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We intend, in this paper, to define the Dedekind different of an algebra
over a commutative ring and to study the properties of this different. S. Endo
and the author [4] defined the reduced trace of a central separable algebra over
a commutative ring. Using this reduced trace, we can define as usual the
Dedekind different of an algebra. Let R be a commutative ring and 4 be an
R-algebra which is a finitely generated projective R-module. We assume that
A=K ®A is a central separable K-algebra, where K is the total quotient ring of
R. Let t be the reduced trace of A. The two sided A-submodule C={x
€U HxA)C R} of Wis called the complementary module of A, and D={x=%|xC
C A} is called the Dedekind different of A. D is also a two sided A-module.
We shall first show that the reduced trace induces an epimorphism of the Dede-
kind different to the homological different which was defined in [2]. This fact
was shown by Fossum in the case that R is an integrally closed Noetherian
domain ([5]). Secondly we shall give a complete generalization of DeMeyer’s
theorem ([3], Theorem 4), and finally we shall give a generalization of the ‘“‘dif-
ferent theorem’ on maximal orders over Dedekind domains in central simple
algebras. Throughout this note we assume that rings have unit elements,
that modules are unitary and that algebras are finitely generated as modules.

1. Let R be a commutative ring, 4 be an R-algebra and A4° be the en-
veloping algebra of 4. J(A) (or briefly, J) denotes the kernel of the canonical
A’-epimorphism @: A°—A given by @(x® y°)=xy, and N(A) (or briefly, N)
denotes the right annihilator of J(4) in A4°.

Lemma 1. Let A be a full matrix algebra of degree n over R. N is an
R-free submodule of A° with basis geﬁ@e‘,ﬁi, 1<j, k<n, where e;; denotes the
(2, §)-matrix unit. -

Proof. Let a=3)a;;u(e;;Qef) be in N. Since e,,@1°—1Qe;, is in J,
it is annihilated by a':klso we get % a,jk,(e,j(g)eﬁz):UZk a;;r(€;;Qes). Hence,

i==! implies a;;,,=0. So, & is expressed as a=2] a;;,(e;;Qes;). Again, by
ijk
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the property of N, a annihilates ¢,,Q1°—1®e?;, so we get > a;;x(e,;Qels)=

2 a,;4(e,;RQe). Hence we get a;;,=a,, for all ,s. Therefore a is expressed

by the form a=>]a;,(>)e;;®es;). The fact that >le;;Qel; is in N can be
ij i i

shown straightforward.
Next, we assume that A4 is a central separable R-algebra.

Lemma 2. Let A be an R-central separable algebra and t be the reduced
trace of A. For any element > x;Q y? in N, the following identities hold :

23 xay; = 3 Hax,)H(v;) = 23 Hx)H(ay;)
for all ac A.

Proof. We first assume that R is a quasi-local ring in the sense of [7].
So A has a proper splitting ring .S such that S®4 is a full matrix algebra over
S; S®A=(S),, where a proper splitting ring means a splitting ring which con-
tains R (See [4]). Since N(A) is contained in N(S®A4), and ¢ is R-linear, we
have only to show by Lemma 1 that 33 e;.ae,;= (2] t(ae;)t(e;))], where I

denotes the unit matrix. We denote by a,, the (7, s)-component of a matrix a,
S0 2 ei,,ae,,-zz ape;;=ay I While #(ae;,)=a,;, and t(e;;)=0;; (Kronecker’s

delta). So, the right term is (33 a,8;;)[=a, I=the left term. Inthe case that

R is global, by the localization argument, there exists céem such that ¢(3) x;ay;)
=c(>) Hax;){(y;)) for any maximal ideal m of R, because # induces the
reduced trace of Am. We put c={cER|c(>] x;ay,)=c(2 H(ax;)¥(y;))}. Then ¢
is an ideal of R which is not contained in any maximal ideal of R. So 1 is in ¢.
Therefore the desired equalities hold.

2. Let A be a central projective R-algebra and K be the total quotient
ring of R. We assume that K®@A=%U is a central separable K-algebra. Let
t be the reduced trace of A and let C, D be the complementary module and the
Dedekind different of 4 respectively. Since R is not necessarily integrally
closed (i.e. #(4) is not necessarily contained in R), it can not always hold that
CcA nor DCA. We proved in [4] that a two sided 2-homomorphism 8:
A—->W*=Homg(A, K) defined by O(x)=xt=tx is an isomorphism (i.e. 2 is a
symmetric algebra). It immediately follows from the definition that § induces
a two sided A-isomorphism between C and A*=Homg(4, R). So, C is 4-
projective if and only if 4 is a quasi-Frobenius algebra (see the definition in [6]).
Clearly, C spans 2 over K, so we get an isomorphism D=Hom/,(C, 4)". So we get

1) Hom’ denotes the right 4-homomorphisms functor. The converse relation Hom%(D,
A)==C holds if 4 is quasi-Frobenius, For, Hom}(D, 4)=~Hom}(Hom/(C, 4), A)%C(?Homﬁ(A,

A)=C,
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Proposition 3. Hom(4*, 4)=D
We shall describe explicitly this isomorphism. ¢ denotes the isomorphism
Homj,(*, A)—2A given by o(f)=f(?), f € Homj(A*, A), then ¢ induces the
isomorphisms Hom(A4*, 4)=D.

