

Title	Knotted fixed point sets of semi-free S^1 -actions
Author(s)	Kawakubo, Katsuo
Citation	Osaka Journal of Mathematics. 1971, 8(3), p. 385-392
Version Type	VoR
URL	https://doi.org/10.18910/4610
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kawakubo, K.
Osaka J. Math.
8 (1971), 385-392

KNOTTED FIXED POINT SETS OF SEMI-FREE S^1 -ACTIONS

KATSUO KAWAKUBO

(Received December 17, 1970)

1. Introduction

In [2], Browder has shown that there are an infinite number of distinct semi-free S^1 -actions on homotopy $(p+2q)$ -spheres with S^p as untwisted fixed point set if (a) $p+2q \equiv 1 \pmod{4}$, $p > 1$ and $q > 2$, or if (b) $p+2q = 7, 15$ or 31 , p : odd, $p > 1$ and $q > 1$. As open questions, he has posed the followings:

- (I) What is the knot type of the fixed point set?
- (II) In the cases where his theorem does not construct an infinite number of semi-free S^1 -actions, are there in reality only a finite number?

In the present paper, we shall give partial answers on these questions as follows. We shall construct semi-free S^1 -actions which have knotted fixed point sets (see Theorem 2.1). As a corollary, we shall have that there are also an infinite number of distinct semi-free S^1 -actions on the standard $(p+2q)$ -sphere S^{p+2q} with knotted S^p as fixed point set when $p \equiv 3 \pmod{4}$ and $4q \leq p+3$ (see Theorem 2.2).

2. Definitions, notations and statement of results

An action (M, φ, G) is called *semi-free* if it is free outside the fixed point set, i.e., there are two types of orbits, fixed points and G . Let Θ_n be the group of homotopy n -spheres and θ_n be the order of the group Θ_n . Let $\Theta_n(\partial\pi)$ be the subgroup consisting of those homotopy spheres which bound parallelizable manifolds and \sum_n be the generator of $\Theta_n(\partial\pi)$ due to Kervaire and Milnor [7] (see also Milnor [9] and Kervaire [5]). D^n and S^{n-1} denote, respectively, the unit disk and the unit sphere in euclidean n -space. When N is a submanifold of M , we shall denote by $\nu(N \subset M)$ the normal bundle of N in M . When a homotopy sphere \sum^p imbedded in \sum^{p+2q} bounds a manifold W^{p+1} in \sum^{p+2q} such that the normal bundle $\nu(W^{p+1} \subset \sum^{p+2q})$ is trivial, we say that \sum^p bounds a π -submanifold W^{p+1} in \sum^{p+2q} . In [9], Milnor has constructed a manifold W_0^{4k} ($k \geq 2$) which satisfies: (1) W_0^{4k} is parallelizable, (2) the index $I(W_0^{4k})$ equals 8, (3) the boundary ∂W_0^{4k} is the homotopy sphere \sum_0^{4k-1} and (4) W_0^{4k} is $(2k-1)$ -connected. Let us denote by $W^{4k}(l)$ for $l \in \mathbb{Z}$ the manifold obtained by the boundary connected sum

$W_0^{4k} \# \dots \# W_0^{4k}$ of l -copies of the manifold W_0^{4k} . It is clear that the index $I(W^{4k}(l))$ equals $8l$. Then we shall have the following:

Theorem 2.1. *There exists a semi-free S^1 -action on a homotopy sphere $\sum_{\mathcal{M}}^{p+2q}$ with fixed point set $(\prod_{i=2}^{q-1} \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p$ which bounds a π -submanifold $W_0^{p+1}(\prod_{i=2}^{q-1} \theta_{p+2i})$ in $\sum_{\mathcal{M}}^{p+2q}$ for $p \equiv 3 \pmod{4}$, $p \geq 7$ and $q \geq 2$.*

Theorem 2.2. *There are an infinite number of distinct semi-free S^1 -actions on the standard $(p+2q)$ -sphere S^{p+2q} with knotted S^p as fixed point set for $p \equiv 3 \pmod{4}$, $4q \leq p+3$ and $q \geq 2$.*

