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1. Introduction

In this paper, we investigate properties of spectra of random Schrϋdinger
operators with magnetic fields. In particular we study the asymptotics of the
density of states. On a probability space (Ω, P), we consider a 1-form valued
random field δ=Σy=i bJ

ω{x)dxi ( ω G Ω ^ G ^ ) and a real valued random field
V=VJx) on Rd. We assume that the pair (db.(x), V.(x))x(ΞRd is stationary and
ergodic on Rd. We assume further conditions on b and V later. On the space
L\Rd) of complex square integrable functions on Rd

y we consider the operator
formally written as follows:

L(baf Vω) = — 1 g (JL-ibi(x)Y + Vω(x) (i= v ^ ϊ )

Under the assumptions, as same as in the case of b=0 (cf. [1]), it is easily seen
that the spectra of L(bω, Vω) are independent of ω except for the elements of
a P-measure null set. Our purpose is to show that several properties of random
Schrϋdinger operators without magnetic fields are extended to our case. In
particular we consider the asymptotics of the density of states at the infimum of
its support. As same as in cases of Pastur [14] and Nakao [13] (cf. Chapter VI of
[3]), the problem can be reduced to study the asymptotics of ί->oo of the Laplace
transform of the density of states, i.e.,

Γ e-λtn{d\) = (Λ_)d/2 Ewxp\exp(-i [ dbM
J— ' \2πtJ I \ Jo w

where w is a rf-dimensional Wiener process starting at 0, /J db(*) is a stochastic
integral of the 2-form db (for the exact form, see (3.2) below) and EWxp is the
expectation with respect to the product measure of P and the Wiener measure.
One of difficulties of these problems comes from the fact that the right hand
side of (1.1) is an oscillatory integral (cf. [7]).
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In this paper, we assume that V is a Gaussian random field. Then, for

the asymptotics, the effect of V is much stronger than that of b. Therefore,

we can show that the leading term of the asymptotics is same as the result of

Pastur [14] (see Theorem 4.2 below).

The organization of this paper is as follows. In Section 2, we give a

setting to consider random Schrϋdinger operators with magnetic fields and

discuss fundamental results: we show that the spectral structure is determined

with probability one. Furthermore we give examples which have been studied.

In Section 3, we show the existence of the density of states and a few properties

of this. In Section 4, we investigate asymptotic properties of the integrated

density of states.

2. Random Schrodinger operators with magnetic fields

In this section, following [3], we give a setting to consider spectra of

random Schrϋdinger operators with magnetic fields and discuss fundametal results.

Furthermore we give examples which have been studied.

Let Ω^Γ^Λ*, T*Rd) be the space of all (^-differential forms endowed

with the topology of uniform convergence in the wider sense, 3γ=^{Cϊ^) the

topological σ-field of Ωu and Q the sub cr-field of 3X defined by

Let L(Rd) be the set of all real valued measurable functions on Rd. We take a

measurable space (Ω2, 2^) satisfying the following two conditions: i) there is a

map V from Ω2 to L{Rd) such that a map Ω2 X Rd^(ω, x) ι-> F(ω, x)=: Vω(x)^R

is 2r

2X^(/2ί/)-measurable, ii) for any x^Rd, there is a measurable transforma-

tion Tx on Ω2 such that VTχ(ύ(y) = Vω(x+y). An element V of L(Rd) is said to

be in Kd, when

limsup ί \x-y\2-d\V(y)\dy = 0.
a\0 x<=Rd J \x-y\£aa\0 tεβ

when d=2y

lim sup ί log(l/1 x-y \) \ V(y) \ dy = 0 .
β\0 x(=Rd J\x-y\<.a

V is said to be in Kd

oc when VXD is in Kd for all bounded domains D. We say

F i s in Kd when the positive part F + = max{F, 0} is in K\oc and the negative

part F_=max{—F, 0} is in Kd (see [16]). For any (b, V)^CίλxKdy we define

a selfadjoint operator L(b> V) on L\Rd) by the unique self adjoint extension of
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(cf. [16] Theorem B.12.1). Setting Ω ^ f ^ x ί l , , we consider a family of opera-
tors {L(b, Vω); (b, ω)Gίl} under a probability measure P on (Ω, Qx^S2) satisfy-
ing the following conditions;

(A. 1) (stationarity) P( TXB)=P(B) for any B GΞ Q x <E£2 and x G Λ*.
(A.2) (ergodicity) If B<^£x% satisfies P(TXBQB)=O for any x G ^ ,

thenP(J8)=0orl . .
(A.3) P(VeΞKdΠLΐoc)=l.

