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0. Introduction
In the case of planar Brownian motion, if we denote A(x, y)= -—Llog lx—y],
n

the following results are well known (see [13], [16]). (i) If F is a non-polar
compact set, then there exists a probability measure £; on F such that

Sh(x, ) Ex(dy) equals a constant R(F) on F except on a polar set. The measure

£r and the constant R(F) are respectively called the quilibruim measure and
Robin’s constant of F. (ii) A compact set F' is non-polar if and only if there

exists a non-zero finite measure £ on F such that Sh(x, y)&(dy) is locally
bounded.

In this paper we shall be concerned with the similar problem for recurrent
Hunt processes with strong Feller resolvent. In our case, in place of A(x, y),
we shall use a density g(x, y) of a potential kernel G(x, dy) of X relative to the
invariant measure p(dy). Unfortunately, our density g(x, y) is not equal to
h(x, ) in the case of planar Brownian motion but equal to A(x, y)+f(x)+g(»)
with some locally bounded functions f and g (see §4).

Now we shall outline the contents of this paper. Let X be a recurrent Hunt
process with strong Feller resolvent and p an invariant measure of X. If we
are given a certain finite non-negative continuous additive functional 4 of X
then we can construct a potential kernel G of X by means of time change and
killing based upon 4 ([4], [12]). In this paper we shall suppose, for simplicity,

that 4,= S;IC(Xs)ds for an arbitrary fixed non-null compact set C but the

similar argument can be applicable for a large class of functionals A4.

In section 1, some preliminary results are established. Among others,
a potential kernel K, and an invariant measure v, of the time changed process
by A are described. In section 2, for any other finite non-negative continuous
additive functional B, a potential kernel K; and an invariant measure vy of
the time changed process by B are constructed by making use of K, and v,.
In section 3, let us introduce the duality hypothesis that there exists a dual
process X (of X relative to p) satisfying those regularity conditions like X.
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We shall then construct a kernel function g(x, y) such that g(-, y) [resp. g(x, *)]
is finely [resp. confinely] continuous, finite except on a polar set and K (x, dy)=
8(x, y)vp(dy) [resg. K(dx, y)=g(x, y)vs(dx)] for all continuous additive func-
tionals B, where Kj; is the potential kernel of the time changed process of X by
the dual functional B of B. In particular, when B,—t, we have G(x,dy)=
2(x, ) u(dy) and G(dx, y)=g(x, y) u(dx), where G is the potential kernel of X

. A A, . . .
associated with A,=S;IC(Xs)ds in the sense of section 2. In this sense, our

function g(x,y) may be called the potential kernel function associated with
(G, G). Insection 4, we introduce the notion of potential kernel function A(x, y)
in a more general sense and then establish a relation between A(x, y) and g(x, y).
In section 5, we shall show the equilibrium principle. This means that, if
F=supp (B), then there is a probability measure £ on supp (B) such that

Sg(x, Y)Er(dy)=R(F) on F. In our case, the equilibrium measure &, and

Robin’s constant R(F) have intuitive probablistic meanings. If X and X are
equivalent, the results of section 5 have simpler forms and the analogous poten-
tial principles to classical potential theory hold. This case is treated in section
6. There a characterization of the equilibrium measure by means of energy
is also given.

1. Notations and preliminary results

Let E be a locally compact Hausdorff space with countable base, £ the
Borel o-field on E and £* the o-field obtained by the universal completion of &£.
If A is a o-field of subsets of E then the classes of all bounded ./-measurable
functions, all bounded non-negative ./-measurable functions and all bounded 4-
measurable functions with compact support are denoted by b A, b 1. and b A,
respectively.

Throughout in this paper, let X=(Q, &, &, X,, ,, P') be a recurrent
Hunt process on E with strong Feller resolvent, that is, a Hunt process satisfying

(i) (Recurrence); For all fbl,, G°f(x)=E"[§:f(X )dt]=0 or =oo on E.
(i) (Strong Feller property of resolvent); For all p>0 and f=bl, G*f(x)=
E’[S:e“”f(X ;)dt] is bounded continuous.

In this case, it is well known that there exists a unique (except a constant
multiple) invariant Radon measure g of X, which is positive on every open sets
(see [1], [2]). Let ® be the family of all non-negative continuous additive
functionals (abbreviated CAF) A=(4,);z, of X such that 4,<<oco a.s. for all
t<<oo and let ®* be the subfamily of functionals 4= ® which are not equivalent
to the zero functional. If A=®* then P*(4.=o0)=1 for all x ([1]). For
Ae®* and p=0 we define a kernel K by
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(L1)  Kafw) = B e*f(X)dA).

Note that (K%),s, is the resolvent of the time changed process of X by 4.
Moreover, for 4, B€®* and p, ¢=0 we define two auxiliary kernels U%%
and V%% as follows:

(1) Uitfe) = EJ e fx)da),
(13) Vi f(x) = E"[S:e‘M:-qB: f(X)dB,] .

Obviously, U%%=V%?. The family (U%%),5, is the resolvent of the
time changed process by 4, of the e"%%:-subprocess of X. If B,=t, we shall
write K%? for U%%, and G4 for V49, i.e.,

(14 Kif) = B[ e fX)da),
(15)  GHf(x) = E"[S:e“qu‘ f(X,)de] .

Note that U4%=K%°=K%, V5%%=K% and G%'=G" (the resolvent of X).
In the sequel, if there is no danger of confusion, the suffices 4, B will be
often omitted.

Lemma 1.1 (Nagasawa-Sato [10; theorem 2.1 and 2.2]). Write U?*? and
Ve for U%% and V4%. For all p>0, p’>0 ¢=0, ¢’ =0 and f €bE*,
(L6)  UPSf—UY f(p—p) UH U f(q—g) V2 UP{f = 0,
(L7)  Vorf—VO fH(p—p) VOV r [ (g—) UV f = 0.

If, in particular, U%%| f| [resp. V%°| f|] is bounded for some q,=0 then

U\ f| [resp. V*°| f|] is bounded for all >0 and (1.6) [resp. (1.7)] holds for all
P’ P,) q) q,go Stltlfysing P+q>0 and P/+q/>0.

Lemmal.2 ([12;lemma2.2]). There exists an increasing sequence {E,},»,
[resp. {F,}.z1] of subsetsin £* suchthat U E,=E [resp. U F,=E]and U"'(-, E,)
n>1 n>1
[resp. V-, F,)] is bounded for all n=1.