3. Proofs of theorems

Proof of Theorem 2.1. As is well-known, the homotopy sphere $\sum_{\mathcal{M}}^p$ can be imbedded in S^{p+2} such that $\sum_{\mathcal{M}}^p$ bounds a π -submanifold W_0^{p+1} of index 8 in S^{p+2} (see Kervaire [6, Theorem 1 of Appendix] and Milnor [9]). Hence, by the natural inclusion $S^{p+2} \subset S^{p+3}$, we can embed $\sum_{\mathcal{M}}^p$ in S^{p+3} such that $\sum_{\mathcal{M}}^p$ bounds a π -submanifold W_0^{p+1} of index 8 in S^{p+3} . Let a be a point of S^2 . Then it is easy to prove that there is a diffeomorphism

$$f: \sum_{\mathcal{M}}^p \times S^2 \longrightarrow S^p \times S^2$$

such that $f(\sum_{\mathcal{M}}^p \times a)$ bounds the π -submanifold W_0^{p+1} in $D^{p+1} \times S^2$ when we regard $S^p \times S^2$ as $\partial(D^{p+1} \times S^2)$.

Let

$$\xi_N: S^1 \longrightarrow S^{2N+1} \xrightarrow{\pi} CP^N$$

be the classical Hopf bundle. Let $i: S^2 \rightarrow CP^N$ be the inclusion of the 2-skeleton of CP^N , then it is clear that $i^* \xi_N = \xi_1$. Let $p_2: S^p \times S^2 \rightarrow S^2$ and $p_2': \sum_{\mathcal{M}}^p \times S^2 \rightarrow S^2$ be projections. Since CP^N is the $2N$ -skeleton of the Eilenberg MacLane complex $K(Z, 2)$, $ip_2 f$ is homotopic to $ip_2' f$ for $N > p+2$. Hence there exists a bundle map

$$\tilde{f}: (ip_2')^* \xi_N \longrightarrow (ip_2)^* \xi_N,$$

i.e., we have a bundle map

$$\tilde{f}: p_2'^* \xi_1 \longrightarrow p_2^* \xi_1.$$

Thus we obtain the following commutative diagram

$$\begin{array}{ccc} \sum_{\mathcal{M}}^p \times S^3 & \xrightarrow{\tilde{f}} & S^p \times S^3 \\ \downarrow p' & & \downarrow p \\ \sum_{\mathcal{M}}^p \times S^2 & \xrightarrow{f} & S^p \times S^2 \end{array}$$

where $p: S^p \times S^3 \rightarrow S^p \times S^2$ (resp. $p': \sum_{\mathcal{M}}^p \times S^3 \rightarrow \sum_{\mathcal{M}}^p \times S^2$) denotes the projection of the bundle $p_2^{-1}\xi_1$ (resp. $p_2'^{-1}\xi_1$). Set $\sum^{p+4} = \sum_{\mathcal{M}}^p \times D^4 \cup \tilde{D}^{p+1} \times S^3$. It is easy to prove that \sum^{p+4} is a homotopy sphere. Let $(\sum^{p+4}, \varphi, S^1)$ be the semi-free S^1 -action defined by

$$\varphi(g, (x, y)) = (x, gy) \quad \text{for } x \in \sum_{\mathcal{M}}^p, y \in D^4$$

and

$$\varphi(g, (x, y)) = (x, gy) \quad \text{for } x \in D^{p+1}, y \in S^3.$$

Now we prove that the fixed point set $\sum_{\mathcal{M}}^p \times \{0\}$ of the action $(\sum^{p+4}, \varphi, S^1)$ bounds a π -submanifold W_0 in \sum^{p+4} . Let $\tilde{p}_2: D^{p+1} \times S^2 \rightarrow S^2$ be the projection and $\tilde{p}: D^{p+1} \times S^3 \rightarrow D^{p+1} \times S^2$ be the projection of the bundle $\tilde{p}_2^{-1}\xi_1$. Since the manifold W_0 is $(p-1)/2$ -connected, the restriction of the bundle $\tilde{p}_2^{-1}\xi_1$ to W_0 is trivial, i.e., $\tilde{p}^{-1}(W_0) = W_0 \times S^1$. It is obvious by definition that $p'^{-1}(\sum_{\mathcal{M}}^p \times a) = \sum_{\mathcal{M}}^p \times S^1$. Let b be a point of $\pi^{-1}(a) \subset S^3$. It follows from Lemma 2 of Browder [1] (see also Browder and Levine [3]) that the diffeomorphism

