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Introductien

The most fundamental distribution of the exact sampling theory
in normal multivariate analysis is the so-called “Wishart’s distribution”,

namely the joint distribution of the %k(lc+1) central sample moments

of the second order formed by a random sample of size » drawn from
a k-variate normal population. This distribution was obtained by
R. A. Fisher®™ in 1915 for the special case when %k =2, and the deriva-
tion for the general case was first given, in 1928, by Prof. John
Wishart®, and later various methods of derivation were given by various
authors®,

The important statistics in normal multivariate theory are the
classical inter-class correlation coefficient, multiple correlation coeffi-
cient, partial correlation coefficient, and the Hotelling’s generalised
Student’s ratio T. The exact sampling distributions of these statistics
were derived on the basis of Wishart distribution, and they are well-
known and now are classical.

In 1933, Prof. M. S. Bartlett® considered in detail the processes of
derivations of the sampling distributions of some multivariate statistics
from the Wishart distribution and established the ¢ Decomposition
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Theorem ” of the Wishart distribution.

Later, in 1947, Prof. G. Elfving® considered the problem of deducing
the sampling distributions of the classical statistics in multivariate
analysis in a systematic way, and by the use of the geometrical inter-
pretations of the results of the normal regression theory, he succeeded
in the systematic derivations of the sampling distributions of the
multiple correlation coefficient, Hotelling’s T2, Bartlett’s decomposition
theorem and some others, but only in the special cases when the null
hypotheses are true.

Prof. G. Elfving’s fundamental idea was as follows: if we consider
the conditional distribution of some variables z,,...,2,, for instance,
of the k-dimensional normal distribution, fixing the other variables
Ly4ps-e0 s Xy, then the regressions of «,,...,2, on the fixed variables
Ly41 000 %, are all linear, and therefore the results of the theory of
normal regression are available effectively.

The purpose of this paper is to derive the sampling distributions
of the above mentioned classical statistics appearing in the multivari-
ate analysis in general cases, following the idea of the conditional
distributions. The diagram shown below may help to understand the
rough idea on the order of derivations and the methods used.

N

Normal .regression theory @
in k-variates {case @ Normal regression theory
® in univariate case

Normal regression theory in two-variates case
@\/

@ Wishart distribution

® Multiple correlation coefficient

® Inter-class correlation coefficient

@ Hotelling’s 7°2

(® Partial correlation coefficient

(® Bartlett’s «“ Decomposition Theorem ”

The results which will be presented in the following are all well-
known, but there seems to be some interest in the method used from
the methodological point of view.
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§1. Wishart Distribution

The arguments which. will be presented in the following are
essentially due to Prof. D. Fog’s idea™,
We shall consider the k-dimensional row vector variate

g:‘(xlixgy"’lxlc)

which follows the hon-singular k-dimensional normal distribution with
the mean vector

m:(ml,mz,...,mk)

and the variance-covariance matrix

A Apg eeres Ay
A — le A.22 cences Aﬁk . Where A'ij — )\,” .
)\‘“ )\’52 ...... Nk

The population probability distribution has the probability element
Pz = 2oy A - exp |~ (r—m) A G —mY |dy,  (L.D)

where the symbol dy is the abbreviation of the differential dz.dz, ---
dz,, and ' denotes the transposed vector of g, and the capital Greek
letter, as for example A, corresponding to the bold face letter, A,
denotes the determinant of the corresponding matrix.
If we denote the conditional frequency function of =z,, given
Xy, e, X, DY
P (@12, 25, o0, )

and the conditional frequency function of x, given «,,...,%,, by
P (@ |3, Ty oee )
and so on, then we have
P(x) dr = P | @y 5 -0 5 2) A1 D(@o | @ 5 o0y B ATy o0
(%, | 2) A2y - () A2, 1.2)

where, of course, p(x,) is the marginal frequency function of x, .
Our purpose,of this section is to obtain the joint distribution of -

the following —é—lo(lm— 1) statistics:
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n _ n _ _ 7 — _
mllzwz_l(xm —Z) mlzzg(xlm"xl)(xzw 2 ) mlk:ag(xlw ~Z1 Lo — %)

.............

n
s M= :/;:1(3724» —Z)(Xpu— %)

mzzzoﬁgl(xzm “572)2 ’
(1.3)

n
My = MEL (xlw_‘ilc)z ’

where
o = 1, 2, e, M

Ly = (xlm s Lop sttty xlcm) ’

is a random sample of size # from the population being considered.

Put
V' nZ, Ty
Yu T2 .
: = H-. N i=1,2,-+,k,

(1.4)
Yin—- Lin
where the matrix H is the well-known ¢ Helmert’s orthogonal matrix ”,

ie.
1 1 S 1 1
v'n v'n V'n V'n V'n
‘/ n—1 _ —1 =1 —1 —1
n  VvVan—1) V'n(n-1) van—1)  Vvu(n—1)
H= n—2 -1 .. —1 —1 ;
0 n—1 V'(n-1\n-2) V' (n—1)n—2) 1V (n—1)(n—-2)
1 —1
O O O ............ /‘/ 2 |/2T]:
(1.5)
then it is clear that
(1.6)

nm=1
My ; zgywﬂjwr 1<J 47=1,2,-,k.
If we consider the conditional probability distribution of

Nis Voooreeee s Vi1
given y,, where the column vector y, denotes the (#—1)-dimensional

column vector
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Y

yt . ’ 7:=1,2,...,k,

Y, n—1"

and apply the following orthogonal transformation to y,,---, ¥._., then
it follows the result, i.e.,

Ell 521 Ek—lrl
1 1
= Yiy ) Y5y 5 Y21,
yl — E y(z)_: E g teeree y%_l: E Iy (1- 7)

|

: 1

1 1 1 J
yg,;—l ?/&;3;—1 y&c—)lyn-—l

where

n—1 n—1
Egl=§y%mv fil‘='1"2ywykdy 7::1,2, "'9’5—'1, (1-8)

gkl o=1

and the matrix of tranformation is

Y1 _ Yo
VYL + oo + Yy VUi + - Uy
J Yog+ o+ +?/%m—1 Y1 Ys2 vesees
Yin+Uia+ 0 Vi V(W2 + o +Y2y) Wt o Y20 y)
H, = 0 N/ Vst = +Uima
Yz +Uis+ = + Yo

0 0
Yin—2 Yion—1 )
VUa+ o Ui _ VUa+ o Ak
Y Yim—2 _ — Y Yen—
VWt o +Ue) What oo + 02 ) VW o + Y)W+ o +Yy)
— Yuolrm—2 . —YroYrm— (1.9)

l/(yli2+ A +y7‘§m—1) (y§3+ tee +y1%m—-1) l/(yl%2+ SRR y%m—-l)(ylzcl""' b +yl§m-1)

00 000 0000000000000 a0000000000100000000000000 0000000010000 00080c00ttesancssccssensonsonses

) —
Yk Yron—2Ypm—1

2 2 2 2 2
ykm—2+ymm-—1 l/(yk»n—2+yk:n—l)zlkrn—l -
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which we call the “generalized Helmert’s orthogonal matrix ” for the

time being.