Lemma 1.3 (Blumenthal-Getoor [3; III, section 5]). If A=®™ then
G%°(+, F) is bounded for all compact set F and p>0.

A set C is said to be null if it is a set of potential zero relative to (G?),,.
Let C be an arbitrary (but fixed) non-null compact subset of E and let us assume
that g is normalized on C as u(C)=1.
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In the remainder of this paper, unless otherwise stated, the CAF
A=(A4,);zo€ D" always represents the CAF defined by

(18) 4,= S:IC(Xs)ds.

Then for every Be®™,
Ahl(3) = B P ILX)dl] = G3, €)
0
is bounded by lemma 1.3. Moreover we have

Lemma 1.4. For any p, ¢>0 and f€bE*, the functions K4if and G%°f
are bounded continuous. In case fEbE¥, G4 f is bounded continuous for all
p>0.

Proof. Drop the suffix 4 in the related kernels. For any p>0 and f €b&£*
we have, from (1.7),

G f—Grt f—pK"*GP?f =0 .
Since K*?g=G?(I.g) for any g bC* the function
G f = GPf—pGHI,GP*f)
= G(f—pI.G"*f)
is bounded continuous by the strong Feller property of G?. Therefore,
Grf = G"(f+-(9—p) G**G**f)

is bounded continuous. If f=bC¥ then G*°f is bounded by lemma 1.3, so
that the above equality for g=0 shows that G?°f is bounded continuous.

Since (K%),>o is a strong Feller resolvent by lemma 1.4, the mapping
x—>K(x, +) of the compact set C into the space of measures over C is strongly
continuous by a theorem of Mokobodzki (see Meyer [9]). Since, in addi-
tion, K4(x, ) are equivalent for all x& E, we have

sup (KA, )~ KAy, )l = a<1.
Thus there exists a unique invariant probability measure v, of K! such that
(L9) s KA (3, +)—r () S 20"
for all n=0 ([7; lemma 1.3]). Therefore the kernel
(1.10) K (», F)= ”Z:]l [(K2)'(x, F)—v4(F)]
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is well defined and satisfies

(I—KW\)K,f= K}lf—"<VA:f>
for all f€bE*.

Lemma 1.5. The kernel K, defined by (1.10) satisfies
: ) . _VA(')_ N —
(1.11)  lim sup ||KG(x, -) Y Ky, )l=0,
in particular,
(1.12)  lim sup |[pKA(x, +)—a(+)l| = 0.
Proof. From the resolvent equation for (K%) we have
Kf(x, +) = K4 23 (1—p)(K LY (x, )
= B (1 py K @ )2
for all x& E and 0<p<<1l. Thus it follows that
KA )40 K, )l
< 23 (1= (=P HIE D @, +)—va()l

< g {1_(1_P)n-1} 20" = Z{Iia_l—a(ll_.?)j ’

Therefore the lemma follows.

2. An invariant measure and a potential kernel of (K%)

Similarly to [4] and [12], for any Be®™, an invariant measure vy and a
potential kernel K of (K%),5, can be constructed by making use of », and K,
defined in section 1. In [12], we have treated only the case of B,=t but the
same arguments are valid for all Be®*. We shall outline it in the form of our
present use.

For any B€®* define the measure v by

(2.1) vp=v,V4%
Then v, charges no semipolar set and satisfies the following properties.

Lemma 2.1. The measure vy is a o-finite invariant measure of (K%),,.
In particular, viy=p.

Proof. (cf. [12; theorem 2.7]) Since V%%(-, F,) is bounded for all » by
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lemma 1.2, v; is o-finite. Integrating the equality
43— K3+ KiKs—pVisKh =0
by v, we have

Vp =P”BKIIJ§ ’

that is, v is an invariant measure of (K%).

By the uniqueness of the invariant measure of X, v, is a constant multiple
of u, say,

vip = v,Gi° = bp
for some constant b. Since u(C)=1 we have
b=v,Gy%C)=v, K C)=ry,(C)=1,

Hence vy=p.

Lemma 2.2 (cf. [4; proposition 2]). For any B, B'e®*,
(2.2) vy = pvsV il .
In particular, vy is the measure associated with B in the sense of Revuz ([14]).
Moreover it holds that v,=p |, where p|c is the restriction of p to C.

Proof. Similarly to lemma 1.1, we can prove easily that
(2.3) Valy — Vi +qKaV 5y —pVis Vi’ =

for sufficiently many fb&*. Letting g=1 and integrating by v,, (2.2) follows.
Set B,=t at (2.2) then vy=pv, Vii] p’=puK%? by lemma 2.1. Hence vy is the
measure associated with B’.  In particular, when B’=4, it follows that <{v,, f>=

2wy K o=pu, GLof>=p<pG?, Iof>=<p, Icf>=<plc, >
Define a kernel K by

(24)  Kp(x, -) = K Vi’s(x, <)+ Vis(x, -)—vs(+).

In case B,=t we shall denote Kz by G, which is the kernel we have con-
structed in [12]. Obviously, Kz(x, «) is a o-finite signed measure on E and, for
any n=1, the total variation of Ky(x, +) on F, are uniformly bounded for all
x<E by (1.9) ana lemma 1.2. Similarly, for any compact set F, the total varia-
tion of G(x, +) on F is uniformly bounded for all x& E by lemma 1.3. If we
denote the total variation of a measure on F by ||+ ||z, then the following theorem
holds.

Theorem 2.3. For alln=1,

@5)  limsup | VE%(, .)__%;)—Kg(x, Me, =0,



EQUILIBRIUM MEASURE OF RECURRENT MARKOV PROCESSES 289

and in partciular,

@6)  Timsup lIpVita(w, ) —vs(lr, = 0.

If B,=t then we can take arbitrary compact set in place of F,.
Proof. Write V> for V4%. For any Borel subset D of F,
VY%, D)— V%%, D)+pK4V"%(x, D)—K4V"%x, D)= 0

from (1.7). 'This can be written, by noting (2.1),

{V*9(x, D) —”B_;’l)} — V9(x, D)+ pK4V(x, D)

— (K, —%vA)V"°(x, D)y—0.
Thus we have

e o)—@;—')—KB(x, i,

=[{pKh(x, *)=va(-} V*ll,
A )= K G, V2,
This proves the theorem from lemma 1.5.
Corollary 1. If f €bE* vanishes outside of some F,, then
2.7) (I—pKE)Kpf = Kt f—U%%1<vg, f>
for all p>0. If Vi'%1 is bounded, then
(2.8)  Ky(I—pK%)f = Kb f—<va, K5 f>
for all p>0 and f € bE*.