$$\tilde{f}|_{p'^{-1}(\sum_{\mathcal{M}}^p \times a)}: \sum_{\mathcal{M}}^p \times S^1 \longrightarrow f(\sum_{\mathcal{M}}^p \times a) \times S^1$$

is pseudo isotopic to a diffeomorphism sending $\sum_{\mathcal{M}}^p \times b$ into

$$f(\sum_{\mathcal{M}}^p \times a) \times c \quad (\subset f(\sum_{\mathcal{M}}^p \times a) \times S^1 = p^{-1}(f(\sum_{\mathcal{M}}^p \times a)))$$

where c is a point of S^1 . Hence $\tilde{f}(\sum_{\mathcal{M}}^p \times b)$ bounds the submanifold W_0 in $\tilde{p}^{-1}(W_0) = W_0 \times S^1$. Since the normal bundle of W_0 in $D^{p+1} \times S^3$ is isomorphic to

$$\nu(W_0 \subset W_0 \times S^1) \oplus \nu(W_0 \subset D^{p+1} \times S^2)$$

where $W_0 \subset W_0 \times S^1$, $W_0 \subset D^{p+1} \times S^2$ are the embeddings defined above, W_0 has a normal frame in $D^{p+1} \times S^3$. Let $C: \sum_{\mathcal{M}}^p \times I \rightarrow \sum_{\mathcal{M}}^p \times D^4$ be the embedding defined by $C(x, t) = (x, tb)$ for $x \in \sum_{\mathcal{M}}^p$, $t \in I$. By making use of the embedding C and the fact $\sum_{\mathcal{M}}^p \times I \cup W_0 = W_0$, we have that the fixed point set $\sum_{\mathcal{M}}^p \times \{0\}$ bounds a π -submanifold W_0 in $\sum^{p+4} = \sum_{\mathcal{M}}^p \times D^4 \cup \tilde{D}^{p+1} \times S^3$.

Thus we have proved the following step 1 of induction.

Step. 1. There exists a semi-free S^1 -action $(\sum^{p+4}, \varphi, S^1)$ with fixed point set $\sum_{\mathcal{M}}^p$ which bounds a π -submanifold W_0^{p+1} in \sum^{p+4} .

Step 2. Suppose there exists a semi-free S^1 -action $(\sum^{p+2q}, \varphi, S^1)$ with fixed point set $(\prod_{i=2}^{q-1} \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p$ which bounds a π -submanifold $W^{p+1}(\prod_{i=2}^{q-1} \theta_{p+2i})$ in \sum^{p+2q} for $q \geq 2$.

Then by the equivariant connected sum

$$(\sum^{p+2q}, \varphi, S^1) \# \cdots \# (\sum^{p+2q}, \varphi, S^1)$$

of θ_{p+2q} -copies of $(\sum_{\mathcal{M}}^{p+2q}, \varphi, S^1)$ we have the following

Lemma 3.1. *There exists a semi-free S^1 -action (S^{p+2q}, ψ, S^1) with fixed point set $(\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p$ which bounds a π -submanifold $W^{p+1}(\prod_{i=2}^q \theta_{p+2i})$ in S^{p+2q} .*

According to Browder [2] there exists an equivariant diffeomorphism $f: (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times S^{2q-1} \rightarrow S^p \times S^{2q-1}$ such that $((\prod_{i=2}^q \theta_{p+2i}) \sum_{\mathcal{M}}^p \times D^{2q} \cup_f D^{p+1} \times S^{2q-1}, \bar{\psi}, S^1)$ is equivalent to (S^{p+2q}, ψ, S^1) where the action $\bar{\psi}$ is defined by

$$\bar{\psi}(g, (x, y)) = (x, gy) \quad \text{for } x \in (\prod_{i=2}^q \theta_{p+2i}) \sum_{\mathcal{M}}^p, y \in D^{2q}$$

and

$$\bar{\psi}(g, (x, y)) = (x, gy) \quad \text{for } x \in D^{p+1}, y \in S^{2q-1}.$$

Since $(\prod_{i=2}^q \theta_{p+2i}) \sum_{\mathcal{M}}^p \times D^{2q} \cup_f D^{p+1} \times S^{2q-1}$ is diffeomorphic to S^{p+2q} , we have the following lemma (c.f. Lemma 4.1 of Kawakubo [4]).

