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1. Introduction

In this paper, we investigate properties of spectra of random Schrédinger
operators with magnetic fields. In particular we study the asymptotics of the
density of states. On a probability space (2, P), we consider a 1-form valued
random field b=31¢_; bi(x)dx’ (0 EQ, xER?) and a real valued random field
V=V,(x) on R’ We assume that the pair (db.(x), V.(x)).cp is stationary and
ergodic on R?. We assume further conditions on & and V later. On the space
L*(R%) of complex square integrable functions on R?, we consider the operator
formally written as follows:

31 (2

1
L, V) = T2 A Vow

—ibj®))+Vu(x)  (=v=1).

Under the assumptions, as same as in the case of b=0 (cf. [1]), it is easily seen
that the spectra of L(b,, V,) are independent of w except for the elements of
a P-measure null set. Our purpose is to show that several properties of random
Schrodinger operators without magnetic fields are extended to our case. In
particular we consider the asymptotics of the density of states at the infimum of
its support. As same as in cases of Pastur [14] and Nakao [13] (cf. Chapter VI of
[3]), the problem can be reduced to study the asymptotics of #— oo of the Laplace
transform of the density of states, i.e.,

[ emian) = (ZL”J“ EWxP[exp(——-i [ db

(1.1)

—j: V(w(s))ds) w(t) — o] |

where w is a d-dimensional Wiener process starting at 0, [} db(x) is a stochastic
integral of the 2-form db (for the exact form, see (3.2) below) and E"*? is the
expectation with respect to the product measure of P and the Wiener measure.
One of difficulties of these problems comes from the fact that the right hand
side of (1.1) is an oscillatory integral (cf. [7]).
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In this paper, we assume that V' is a Gaussian random field. Then, for
the asymptotics, the effect of V' is much stronger than that of . Therefore,
we can show that the leading term of the asymptotics is same as the result of
Pastur [14] (see Theorem 4.2 below).

The organization of this paper is as follows. In Section 2, we give a
setting to consider random Schrédinger operators with magnetic fields and
discuss fundamental results: we show that the spectral structure is determined
with probability one. Furthermore we give examples which have been studied.
In Section 3, we show the existence of the density of states and a few properties
of this. In Section 4, we investigate asymptotic properties of the integrated
density of states.

2. Random Schrodinger operators with magnetic fields

In this section, following [3], we give a setting to consider spectra of
random Schrodinger operators with magnetic fields and discuss fundametal results.
Furthermore we give examples which have been studied.

Let Q,=TYR? T*R’) be the space of all C'-differential forms endowed
with the topology of uniform convergence in the wider sense, F,=%$(Q,) the
topological o-field of €,, and & the sub o-field of &, defined by

@={BeF,; bB, db—db'=>b'B}.

Let L(R?) be the set of all real valued measurable functions on R?. We take a
measurable space (Q,, ;) satisfying the following two conditions: i) there is a
map V from Q, to L(R?) such that a map Q,X R?!>S(w, x)— V(w, x)=: V (x)ER
is &F,X B(R?)-measurable, ii) for any xE R?, there is a measurable transforma-
tion T'; on Q, such that V; (y)=V,(x+y). An element V of L(R?) is said to
be in K;, when d >3,

lim sup glx—-y[Sa [x—y|* 4| V(y)|dy =0.

a\,0 zERd

when d=2,

limsup | log(1/[s—y])|V(3)ldy = 0.

a0 zeR?

V is said to be in K*° when VX, is in K, for all bounded domains D. We say
V is in K; when the positive part V,=max{V, 0} is in K}° and the negative
part V_=max{—V, 0} is in K, (see [16]). For any (b, V)EQ, X K,;, we define
a selfadjoint operator L(b, V') on L%(R?) by the unique self adjoint extension of

L, V)f= —= 3

23 l(——zb’) FHVF  on C(RY)
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(cf. [16] Theorem B.12.1). Setting Q:=Q, X Q,, we consider a family of opera-
tors {L(b, V.,); (b, ) EQ} under a probability measure P on (Q, GX F,) satisfy-
ing the following conditions;

(A.1) (stationarity) P(T,B)=P(B) for any BEGXF, and xE R’

(A.2) (ergodicity) If BEGX T, satisfies P(T,BOB)=0 for any xER",
then P(B)=0 or 1. '

(A.3) P(VeK,NL,)=1.

In (A.1) and (A.2), T, acts on Q, by (T.0)(y)=5b(x+7y). For any operator L, let
(L), Z,5(L), Z4(L) and =, (L) be the spectrum, the point spectrum, the absolu-
tely continuous spectrum and the singular continuous spectrum, respectively,
of L.