Proof. Suppose that V1 is bounded, then obviously (2.5) holds for E
in place of F,, so we have

KolT—pK)) = lim (V)L pKB)(x)
= lim Veo(T—pK3)f(w) = lim (K} f—gK 4K £)(x)
= K5 f(x)—<va, Kb f>,
from (1.13). The proof of (2.7) is similar.

Let us denote

2.9) N = {f; f€bE*, = 0 outside of some F, and <vg, f> = 0} ,
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(2.10) N = {f; f€bC*, {u, f> =0} .

DrrINITION. If a kernel H on E satisfies the condition that (i) for any
fENpg [resp. fEeN], Hf€bE* and that (ii) for any feN; [resp. fEN],
(I—pK%) Hf=K5% f [resp. (I—pG?) Hf=G?*f] for all p>0, then we shall say that
H is a potential kernel of (K%),s, [resp. X].

Corollary 2. The kernels K and G are the potential kernels of (K%),>, and
X, respectively.

Corollary 3. For every compact set F, the function G(-, F) is finely con-
tinuous.

Proof. Set B,=t at (2.7)
G(x, F) = pG?G(x, F)+G*(x, F)—(K%"1(x)) u(F) .

Since K41 is p-excessive, the result is obvious.

3. Hypothesis of duality and the kernel function g(x, y)

In this section we shall assume that there exists a Hunt process X with
strong Feller resolvent G? such that X and X are in duality relative to p. It
follows that X is also recurrent and g is the invariant measure of X.

Let & be the family of all non-zero non-negative finite continuous additive
functionals of X. For any A, Be®*, we define IAJff,"B etc. by

fO%2() = B eorhireif( %) dA]

etc. (in general, a kernel with respect to the dual process X is written such as
K(D, x), so that K operates to function from the right side and to measure from
the left).

By Revuz [14; theorem VII. 1], for any B ®*, there exists a polar set P,
and a CAF Bed+ of X restricted to E—P, such that »,=K%! u. Also, by
[14; theorem VII. 2], there exists a jointly measurable kernel function

g%%(x, y) satisfying

(i) g5+, y) [resp. gh'(x, -)] is finely [resp. cofinely] continuous and g-excessive
[resp. g-coexcessive] relative to the resolvent (G%7),>, [resp. (G%%),5,] for
all p>0 and ye E—Pp [resp. x E],

(i) For all p,q>0 and xeE, K%'(x, dy)=gh'(x, y)vs(dy), GE(x, dy)=
25°(x, ) p(dy) and for all p, ¢>0 and ye E—Py, Ki'(dx, y)=gh'(x, 5)
va(dx), G%(dx, y)=gh*(x, y) u(dx).

As before, the set C with u(C)=1 is fixed and 4 is given by (1.8). If
B=A, P may be supposed to be empty and the dual CAF of 4 is given exactly by
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A t
G.1) A= S I(X)ds .
0

In the following, unless otherwise stated, A always represents this CAF
and we shall drop the suffix 4 in g%? Further, we shall denote g%(x, y) for
£%%(x, y), which is Kunita-Watanabe’s potential kernel function. Note that
g%%(x, y)=g%x, y) for all B€®*. Form the resolvent equation (1.6), for any
q>0,

(3:2)  gvU(x y)=g'x y)—Ki'%(x, y)
= g'(x, y)—g"Kk"(x, )

on {(x,y); £(x, y)<<oc}. Hence for any yeE, Kk’ (x, »)=g"'K%(x, y) a.a.
x(p). Since both sides of the equality are g-excessive, it holds for all x, ye F'
(cf. Getoor [5; theorem 2.5]).

Lemma 3.1. For all x€ E and B€d™,
(3.3)  Vils(x, dy) = g"(x, y)va(dy) .

Proof. Set A/=A;+qt. Replacing 4’, {t}, B for 4, B, B’ in (2.3) we
have

Vilsf =V sf—KYy Vil sf+qVil Vil sf,

for sufficiently many functions f. Noting that Vi) ;=K Ky=K%'+qG%*
and V', =GY%’, it follows that

EY| e 4 f(X,)dB] = Vi f()
— K%*f(x)— K4 K% f(x)
— g, 5)—Kiog, M) waldy)
= [{g, )~ Kuter(w, 9} f9)va(ay)
= [{een NAP oty

The last equality follows from (3.2) since »; has no mass on the polar set
{y; g’(x, y)=oo}. Letting ¢—0 we have the result.

Dually, if B is the dual CAF of B then
(3-4) 4s(dx, y) = g%, y)va(dx)  for allye Py .
Hence we have

Corollary. For all f, g=b(E*)*,



202 Y. Osaima

(5) | 1V ESswaa) = (088 va(dy)

(36 [ [VEB0)e0 W) = [ R ULSeE)vs(d) .
Since
K (%, dy) = K}(x, dy)—va(dy)+KKi(x, dy),

it is easy to show that, for each x, K,(x, +) is absolutely continuous relative
to v, and its density is given by

"%, y)—1+K,8"(x, )

up to a set of »,-measure 0.

However, in order to solve the problem proposed in the introduction, we have
to choose a more elaborated density g(x, y). To do this, we need one more
preliminary observation.

For all x, ye E and n=1, set

BT flxy) = (KY) g, y)—1 = g"(K%)"Y(x, y)—1,
then B
fu(x, y)va(dy) = (Ki)'(x, dy)—v,(dy)

3.8
C8) (o y)wald) = (BLY(ds, )—valds).

Since

[ 21565 D Ivad) = SERY @, )—va(-)ll<o

for all x& E from (1.9) and (3.8), the series i] fa(x, ¥) converges absolutely for
.a.a.x(v,). Similarly for all yeE, 2 fu(x, y) converges absolutely for a.a.x(v,).
Also

[, 2160 nadn) = 2 fiow pywaiay)

=23 {(KW)'(x, D)—vu(D)} = K 4(x, D)
for all D&, that is, ”2: Fulw, +) is a density of K 4(x, -) relative to v,. Dually,
ig f(+, y) is a density of
69 K 9) = ZARYC D=2}

relative to »,. Here the proof of the strong convergence of (3.9) is similar to

1.9).
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Lemma 3.2. There exists a Borel subset T of EXE satisfying the following
conditions.