Lemma 3.2. *As an equivariant diffeomorphism*

$$f: (\prod_{i=2}^q \theta_{p+2i}) \sum_{\mathcal{M}}^p \times S^{2q-1} \longrightarrow S^p \times S^{2q-1},$$

we can choose one which can be extended to a diffeomorphism

$$F: (\prod_{i=2}^q \theta_{p+2i}) \sum_{\mathcal{M}}^p \times D^{2q} \longrightarrow S^p \times D^{2q}.$$

Now we construct an equivariant diffeomorphism

$$\hat{F}: ((\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times S^{2q+1}, \varphi_1, S^1) \longrightarrow (S^p \times S^{2q+1}, \varphi_2, S^1)$$

where the actions φ_1 and φ_2 are the obvious ones.

Let us denote by

$$((\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times S^{2q-1} \times D^2 \cup_{id} (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times D^{2q} \times S^1, \bar{\varphi}_1, S^1)$$

the differentiable S^1 -action defined by

$$\bar{\varphi}_1(g, (x, y, z)) = (x, gy, gz) \quad \text{for } x \in (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p, \\ y \in S^{2q-1}, \quad z \in D^2,$$

and

$$\bar{\varphi}_1(g, (x, y, z)) = (x, gy, gz) \quad \text{for } x \in (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p, \\ y \in D^{2q}, \quad z \in S^1.$$

Let us denote by

$$(S^p \times S^{2q-1} \times D^2 \underset{id}{\cup} S^p \times D^{2q} \times S^1, \bar{\varphi}_2, S^1)$$

the similar differentiable S^1 -action. Since

$$\begin{aligned} & \left(\left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p \times S^{2q-1} \times D^2 \underset{id}{\cup} \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p \times D^{2q} \times S^1, \bar{\varphi}_1, S^1 \right) \\ & \text{(resp. } (S^p \times S^{2q-1} \times D^2 \underset{id}{\cup} S^p \times D^{2q} \times S^1, \bar{\varphi}_2, S^1)) \end{aligned}$$

is clearly equivalent to

$$\begin{aligned} & \left(\left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p \times S^{2q+1}, \varphi_1, S^1 \right) \\ & \text{(resp. } (S^p \times S^{2q+1}, \varphi_2, S^1)), \end{aligned}$$

we use them confusedly. Let $F_1: \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p \times D^{2q} \rightarrow S^p$ and $F_2: \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p \times D^{2q} \rightarrow D^{2q}$ be the differentiable maps defined by

$$(F_1(x, y), F_2(x, y)) = F(x, y) \quad \text{for } x \in \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p, \\ y \in D^{2q},$$

then we construct an equivariant diffeomorphism

$$\hat{f}: \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p \times S^{2q+1} \longrightarrow S^p \times S^{2q+1}$$

by

$$\hat{f}| \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p \times S^{2q-1} \times D^2 = f \times id$$

and

$$\begin{aligned} \hat{f}(x, y, z) &= (F_1(x, z^{-1}y), zF_2(x, z^{-1}y), z) \\ \text{for } x &\in \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p, \quad y \in D^{2q}, \quad z \in S^1. \end{aligned}$$

Lemma 3.3. \hat{f} is well-defined and an equivariant diffeomorphism.

Proof of Lemma 3.3. First we shall prove that \hat{f} is well-defined. Let $f_1: \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p \times S^{2q-1} \rightarrow S^p$ and $f_2: \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p \times S^{2q-1} \rightarrow S^{2q-1}$ be differentiable maps defined by

$$(f_1(x, y), f_2(x, y)) = f(x, y) \quad \text{for } x \in \left(\prod_{i=2}^q \theta_{p+2i} \right) \cdot \sum_M^p, \quad y \in S^{2q-1}.$$

Since f is equivariant, $f_1(x, gy) = f_1(x, y)$ and $f_2(x, gy) = gf_2(x, y)$ for $x \in (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p$, $y \in S^{2q-1}$. Hence, for $x \in (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p$, $y \in \partial D^{2q} = S^{2q-1}$, $z \in S^1$, we have that $F_1(x, z^{-1}y) = f_1(x, z^{-1}y) = f_1(x, y)$ and $zF_2(x, z^{-1}y) = zf_2(x, z^{-1}y) = f_2(x, y)$, i.e., \hat{f} is well-defined. If we take F carefully, \hat{f} becomes a differentiable map.

