1≤i<j≤N Ẽ(p̃i, p̃j)

det(ϕi(pj))1≤i,j≤N . (28)

Proof of Theorem 30. The method of proof is similar to the case of (n, s)-curves (cf. [21]
Theorem 1). Let

G(p̃1, . . . , p̃N ) =

∏N
i=1 Ẽ(∞̃, p̃i)

N∏
1≤i<j≤N Ẽ(p̃i, p̃j)

det(ϕi(pj))1≤i,j≤N/σ̂(

N∑
i=1

∫ p̃i

∞̃
du).

Then, G is a symmetric function of p̃1, . . . , p̃N . From Proposition 28, 29, one can check the
following properties.

(i) G(γp̃1, p̃2, . . . , p̃N ) = G(p̃1, . . . , p̃N ) for any γ ∈ π1(X,∞).

(ii) The right hand side of (28) is holomorphic.

Let us consider G as a function of p̃1, . . . , p̃g. By (i), G can be considered as a meromor-
phic function on the g-th symmetric product SgX and therefore on the Jacobian J(X) =
Cg/(2ω1Zg + 2ω2Zg). By (ii), as a meromorphic function on J(X), G has poles only on
{σ̂(u) = 0} of order at most one. Therefore, it is a constant which means that it is indepen-
dent of p̃i, 1 ≤ i ≤ g. Since G is symmetric, it is independent of p̃i, 1 ≤ i ≤ N . Therefore,
there exists c ∈ C such that the equation (28) is satisfied. If N > g, by setting p̃N = ∞̃ and
(27), one can check

σ̂(
N−1∑
i=1

∫ p̃i

∞̃
du) = c ·

∏N−1
i=1 Ẽ(∞̃, p̃i)

N−1∏
1≤i<j≤N−1 Ẽ(p̃i, p̃j)

det(ϕi(pj))1≤i,j≤N−1.

Therefore, the constant c does not depend on N .
�

Let σ(u) = c−1σ̂(u). Then, from Theorem 30, we have

σ(

N∑
i=1

∫ p̃i

∞̃
du) =

∏N
i=1 Ẽ(∞̃, p̃i)

N∏
1≤i<j≤N Ẽ(p̃i, p̃j)

det(ϕi(pj))1≤i,j≤N . (29)

9 Schur functions

In this section, we give the definition of Schur functions following [21]. For details, see [17].
For n ≥ 0, let pn(T ) be the polynomial of T1, T2, . . . defined by

exp(

∞∑
n=1

Tnk
n) =

∞∑
n=0

pn(T )k
n,
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where k is a variable.

Example. p0 = 1, p1 = T1, p2 = T2 +
T 2
1

2
, p3 = T3 + T1T2 +

T 3
1

6
.

For n < 0, we define pn(T ) = 0. A sequence of non-negative integers µ = (µ1, . . . , µl) is
called a partition if µ1 ≥ · · · ≥ µl. We set |µ| = µ1 + · · · + µl, which is called the weight of
µ. Let µ′ = (µ′

1, . . . , µ
′
l′), l

′ = µ1, with

µ′
i = ]{j | µj ≥ i}.

The sequence µ′ is called the conjugate of µ. For a partition µ = (µ1, . . . , µl), the Schur
function Sµ(T ) is defined by

Sµ(T ) = det(pµi−i+j(T ))1≤i,j≤l.

We have
S(µ,0r)(T ) = Sµ(T ),

where (µ, 0r) = (µ1, . . . , µl, 0, . . . , 0) for r ∈ Z≥0.

Example. S(1)(T ) = T1, S(2,1)(T ) = −T3 +
T 3
1

3
,

S(3,2,1)(T ) = T1T5 − T 2
3 − 1

3
T 3
1 T3 +

1

45
T 6
1 , S(3,1,1)(T ) = T5 − T1T

2
2 +

1

20
T 5
1 .

We prescribe the degree −i to Ti:

deg Ti = −i.

The following results are well-known.