In (A.I) and (A.2), Tx acts on Ωx by (Txb)(y) = b(x+y). For any operator L, let
Σ(L), ΣPP(L)> ΣΛC(i) and ΣSC(L) be the spectrum, the point spectrum, the absolu-
tely continuous spectrum and the singular continuous spectrum, respectively,
ofL.

Then we obtain the following (cf. [3] Proposition V.2.4):

Theorem 2.1. If a probability measure P on (Ω, Qx 32) satisfies (A. 1), (A.2)
and (A.3), then there exist closed subsets 2, Σpp, Σαc and Σ s c of R such that for
P-almost all {b, ω) in Ω, we have S(L(ft, Γ ω ))=Σ, Σw(L(i, Γ . ) )=Σ W , Σβc(L(i, Fω))

Proof. Let 2?(Λ, &, F), Λ G 5 ( Λ ) , be the resolution of the identity of the
operator L(by V) and

£( , i, V)=Epp(.,b, V)+Eac(',b, V)+Esc(-,b, V)

its Lebesgue decomposition. To prove the theorem, we have only to prove
that for any Λ, A^B{R) and §=pp, ac and sc>

{(b, ω ) G Ω ; tr^(Λ, 6, Vω)^A} =: B

is a ZVinvariant element of ^x£F 2 . But, by the well-known method for the
b=0 case, we can prove that this B is a ^-invariant element of ΞFιXS2 (cf.
§§V.2 and V.3 of [3]). Then, by the gauge invariance of the operator L(b, V)y

we see that this B is an element of Qx 3t2- D

Similarly, we have the following theorem by the same method to prove
the corresponding theorem for the b=0 case ([3] Proposition V.2.8):

Theorem 2.2. Let P be a probability measure on (Ω,Sx3ϊ2) satisfying
(A.1), (A.2) and (A.3). Then:

i) τdiae(L(b, V))=φ, P-α.s.
ii) If the spectral multiplicity of the operator L(b3 V) is P-almost surely finite,

then, for each λ in R, λ is P-almost surely not an eigenvalue of L(by V).

Before closing this section, we give examples which have been studied:
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EXAMPLE 2.1. We assume that db is a deterministic constant magnetic field
and the scalar potential V is a stationary ergodic random field. This case
satisfies our conditions (A.1)-(A.3). When d=2, this is the object of the quan-
tum Hall effect and there are many works concerning about this ([1], [11] and
so on). We also have results on the structure of a density of states ([10], [18]).

EXAMPLE 2.2. We assume that db(x) and V(x) are deterministic periodic
functions in x with same period. As is well known, these can be regarded as
stationary ergodic random fields (cf. Example 1 of Chapter V.3.1 of [3]). There-
fore this case also satisfies our conditions. In this case, the structure of the
spectra were studied by serval authors (for example [4], [5], [6]).

3. Density of states

In this section, following [13], we introduce the density of states and discuss
some properties of this. Let W={w: [0, oo)-*-/^: continuous, «;(0)=0}
endowed with the topology of uniform convergence in the wider sense and Pw the
Wiener measure on W. We consider a probability measure P on (Ω, <2χΞF2)
satisfying (A.I), (A.2) and the following:

(A.4) Ewxp Γexp(r f' V.(w(s))ds\\< oo

for some r > 2 and any ί>0,

(A.5) P(db: C\ V(=Kd[jC(Rd)) = 1,

where Ewxp is the expectation with respect to the product measure PwxP.
For each rectangular domain D of the form Π(—a jy cij) with <Zy>0, let

(L(by V)Di D(L(b, V)D)) be the Friedrichs extension of the symmetric operator
(L(b, F), θi(D)). Let e-tL«>>v)»(x,y)y (t,x.y)^(0, oo)χDxD be the integral
kernel of the semigroup e~tL(btV)n generated by L(b, V)D: for any/eL%D),

Then, by using the arguments in [15] and [16], we obtain the following:

Lemma 3.1. e~tL(Jf'v)v(x, y) is expressed as

(3.1) = J5"feJcp(-» Σ (' b'(x+w(s))odw'(s)- [' V(x+w(s))ds)
[_ \ j=l JO Jθ /

K l \dt2

) e >

2πt I

where TD(x)=inί {s>0: xJt-w(s)^D}. e~tL(bfV)^(x,y) is jointly continuous in
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(t,x,y)e(0, oo)χDxD.