(i) Set T,={x; (x, y)€T} and I',={y; (x, y)T}, then T'; and 1': are polar
for all x, yeE.

(ii) For all (x,y)EeT, 2 Sfu(x, ¥) converges absolutely, | K 4|g"%(x,y)<<oo and

g“’llﬁ' Al (x, y)<<oo, where |K,|(x, +) is the total variation measure of
K ,(x, ).
(ii1) For all (x, y)eT,

(3.10) 3w ) = £, )~ 1+ Kag"(, 3)
= g"(x, )~ 1-+g" K (x, ).
We define the kernel function g(x, y) by

(3.11)  g(x, y) = (3.10) if (x,y)eT
= lf (x, y)QEP .

By the lemma, it is easy to see that the function g(-, y) [resp. g(x, )] is
finely [resp. cofinely] continuous on the fine [resp. cofine] open set T', [resp.
1",] for all y [resp. all x]€E.

Proof. Noting that,

| fana(%, )| = | KW{(K%)*'g""—1}(x, )|

= 1 |&u(x, an{{{(&ay2z, dugw, 0)g(w, )va(do)
— (g0, 3)wa(ao)} |
= | [Kiw, d9)[ {(KAy~2g 0z, 0)—11g(@, 5)va(do)|
= | Kb fuaKi(x, )| SK4| fo| Ki(x, 9)
for n=2 and

&Ly (x, dn)—va(de) g7z, 3)
— fIhyig(s, 2)— 118z, )va(dz)
= IR Ky 2g— 1}, 2) £9(z, )va(d)

< Kilf,.l Ki(x, 9)

for n=2, let us define the set T" by



294 Y. Osuima

T = {(x9); |fil (6 )+ 1l @, )+ 23 Kal ful K, 9)<o} .
Then the proofs of (ii) and (iii) are obvious. For the proof of (i) set

E(dy) = 8.(dy)+Ki(x, dy)+ 5;‘1 (Kl ful X%, 9)va(dy) .
Then

E(B) =2+ 3 [Kilx, )| (KA, )—va(-) <oo
Moreover, it is easy to see that,

T = {(x 3); (Edd)g(s, y)< oo}

Hence I% is polar if and only if SE,(dz)g‘"’(z, y)<oo except on a polar set.
Since g"° is the potential kernel function of the e 4:-subprocess (which is a
transient Hunt process on E (13; I11.3.16])) of X, the potential ng(dz)gm(z, )

of the bounded measure £, is finite except on a polar set if it is finite for

a.a.y(p) ([3; VI.2.3]). Since, for all f€bl},

([edmreom A ua)
= [ew@s ciof)siicrseE)<ee
by lemma 1.3, sz(dz)gl"’(z, y)<oa.a.y(n). Therefore I'; is polar. Similarly
T'; is ploar.

Suppose we are given a CAF Be®* and let B be its dual CAF. Just as
(2.4), define a kernel K by

(3.12)  Ky(dx, y) = V%K (dx, y)+ Vi%(dx, y)—vs(dx)

for ye: Py, where K, is the kernel defined by (3.9). In the case B,—=t denote G}
by G. For these kernels, the dual results of section 2 are valid.

Theorem 3.3. For all xE, yeE and z E—Py,

K (%, dy) = g(x, y)va(dy), K o(dx, y) = g(x, y)v4(dx)

OB Ko, dy) = glx, )valdy) and  Ro(d, %) — glx, )va(ds) -

Proof. The first two equalities have been already proved. For the proof
of the third equality, take a function f€b&* such that V% fisbounded. Then,
since v charges no polar set, it follows from lemma 3.1 and 3.2 that
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([ 16 )1 D wsldy) < Ve )< S+ Kl Vitafix)<oo .

Hence

[ £t D) ws(ay)
= Vil f(x)—<vn O+ K Vil f(x) = K;f(x).
The last equality follows similarly.

Corollary. For all xE and y=E,
(3.14)  Glx, dy) = g(x, y) u(dy) and G(dx, y) = g(x, y) p(dx) .

For a measure £ on E, let us denote
(B15)  GHx) = (g, 9)E@),

(3.16)  GEw) = [a(x, )E@),

if they are well defined.

Let X, and X, be the subprocesses of X and X by the multiplicative func-
tionals M,=e 4 and M,=e ", respectively. Then a set is polar if and only if
it is polar relative to X, or X 4. Moreover, as we have seen at lemma 1.4, the
resolvents (G%?),>, and (ék‘”)Po of the processes X, and X, are strong Feller,
so that, it is well known that a compact set F is non-polar if and only if G
is locally bounded for some non-zero finite measure £ on F. Also, it is well
known that if G"°¢ is locally bounded then £ charges no polar set (see [3;
p- 285]). Hence we have the following theorem.

Theorem 3.4. If F is a compact subset of E, then F is non-polar if and only
if there exists a mon-zero finite measure £ on F such that Slg(x, )| E(dy) is
locally bounded.

Proof. It is enough to prove that G*° is locally bounded if and only if
Sl g(x, )| &(dy) is locally bounded.

If G*%€ is locally bounded for some non-zero finite measure £ then &
charges no polar set and hence, in particular, E(f‘i):O for all x€E. So, it
follows that,

[l 91 8(@) = G+ EEV+ 1K1 ().

In the right side of the inequality, since G°¢ is bounded on the compact set C,
the last two terms are bounded. Therefore, Sl g(x, )| E(dy) is locally
bounded.
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Conversely, if Sl 8(x, y)|E(dy) is locally bounded then £({9)=0 from
the definition of g(x, y). Therefore, for any xe E,

8%, ) = £, 3)— 1+ [ s, 2)g(3, 9)v.(d3)
a.a.y(£). Thus

G™%(x) < S lg(x, y)| E(dy)-+E(E)

+{gw, 2] 1262, )| E@aa).
Since G ,(x)=K41(x)=1,

[e, )1 1205, )1 E@} v a2)

< sup {186z, 5) | E@y)

(=1

Therefore the theorem is proved.

4. Potential kernel functions

By the corollary of theorem 3.3, we shall say that g(x, y) is the potential kernel
function associated with (G, G). Moreover the kernel function g(x,y) satis-
fies several regularity conditions (corollaries 2 and 3 of theorem 2.3, lemma
3.2).