Lemma 31 ([9])

(i) Sµ(T ) is a homogeneous polynomial of degree −|µ|.
(ii) Sµ(−T ) = (−1)|µ|Sµ′(T ).

For a partition µ = (µ1, . . . , µl), we define the symmetric polynomial of t1, t2, . . . , tl by

sµ(t) =
det(tµi+l−i

j )1≤i,j≤l∏
1≤i<j≤l(ti − tj)

,

which we also call the Schur function. Two Schur functions are related by

Sµ(T ) = sµ(t), if Ti =

∑l
j=1 t

i
j

i
.

We define the partition associated with the telescopic curve X by

µ(Am) = (wg, . . . , w1)− (g − 1, . . . , 1, 0).

Then, we have the following proposition.
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Proposition 32 (i) Sµ(Am)(T ) is a polynomial of the variables Tw1 , . . . , Twg .

(ii) µ(Am)′ = µ(Am).

(iii) |µ(Am)| = Cm

12a1

m∑
i=2

a2i

(
di−1

di
− 1

)(
2
di−1

di
− 1

)

+
Cm

4a1

∑
2≤i<j≤m

aiaj

(
di−1

di
− 1

)(
dj−1

dj
− 1

)

−Cm

4

m∑
i=2

ai

(
di−1

di
− 1

)
+

a21 − 1

12
+

1

8
− 1

8

{
−a1 +

m∑
i=2

(
di−1

di
− 1

)
ai

}2

,

where Cm =
∏m

i=2(di−1/di).

Proof of Proposition 32. We can prove (i) (ii) in a similar manner to the case of (n, s)
curves (cf. [4]), because they were proved in [4] by the property wg = 2g−1, which is satisfied
also for telescopic curves. Let us prove (iii). By definition, we have

|µ(Am)| =
g∑

i=1

wi −
g(g − 1)

2
. (30)

Lemma 33 We have

{w1, . . . , wg}
= {x ∈ Z>0 | x = −a1k1 + a2k2 + · · ·+ amkm, k1 > 0, 0 ≤ ki < di−1/di, i = 2, . . . ,m}.
In particular, the expression wj = −a1k1 + a2k2 + · · · + amkm, k1 > 0, 0 ≤ ki < di−1/di is
unique.

Proof of Lemma 33. Since gcd{a1, . . . , am} = 1, for any x ∈ Z≥0, there exist k1, . . . , km ∈
Z such that x = a1k1 + · · · + amkm. In particular, from (5), one can take ki such that
0 ≤ ki < di−1/di for i = 2, . . . ,m. For u = (0, u2, . . . , um) and v = (0, v2, . . . , vm) ∈ Zm

≥0

satisfying u 6= v and 0 ≤ ui, vi < di−1/di, from Proposition 3, we have
∑m

i=2 aiui 6≡
∑m

i=2 aivi
mod a1. Therefore, for x ∈ Z≥0 the expression x = a1k1 + · · · + amkm, 0 ≤ ki < di−1/di,
i = 2, . . . ,m is unique. Therefore, from Proposition 3, we have {w1, . . . , wg} = {x ∈ Z>0 | x =
−a1k1 + a2k2 + · · ·+ amkm, k1 > 0, 0 ≤ ki < di−1/di, i = 2, . . . ,m}.

�
Let Lk2,...,km = (a2k2+ · · ·+amkm)/a1, Mk2,...,km = [Lk2,...,km ], and εk2,...,km = Lk2,...,km −

Mk2,...,km . Then, from Lemma 33, we have

g∑
i=1

wi =
∑

0≤ki<di−1/di,i=2,...,m

Mk2,...,km∑
k1=1

(−a1k1 + a2k2 + · · ·+ amkm)

=
∑

0≤ki<di−1/di,i=2,...,m

{
−a1

M2
k2,...,km

+Mk2,...,km

2
+ a1Lk2,...,kmMk2,...,km

}

30



=
∑

0≤ki<di−1/di,i=2,...,m

{a1
2
L2
k2,...,km − a1

2
ε2k2,...,km − a1

2
Lk2,...,km +

a1
2
εk2,...,km

}
.