Secondly, we shall prove that \hat{f} is equivariant. Obviously $\hat{f}|(\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times S^{2q-1} \times D^2$ is equivariant. For $x \in (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p$, $y \in D^{2q}$, $z \in S^1$,

$$\begin{aligned} \hat{f}(\varphi_1(g, (x, y, z))) \\ = \hat{f}(x, gy, gz) \\ = (F_1(x, (gz)^{-1}gy), gzF_2(x, (gz)^{-1}gy), gz) \\ = (F_1(x, z^{-1}y), gzF_2(x, z^{-1}y), gz) \\ = \varphi_2(g, (F_1(x, z^{-1}y), zF_2(x, z^{-1}y), z)) \\ = \varphi_2(g, \hat{f}(x, y, z)), \end{aligned}$$

i.e., \hat{f} is equivariant.

Thirdly, we shall prove that \hat{f} is a diffeomorphism. For this purpose, we show that \hat{f} has a differentiable inverse map. Let $\bar{F}_1: S^p \times D^{2q} \rightarrow (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p$ and $\bar{F}_2: S^p \times D^{2q} \rightarrow D^{2q}$ be the differentiable maps defined by

$$(\bar{F}_1(x, y), \bar{F}_2(x, y)) = F^{-1}(x, y) \quad \text{for } x \in S^p, y \in D^{2q}.$$

Define a differentiable map

$$\hat{\bar{f}}: S^p \times S^{2q+1} \longrightarrow (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times S^{2q+1}$$

by

$$\hat{\bar{f}}|S^p \times S^{2q-1} \times D^2 = f^{-1} \times id$$

and

$$\hat{\bar{f}}(x, y, z) = (\bar{F}_1(x, z^{-1}y), zF_2(x, z^{-1}y), z)$$

$$\text{for } x \in S^p, y \in D^{2q}, z \in S^1.$$

It is easy to prove by the same way as in the case of \hat{f} that $\hat{\bar{f}}$ is well-defined and a differentiable map. It is clear that

$$\hat{\bar{f}} \circ \hat{f}|(\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times S^{2q-1} \times D^2 = id.$$

For $x \in (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p$, $y \in D^{2q}$, $z \in S^1$,

$$\begin{aligned}
& \hat{f} \circ \hat{f}(x, y, z) \\
&= \hat{f}(F_1(x, z^{-1}y), zF_2(x, z^{-1}y), z) \\
&= (\bar{F}_1(F_1(x, z^{-1}y), z^{-1}(zF_2(x, z^{-1}y))), z\bar{F}_2(F_1(x, z^{-1}y), z^{-1}(zF_2(x, z^{-1}y))), z) \\
&= (\bar{F}_1(F_1(x, z^{-1}y), F_2(x, z^{-1}y)), z\bar{F}_2(F_1(x, z^{-1}y), F_2(x, z^{-1}y)), z) \\
&= (x, z(z^{-1}y), z) \\
&= (x, y, z),
\end{aligned}$$

i.e., $\hat{f} \circ \hat{f} = \text{identity}$.

Similarly we can prove that $\hat{f} \circ \hat{f} = \text{identity}$. Hence f is a diffeomorphism. This completes the proof of Lemma 3.3.

Set $\sum^{p+2q+2} = (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times D^{2q+2} \cup D^{p+1} \times S^{2q+1}$. It is easy to prove that \sum^{p+2q+2} is a homotopy sphere. Then we construct a semi-free S^1 -action $(\sum^{p+2q+2}, \phi, S^1)$ by

$$\phi(g, (x, y)) = (x, gy) \quad \text{for } x \in (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p, y \in D^{2q+2}$$

and

$$\phi(g, (x, y)) = (x, gy) \quad \text{for } x \in D^{p+1}, y \in S^{2q+1}.$$

Since \hat{f} is equivariant with respect to ϕ , the above action is well-defined.