Then we obtain the following (cf. [3] Proposition V.2.4):

Theorem 2.1. If a probability measure P on (Q, GX F,) satisfies (A.1), (A.2)
and (A.3), then there exist closed subsets 3,3, %, and =, of R such that for
P-almost all (b, ») in Q, we have Z(L(b, V,))=2,Z,,(L(b, V,))=3,,, Zu(L(b, V)
=3, and 3, (L(b, V,))=2,.

Proof. Let E(A,b, V), AEB(R), be the resolution of the identity of the
operator L(b, V') and

E(, b, V)=E,(+, b, V)+E.(*, b, V)+E.(-,b, V)

its Lebesgue decomposition. To prove the theorem, we have only to prove
that for any A, A€ B(R) and §=pp, ac and sc,

{(b, ) EQ; trEy(A, b, V,)EA} =: B

is a T,-invariant element of GX<¥,. But, by the well-known method for the
b=0 case, we can prove that this B is a T,-invariant element of ;X <, (cf.
88V.2 and V.3 of [3]). Then, by the gauge invariance of the operator L(b, V),
we see that this B is an element of §X F,. [

Similarly, we have the following theorem by the same method to prove
the corresponding theorem for the b=0 case ([3] Proposition V.2.8):

Theorem 2.2. Let P be a probability measure on (Q, GX<F,) satisfying
(A.1), (A.2) and (A.3). Then:

1) Zus(L(b, V))=0, P-a.s.

ii) If the spectral multiplicity of the operator L(b, V') is P-almost surely finite,
then, for each \ in R, \ is P-almost surely not an eigenvalue of L(b, V).

Before closing this section, we give examples which have been studied:
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ExaMpLE 2.1. We assume that db is a deterministic constant magnetic field
and the scalar potential V' is a stationary ergodic random field. This case
satisfies our conditions (A.1)-(A.3). When d=2, this is the object of the quan-
tum Hall effect and there are many works concerning about this ([1], [11] and
so on). We also have results on the structure of a density of states ([10], [18]).

ExamPLE 2.2. We assume that db(x) and V(x) are deterministic periodic
functions in x with same period. As is well known, these can be regarded as
stationary ergodic random fields (cf. Example 1 of Chapter V.3.1 of [3]). There-
fore this case also satisfies our conditions. In this case, the structure of the
spectra were studied by serval authors (for example [4], [5], [6]).

3. Density of states

In this section, following [13], we introduce the density of states and discuss
some properties of this. Let W={w:[0, c0©)—>R%: continuous, =(0)=0}
endowed with the topology of uniform convergence in the wider sense and P¥ the
Wiener measure on W. We consider a probability measure P on (Q, GXF,)
satisfying (A.1), (A.2) and the following:

(A4) EV** I:exp<r (; V_(w(s))ds)] <oo
0
for some r>2 and any >0,
(A5) P(db:C, VeK,UCRY)) =1,

where E"*” is the expectation with respect to the product measure P¥ X P.
For each rectangular domain D of the form II(—a;, a;) with a;>0, let
(L(b, V)p, D(L(b, V)p)) be the Friedrichs extension of the symmetric operator
(L(b, V), C3(D)). Let e *®Vin(x, ), (¢, x, y)E(0, )X DX D be the integral
kernel of the semigroup e=**®V)» generated by L(b, V),: for any f € L(D),

(110 £) (x) = sb et Vn(x, v) f(y)dy .

Then, by using the arguments in [15] and [16], we obtain the following:
Lemma 3.1. e **®Vin(x, y) is expressed as

e L V)p(x, 3)

31 = EW‘:exp(—i é S: bf'(x—i—w(s))ociw"(s)——s: V(t-(s))ds)
X Xiepa>n x—|—w(t)=y] <2L7rt>m CXP(—%> ,

where 7p(x)=inf {s>0: x+w(s)ED}. e *>Vo(x,y) is jointly continuous in
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(t, %, y)E(0, o)X DX D.

From the condition (A.4) and (3.1), we see that e *¢")» js a Hilbert-
Schmidt operator on L*(D) for P-almost all (b, o)€Q. Thus

E(L(b’ V)D) = Edisc(L(b: V)D) =: {>\4D,b,V,l SXD,b,V.zS"’/—"X’}-
We set

1

ND,b,V(A‘) = (D]

8475 Ao v, i SN}

for A€ R. This is an increasing function of A. Let 7, ;,(d\) be the measure
determined from Np; »(A). The Laplace transform L(n,;,y, t) of the measure

nD,b’V, 1S

L(nppv t) = SR e Mnp s v(AN) = I—;I‘tf [e~#£®Vp]

By using Lemma 3.1 and Mercer’s expansion theorem, we have

L(np,sy, t) = ﬁ SD e~V )n (%, x)dx .