From Proposition 3, for (k2, . . . , km) 6= (k′2, . . . , k
′
m) satisfying 0 ≤ ki, k

′
i < di−1/di, we have∑m

i=2 aiki 6≡
∑m

i=2 aik
′
i mod a1. Therefore, we have {εk2,...,km}0≤ki<di−1/di = {0, 1/a1, . . . , (a1−

1)/a1}. Therefore, by calculation, we have

g∑
i=1

wi =
Cm

12a1

m∑
i=2

a2i

(
di−1

di
− 1

)(
2
di−1

di
− 1

)
+

Cm

4a1

∑
2≤i<j≤m

aiaj

(
di−1

di
− 1

)(
dj−1

dj
− 1

)

−Cm

4

m∑
i=2

ai

(
di−1

di
− 1

)
+

a21 − 1

12
.

Therefore, from (9) and (30), we obtain (iii).
�

10 Series expansion of sigma functions

In this section, we determine the series expansion of the sigma functions for telescopic curves.
We have the following theorem.

Theorem 34 (i) The expansion of σ(u) at the origin takes the form

σ(u) = Sµ(Am)(T )|Twi=ui +
∑

w1k1+···+wgkg>|µ(Am)|

bk1,...,kgu
k1
1 · · ·ukgg ,

where bk1,...,kg belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree

g∑
i=1

wiki − |µ(Am)| if

bk1,...,kg 6= 0.

(ii) σ(−u) = (−1)|µ(Am)|σ(u).

The method of proof of Theorem 34 is similar to the case of (n, s) curves (cf. [21]).
However, for the sake to be complete and self-contained, we give a proof.

Lemma 35 Let tx = t(x), ty = t(y), and

ω̂(x, y) =

 1

(tx − ty)2
+

∞∑
k,l=0

aklt
k
xt

l
y

 dtxdty.

Then, akl = alk, akl belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree k+ l+2 if akl 6= 0.
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Proof of Lemma 35. The method of proof is similar to the case of (n, s) curves (cf. [21],
Lemma 15 (iii)).

From Theorem 11 (ii),

ω̂ − dtxdty
(tx − ty)2

is holomorphic near {∞} × {∞}. Therefore, one can expand as

ω̂(x, y)− dtxdty
(tx − ty)2

=

 ∞∑
k,l=0

aklt
k
xt

l
y

 dtxdty.

Let us prove that akl belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree k+ l+2 if akl 6= 0.
We have

ω̂(x, y) =

∑
pi1,...,im;j1,...,jmx

i1
1 · · ·ximm yj11 · · · yjmm

(x1 − y1)2
dx1

detG1(x)

dy1
detG1(y)

,

where pi1,...,im;j1,...,jm belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree 2
∑m

k=2(
dk−1

dk
−

1)ak −
∑m

k=1(ik + jk)ak if pi1,...,im;j1,...,jm 6= 0. From Proposition 10, one can expand as

(
ω̂(x, y)− dtxdty

(tx − ty)2

)
(ta1x − ta1y )2 = ω̂(x, y)(ta1x − ta1y )2 −

(
a1−1∑
i=0

ta1−1−i
x tiy

)2

dtxdty

=

 ∞∑
k,l=0

pklt
k
xt

l
y

 dtxdty,

where pkl belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree k + l + 2 − 2a1 if pkl 6= 0.
Therefore, we have

(ta1x − ta1y )2
∞∑

k,l=0

aklt
k
xt

l
y =

∞∑
k,l=0

pklt
k
xt

l
y.

By comparing the coefficient of tk+2a1
x tly in the above equation, we have

akl = 2ak+a1,l−a1 − ak+2a1,l−2a1 + pk+2a1,l, (31)

where we set aij = 0 if j < 0.