We now extend the notion of potential kernel functions.

DEFINITION. An &% X &*-measurable kernel function A(x, y) is said to be
a potential kernel function if the following conditions are satisfied.

(i) Set H(x, dy)=h(x, y) u(dy) and H(a’x, y)=h(x, y) p(dx). Then H and H
are the potential kernels of X and X such that Hf and fﬁ are well defined
and locally bounded for all fb€¥. Moreover, the functions H(-, F)
and ﬂ(F, +) are finely and cofinely continuous for any compact set F,
respectively.

(i) The sections (I',); and (I',); (see §3) of the set Tj= {(x, ¥); | h(x, y)| =oo}
are polar sets and the functions %(-, ¥) and A(x, -) are finely and cofinely
continuous on the fine and cofine open sets (I';), and (1)), for all x, ye E,
respectively.

We shall show how any potential kernel function A(x, y) is related to g(x, y).
Recall that I'°={(x, ¥); |g(x, ¥)| = oo}.

Theorem 4.1. If h(x, y) is a potential kernel function of X, then
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4.1)  glx, y) = h(x, y)—H(x, C)—H(C, )+ H(C, C),
for all (x, y)€T N T, where H(C, C)=SCH(x, C) u(dx) .

Proof. If f&N then, by (i), Gf—Hf is bounded and satisfies (/—pG?)
(Gf—Hf)=0, so that, Gf—Hf equals a constant on E. Particularly, set
f=I—pu(F)I,=N for a relatively compact set F&* then, since G(-, C)=0,

(42)  G(x, F)—H(x, F)+H(x, C)u(F) =a

for some constant a. Integrating both sides of (4.2) by »v,=pu|; and noting
that v,G=0, we have

—H(C, F)+-H(C, C)u(F)=a.
Thus,

G(x, F) = H(x, F)—H(x, C) u(F)—H(C, F)+H(C, C) u(F) .
Therefore, for all xE, (4.1) holds for a.a.y(n). Since u is equivalent to
G*(+, y) for all p>0 and ye E([1]), u charges all cofine open sets. Hence, for
all x€ E, (4.1) holds for cofinely dense y=E. Since both sides of (4.1) are
cofinely continuous relative to y on the cofine open set L', N (1%,),, (4.1) holds
for all yeI', N (1Y),.

If Be® then, since the associated measure v, of B has no mass on any
semipolar set, we have

Corollary 1. If h(x, y) is a potential kernel function of X, then the kernels
H y(x, dy)=11(x, y)v(dy) and Hy(dx, y)=nh(x, y)vs(dx) are potential kernels of
(K%) and (K%), respectively.

Corollary 2. Let h(x, y) be a potential kernel function such that T',CT, then
a compact subset F of E is non-polar if and only if S | h(x, v) | E(dy) s locally bounded
for some non-zero finite measure & on F. In particular, if X and X are equivalent,
then F is non-polar iff Slh(x, )| E(dy) is bounded on F for some & as above.

Proof. It is enough to show that Sl 8(x, ¥)|E(dy) is locally bounded if and
only if S]h(x, )| E(dy) is locally bounded. '

If SI g(x, ¥)|£(dy) is locally bounded, then £ charges no polar set by
theorem 3.4 and, in particular, £({{", N ({",),}°)=0. Hence it follows from 4.1)
that || i(x, )| £(dy) is locally bounded.

Conversely, if § | h(x, ¥)| E(dy) is locally bounded, then & has no mass on (f‘h)j

for all x E, so that (4.1) holds a.a.y(§) for all x E. Hence S lg(x, ¥)|E(dy) is
locally bounded. If X and X are equivalent, then all semipolar sets are polar.
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Hence sup G1'°£(x)=squJ G"E(x) ([3]), so that the last part of the corollary is
*en re

obvious from the proof of theorem 3.4.

RemMark. If A(x, y) is a potential kernel function of X, then the kernel func-
tion 4'(x, y) defined by
h'(x:y)=h(x: y) if (x, »)€§TNT,
=0 if (x,y)&TNT,

is a potential kernel function of X. For this kernel function, the hypothesis
T,/ CT of the corollary 2 holds obviously.

(4.3)

ReEMARK. So far we have fixed a compact set C and assumed that x(C)=1.
If we delete such normalization condition, the only minor change is necessary;
v, equals [u(C)] k| for ulc and vy equals [u(C)] 'u for . It then follows
thatG(x, dy)=g(x, y)[(C)]" n(dy).

For two compact sets C, and C,, let G;, G, and g, g, be their associatea
potential kernels and kernel functions. Let x be an arbitrary invariant measure
(not necessarily normalized either on C, or C,;). By an argument similar to

the proof of theorem 4.1, we have Gy(x, F )—G;l(tf—cz,’)—F)——-Gz(x, F)—
2

L (((I;)) Gy(x, C;). By the preceding remark, we obtain the following relation:
H 4

axy)_ 1 =gz(x:y)__ 1
G Nue) ey M T ey ey H

on I'g; N Tg,.

5. Equilibrium measure

Let F be the family of all non-empty relatively compact sets F which is the
fine support of some CAF B&®*. In this section we shall fix a set FE F and
the corresponding CAF B. Let {F.} .21 be an increasing sequence satisfying
that U 13',,=E and V};PB(F‘,,, -) are bounded for all n. The existence of such
a sequence is the same as in lemma 1.2. Define the continuous additive func-
tionals B"=® by B”=S:I ron #,(X)dB,. Then the fine support of each B" is
relatively compact. The kernels defined by 4 and B” are denoted by U%¢ and
V44 By the definition of B*,7}°| f| and | f| V&° are bounded for all f&bE*.
Let v be the measure assoicated with B as before and set v,(-)=vy(- N F,N F‘,,).
The fine support of vy is equal to F (see [14; remark II.2]) and v, is the
measure associated with B". Write K, for Kjz,. It follows that K,f is well
defined and bounded for all f&b&*.

Lemma 5.1. If B"%0 then, for all p>0,
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(5.1) PK(Uy?1)+Uy?1=R,(p)
is a finite constant on E.

Proof. If B"#0 then B"=®d", so that, by theorem 2.3, formulas (1.6) and
(2.2), and lemma 1.5,

PR(US1)(x) = p lim {V3x, )— L0} U1
750 q

= lim {sz~°U3-’1<x)~%}

= gz:zt {gK4 U 1(x)— Us?1(x)}

= v,Uy?1—-Uj?1(x).
Therefore,
(5.2) PK(U?1)(x)+Us?1(x) = »,US?1 = R,(p)
is a constant.