Furthermore we use (3.1) and the stochastic version of Stokes’ theorem (cf.

[8], [17]). Then we obtain the following:

Lo t) = 5 ()" [, B exp(~ [\ abter-t0)

(3.2) |D[ \2xt
_S: V(x—l-w(s))ds)xhpmm w(t)=0:|dx ,
where
([ dbat) = = S: (S:(db)j,k(x—l—uw(s))Zudu)ode,k(s)
and

Salt) = 5 [ (@/6)edwt ()~ (9)odwi(s)
0
([8], [17]). Now we remark that (db, V) is a stationary and ergodic random
field. Therefore, by the same argument with the case of db=0, we obtain the
following existence result:

Theorem 3.1. If a probability measure P on (Q, G X)) satisfies (A.1),
(A.2), (A.4) and (A.5), then for P-almost all (b, w) in Q, the measures np; ,(d)\)
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converge vaguely to a deterministic measure n(d\) as D—R? (i.e. all the a; diverge
to + oo simultaneously). Moreover the Laplace transform of n(d\) is given by

33) Loty = ()" Bl exp(—i [ ) v as) wiey = 0]
2nt 0 0
We call the measure n(d\) the density of states. Moreover we call the
increasing function N(\):=n((— oo, \]) the integrated density of states. '
In the following, we assume the condition (A.3). For any positive smooth
function f on R? with compact support such that [ f(x)’dx=1 and for any bound-
ed Borel set A in R, let E/(A4, b, V') be the operator defined by

(Es(4, b, V)g)(x) = f(%)-(E(4, b, V)(f-8))(x)

for any g L*(R?). Then as same as in the case of b=0 (cf. [3] Proposition VI.
1.3), we have the following:

Proposition 3.1. Let P be a probability measure on (Q, GXF,) satisfying
(A.1), (A.2), (A.3), (A4) and (A.5). Then

(1) Eq(A4,b,V)is a trace class operator for P-almost all (b, w).

(i) n(A)—E[elE/(4, b, V)S]]

(iii) supp n=73.

Let Qf be the set of all C~-differential forms 5 such that (1+4|x|)~#|VZ(x)||
is bounded for some positive number & depending on 4. Then, by the argu-
ments in the proof of Theorem C.5.2 of [16], we obtain the following:

Lemma 3.1. For any b€Q{, VEK, and bounded Borel set A of R, the
spectral projection E(A,b, V) of the operator L(b, V) has a jointly continuous
integral kernel E(A,b,V, x,y).

Let @' be the o-field on Qf defined by
G'={BNQi; BESG}.
By using Lemma 3.1 and Proposition 3.1, we obtain the following:

Proposition 3.2. We assume that a probability measure P is defined on (Qf X
Q,, @' X F,) and satisfies (A.1), (A.2), (A.3), (A.4), (A.5) where (Q,, Q) is replaced
by (21, G"). Then any bounded Borel set A, n(A) has the following expression :

n(A) = E?[E(4,b, V,0,0)].

4. Asymptotic properties of the integrated density of states

In this section, we consider the asymptotic properties of the integrated
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density of states N(\) introduced in the last section. First we consider the
asymptotics of N(\) as A, 7o (cf. [3] Theorem VI.2.1, [13] Theorem 7.3).

Theorem 4.1. If a probability measure P on (Q, GXF,) satisfies (A.1),
(A.2), (A.4) and (A.5), we have :

m N 1
A oo )\’dIZ i " .
r( 24 1)(2n)

#.1)

Proof. By a Tauberian argument, we have only to show that
(4.2) ltl\I(l)'l L(n, t)2nt)r=1.
By using scaling property of the Wiener process in (3.1), we have
(4.3) L(n, t)(2=t)"* = E"*P[H(t, w, b, ») |w(1) = 0],
where
1
H(t, w,b, o) = exp(—it | db(v/in)—1t Sl V(v/fu(s))ds )
0 0
We can easily see that
H(t,w, b, 0)—1 as \0

for P" X P(-|w(l)=0)-almost all (w, b, w). Furthermore we can show that
{H(t), 0<<t<1} is uniformly integrable with respect to P¥ X P(+ |w(1)=0). In
fact, for any A€ B(W),

EY*[|Ht, w)|; Alw(l) = 0]
SEWXP[exp(—%t S: 7 \/Zw(s))ds)’w(l) — 0]2" PY(A]w(1) = 0),

where 7 is the number in (A.4) and ¢ satisfies 2/r+1/¢g=1. By Remark 3.2
of [13] we can estimate as follows:

sup EWXP[exp( . S: V(y/7u(s))ds ) (1) =0]

o<t
/:

SZ"”EW"PI:exp (r sl ’ V_(w(s))ds>] .
0

This is finite because of (A.4). []

Secondly we consider the asymptotics of N(A) as ANy—oo. The following
theorem is an extension of Theorem IIL.6 of [14] (cf. Proposition VI.2.2 of [3],
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Theorem 7.1 of [13]).