If 0 ≤ l < a1, from akl = pk+2a1,l, we find that akl belongs to Q[{λ(i)
j1...jm

}] and is

homogeneous of degree k+l+2. Suppose that ak′l′ belongs toQ[{λ(i)
j1...jm

}] and is homogeneous

of degree k′ + l′ + 2 if l′ < l. Then, from (31), we find that akl belongs to Q[{λ(i)
j1...jm

}] and
is homogeneous of degree k + l + 2. Therefore, by induction, we obtain the assertion.

�
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Lemma 36 (i) The expansion of Ẽ(p̃1, p̃2) near (∞̃, ∞̃) is of the form

Ẽ(p̃1, p̃2) = (tx − ty)(txty)
g−1

1 +
∑

k+l≥1

qklt
k
xt

l
y

 ,

where qkl belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree k + l if qkl 6= 0.

(ii) The expansion of Ẽ(∞̃, p̃) near ∞̃ is of the form

Ẽ(∞̃, p̃) = tg

(
1 +

∞∑
k=1

q0kt
k

)
,

where q0k is the same as that in (i).

Proof of Lemma 36. The method of proof is similar to the case of (n, s) curves (cf. [21],
Lemma 16).

(i) From the property (iii) of the prime form and (25), we have the expansion of the form

Ẽ(p̃1, p̃2) = (tx − ty)(txty)
g−1(1 +

∑
k+l≥1

qklt
k
xt

l
y).

In order to prove that qkl has the required properties, we use (26). The right hand side of
(26) is calculated in the following way.

Let ζ = exp(2π
√
−1/a1). Since x1(p

(i)) = x1(p) = 1/ta1 , we take t(i) = ζ−it as a local
parameter of p(i) by rearranging i of p(i) if necessary. Using these local parameters, from
Lemma 35, we obtain

exp

(
a1−1∑
i=1

∫ p̃
(i)
2

p̃
(i)
1

∫ p̃2

p̃1

ω̂

)

=

a1−1∏
i=1

(t
(i)
y − ty)(t

(i)
x − tx)

(t
(i)
y − tx)(t

(i)
x − ty)

exp

a1−1∑
i=1

∞∑
k,l=0

akl
(tk+1

y − tk+1
x )((t

(i)
y )l+1 − (t

(i)
x )l+1)

(k + 1)(l + 1)


=

(
a1−1∏
i=1

{−ζi(ζ−i−1)2}

)
(txty)

a1−1∏a1−1
i=1 (tx−t

(i)
y )2

exp

 ∞∑
k,l=0

(
a1−1∑
i=1

ζ−i(l+1)

)
akl

(tk+1y −tk+1x )(tl+1y − tl+1x )

(k+1)(l+1)

 .

Claim.

a1−1∏
i=1

{−ζi(ζ−i − 1)2} = a21,

a1−1∑
i=1

ζ−i(l+1) =

{
a1 − 1 if a1|l + 1
−1 if a1 |/l + 1

.

Proof of Claim. We have

a1−1∏
i=1

(−ζi) = (−1)a1−1ζ(a1−1)a1/2 = 1.
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On the other hand, we have

(z − ζ−1) · · · (z − ζ−(a1−1)) =
za1 − 1

z − 1
= za1−1 + · · ·+ z + 1.

Set z = 1, then we have
a1−1∏
i=1

(ζ−i − 1)2 = a21.

Therefore, we obtain
a1−1∏
i=1

{−ζi(ζ−i − 1)2} = a21.

We have

a1−1∑
i=1

ζ−i(l+1) =

a1−1∑
i=1

(ζ l+1)−i =

a1−1∑
i=1

(ζ l+1)i =

{
a1 − 1 if a1|l + 1
−1 if a1 |/l + 1

.

�
On the other hand, from Proposition 10, we have

(x1(p2)− x1(p1))
2

detG1(p1) detG1(p2)
=

1

a21
(txty)

2g−a1−1(ta1x − ta1y )2

(
1 +

∞∑
i=1

c′it
i
x

)(
1 +

∞∑
i=1

c′it
i
y

)
,

where c′i is that in Proposition 10 (ii). The assertions for qkl follows from these expressions
and Proposition 10.