Next, consider the conditional distribution of

given y,

(1) 4D
175 X2

and y,, and applying the orthogonal transformation of

which the matrix of transformation is

1 0 0
1
0 ygc—?l’Z . ygcl—)l.v."!
2 2 nH2 2 °
l/?/%:l—)‘uz + e +2/%1—)1: n—1 V%21,2+ Y

/

(12 (12
ykl—1,3 ) e T

1 1
_J§c2192y§c—)lr3

12 12
Iv Y1+ U213

. 1>2
Feeet Yil1m—1

z 2
‘/('!/k Y 1m—1)(y§cl—)1:3+'" +Zl§1—)1m~1

PR 2
0 0 /‘/ Jk1—1,4+ ~+ Yi1n e
2 2
Y3 +Jzu_1’4"‘ Y
0 0 0
0 0
1 (1D
?lsn—?lrn—z YiZ1m—1
1)2 | a2 ISe) 12
l/i’/nl—hz‘*‘ T [t T l/ykl—l,z"‘ T /e P

1 1
— s —)112 Y§2n—2

1 1
— .’I/(k—)lyzy%—?lm—l

2
l/('!/:c Lot YR 1,n—1XZ/§1~)1y3+"

1 Q
_y§c—)lﬂyk—)-l:n—9

(1)2 12 I 12 2
. +yk,1—)l:n—-1) l/(yk—1:2+' e +yk—)l;n—1)(yk-l: st HYElLna

1 1
_ygc—)l)l‘}y?c—)-])n—-l

V2 12 (1%
l/(ygcl—ly3+'"+yk—)1m—-]xyk Lat

cspcescescensoncescsscencee

2
1)
Yk-1,n—1

1/ (12 2
yk—lm-—z +yk—1m—1

12 ? 1?2 (17% (1)%
e 1) l/(ykl—)1:3+' oY UL FY1m 1)

R R R Ry R AL R LR T ®cesceasessencenses

1 el
Y oliRien

2
l/(Zlk Ln—2 +yk—1m-—1)y1(cl—)1m—-1

(1.10)

and we obtain the result
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(511 521 ‘flf—zq
";: 12 Ezz Ek—z.z ‘
yO =¥ | g R , ¥, = U (1.11)
Y2y U8B Y10t
where
k E%-—l:2 2 Jk—l,w ’
1 n—1 ' .
Ein= D YR, 1=1,2, 000, k-2 (1.12)
E;.—l’zw 2
We continue the similar processes until we attain the vector
gll
&1z
y%k—.l): Elrk-—l ’ (113)
| o
B

The notations here used will be easily understood by the continuation
of (1.8) and (1.12).

Since the transformations used were all orthogonal, it is clear
that

k k=1 .
My = 23 Elys My = D) Erabguy woreeeeee y My, = Enkn
a=1 @a=4
x1
=S, e ) My = Epfa
@=

My, = 5%1

where, of course,
B =yl + il + -+

The conditional probability element of y,, given y,,:-, ¥, is

n=1
<‘/27r+> exP[ 5 1 Z(yw - Blz?/zu""—Blk?/m)z]di’/ud'lllz“’d?hm—l’
1-23++k

20‘1 23...p@=1
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where o%,,..., and B, ¢t=2,---,k are the residual variance of y,,
given yz,...,yk and the partlal regression coefficients of y; on v,,
i=2,---,k in the population respectively. Therefore, the conditional
distnbutlon of y¢*~» has the probability element

1 Kt [_ 1 { 2 2 k—1)2 £—~1)2

(1/2?’—‘0‘1:23...,6) .exXp %%—za‘k n+ +Elyk-—1 +Yie o + - +y1,'n—

"‘2/312(5115214' +fpk-lfz,k—J_2613(5.11531+ +El:k—i§3r,c—2)'" - Zﬁyfufm
n—1

+§(18121/2a+ e +181kylcaﬂ)2}]d§11 dfw—ldy(h—l) (1’,071 1s (115)

Hence, we obtain the conditional joint distribution of &, «-+, 15 Erss
given y,, -, y,.,, ie.,

1 )k"l 1 { 2 2
<l/27—r 01.23...k 2 2 F<n k) n—k exp[ 20"1 23400k fat - R

2 01.93..-k
—2312(511’321 + e +Ehk-—1§2.~k—1) "'Znemfufm + :;Zi (1812.7/20& + e+ B}.kyku,)2}] X
(E)7 " dEy - dEyenad(EL), (1.16)

In a similar manner, we obtain the conditional distribution of &,, .-,

&1 given y,, ---, v,, successively ...... , and finally the marginal
distribution & ; i.e.,

1 )H 1 [__}_{ 2 g
<l/27t'0'2-34..-k 2% lHl[‘(n k+1>°‘"—"+1 exp 205351 at e

2 2:34...k
_‘2323(521531'*‘ tee +§2:k—-2§3;k——2) tee —Zﬂszzlgu + E(Bzayam'*‘ o +szykw)2}] X
(Easr) 2 g e dEged(E)s (1.17)

< 1 )k—z 1 exp [ 1 {«f N
V 2% 055 2"—;”211(”_1‘7"'2)0"—“2 . 31+ Bk—2

2 3-45...k
—2B34(Es1E g+ -+ +E3:lc—-3§4 53)trs —2B5.Eq1E + :gz (B3aYsa+ - +Bsk.'4/km)2}] x
(Bma) 7 gy o Epsd(Ehes) (1.18)
321

= <n~1> e (8T (). (1.19)
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Hence the absolute joint probability distribution of the %k(k-{-l)
variables

En Eip e Eri-z Evr1 e
521 Ezz """ Ez»k—z Ez:x-—l
E_:«u 532 ...... Ea:k-—z
BE=| !
fkl -
is given by the product of (1.16), (1.17), (1.18) and ------ (1.19).