Theorem 4.2. We assume that a probability measure P on (Q, GXF)y)
satisfies (A.1), (A.2), (A.5) and the following :

(A.6) V is a continuous Gaussian random field with nonzero covariance .

(A.7) Random fields db and V are independent, or there exists a positive
number 8, such that for any positive § smaller than §,, there exists Xy>0 satisfying

P(inf Z(L(B)ys1<a)<Ap) = 1.
Then we obtain

et
29(0) ’

Proof. By a Tauberian argument, we have only to show that

(4.4) Jim % log N(\) =

.1 v(0
};rgt—zlog L(n, t) = (T)

The upper estimate is entirely same as in the case of 5=0: if m is the mean
of V(x),

2ty L(n, t)SEW”[exp<— (] V(w(s))ds)

w(t) = 0:|

=Ew[exp(—mt+% S: S: ¥(w(s)—w(r))dsdr

w(t) = 0]
tZ
Sexp(—mt—}—?'y(O)) .
Hence, we have
— 1 0
(4.5) }1/12 7 log L(n, t) S—(Zl .

For the lower estimate, we use methods of the functional analytic approach:
let D, and D, be disjoint rectangular boxes of the form

d . : . .
D; = Jl;I1 [a;’ bj), a;<<bj.
Then, by using the min-max principle, we can see that
tr[etE® V)b, 0] > tr[e~ OV 0] 4-tr[e~ GV )n,] |

where, for any finite union B of rectangular boxes, L(b, V), is the Friedrichs
extension of (L(b, V), C5(B°)) and B° is the interior of B. Therefore, by
Kirsch and Martinelli’s argument [9] (cf. § VI.1.3 of [3]), we see that
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L(n, t)>E*[tr[e~t2®:V0]]

where D=[—%, $)*. We take any positive § less than min{}, §;}. Then, by
using the min-max principle furthermore, we have

tr[e L& VIp] > tr[e V) xi<s)]| > tr [e 2P y2i<8)] exp (—t sup V) .
121<8

If we assume P (inf Z(L(0)(,1<5)<As)=1, we have

L(n, t)>e™E? [exp(——t sup V):I .

[21<8

Therefore, we obtain

(4.6) }_1/1_2 tl—z log -L(n, t) 2’l_i/1_2 % log E”[exp(—t sup V)] .

121<8

If we assume that db and V" are independent, we have
lim 1 log -L(n, t)
t e 2

>lim L log EP[tr[e~*® yz1<8)]] 4 lim 1 log E"[exp (—t sup V):I .
tyoo f2 1o g2

121<8

By using Jensen’s inequality and Lebesgue’s convergence theorem, we see that
lim 1 log Ef[tr[e~*® ps1<8)]] > EF [m 1 log tr[e‘”-"”uzl<8)]] =0
i f2 the 2

Therefore, we obtain (4.6) again. We estimate the right-hand side of (4.6).
Now, we may assume that the mean of V(x) is zero. We divide the random field
V as follows:

V(x) = E[V(%) [ V(0)]+(V(x)—E[V(x) | V(0)]) -
E[V(x)| V(0)] and V(x)—E[V(x)| V(0)] are independent and

E[V(%)| V(0)] = %V«» .

Therefore, we can estimate as follows:

11m —log £ l:exp( —t sup V(x))]

tpe 1218
L —tsup Y*). ]
>}1/r2 log E [exp( t S}lg 2(0) V(O))

+1im ? log E[exp(—t sup (V(x)— E[V(x) | V(0)) ] .
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Now, since V'(0) is a 1-dimensional Gaussian random variable, we can easily
see that

lim % log E[exp(—t sup %V(O))] > inf ¥(x/27(0) .

On the other hand, by using Jensen’s inequality, we have

lim L tog B [exp(— sup (Vo) V) 710D

t poo

> 1% LB up (Vi) E V) 710D

The right-hand side of this inequality is zero, because

‘E[ﬁ?g (V(x)—E[V(x)] V(O)])]’ gzz«:[ls:llg V(%) |]< co .

By all this, we have

.1 . 2
lim —-log -L(n, £)> inf 7(x)*/27(0) .

Since § is arbitrary, we have

4.7)

.1 0
}%:?log L(n, t)z%. O
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