(ii) The assertions follows from (i) and the definition of Ẽ(∞̃, p̃).
�

Proof of Theorem 34. The method of proof is similar to the case of (n, s) curves. (cf.
[21], p.204, Proof of Theorem 3).

(i): Let ti = t(pi). From Lemma 36, we have∏N
i=1 Ẽ(∞̃, p̃i)

N∏
i<j Ẽ(p̃i, p̃j)

=
(
∏N

i=1 ti)
N+g−1∏

i<j(ti − tj)
(1 +

∑
k1+···+kN≥1

c̃k1,...,kN t
k1
1 · · · tkNN ),

where c̃k1,...,kN ∈ Q[{λ(i)
j1...jm

}] and deg c̃k1,...,kN =
∑N

i=1 ki. From Proposition 10 (i), for N > g,
we have

(ϕ1(t), . . . , ϕN (t))

= (1,
1

tw
∗
2
(1 +O(t)), . . . ,

1

tw
∗
g
(1 +O(t)),

1

t2g
(1 +O(t)), . . . ,

1

tN+g−1
(1 +O(t))),

where all O(t) parts are series in t with the coefficients in Q[{λ(i)
j1...jm

}] and are homogeneous

of degree 0 with respect to {t, λ(i)
j1...jm

}, where we define deg t = −1. We have

(N + g − 1, . . . , N + g − 1) + (0,−w∗
2, . . . ,−w∗

g ,−2g, . . . ,−(N + g − 1))
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= (µ(Am)1, . . . , µ(Am)g, 0, . . . , 0) + (N − 1, N − 2, . . . , 1, 0).

Let us denote the partition (µ(Am), 0N−g) by µ(N)(Am). Then, we have

(
∏N

i=1 ti)
N+g−1∏

i<j(ti − tj)
det(ϕi(tj))1≤i,j≤N = sµ(N)(Am)(t1, . . . , tN ) +

∑
ĉk1,...,kN t

k1
1 · · · tkNN , (32)

where ĉk1,...,kN ∈ Q[{λ(i)
j1...jm

}], deg ĉk1,...,kN = −|µ(Am)| +
∑N

i=1 ki, and the summation is

taken for ki’s satisfying
∑N

i=1 ki > |µ(Am)|. From Proposition 10, we have∫ p̃

∞̃
dui =

twi

wi
+

∞∑
j=1

cijt
j+wi , cij ∈ Q[{λ(i)

j1...jm
}], deg cij = j.

Let

Tk = Tk(t1, . . . , tN ) =

∑N
j=1 t

k
j

k
.

Then, T1, . . . , TN are algebraically independent and become a generator of the ring of sym-
metric polynomials of t1, . . . , tN with the coefficients in Q,

Q[t1, . . . , tN ]SN = Q[T1, . . . , TN ].

Moereover, if we prescribe degree for ti and Ti by

deg ti = −1, deg Ti = −i,

a symmetric homogeneous polynomial of t1, . . . , tN of degree k can be uniquely written as a
homogeneous polynomial of T1, . . . , TN of degree k.

We have

ui =

N∑
k=1

∫ p̃k

∞̃
dui = Twi +

∞∑
j=1

(j + wi)cijTj+wi

= Twi +
∑

∑
jkj>wi

c̃
(i)
k1,...,kN

T k1
1 · · ·T kN

N , (33)

where c̃
(i)
k1,...,kN

∈ Q[{λ(i)
j1...jm

}], deg c̃
(i)
k1,...,kN

= −wi +
∑

jkj , and the second expression is
unique.

Let us take N ≥ wg. Then, Tw1 , . . . , Twg are algebraically independent. Let

σ(u) = σ(u1, . . . , ug) =
∑

bk1,...,kgu
k1
1 · · ·ukgg , bk1,...,kg ∈ C,

be the series expansion around the origin. From (29) (32) (33) and the fact that Tw1 , . . . , Twg

are algebraically independent, we have

bk1,...,kg = 0
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if w1k1 + · · ·+ wgkg < |µ(Am)|. Let

G(u1, . . . , ug) =
∑

w1k1+···+wgkg=µ(Am)

bk1,...,kgu
k1
1 · · ·ukgg .