If we denote the cofactor of the element )\,;; in the determinant A
of the moment matrix A by A,,, and denote the cofactor of the element
Ape Of Ay bY Ay, and so on, then it is well-known that

2 _A __A P
0'1-23---M—K“ ’ 1 = "'A—” ’ 74—-2»"'»’09
11 11
Ay Ay
02.34 L=A_’_‘9 zt:‘—Al 2 i =3, ,k
11-22 11-22

and so on. Whence it follows by easy calculations that

2 (BrolYga+ - + Buym)z

0‘123 & @=

+ '"1—— {5214‘ + &5 —2B53(Enréri+ o0 FEguaEaig) ot —2BuEnEn

O'z 34.0k
+m§=]1 (Bas¥sa+ * +:82k'ykw)2§
1 2
+O_—§T {5314‘ oo o 2B54(Esnn+ o +EsnsEpag) e —2BuEsén
“45.0k I
+ 2 Buathat = +Botha¥| (1.20)
+ ------------------------------------------------------------------------------------
1 . o Ay
+;2€ Ein MZL.Z-At—mu
Consequently, we have
2F ”_1 1 = Ay > n—k—2
7[10(7(4 l)zk(n 1)F<n 1) F(,n_k> exP( 21’1 1 mu (Elkgw -1° Skl)
2 2
(Emfg,kq eor EETL0E0) Ay oo A& AEgy e gy oo+ dEyy (1.21)

for the joint distribution of E.
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Since
m,y) =EB'E,
=5 (fucfz,k ) A Em)z ’

f\

M
M

and the Jacobian is

(M) _ O A Mgy y M) ... XMz, Mayy *=+ M)
B(E) aflu a(Ek—lrI’ -fm-m) a(fur 512’ ] Elk)
= zk'flk‘fg,k_lfg,k—z """ fz:{,szl ’

the joint distribution of M has the probability element
1 n—1
k(n—l) k(k 1), & ~
9 ” (n z>

where the symbol A-!.. M means

M 2exp<———é— AL M) aM, (1.22)

k
A,
> Ajm”

ij=1

From (1.22) we can easily derive the required Wishart distribution.

§2. Normal Regression Theory In Univariate Case.

In this section we shall summarize the main results in the normal
regression theory in univariate case somewhat more precise than those
which are seen in the literature'®.

Let
R 2 251
?12 Zgg evrer Zso
Z = : :
Rin Rop v Zsn

be a mxs matrix of fixed variables of rank s, then the sxs matrix
Z'Z is symmetric and positive definite, and consequently Z’'Z has a
symmetric and positive-definite square root®, which we denote by
(Z'Z)2., Further let the column vector

B

Be

B=| :

B,
be a vector of s unknown parameters, and let the vector variate
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X =

be a random sample of size » from a normal population N(0, +2), where
Xy ]
z, |

;|

is a system of independent observations and 5 is an error.
The least-square estimate b of B is the value of 8 which minimizes

S =y'n=(x -Z-BY(x—Z-F) (2.2)

considered as a function of x, and it is determined by the so-called
“normal equation”

Z'-(x—Z-b)=0, (2.3)
therefore we have
b=(Z'Z)y'.Z'x. (2.4)
Representing b in terms of the original variate 5, we have
b—B=(Z'Z)y'Z'y. (2.5)

In (2.1), substituting 8 by its least-square estimate b, we have
the residual variate

Yy=x—Zb=I-Z(Z'Z)'Z')-y (2.6)
where I denotes the unit matrix of degree x.
The two variates b and y are mutually independent in the

stochastic sense, because the row vectors of their coefficient matrices
are orthogonal with each other®, i.e.,

(I-Z(Z'ZYZ")(Z'ZY " Z'Y =0

Hence, the minumum value S, of S and b are mutually independent
stochastically, because

S,=yy=(x—Z-b)-(x—Z.b).

Next, we shall consider the case when the following partitions of
Z and B are given; i.e.,’

zll ...... 27‘1 z?‘+171 ...... zsl
zlz eev e z?‘z zr+1’2 ------ zsz
Z= (2122)’ Where Zl = ; ; N 22 — ; ; N
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and
ﬂl B.l Bf“
8= , where 8, =| | |, 8,=]| i
8, B, B,
The least-square estimate b,* of 8, under the statistical hypothesis
H,: B, =8, where 83 = g“ is a certain specified vector,
&
is the value of 8, which minimizes
S* = (x- Z:8,—Z,8) (x—Z,8,—Z,3), (2.7
and b,* is determined by the matrix equation
Z'Z,-b* =Z)-(x—Z,8)), (2.8)

consequently we have
b* =(Z'Z)'Z/-(x—Z,-8),
or represented by the original variate 5, we have
b*-p, =(Z'Z)Z/n+(Z)Z\)Z)/ Z,-(B,—BY) . (2.9)
The residual variate y*, corresponding to (2.6), is in this case
y*=x—-Z,b*—-Z,- 8
=I-Z(Z/Z ) Z) )gy+(I—-Z(Z)/Z,\)'Z\")Z,-(B,—B3). (2.10)

Hence y* and b,* are mutually independent in the sense of the pro-
bability, and consequently the minimum value S,* of S* under the
statistical hypothesis H, and b,* are mutually independent in the’
stochastic sense.