Let T, be the hitting time of the set F, 7=inf {¢t; B,>0} and
T"=inf {t; Bi>0}, where infp=oco. Then, Tr,=T a.s. (see [3; proposition
V.3.5]) and 7" | 7 a,.s. as n} oo, Since R,( p)=E"A[S:e"B't'IC(X,)dt] decreases

when 7 or p increases, the limit

(53)  R(F) = lim lim R,(p) = lim lim R(p)

P> By

exists and it is finite since B0 (see the proof of lemma 5.2 below).

DEFINITION. We shall call the constant R(F) as Robin’s constant of F
(relative to the potential kernel function g(x, y)).
Lemma 5.2. R(F)=E[{ "I,(X)df].
0
Proof. Since B=0, U;'1 is bounded for all large n. Hence, for all p=1
and large n,

R(p) = R(1)=v,Ul'1<00,
Therefore, by the Lebesque theorem,

lim R,(p) = lim EVA[S"e-PB’:‘IC(X,) dt]
>0 >0 0
- E”A[Sw(iz'm e NI (X,) dt]
0 pree

— E”A[$:"IC(X,)dt] .
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Letting n—oc we have the result.

ReMARK. From the lemma 5.2, Robin’s constant R(F) of F does not depend
on the choice of B.

Lemma 5.3. If F&F then there exists a probability measure £, on F such
that

(54)  limlim VE(UT)a) = GE-(v)
for a.a.x(u). Moreover, Vy°(pUy?1)(x) are uniformly bounded for all x€ E, p=1
and large n.
Proof. From (1.6), for all p>0 and =1 such that B"=0,
VE(pUL1)(x) = 1— U 1(x)+ KU 1(x) .

As in the proof of lemma 5.2, U,*1(x) are uniformly bounded for all xcE,
p=1 and n=1 such that B"#0, and

lim lim UY1(x) = U™1(x) = E”[S:IC(X,)dt] .

npoo p.ypoo

Hence,
bm im V3, °(pUr?1)(x) = 1— U 1(x)+ KL U>*1(x) ,
f.p00 pypoo

boundedly. Define a measure £, , on the compact set F by
£, (dy)=pU3?1(y)v,(dy) for p>0 and n=1 such that B"50, then

El(B) = <v,, pUNL> =<vy, 1> =1,

Thus there exists a sequence p,—o° such that {£,, ,};=1 converges weakly to a
probability measure &, on F as k—>oo, for all n. Therefore, we can choose a
subsequence {£, } of {£,} which converges weakly to a probability measure &
on F as m—co. Taking an arbitrary function f&bC¥, we have

S S {1—U=1(x)+ K3 U*"1(x)} pu(di)
= lim lim S FEVa:2(p USPe1)(x) u(dx)
= lim lim S [(2) G2, (%) p(dx)
= tim lim | FC4*(9)Ep,.n(@)

— [fxe)Entan = | fix) G r() (e,
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where we used the boundedness and continuity of fG4°, which follows from
the dual facts of lemmas 1.3 and 1.4. Therefore,

(5.5) 1—U1(x)+ KLU 1(x) = G™Ex(x) , for a.a.x(p) .

Let B be the dual CAF of B as in section 3 and let F be the cofine support
of B. As before, F is the cofine support of v,. Set #=inf {t; B,>0}, then
#="Tp a.s. P* for all x& E—P;, where T is the hitting time of ¥ relative to X.

Lemma 5.4. For all f€bE*,
66 [f0Ed) = Bupfde).

In particular, & is a probability measure on F which attains no mass on any polar
set.

Proof. It is enough to show the equality (5.6) for fC,. If f&C,, then
by the corollary of lemma 3.1, ‘

[719)&5tdy) = tim tim { f()p UL (5) v, )

— lim lim S PfVEI()v a(dy)

Mp0d fy00

= limlim B[ p,| e f( %) d(B)]

M_300 300

= lim lim EVA[S:e—uf()A{?',,m(ulﬁk)) du] ’

M3 fyoo
where (B"),=|'Tr,0r,(X,)dB, is the dual CAF of B and #,(s)=inf {u; (B"),>s}.
Since, for all n=1, 4,(s)—>+,=4,(0) a.s. as s—0,
[ Estdy) = tim Boaf e %, )
= lim E*a[f(X,, )]

Also, since #,,—> a.s. when-m— oo, the lemma follows.

Theorem 5.5 (Equilibrium principle). Let F € E* be a relatively compact
subset of E and suppose that there exists a CAF Be ®* with fine support F. Then
there exists a unique probability measure & on F such that

(5.7) GEp(x) = a constant on F.

Here, F is the cofine support of the dual CAF B of B and the constant is equal to
Robin’s constant R(F) of F. The measure &5 is given by (5.6) and called the
equilibrium measure of F.
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Proof. Let us show that the measure &£, in lemma 5.3 satisfies
(5.8) GEp(%)+ U%<1(x) = R(F) everywhere on E.

This proves (5.7) since U°'°°1(x)=E’[S:IC(X,)dt]=0 on F. From (2.2), (2.4)
and lemma 5.1,
R,(p) = K (pUr1)(%)+ Us*1(x)
= K, VE(pUL1)()+ Vi (pUL1)(x)
—pr, Uy?14-Uy?1(x)
= K V3 (pUS*1)@)+ Vi (pUS*1)(x)
—14+U?1(x),

since pv,Up?1=v,(C)=1. Let p—>oo and n—oco, then, as we have seen in
lemmas 5.2 and 5.3, R,(p)—>R(F) and V;°(pUs?1)(x)—>G"Ex(x) a.a. x(n),
boundedly,. Since K,(x, +) is a bounded signed measure and which is ab-
solutely continuous relative to u, we have, for a.a.x(),

(59 RF)= K. G Ex(0)+C ()~ 1+ U""1(x)
= [{Kag %, 5+, 3)— 1} Exldy)+ U~1(%)
= GEx(x)+U*1(x),
from lemmas 3.2 and 5.4. Denote
E(@dy) = Edy)+| 2 AR~} g (dy, 2)Ed),
then £ is a bounded signed measure on F and
GE(®) = GH%(x)—1.