Then, we have

G

(∑N
j=1 t

w1
j

w1
, . . . ,

∑N
j=1 t

wg

j

wg

)
= sµ(N)(Am)(t1, . . . , tN ).

Therefore, we have
G(Tw1 , . . . , Twg) = Sµ(Am)(T ).

Since Tw1 , . . . , Twg are algebraically independent, G(u1, . . . , ug) = Sµ(Am)(T )|Twi=ui .

Take k > |µ(Am)|. Suppose that bk1,...,kg belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of

degree

g∑
i=1

wiki − |µ(Am)| if w1k1 + · · ·+wgkg < k. Take (k1, . . . , kg) satisfying w1k1 + · · ·+

wgkg = k. Let ε be the coefficient of T k1
w1

· · ·T kg
wg in∑

w1l1+···+wglg<k

bl1,...,lg(Tw1+
∑

∑
jsj>w1

c̃(1)s1,...,sN
T s1
1 · · ·T sN

N )l1 · · · (Twg+
∑

∑
jsj>wg

c̃(g)s1,...,sN
T s1
1 · · ·T sN

N )lg .

Then, ε belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree

g∑
i=1

wiki − |µ(Am)|. Express

the right hand side of (32) by T1, . . . , TN and let δ be the the coefficient of T k1
w1

· · ·T kg
wg . Then,

δ belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree

g∑
i=1

wiki − |µ(Am)|. From (29), we

have bk1,...,kg+ε = δ. Therefore, bk1,...,kg belongs to Q[{λ(i)
j1...jm

}] and is homogeneous of degree
g∑

i=1

wiki − |µ(Am)|.

(iii) Since Riemann’s constant τδ′ + δ′′ is a half period, from (1) and Definition 23, σ(u)
is even or odd. From Lemma 31 and Proposition 32, we obtain the desired assertion.

�

11 Example: (4,6,5) curve

In this section, as an example, we consider the sigma function for a special case of (4,6,5)
curves. Let X be the (4, 6, 5) curve defined by

x22 = x31 + 1, x23 = x1x2.
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One can check that X is nonsingular. The genus of X is 4. The holomorphic one forms are
given by

du1(x) = − x2
4x2x3

dx1, du2(x) = − x3
4x2x3

dx1,

du3(x) = − x1
4x2x3

dx1, du4(x) = − 1

4x2x3
dx1.

An algebraic symmetric bilinear form ω̂(x, y) and the second kind differentials {dri}4i=1 are
given by

ω̂(x, y) =
x21y

2
1y2 + x21x2y

2
1 + 3x31y1y2 + 3x1x2y

3
1 + 2x21x3y1y3 + 2x1x3y

2
1y3

16x2x3y2y3(x1 − y1)2
dx1dy1

+
4x2x3y2y3 + 4x3y3 + 2x1x2 + 2y1y2 + 2x1y2 + 2x2y1

16x2x3y2y3(x1 − y1)2
dx1dy1,

and

dr1(y) = − y21
4y2y3

dy1, dr2(y) = −2y1y3
4y2y3

dy1,

dr3(y) = −3y1y2
4y2y3

dy1, dr4(y) = −7y21y2
4y2y3

dy1.

The sigma function for X can be expanded around the origin as

σ(u) = u1u
2
3 −

1

3
u31u

2
2 −

1

4
u41u3 +

3

2
u22u3 −

251

252
u71 + · · · .
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[21] A. Nakayashiki: On Algebraic Expressions of Sigma Functions for (n, s) Curves, Asian
J. Math., Vol.14, No.2, (2010), 175-212.

38



[22] A. Nakayashiki, Sigma Function as A Tau Function, arXiv:0904.0846, 2012.

[23] A. Nijenhuis and H.S. Wilf: Representations of Integers by Linear Forms in Nonnegative
Integers, J. Number Theory 4, (1972), 98-106.

[24] J.H. Silverman: The Arithmetic of Elliptic Curves, Springer, 1986.

39