From the condition (A.4) and (3.1), we see that e~tL(b'v)ε> is a Hilbert-
Schmidt operator on L\D) for P-almost all (b, ω) ̂  Ω. Thus

i, V)D) = τdisc(L(t>, V)D) = :

We set

for \^R. This is an increasing function of λ. Let nDtbtV(dX) be the measure
determined from NDtbιV(\). The Laplace transform £(nΌ%btY, t) of the measure

% A F , 0 = t e-»nDtbtV(d\) = -τ^rtr[e-tL«>v)»] .
JR \D\

By using Lemma 3.1 and Mercer's expansion theorem, we have

Ά*DΛ.V> t) = -~ \D *-'L(* v M*, χ)dx.

Furthermore we use (3.1) and the stochastic version of Stokes' theorem (cf.
[8], [17]). Then we obtain the following:

where

and

[db(x+*) = Σ (' ([\db)j,k(x+uw(s))2udu)odSjιk(s)
Jo ' < * Jo \Jo /

-1 [
2 Jo

([8], [17]). Now we remark that (db, V) is a stationary and ergodic random
field. Therefore, by the same argument with the case of db = Oy we obtain the
following existence result:

Theorem 3.1. If a probability measure P on (Ω, <2χ3r

2) satisfies (A.I),
(A.2), (A.4) and (A.5), then for P-almost all (b} ω) in Ω, the measures nDtbtV(d\)
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converge vaguely to a deterministic measure n(d\) as D->Rd {i.e. all the αy diverge

to + ° ° simultaneously). Moreover the Laplace transform ofn(d\) is given by

(3.3) JΓ(»,ί)

We call the measure n(dX) the density of states. Moreover we call the
increasing function N(\):=n((— oo, λ]) the integrated density of states.

In the following, we assume the condition (A.3). For any positive smooth
function/on Rd with compact support such that J f(x)2dx=l and for any bound-
ed Borel set A in R, let Ef(A> b, V) be the operator defined by

(Ef(A, b, V)g)(x) =f(x).(E(A, b, V)(f-g))(x)

for any g^L\Rd). Then as same as in the case of b=0 (cf. [3] Proposition VI.
1.3), we have the following:

Proposition 3.1. Let P be a probability measure on (Ω,,Sχ3ϊ^ satisfying
(A.I), (A.2), (A.3), (A.4) and (A.5). Then

(i) E/(A, b, V) is a trace class operator for P-almost all (b, ω).
(ii) n{A)=EeMEf{A,
(iii) supp n=Έ,.

Let Ωί be the set of all C"-differential forms b such that
is bounded for some positive number k depending on b. Then, by the argu-
ments in the proof of Theorem C.5.2 of [16], we obtain the following:

Lemma 3.1. For any b^ΓLi, V^Kd and bounded Borel set A of R, the
spectral projection E(A,b} V) of the operator L(b, V) has a jointly continuous
integral kernel E(A, b, V, x,y).

Let Q1 be the σ--field on Ωί defined by

By using Lemma 3.1 and Proposition 3.1, we obtain the following:

Proposition 3.2. We assume that a probability measure P is defined on (Ωί X
Ω2J £'X%) and satisfies (A.I), (A.2), (A.3), (A.4), (A.5) where (Ωx, Q) is replaced
by (Ωί, Q'). Then any bounded Borel set A, n(A) has the following expression:

n(A) = Ep[E(A,b,V,0,0)].

4. Asymptotic properties of the integrated density of states

In this section, we consider the asymptotic properties of the integrated
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density of states N(\) introduced in the last section. First we consider the
asymptotics of N(\) as λ / o o (cf. [3] Theorem VI.2.1, [13] Theorem 7.3).

Theorem 4.1. If a probability measure P on ( Ω ^ ί x ^ ) satisfies (A.I),
(A.2), (A.4) and (A.5), we have:

(4 i) a

Proof. By a Tauberian argument, we have only to show that

(4.2) lim-C(n,t)(2πt)<"2=l.