Regarding S^{p+2q} as $(\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times D^{2q} \cup D^{p+1} \times S^{2q-1}$ and \sum^{p+2q+2} as $(\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times D^{2q} \times D^2 \cup (D^{p+1} \times S^{2q-1} \times D^2 \cup D^{p+1} \times D^{2q} \times S^1)$,

we obtain an embedding $e: S^{p+2q} \rightarrow \sum^{p+2q+2}$ by identifying

$$(\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times D^{2q} \quad \text{with} \quad (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p \times D^{2q} \times \{0\}$$

and

$$D^{p+1} \times S^{2q-1} \quad \text{with} \quad D^{p+1} \times S^{2q-1} \times \{0\}.$$

It is clear that the embedding e is well-defined and equivariant with respect to ψ and $\bar{\phi}$ by definition, i.e., (S^{p+2q}, ψ, S^1) is an invariant submanifold of $(\sum^{p+2q+2}, \phi, S^1)$. Since S^{p+2q} is $(p+2q-1)$ -connected, $\nu(e(S^{p+2q}) \subset \sum^{p+2q+2})$ is trivial and since the normal bundle of $e(W^{p+1}(\prod_{i=2}^q \theta_{p+2i}))$ in \sum^{p+2q+2} is isomorphic to $\nu(W^{p+1}(\prod_{i=2}^q \theta_{p+2i}) \subset S^{p+2q}) \oplus \nu(e(S^{p+2q}) \subset \sum^{p+2q+2})$ | $e(W^{p+1}(\prod_{i=2}^q \theta_{p+2i}))$, the normal bundle $\nu(e(W^{p+1}(\prod_{i=2}^q \theta_{p+2i})) \subset \sum^{p+2q+2})$ is trivial. Thus we have proved that there exists a semi-free S^1 -action $(\sum^{p+2q+2}, \phi, S^1)$ with fixed point set $(\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^p$ which bounds a π -submanifold $W^{p+1}(\prod_{i=2}^q \theta_{p+2i})$ in \sum^{p+2q+2} , completing the induction.

This makes the proof of Theorem 2.1 complete.

Proof of Theorem 2.2. It follows from Theorem 2.1 that there exists a semi-free S^1 -action (S^{p+2q}, φ, S^1) with fixed point set the natural sphere S^p which bounds a π -submanifold of non zero index constructed by the equivariant connected sum operation with itself. Denote by $l(S^{p+2q}, \varphi, S^1)$ the action induced by the equivariant connected sum

$$(S^{p+2q}, \varphi, S^1) \# \cdots \# (S^{p+2q}, \varphi, S^1)$$

of l -copies of (S^{p+2q}, φ, S^1) . Because of the difference of the indices of the π -submanifolds bounded by the fixed point sets, $l(S^{p+2q}, \varphi, S^1)$ is not equivalent to $m(S^{p+2q}, \varphi, S^1)$ for $l \neq m$ (see Levine [8 Theorem 6.7]). This completes the proof of Theorem 2.2.

OSAKA UNIVERSITY AND INSTITUTE FOR ADVANCED STUDY

References

- [1] W. Browder: *Diffeomorphisms of 1-connected manifolds*, Trans. Amer. Math. Soc. **128** (1967), 155–163.
- [2] W. Browder: *Surgery and the theory of differentiable transformation groups*, Proc. of the Conference on Transformation Groups, Springer-Verlag, New York, 1968, 1–46.
- [3] W. Browder and J. Levine: *Fibring manifolds over S^1* , Comment. Math. Helv. **40** (1966), 153–160.
- [4] K. Kawakubo: *On homotopy spheres which admit differentiable actions II*, Osaka J. Math. **7** (1970), 179–192.
- [5] M. Kervaire: *A manifold which does not admit any differentiable structure*, Comment. Math. Helv. **34** (1960), 257–270.
- [6] M. Kervaire: *On higher dimensional knot*, Differentiable and Combinatorial Topology, Princeton Univ. Press, 1965, 105–119.
- [7] M. Kervaire and J. Milnor: *Groups of homotopy spheres I*, Ann. of Math. **77** (1963), 504–537.
- [8] J. Levine: *A classification of differentiable knots*, Ann. of Math. **82** (1965), 15–50.
- [9] J. Milnor: Differentiable Manifolds which are Homotopy Spheres. Mimeo-graphed notes, Princeton, 1958.