The homomorphism 7 : A4°—Homg(A4*, 4) given by 7(x® y°)(f)=f(x)y is

an isomorphism because of R-projectivity of 4.
Proposition 4. T induces an isomorphism between N(A) and Hom(A*, A)

Proof. By the same argument of the discussion at the top of p. 757 of [1],
we can show that 7(V) is contained in Hom’,(4*, 4). Conversely, if 73] x,;® y?)
is an A-homomorphism, we get 7(3) 2x;Q ) (f)=2 fzx,)y:i=23 (f2)(%:)yi=
(22 %:Q yi)(f2)= (T2 %: @ ¥i)(f))a=22 f (%:)y:x=7(2 %:Q(y:2)’)(f) for any f &
A*. Since 7 is monomorphic, > x;® y? is in N.

Corollary 5. ¢r(N(4))=D

We define the map 7: A°—>Homg(4, 4) as follows: 7(x® y°)(z)=x=2y.
Since 4 is central, 7(IV) is contained in Homg(4, R).

Proposition 6. The map 0 gives an isomorphism between D and n(N)

Proof. T induces an isomorphism: N()—Homj(A*, A) and 7 induces an
isomorphism: N(2)—2A* (because U is central separable (see [2])) and we denote
also by 7, 7 these induced isomorphisms. To prove this proposition, we have
only to show that the following diagram is commutative, since N(4)C N() and

¢7(N(A))=D.

Nl ——> Homj (2%, 20)
1’7 0 l¢

A* ——
For any >} #;,Q y{ = N), we get
0¢r(2] %:Q y1)(2) = 02 #(x:)y:)(2) = 25 #(8(x:)v:%)
= 23 t(t(=x,)y;) = 21 Hax)H(ys)
while 723 (x;Q ¥?)(2)=>] %;3y;. So the fact that f¢7=n follows immediately

from Lemma 2.
We denote by H the homological different of 4, i.e. H=¢(N(4)) (see [1],
[2]). H is an ideal of R since A4 is central.

Theorem 7. The reduced trace t induces an epimorphism: D—H.

Proof, We consider the following commutative diagram
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NA) -2 4%
AN /
P \‘R‘/ Po

where @, is defined as follows: @y (w)=w(1). By the diagram above, we get
@4(7(N))=H. Se we get the epimorphism @ 0: D—H by Proposition 6. While
PI(d)=p,(dt)=dt(1)=t(d) for d =D, so p,f=t on D.

3. We shall give a generalization of the DeMeyer’s theorem (see Theorem
4 in [3]).

Theorem 8. Let R, K, A, A be as above. The following conditions are
equivalent :

1) At=A4*

2) C=A4

3) D=4

4) A is R-separable.

Proof. 1)=2). Since At=A%*, 0 induces an isomorphism: 4—A4*. It
implies C=4.
2)=3). Trivial.
3)=4). 6@ sends D ton(N) and C to A*. Since 7(N) is contained in 4%, D is
always contained in C. By the definition, DC is in 4, so 3) implies that C=
ACcA=DcCie.C=D. Then we have n(N)=A4*. Using the commutative
diagram in the proof of Theorem 7, @(N)=@mn(N)=¢@,(4*). Since A is R-
completely faithful, we get @,(A*)=R. Therefore, 4 is separable by Proposition
1.1 of [2].
4)=1) See [4] §4.

4. Let R, K, A, U be as in the previous section. Let M be a two sided
maximal ideal of 4. We putm=MMNR. Clearly n is a maximal ideal of R. If
1) M=m4A and 2) A/ is a separable algebra over a field R/m, we say that M
is unramified. If M is not unramified, we say that M is ramified. In the case
that R is a quasi-local ring, any maximal ideal M of A4 is unramified if and only
if 4 is R-separable by [4], (1.1). Clearly Mu is a maximal two sided ideal of
Am and M is unramified if and only if My, is an unramified maximal ideal of Am,
and MDD if and only if M D Di.

Theorem 9. If M is unramified, then I does not contain the Dedekind
different D.

Proof. As remarked above, we may assume that R is quasi-local ring.
Since A4 is separable, D coincides with 4 by Theorem 8. So, MDHD.

To prove the other half part of the “different theorem”, we shall add further
assumptions, We did not succeed in omitting these assumptions,
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Theorem 10. Suppose that t(A) is contained in R, and that A/mA is a
primary algebra over Rm for any maximal ideal m of R. Then a maximal ideal
MM of A is unramified whenever M does not contain D.

Proof. Again, we assume that R is a quasi-local ring. Since 4/m4 is pri-
mary, MDD implies A=D. By Theorem 8, 4 is a separable R-algebra. So M
is unramified.

RemaRK. If A4 is a maximal order over a Dedekind domain in a central
simple algebra, the assumptions in Theorem 10 are satsified.
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