By using scaling property of the Wiener process in (3.1), we have

(4.3) X(n, i){2πt)d'> = Ew*p[H(t, wy by ω) \ w(ί) = 0] ,

where

H(t, w} b, ω) = exp(-it J' db(^/t*)-t (' V(y,/tw(s))ds\ .

We can easily see that

H(t,w,b,ω)->1 as

for PwxP( |«;(l)=0)-almost all (wyb,ω). Furthermore we can show that
{H(t), 0 < * < l } is uniformly integrable with respect to PwxP(-\w(l)=0). In
fact, for any

Ew*p[\H(t,w)\;A\w(l) = 0]

- y ί Γ V(y/ho(s))ds^\to(l) = θΎ'Pw(A\to(l) -

where r is the number in (A.4) and q satisfies 2/r+l/(/=l. By Remark 3.2
of [13] we can estimate as follows:

sup Ewxp\exp(-—t Γ V(y/tw(s))ds)\tυ(l) =
o</<i L > 2 Jo /I

<2d/2EWxplexp(r ^ V-(w(s))ds\].

This is finite because of (A.4). •

Secondly we consider the asymptotics of N(\) as λ \ —°°. The following
theorem is an extension of Theorem III.6 of [14] (cf. Proposition VI.2.2 of [3],
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Theorem 7.1 of [13]).

Theorem 4.2. We assume that a probability measure P on (C
satisfies (A.I), (A.2), (A.5) and the following:

(A.6) V is a continuous Gaussian random field with nonzero covariance γ.
(A.7) Random fields db and V are independent, or there exists a positive

number δ0 such that for any positive 8 smaller than δ0, there exists λ δ > 0 satisfying

Then we obtain

λ2

Proof. By a Tauberian argument, we have only to show that

{2πt)<"2X{n, ί ) < ^ x ί > [ e x p ( - £ F(w(ί))&)|w(ί) = o

mt+— [* [' 7(zυ(s)-iv(r))dsdr

The upper estimate is entirely same as in the case of b—0: if m is the mean

of V(x),

w(t) =

Hence, we have

( 4 5 ) Si
For the lower estimate, we use methods of the functional analytic approach:

let .Di and D2 be disjoint rectangular boxes of the form

A = Π [ f l J , * ί ) , a)<b).

Then, by using the min-max principle, we can see that

where, for any finite union B of rectangular boxes, L(b> V)B is the Friedrichs
extension of (L(b, F), Co(B°)) and B° is the interior of B. Therefore, by
Kirsch and Martinelli's argument [9] (cf. § VI. 1.3 of [3]), we see that
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where D=[—\> %)d. We take any positive δ less than min{|, δ0}. Then, by

using the min-max principle furthermore, we have

<8}] expf—ί sup v).

If we assume P(inf Σ{L(b){lx\<δ})<\s)=l> we have

-£(n, t)>e-tλsEp[exp(-t sup v)~\.
L \ uι<δ /J

Therefore, we obtain

(4.6) Hm-ίlog^n, ί)>ljm\logEp\exp(-t sup F)Ί .

If we assume that db and F are independent, we have

Ijm \ log X(n,t)

>Iim -V log Ep[tr[e-tL(b)[\*\<s)\]+\\m \ log £PΓexp f - ί sup r ) l .
t/°* r *f°> v L V ι*ι<β / J

By using Jensen's inequality and Lebesgue's convergence theorem, we see that

lim -V l og ^p[tr[β-'WίW<βj]] ^ ^ Γ l i m -L log tφ-'LW{i*κβj]l = 0

Therefore, we obtain (4.6) again. We estimate the right-hand side of (4.6).