2.1 We shall first consider a special case when the orthogonality
condition
Z/Z,=0 (2.11)

between the two partitioned submatrices of Z holds. In this case, it
is easily seen that
Z(Z'Z)y'Z' =Z(Z)/Z)'Z'+Z(Z,)Z,)'Z,,
whence, from (2.6) aud (2.10), we have
Y =U-Z(ZVZ\)'Z))n--Z(Z,)Z,)'Z, -
=y*—Z(Z,)Z,)Z,) - n—Z,-(B,—83)
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sp, we obtain the following relation between y* and y; ie.,
V¢ =y+Z(Z,)Z,)'Z,) -y +Z,(B,—B%) . (2.12)

If we take as a new variate vector

&
t:{g }’
£s

where
& £ (6]

&= =(lezl)_%zll"79 {,= 2(22,22)_%22/”)9 fo= =U-y,
& {é}. [é‘n

and the (n—s)xn matrix U is chosen such that the square matrix
(Z/z)yz)
(Z,Z,y*z,

U

is an orthogonal one, then it is evident that the variance-convariance
matrix of ¢ is ¢I; i.e.,

C =

Bt =d"1I.
Since
£ =C-y,
and the matrix C was orthogonal, we have
n=0C"t,
ie.,
n = Zl(lezl)%éﬁ+Zz(zzlzz)héé‘2+U" ) (2.13)

and it is clearly seen that the three summands on the right-hand side
of the above equation are mutually independent in the stochastic sense.
From (2.5), (2.6), (2.9), (2.10) and (2.13), we have

b-B= (21’Z1)Jj§1 +(Zzlzz)—%§2 ’

y = U'.¢,.
bl*—Bl = (ZI,ZI)-%CI (2' 14)
y* = Z(Z,)Z,) %+ Ut + Z,- (B, —BY) .

The variates y and
- y=Z(Z,/Z,) Y, +Z,-(8,—BY)
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are mutually independent in the stochastic sence, and consequently
So=9'y and S*—S, = y*¥y*—y'y are mutually independent in the
stochastic sense, because
Sp¥ =8, = y¥y*—y'y = (y*—y)(y*—y).
The variate
o2 (Sg*—8p) = o y* — y)(¥*~y)
= 072,/ t, +(By— BY(Z, Z,) ¥, +(B,— 8Y Z, Z,- (B, — B9)

is distributed according to the so-called “non-central chi-square distri-
bution ” with degrees of freedom (s—r) and with parameter

V= oy (BB ZZ (=) (2.16)

If the statistical hypothesis H, is true, then A =0, and consequently
the distribution of the variate (2.15) is the ordinary chi-square distri-
bution of degrees of freedom of (s—r). The variate

o728y =07t y'y =072,

is distributed according to the chi-square distribution of degrees of
freedom of (n—s). Consequeutly, the statistic

— *__ aY( w¥ —
G:So* S, _ (¥ y),(y y) (2.17)
S, y'y
is distributed according to the G-distributiont® of degrees of freedom
of (s—r, n—s) and with parameter X\ defined in (2.16); i.e., its probability
element is given by

. 3 11(n51'+p> S R s
—_— —A
GXG =2 G 1<n—s><lIG (13¢) " 96 @19
—— -y ]_ pE—
2 2
If we take the statistic
*—- —_—
t :(1},73’,75'21/%—8, (2. 19)

where the notation (y*—y), denotes the i-th component of the vector
y*— 9y, then its distribution is the so-called “non-central t¢-distribution”;
i.e., its probability element is
<n—s>7%s .82
2 ) ¢°
f(t)dt =
V27 I

I‘<n_s+”_1 o4l

<%_s>g - >(8t)"<»n—__~§—+—t2> *oat, (2.20)

2
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where ;
s=Lz.-m0 (2.21)

If the hypothesis H, is true, then 8 =0, and consequently the distribution
of the statistic ¢ is the ordinary t-distribution of degrees of freedom
of (n—s).

2.2. The general case. When the orthogonality.condition (2.10)

does not hold, we can transform the fixed variables such that

Y =(V,Y)) :(zlza-[f; f;J ,

‘where P and R are r x7 and (s—7)x(s—7) non-singular square matrices
respectively and @ is a rx(s—#) matrix and

Y)Y, =09 (2.22)
Since
Yl =Z,\P Yz = ZlQ+ZzR ’
the condition (2.22) implies the relation
Z'ZQ+Z,)'Z,P—=0. (2.23)
Let
a=P1.8-P'QRB,, a,=R7G,, (2.24)

a,
a= ,
a,

n=x-Y,a—Y,a,,

and

then it follows that

and the statistical hypothesis H,; 8, = 89 is equivalent to the derived
hypothesis H,: a, = a} (=R"-8)).

The least-square estimate a@ of «, and the least-square estimate
a* of a, under the hypothesis H, satisfy the following relations; ie.

P-1 ___P—1QR~1
— 'b9 .
a=(" I (2.25)
and
at =P-1.b*_P-QR-1.8, (2. 26)

If we put
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K=y &)

it is easily seen that
P! —P-1QR!
K —
e T Re )

In a completely similar manner as in 2.1, we have
a—a =Y YL L+(Y V),
y= U-¢,

1 2.27
al*_i‘l =(Y/Y1) %, 5 ( )
y* = Yz( Yz/Yz)_7:2+U,_' §3+Y2-(d2~—dg)
where
. ;“;1 N
(=8 |= C. 7
s
and the matrix U is so chosen that the square matrix
N ECELO I £ N
¢ =| (Y,Y, Yy =( ) }
. U
U
is an orthogonal one. Hence also in this case, we have
EE-£)=1.
From (2. 25), (2.26) and (2.27), we have
P Q LG8 (PONY ) +QY, Y,
b—g = Y)Y %{~J= ¥ el g 08
R ( 0 RJ( 2 ¥s) &, ’ R(Yzle)_%:z ( )
y=x3-Zb=x-Y.-a=y=U"{, (2.29)
bl*—.Bl == P'a1*+QR~1,32—/91 == P.(YIIYI)-%EI_QR—I.(B2_B‘Z))
= P(P'Z'ZP )%, +(Z/ 2,y Z,Z,-(8,— BY) (2.30)
and

Y =x-Z\b*—Z, = x—Y ,&,* ~(Z,Q+Z,R)- 8
=x—-Y,a,*-Y, - ag:;»*
=YY, Y,)¥%,+0 £, +(Z,Q+Z,R)R*-(8,—BY). (2.31)
The variate

o728, =02 y'y= 0'—‘2'2;3’23
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is distributed according to the chi-square distribution of degrees of
freedom of (n—s) and the variate

T (S~ o) = o Y y—y'y) = o — y)(¥*— ¥)
=% [52,' fz +(B,—B3) (Yzl' Yz)-é' Y N(Z,Q+ Z,R)-R. Ez
+(B,—BVR'"NZ,Q+Z,-R)(Z,Q +Z,- R)R"*-(8,— )]
is stochastically independent of ¢~2S, and is distributed according to

the non-céntral chi-square distribution of degrees of freedom of (s—r)
and with the parameter

A= L8, BYR(Z,Q + ZLRY(Z,:Q + ZRIR B, 4D
= o B —BNZ/ 2~ Z)Z(ZIZ) 22N~ (2.32)
Hence the statistic
G = &Ts—ojo

is distributed according to the G-distribution of degrees of freedom of
(s—r, n—s) and with the parameter A given in (2. 32).