Since G*%(x) is bounded, G*%(x) is the difference of two bounded excessive
functions relative to (G%?),>,. Therefore,

fim PG PG E(x) = G*E(x)  forall x€E.
Moreover,
[ tp
$Gi1(x) = B[ ewp (—{ To(X)ds—1)de>1,

as p—co for all x& E and GY?(x, -) is absolutely continuous relative to u, for
all x&E and p>0. Thus, operating pG%” to both sides of (5.9) and letting
p—>°, we have

R(F) = GEp(x)+lm pGh?U*>1(x) for all xE .
Py
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Therefore, it is enough to show that
(5.10) li:n pGLtU>"1(x) = U 1(x)  forallxeE.
Let p>1 then,
pG?U1(x)
— E[S: pexp {—S:IC(X,) ds— pt}EXt[S:IC(Xu)du] df

t+
t

< B per {1, dup
= E’[I:e-‘{gtlp

< B[ eI du a1
< lUS=1]|+1.

(t19)+7o0,;5

I(X,)du} dt]

Thus, noting that Lim (t+700,)=T (see [3; p. 214]), by the Lebesgue theorem,
t-»0
fim PGP U 1(x)

(f/ﬁ)+"'°0’/p

= lim | ewp {— 1) do—1} at I1(X.)du]

t/p

- s:e“E‘[S:IC(Xu)du] dt = U™1(x).

Now, it remains only the proof of the uniqueness. Let £ be a bounded signed
measure on F' satisfying &(E)=0 and GE(x)=a, for some constant a, on F.

For the proof of uniqueness we claim that £=0. Integrating both sides of
GE(x)=a (xF) by f(x)v,(dx), we have

s11)  (R0)EE) = avn £

for all febE* and n=1, where K,,(dx, y)=g(x, y)v,(dx) as before. Set
f=g(I—pK?%y) for a bounded continuous function g. It follows, from the dual
result of (2.8), that

FR(9) = eI—pR3n) K (9) = gKn(y)—<gKln v.>,
for all yeEPgs, n=1 and p>0. Substituting this function into (5.11), we have
S gKn(y)E(dy) = 0  for all n=1 and p>0,

because {(E)=0, <g(I——pI€'§»), v,>=0 and £ vanishes outside of FcE—P,C
E—Ppgn. Therefore, similarly to the proof of lemma 5.4, we have
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[Erraxen ey =o.
This implies that {g(y)&(dy)=0, since P’[¢#=0]=1 for all yc P.

6. Symmetric case

In this section we shall assume, in addition, that g’(x, y)=g?(y, x) for
all p>0 and x, yE, that is, X and X are equivalent. In this case, as is
well known (see [3; proposition VI. 4. 10]), any semipolar set is polar. Hence,
for every compact set F, the set F—F" is polar, where F” is the set of all
regular points of F' (see [3; II. 3.3]). Therefore F is a projective set (see [3;
V. 4.5]). Hence, by considering the projection of CAF {t}, there exists a CAF
B such that

6.1)  EfeTr] = E”[S:e"dB,]

and supp (B)=F" ([3; V. 4.6 and 4.7]), where supp (B) is the fine support of B.
Obviously, F is a polar set if and only if the corresponding CAF B is zero. Let
T=inf {t ; B=c}. We have
1> Efe™s] = E”[gTe“dB,]gE”[e‘TBT] .

o .
This implies that T=oco a.s. P* for all x=E, that is, B&®. Let B be the
dual CAF of B then, under our present hypothesis, the corresponding polar
set Pp may be supposed empty (see the proof of [14 ; VII. 1]) and the cofine
support F' of B is equal to "F=F", since the fine and cofine topologies conicide,
where "F is the set of all coregular points of F. Therefore, by theorem 5.5 we
have '

Theorem 6.1. If F is a non-polar compact subset of E, then there exists
a unique probability measure £z on F" such that

(6.2) GEx(x) = R(F) on F".

Here, the measure £ and the constant R(F) are given by

(6.3)  Ex(dy) =P[R}, edy] and

(64)  R(F)=EB[| "I(X)at],

respectively. The measure £, is called the equilibrium measure of F (relative to the
potential kernel function g(x, )).

Corollary. Under the hypothesis of theorem 6.1 there exists a unique proba-
bility measure £ on F such that GEg is bounded on F and satisfies (6.2).
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Proof. It is enough to prove the uniqueness. Suppose that a measure
£ on F satisfies the conditions of the corollary. Then since G is bounded on
F, £ charges no polar set (see the proofs of theorem 3.4 and corollary 2 of
theorem 4.1). Hence £ is a measure on F”, so that the corollary follows from

theorem 6.1.

RemMARK. By the proof of the corollary, the result of the corollary may be
replaced by the following result. ‘“There exists a unique probability measure
on F which attains no mass on any polar set and satisfies (6.2)”.

By using the relation (4.1) of g(x, ) and an arbitrary potential kernel func-
tion A(x, y), we would like to investigate the equilibrium principle relative to
h(x, y). At present, however, we can get only a partial result on this problem;
we have to impose very strong conditions on k(x, ¥) and we do not know even if
the logarithmic potential kernel function of planar Brownian motion satisfies
these conditions. Our conditions are the following.

(H1) For every compact set D,

(65)  lim sup | g, )~ d(p)—h(x, )| =0

for some function ¢ and a potential kernel function 4.

(H2) For all p>0and bounded continuous function f, K% f is continuous, where
B is a CAF with fine support F”, as before.

To find the equilibrium measure £ relative to %, we shall attempt a formal
calculation. Suppose that a probability measure £ on F satisfies HE(x)=

gh(x, 9)E(dy)=a on F’ for some constant a. Then, from (4.1), for all x& F”

GE(x) = HE(x)—H(x, C)— | H(C, )E(d)+H(C, C)
— —H(x, C)+a—§H(C, W E(dy)+H(C, C).

Operating I—pK% and integrating by fdv;, it follows that
6.6)  <f, I—pK3%)GE>y, = —{f, I—pK%)H(-, C)\,,.
The left side of (6.6) becomes

{f, I—pK%)GED,, = {fI—pK%) Ky, E>
= {fRY, E>—<fKY, v

from the dual formula of (2.8).
On the other hand, the right side of (6.6) becomes
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—<fs U=pKB)H(-, CP», = —lim {f, I—pKE)G (-5 C)—d(9);
= —lm<f, (I=pKB)G(, Oy = lin f, —GH(-, C|H4GHG (-, Oy
= —<fRY, vo+lim f, gGH°G(+, Cs, .
Hence (6.6) becomes
fRY, £ = lim (f, G5°G(+, O, -
Multiplying p and letting p— oo we have
6.7)  <f, & = limlimpglf, GE°G'(+, CPn, -

Theorem 6.2. Let F be a non-polar compact subset of E. Under the hy-
pothesis (H1) and (H2), there exists a unique probability measure & on F' such that
(6.8) HE = a constant on F' .