Now, we may assume that the mean of V(x) is zero. We divide the random field

F a s follows:

V(x) = E[V(x) I V(0)]+(V(x)-E[V(x)

E[V(x) I V(0)] and V(x)-E[V(x) \ F(0)] are independent and

Therefore, we can estimate as follows:

lim — logJϊΓexpf—t sup F(*)Y|
ί/ 0* r L V ι*ι<β /J

- ί sup
uι<δ

-£[F(«) I F(0)])Y|
/J
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Now, since F(0) is a 1-dimensional Gaussian random variable, we can easily

see that

On the other hand, by using Jensen's inequality, we have

Jim -i- log E[exp(-ί sug (V(x)-E[V(x) | F(0)]))]

> - fim y^[sug (V(x)-E[V(x) | F(0)])]

The right-hand side of this inequality is zero, because

(V(x)-E[V(x) I F(O)])Ί| <2£Γsup | V(x) |Ί<co .
S Jl LuKs J

lim — log X(ny t) > inf γ(x)

By all this, we have

I

t

Since δ is arbitrary, we have

(4.7) lim I- log Λ(n, t)>A . •
*/<*> t Z

ACKNOWLEDGEMENT The author would like to express his gratitude to

Professor S. Kotani for many helpful advices.

References

[1] J. Bellissard: K-theory of C*-algebras in solid state physics, Statistical mechanics

and field theory: mathematical aspects. Proc. Groningen 1985, ed. by T.C. Dorlas,

N.M. Hugenholtz and M. Winnink, Lecture Notes in Physics 257 (1986), 99-

156, Springer, Berlin, Heidelberg, New York.

[2] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon: Schrδdinger Operators,

Springer, Berlin, Heidelberg, New York, 1987.

[3] R. Carmona and J. Lacroix: Spectral Theory of Random Schrodinger Operators,

Birkhauser, Boston, 1990.

[4] B.A. Dubrovin and S.P. Novikov: Ground states in a periodic field . Magnetic

Block functions and vector bundles•, Soviet Math. Dokl. 22 No.l (1980), 240-244.

[5] B. Helffer and J. Sjόstrand: Analyse semi-classique pour Vaquation de Harper

(avec application a de Γequation de Schrodinger avec champ magnetique), Memoire

de la Societe Mathematiques de France, n° 34, Supplement au Bulletin de la S.

M.F. 116, (1988), fascicule 4.

[6] B. Helffer and J. Sjδstrand: Equation de Schrodinger avec champ magnetique et



RANDOM SCHROΌINGER OPERATORS 187

equation de Harper, Schrδdinger operators, ed. by H. Holden and A. Jensen,
Lecture Notes in Physics 345 (1989), 118-197, Springer, Berlin, Heidelberg,
New York.

[7] N. Ikeda: Probabilistic methods in the study of asymptotics, Ecole dΈte de
Probabilites de Saint-Flour XVIΠ-1988, ed. by P.L. Hennequin, Lecture Notes
in Mathematics 1427 (1990), 195-325, Springer, Berlin, Heidelberg, New York.

[8] N. Ikeda and S. Manabe: Integral of differential forms along the path of diffusion
processes, Publ. RIMS, Kyoto Univ., 15 (1979), 827-852.

[9] W. Kirsch and F. Martinelli: On the density of states of Schrδdinger operators with
a random potential, J. Phys. A. 15 (1982), 2139-2156.

[10] A. Klein and J.F. Perez: On the density of states for random potentials in the
presence of a uniform magnetic field, Nuclear Physics B251[FS13] (1985), 199-211.

[11] H. Kunz: The quantum Hall effect for electrons in a random potential, Commun.
Math. Phys. 112 (1987), 121-145.

[12] H. Matsumoto: On the integrated density of states for the Schrδdinger operators
with certain random electromagnetic potentials, J. Math. Soc. Japan 45 (1993),
197-214.

[13] S. Nakao: On the spectral distribution of the Schrδdinger operator with random
potential, Japan J. Math. 3 (1977), 111-139.

[14] L.A. Pastur: Spectra of random self adjoint operators, Russ. Math. Surv. 28
(1973), 1-67.

[15] B. Simon: Functional Integration and Quantum Physics, Academic Press, New
York, 1979

[16] B. Simon: Schrδdinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526.
[17] Y. Takahashi and S. Watanabe: The probability functions (Onsager-Machlup

functions) of diffusion processes, Stochastic integrals, Proc. LMS Durham Sympo-
sium, 1980, ed. by Williams, Lecture Notes in Mathematics 851 (1981), 433-463.

[18] F. Wegner: Exact density of states for lowest Landau level in white noise potential,
superfield representation for interacting systems, Z. Phys. B51 (1983), 279-285.

Department of Mathematics
Faculty of Science
Himeji Institute of Technology
Shosha 2167, Himeji
671-22 Japan