§3. Multiple Correlation Coefficient And Inter-class Correlation
Coefficient. In this section, we shall first derive the sampling dis-
tribution of the sample multiple correlation coefficient. The parent
population under consideration is a non-singular %-dimensional normal
population with means m,, -+, m, and the moment matrix A =(\;)).
The population multiple correlation coefficient of the first variate on

the other is
A
23y = AV 1——
Picas...w N/ YpiAns

the corresponding sample multiple correlation coefficient, which we
denote by the corresponding latin letter

,rl(ZS-uk)
is given as follows:
Let Lyy  Lgp oreeer Lyy
L1y Lgg veveer Do
X=|:
L xln a’Zn ...... a’km
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be a random sample of size 7, and further let it be

1
~ 1 1o
X, =z, ’x‘:-ﬁzjfb'“’ i=1,2,-,k,
1
X=(%,—%;, Xyg— Xy, eoree: » Xy Xy) s
and
AE(G,U)=X~/X,
then

T
We shall use the notation

P =Pras.m and r=res.m

throughout this section, unless otherwise stated.
The sampling distribution of # in the special case when p =0 is
easily obtained and its probability element is

1*(”_“_1>

2 02 (12
F(n—k>p<fc—-1> (%) E (L) e dr? o

2 2

In the general case when p == 0, the derivations of the sampling dis-
tribution of » were given by R. A. Fisher®®, S.S Wilks®, S. Nabeya''®,
and P. A.P. Moran“®, and its probability element

CF) st g1 )
() TR e
X(p¥?)y.dr?, 3.1)

or represened by means of the hypergeometric function

1‘(" 1)
2 /) . »m-1 k-3  n-k _

2 2 (3.1
where, of course,

ooy — 0@ +1) - (@ +r—1)b(D+1) -+ (b+u-1)
F(a,b,c,m)_v;’ vle(c+1) - (c+v—-1)
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We shall first mention a necessary lemma.
Lemma 3.1..'» The probability element of the variate

x = A sy Al (3.2)

A‘ _2A P,Q=Z—ZX%1
is given by
1 | IR ol WK N
NGy exp (=) 055 &9
1-p? 2 1-—p?

If we consider the conditional distribution of x; under the condition
that the other variates #,,,, ---,®, are fixed, then the variate

N1 = X — & — 12X, +++e+ —B%s
where
1N
1
a1 ES (ml—--Blzmz cecans _Blkmk)‘l s 1 =— E 1 ,
|
1/

is a random sample of size n from the population
N(0, 6%.05..1)

The least-square estimate

blzwi "Bz

bys | B3
b, = , of @,=| :

b L Biw »‘

is given by

b, = (X, X)X, (%,— X)),
were the matrix X, is generated from X by omitting its first column.
The conditional expected value of A‘%Ib1 is A%LB,, and the variate

q, = 0;,223...k(A1%1b1),(A%1b1) =05 (X —X,) - X1IA11X1’(-"1—'5‘1) (3.4)
is distributed according to the non-central chi-square distribution of
degrees of freedom of (k--1) and with the parameter

A = l—ﬂl'A11ﬂ1 —An f} AypAiog (3.5)
20'%.23...]c 2A »,q=2 Au v
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The variate
Qs = 0T55..1( X — X — lel)l(xl — &1—X1b1)

is distributed according to the chi-square distribution of degrees of
freedom of (n—k), and further the two variates ¢, and ¢, are mutually
independent in the stochastic sense. Consequently, the conditional
distribution of the statistic

~_ G (x1—‘5‘1)"X1,A11X1(x1—5‘1) — _’I’i 3.6
G —_— ~ ~ 1 2 ( ¢ )
7 @1y + (2, — %,) X' X - (%, — %) -

is the G-distribution of degrees of freedom of (k—1, n—k), and with
the parameter A* given by (3.5). Hence its conditional probability

element is
Jn—1
oo 1*7\»*” k-1 nk-2 l( 2 +p> 2
et Tty (1—r%) 2 (rz)“~%_k F=1 dr? . 3.7
- o5t +)

The absolute probability element of #2 is obtained by integrating out
from the product of (3.7) and (3.3); i.e

i 1’1;*—1 )11(]0'—1)

1 <—2 +v 5

F(n21> A—p) T (1) 2 (1—r?) 2 3 x
)T ()
(p2r2y-dr?, (3.8)

2
which was to be proved.
If we put k=2 in (3.8), we get

2" -2 2 2 2V, 74

e\ 2)(1 p) (1 —7 ) T Z‘B @1 2pr)*-dr. 3.9)
which is the probability element for the absolute value of the inter-
class correlation coefficient. If we wish to get the probability element

of the inter-class correlation coefficient itself, we must go as follows:
Let it be

0 =n8}, @,y =ns; and @, = My,
_ b __ 09
Uy = 81(by3—B51) s Bar= P;_
1

then consider the conditional distribution of s,b,,/u,., under the condition
that the first variate a, is fixed. The conditional distribution of the
statistic
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81051 .
b= a2 = ;/1—

is the non-central ¢-distribution of degrees of freedom of (#—2) and
with the parameter

(3.10)

_ 8P
=1 ot (3.11)

ie.,
—J\n=2 _ 1. 0% (51}? _
(n__l) A e o [‘(”_,li’

2 2 > 8y "( p? )L( 2 )n—l—l—v .
v 2er(" =2 E vl (;1) 1—2) \n=2see) ° tdt.
7—) -~ 3. 12)

Since the probability element of si/¢? is

2
= e R
zvigr<n—1)e 1) e a§>‘

2
the absolute distribution of » is given by
T (n 1+u>
1 (1— pz) (1 ¢2%i—i—(2pr)"-dr
eI
2 2 ‘
Fz(%‘f‘l—"“l)
-3 n=1 ned o 2
- ;1?(?_1)(1—‘02) P TS S T @erydr, (3.13)

which was to be derived.