Proof. Since

<1, pgGh°G (-, Oy, = pgIRG, v> =1,

the measure pgG%°G’(x, C)vy(dx) is a probability measure on F for any
by ¢>0. Hence, for all p>0, we can choose a sequence ¢,—0 and a probability
measure £, on F such that pg,G%°G(x, C)vy(dx)—E,(dx), weakly. Similarly,
there exists a sequence p,,— oo and a probability measure £ on F such that £, —£,
weakly. From the hypothesis (H2), for all bounded continuous function f,

<Pkfk£")g> = h,:n h,,m <Pl¢fKBP’" pmqnGB""qu"(' ’ C)>”B .
= lim lim {p, poguf RBREC, v >

— lim lim — Y pypug R B — R Gonw >
m n Pm_Pk
1

= li':n lim

: PuDudiFEBG S, v,>
= lim pg K fRPG o, v, > = <f, &> .
Hence, letting k— oo, it follows that
lim {py fRE, B> =<f, £,

that is, E=E5U(X4)]=EEU(XTF)]. So that £ is a measure on F’.

To prove (6.8), let f be a bounded continous function with compact support.
By restricting the CAT B as in section 5, we may suppose that V%1 is bounded.
Then, since fG is bounded and continuous from (2.7), we have



EqQuiLiBRIUM MEASURE OF RECURRENT MARKOV PROCESSES 307

<f, GEu=<fG, & = limlim { fG, p,4,G4°G"(+, CPu,
= lim lim p,{fG, G4+, C)—G(+, C)4p,KiG*(+, C),
= lim lim p,f, KsG$m(+, C)—Ks(I—pnK$") G*(+, Cu
= lim lim p,{f, KsG$»*(+, C)—K§G"(+, C)+v JKG**(C)u
from (2.8). By the definition of K and H,
lim ppK 3Gz, C) = lim lim p,,,{Vﬁ'? _v_;} UL41(x)

— tim lim | p V38U 2471)— 1)
m 750 q

= lim lim {Km— U S4m1+gKY A":fml—%}(x)
— lim {—U4=14v,U 21} (x)
= — B, 1uX) s+ B TX) ),
lim lim po{K4G*(x, C)—v,KiG(C)}.
— lim lim p[KE*{G*(x, €)= 9(gu)} —v.4K{G™(+, C)—=$(g.}]
— lim po{KA=H(x, C)—v K i=H(C)}
= B[H(Xy,, O)l—E[H(Xr,, C)].
Hence
S, GO =<f, — B, TX)ds)—E'[B(Xz,, CD
+<f, DB T(X ) ds+ H(Xry )]
Therefore
GE(®) = —E[( "1(X) ds-+ H(Xr,, OM+E"({ I(X)ds+H(Xr,, O]
for a.a.x (x). In particular,
GE(x) = —H(x, C)+ B4[{ "1(X,)ds+ H(X,, O]

for a.a.xeF’ (u), and hence for all x&F". Hence, by (4.1), (6.8) holds. If
&, and &, are measures on F" satisfying (6.8), then G(£,—§&,) equals to a con-
stant on F’. Hence &,=¢, by the proof of theorem 5.5.

In the classical case, the equilibrium measure is characterized as the measure-
which minimize the energy. In our case, the analogous result holds. Denote
I the family of all bounded signed measures & on E with compact support
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such that (|g(x,»)|[£](dy) is bounded, JN*={£=0;£€IM} and IN°=
{E€I; E(E)=0}. For &, &I, define the mutual energy of £ and { by

©9) (&) = {[a et
Denote (&, £) by I(£) and call it the energy of £.

Lemma 6.3. If €10, then I(E) is non-negative. Moreover, I(£)=0 if
and only if £=0.

Proof. Suppose that £&I1°. Since G*°|£|(x) is bounded,
Sfl |(K4)"—v 4l (x, d2) GM°|E|(2)

<I1G™ €11 S IR, )—val

converges uniformly in x. Hence for any £>0 there exists a number N such
that

L2 [y} (v a9 Groge) <6
for allx E. From our definition of g(x, y), for (x, y)eT,
N-1
8(x, y) = g"(x, y)—14 2 (K1) —»4} £, 3)
+&(x, y, N),

where &(x, y, N)= > {(Ki)y"—v .} g"x, ). Since E(I",)=0, for all x E,
=

1) = ([ g7, ) Edn) )+ 5] [ Ry e, ) B @)
+{{ets, 5 M@ ).
From the resolvent equation (1.7), we have

£%x, y)—g"'(x, y)+Kiag"(x,y) = 0.
This combined with g"%(x, y)= g*%(x, ¥), we have

Kig"(x, y)=Kig"(x, y)=g"%x, y),
so that

[eo, gz, )valdn)s 225, 5)

Hence we have, from the symmetry of g%(x, y)

[fgoc 5 e 8@ 2 [ {0 3 Eanv samz0.
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Similarly it follows that
N-1

= S(K L)rg™(x ) E(dx) E(dy) 20.

n=1

Therefore I(£§)= —¢& and hence I(£)=0.

Suppose that I(£)=0. By a routine argument, we have |(, {)|’<
I(§) I(¢) for all ;= IN°. Hence (£, £)=0 for all {I°. This implies that GE
equlas to a constant on E. Integrating by »,, we can see that the constant is.
equals to 0. Hence £=0.

Theorem 6.4. The equilibrium measure &, of a compact set F is the unique
measure which attains the

(6.10)  min {I(8); ESIN, E(E)=1, support of ESFY},
and Robin’s constant R(F) equals the minimum value of (6.10).

Proof. The proof is similar to the classical case [16]. If a measure &
satisfies the conditions of (6.10), then, since GE;=R(F) on F except a polar
subset of F and & charges no polar set,

I(¢) = I(E—fr)”‘l(fr)‘f“z(g, Er)
= I(§—&p)+R(F).
Since £—£,= N, this implies the result by lemma 6.2.
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