§ 4. Hotelling’s T2.9® TLet
X:'(xl’xz""’xkil)’ X*z(xl’xzy'“rxyg)t

and
A=X'X, A*=X¥X*,

then the corresponding determinants are
n o ”
== ’}’bl Zlmwxlw—nxile’ A*= ] Z xmxjwl ’
&

As is well-known, Prof. H. Hotelling’s square of the generalized
Student’s ratio 72 is given by the equation
n A
— = g% (4.1)
1+
n—1
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hence we have
7% =n(n—1)- Z 7’

Decompose A and A* into the products of residual variances, then
we have

A= nkrig 25k ’85.34... ...... s%—l Y L (4.2)
A* =¥ . sf 3. FRY : TR 8;ckzl 5 SE (4.3)

where, for instance, s}.,..., is sample residual variance of a; when the

parameter a, = m,—By,m, *-- — B,y and By,, -+, B, are all estimated,
and sf3,..., is the sample residual variance of x, under the statistical
hypothesis H,: «; =0. Hence we have

NS1og. MS33a.. 7l3_1§—_1_r 77'_‘_91%
f@ — . 0tosn T334 cenees To 1 or
A* X nsit . ns*?
032300 03340 Tk—1-k op
e u2s-et q———;;“'"k ceonee Lizrn G (gay), (4. 4)
‘I1 23+ q2.34...% Qri1x Qx

4.1. We shall first consider the special case when
Moy == My == *ooree =M, = 0,
Mg == Ay ==veeeee = Dy = 0,
i.e., the k-th variate z, is uncorrelated with others all of which have
Ze€ro means.
If we consider the conditional distribution of 2; under the condi-
tion that the other variates @,, -«---- , &, are fixed, then
E(2)) = B1a%y + 2+ + B+ Ay Oy =My —B1Mg =2 — B »
and in this case it is clear that
B=0, a, =0,
hence the statistic

*
Qs — o231

q1.23...1

is distributed according to the G-distribution of degrees of freedom of
(1, »--k) and with the parameter

7\,1 = —
2
20‘12.3...,‘;

a(n—(n&,--n&,) A7 ”9_32] ), =0,
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i.e, for any >0,

I‘(n-' k +1> 1 n—k+2
Fasen— 2 ) ¢ T 1\ 2
p (91-_23:-~k_qlm ~>= ( u ( > ,
Q1235 <@ F(n—k>[‘(l> So 1+u> 1+u du
2 2
therefore, we have
—k+1
o Y iy
Qrazx ~ g\ N 24 1 v s
P(q;k.zg...k<a’> F(?’I/—k)[‘(l) S1;z <1+u) (1 +u du,
2/ \2) *
and consequently we have the probability element
F(n—k+1> .
2 Sk gl
2z 1(1—2):  de (4.5)

—k 1
)
(2
for the statistic g,.s..x/qFss..x- It is evident from (4.5) that the dis-
tribution of the statistic ¢,5.3..../q¥ss..; is independent of the condition-

ing variates z,, ...... , &, and consequently ¢..s.../q%Fss.... 1S independent
of the other statistics

Qoaa.cs ..., VUEST
ipw- *
Q234 Qe i

in the absolute sense.
If we denote the Beta-variate which has the density

L(®@+q) o _ Ae-1 .
F(p)F(q)x A-a)1 for 0<a<1

by B,,, then the following lemma is obtained.

Lemma 4.1. If the two Beta-variates B,_,, and B,., are mutually
independent in the stochastic sense, then

BM—-k-kBM-v == B}L—-k-kniry . (4. 6)
(4.5) is equivalent to the equation

91.23...7; = B

4.7)

7~k

1
X n—k 1
q{o93...x 22 .

Next, if we consider the conditional distribution of z, under the
condiftion that a;, ..... ., &, are fixed, then

E(x,) = Bas®s+ +++ +Bufe+0y, Oy == My— B3Ny ++o — ByMys

and in this special case «, =0, because m, = m; = ... =m,_, =0 and
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Bx=0. Hence, in a completely similar manner as above, we have

and it is independent of all the remaining statistics in the stochastic
sense.
We proceed as above and get

23;45'“"’ = Bn-r+2 1 I
q3.45..% 2 T2
........................ (4.9)
(1P
_’;é 1ok — Bw—_2. 1
Q1% 2 2

Finally the statistic
(gF—a0)/

is distribution according to the G-distribution of degrees of freedom of
(1, »—1) and with the parameter

1
2N

hence the probability element of ¢,/q¥ is

v F(%_,-p) NBe1 1
- FT -y e, (4.11)

A= nme , (4.10)

ie _"
V=0 p! of1 ~(1—1
3+ (")

we shall denote the statistic ¢,/¢f symbolically as follows:

Q Sy N
2 =3S'e*_B
aF 0 vl

y=

(4.12)

7] L .
T2 Y

It follows from (4.1), (4.4), (4.7), (4. 8), (4.9) and (4.12) that

1 NND R
— = = Bn-k 1+ Bn-k41 1 e Bn-2 1 e = Br-1 1
1+ T? e TR R ?4:40 pl et
n—1
0 k‘\'
—_ 2 e AL Bu-k 1 ceeres Br—t+1 1 Bz-2 1 Bnr-1 1 (4. 13)
v=0 p! 2 2 2 T2 v

The (v+1)-th term of (4.13) will be reduced by means of Lemma 4.1 to
Bnx x  ~whence we get the probability element
2 "2 '

0 A'v F(g— + U> T2 i.,. y=1 T2 —ﬂ._v T2
QP AN . 2 5
=21 F(Z‘:ﬁ) p(fe N y> <n— 1) (1 o 1) d<n‘? 1) (4.14)

2 2
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for the statistic 7?/(n—1), where, of course,

=_n_'. 2 -
A - m; .

4.2. The general case. If we transform the original variate
=1, Ly very &)
into
D= (Y15 Ygs «ers Ur)
by the relation
y=gAt, (4.15)
then the mean value vector
M = (My, Myseres )
of y is obtained by
m=mA"%. (4.16)
and k variates y;, ¥y, ..., ¥, are mutually independent in the stochastic
sense.

Let it be
Mi+Mi+ 2 + M

— MM, 1/ Mo +m2

V(i + oo +mi) (MG + - 4+ mi) VmE+mi4ee +mi
— My, — My,

W="\vmi+.. +mi) (1 + - +Mg) V(M4 oo +mE)(MEt-ee+mE)

—mlﬁk—l o —m;iﬁk_l

V(M2 + oo +ME) (MG 4+ +MME) VMG + o +1mE) (M + e +m5)
— My, — Wy,

V (It e +M2) MG+ +M2) V' MG+ -or +M2) (ME+ oo +HE)

m,
ceevennes () me
> S
TP | l/m
S
NI S— = S
mi_y +mp VMl +my
_mkz—-lq—%k ’—n_'L"
V (mi_, +miymi Vv mi+ -+
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and put
3="(%1) 25y ceo» ) =YW, (4.18)
then it is easily seen that
E(z))= E(z,) =+ = E(z,.,)=0.
and since W is an orthogonal matrix, we have
E{G—EG)YG—EG) =W'-E{(y—m)-g—m)W=1,

i.e., k variates z,, ..., 2, are uncorrelated with each other.
Since
211 Ryt Ry

Z*=| F12 a2 B2 | . XxAIW
Zin R Rpn
B* — ZXZ* — W’A'%X*’X*A_%WZ W’A‘%A*A_%W,

it follows that
B¥ = A*A"1,
and since
(Z1s Zgs wves Z0) = (Fry Tyy -0os Z)NIW,
and

Z1)/= = _
B*—n 2: (215 Zg +* Zy)

2
=WALAr a2 @, 7, s 2IIATW,
2
Xy
we have
B=det(Z'Z)=AA"?,
where

211 %910ty 1)
Z=(Z*D)= "2 Fn il

ZM z2” cee Zm 1
Hence we get the relation

_n _A_B
14.1* A* B* (4.19)
n—1

Applying the arguments of the special case to the transformed
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variate 3, we have the probability element of 7?/(z—1), which is given
by (4.14) with the parameters

e = (WA AN W), =1,
and
-3 -3 LY
mi=mA W' WA *m' =mA~-'m' =3 K" m,m, .
i, J=1
If we use the notation
n k A,;;

= 31 Smm,, | (4. 20)

the probability element of the statistic 72/(n—1) becomes
F(ﬁ + v)
0 2\v 2
eV ) )

. T2 i;—w—)( T —-%—v ( T2 ‘
v=0 p! F(n—k>[‘(£+y) ('n, -—1> 1+n—;__ 1) d ni—].) ’
2 2

(4.12)
as was to be proved.

§5. Normal Regression Theory in Multivariate Case. In this sec-
tion, we shall consider the normal regression theory in the multivariate
case.

Let

231 Rg1 vt Ry
Z=| "1z P2 B (5.1)
Zin T Zyn
be a nxs matrix of fixed variables of rank s, and
Bu Bz Ba
B=|fn PuPalo(g, g, .., 8) (5.2)
Bro Buuoe B

be a sxk matrix of unknown parameters. Further let it be

(B(xy), E(%y), -y E(x:))=ZB, (5.3)
and k vector variates
’h’:xt'—z'ﬁw 7'=1: 2; *tty k (5.4)

are distributed according to yhe non-singular k-dimensional normal
distribution of mean vector 0 and with variance-covariance matrix A.
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Denote the least-square estimate of 3,, which minimizes
Si=n/n=x~ZBRY(x~ZB), i=12, .., k (5.5)
by b,, i=1, 2, ..., k, then it is seen that
b,=(Z'ZY'Z'-x,, i=1,2, ..., k,
or represented in terms of the error variates, we have
b,—B,=(Z'"Z)Y'Z'-9,, i=1,2, ..., k. (5.6)
The residual y, for g, is
v.=x—-2b,=1I0-Z(Z'ZY'Z")x,=I—-Z(Z' Z)'Z")-y,
i=12, ..., k (5.7)

Hence b, and y, are mutually independent in the stochastic sense.

Rows of the sxn matrix (Z'Z)}Z' satisfy the orthogonality rela-
tions, and therefore we can choose a (n—s)xn matrix U so that the
square matrix

7Z'7Z -%Z/
P_—_{( ) J (5.8)
U
becomes an orthogonal one. Let it be
Ea
lfi é::' .
E = =|3¥ =Py, i=1,2, ..., k (5.9)
"::in'

then it follecws that
=Plg, =Z(Z'Z)t g, + U £, .
Since (Z'Z)%Z'. U’ 0, it is easily seen that
y,=U'"¢, i=12, .., k (5.10)
The variance-covariance matrix of vector variates

(E1ps Eapy vee Erp)y DP=8+1, s+2, ..., 1,
can be calculated as follows: Let

U= (u,,),

then we have

n

BEpkse) = B o) (2 )}

v=1

7
; UpUjgy* E(ﬁiv”]j,u.) - 7\'1,}81:;1. Z ovlhpn = XU ’

M=y

<
"Ms
;
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therefore the required variance-covariance matrix is A for all p. Hence,
if the condition

n—s >k

is satisfied, then the joint distribution of
Y= (yz'yj) = (26::,2&_1) (5 11)

has the probability element
_n-8 n—s—k-1
2'%;@”_’6(”;1)[,(%-—8 F(nis-—l) F(n-—.s'—lc+1) A
2 ) 2 2

(—ga¥

exp ———Z—A .Y ).dY, (5.12)

§ 6. Partial Correlation Coefficient. We shall consider a k-dimen-
sional non-singular normal distribution with means m,, ..., m, and
variance-covariance matrix A, and denote the residuals of #, and z,
when the other variates #;, ..., x, are fixed by 7,5... and 5,34
respectively, then

v Azz. L A. .
Nisdeni = B1— Q1 — Bz s — By s Bre = — 2, ay =m,+ ) Zlim,,
2211 =3 Llg99.11
— 2. — "‘B x _B @ B J— __Au-zz o = ’ Au-zt
72.32...85 — Y2 2 23%3 L A D 5 = My + 2-—*7":;
11-22 t=3 fly1.22
(6.1)

The correlation coefficient p,,.s,... is the partial correlation coefficient
of x, and x,, and it is given as follows:

E(?h.u...yc' 772.34...7‘;) _A12‘

P o34 00s = _ - 9 (6- 2)
123 ¥ VE(?]%3473)E(77§.347¢) l/All A22
because
2 — 3 — Azz
E(771-34---k) = 01.34...k — A ’
22-11
Ay

2 —_— 2 —_—
E("]Z-:M...m) = 02.34..5 — A .
11-22

The conditional distribution of 7,.5,.., and 7,.,...,» when x;, ..., @
are fixed, has the probability element

1

27[0—1'34'--760-2-34---76‘/1 - P%2.34...k

1
exb (=g g @) D

where
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Q= @1 — a1 —Brs®s ~Budi)’
Olagn .
(20— a3 — Brs®a s —Buadtin)( @y — 0y — Byss -+ — Buli)

01.34 . .k0-2.34...k

4 (@B =BTy -+ — By )’ (6.4)

—2p0 5340k

"'3-34...14
If we denote the least-square estimates of
Ay Bp3’ seey B.Wc’ p= 1;2r

which minimizes
S, = ;Z“l(xm’;“p_‘ﬂpsxsr“ e — B )? =12
respectively, by
@y bpzy vy by =12,
then by the arguments given in §5, the variates

Yp34etov — mpv—:_vp'—-bp.'i(x‘%v—'i(i) Lo '_bpk(xkv“-'zm) ’
p=1)2; V=1,2 veey 1

are independent of (b,;, ..., by), » = 1,2, in the stochastic sense.
Let

X12=(x3——§3, x,;—‘g‘l; veey x,c———.i,c),

then it follows that

bp_ﬁp = (X;ZXIZ)—IX;Yﬂp-M---k y D= 1,2, (6 5)
and
Yo3a.ex = (I—‘X.'lz(X;zXlz)—lX;z)' N3y P = 1,2. (6.6)

If we choose (n—k—2)xn matrix U such that the square matrix

P= {(Xilez)-bxin
U
is an orthogonal matrix, and let it be
1;‘21 = (X;inz)_%Xm‘ Np-34.0k 9
2:,, = U. ) p-34...k 9 p= 1,2 ’ (6. 7)
then the matrix
(2:1 ’ 2:2)

is a random sample of size (n—k—2) from a two-dimensional normal
population (6. 3), and it is clear that
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Viaseorn Yicrow = 261 *281»

Yiater® Yoaaen = 981 280 s

Voster® Yazaeon = 28a " 285+
Now, by easy calculations, it is seen that

Alz — Yi340ei® Vo330 k
‘/Aquz l/(yl -34.. ky1-34~-7c)(yé-34_..-ky2-34-.-1c)

ZCI 2(2 (6. 8)
‘/(ZCI 2§1) (2;2 2{2)
Whence we get the probability element of 7,.,.., as that of the inter-
class correlation coefficient calculated from the sample of size (n—k—2);
i.e,

1934008 =

12000 )0 230000

Fg(n—k“‘l)"'].)
"n—k—1 k=2 o T«
= ;T%m a1- Plz “34.. k) z (1 — 75231, lc) Z;n) 2

1
p!
(2p12~34.--k7‘12-34.--k)v'dr12-34...l¢; : (6.9)
or
z-—k’—Z dz
- 27 (1 i) P S'—m (cosh 2— Py y34.0i12:30006)
AT (6.10)

§7. Bartlett’s Dzcomposition Theorem. - In 1933, Prof. M. S.
Bartlett®® gave the so-called ¢ Bartlett’s Decomposition Theorem ” of
the Wishart distribution. In this section, we shall derive this theorem
by means of the normal regression theory in the multivariate case.

We shall first explain the theorem in spacial cases.

7.1. (i) Two variates case. In this case, the joint distribution of
My, Mz, My, are given by

2
01 P00,
W (Mg 1 5m, ; [ 2 ]; -1)
: poo, o3
1 (mn 9,12, M2

ooy Tosk)
(mumzz—mn) 3o Z1-e8\orr oioy op? dmy,dm,dm,,

2" 175%(‘7'10'21/1 PR 1P< 21> ( 22)

(7.1)

If we put
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b,, = M1z
" My
My = E[(xltt—il) "blz(xza—“—’z)]z = Myy —2b13M 1z + b3z My,
=My — My — MuMg,-—miy _ M , (7.2)
My My, My,
Uyp = |/m—22-(b12—,812) , B = pz_;!
2
then we get by easy calculations
AMy1gs Upgs M) 1
- R = 7.3
a(mllr Migs mzz) 1/m22 ( )
Since ‘
1 (mu m m ) 1 (m m m m
— ! —2p 12 4 22 =~<J_ My 2;22) Mgy
1—p2%\ o} po'la'2 * ol 1—p%\ o? 2p o0, +P ol * ol

1 = = . =72
= mg[(%n“%)—ﬁlz@za—xzﬂ + —

= —1‘ i [(@1—Z))— —b15(Lg5— %) +(b12—Br2) (a;z,,—:iz)]z +

i, aa
2
= %12 | Mz | My
ol ol s’
T2 1.2 2

the joint distribution of «,.,, m,,.,, m,, has the probability element

w2 P
1 2 1 my1-2 1 m22
T3 “(n-4) — =n-3) -
e °12du1 2, My 22 e s dm,,., | m222 e 2% dmay,
V 276, (202, 2) = F(n - 2) (20 2) (n - 1)

=N,(Uyp; 0%5) s Wo(My1p; 0has 18—2) « Wi(my,; o5; n—1). (7.4)

That is, that u,.,, m,,.,, M, are mutually independent in the stochastic
sense, and u%,., is distributed according to N(0, ¢i,), m,,.,/0}., is dis-
tributed rccording to the chi-square distribution of degrees of freedom
of (n—2), and m,,/s} is distributed according to the chi-square distribu-
tion of degrees of freedom of (r—1). (7.4) is the Bartlett’s decomposi-
tion of the 2-dimensional Wishart distribution.

(ii) Three variates case. In this case the joint distribution of m,,,
Myss Mg, My, M3, My has the probability element

Ws(mur Myzs Mizs Mogy Moz, Myz; A; n—1)

n—5
_ Mz exp( N ZAMmM)

GRL SIS

dmy,dmydm, dmy,dm,dms,  (7.5)
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If we put
m m
by; = 12 ’ by = —2,
33 Ms33
X130 = F10— 1 —D13(T30— 73) a=1,2, - ,n
— —_ » ’
Xoe30 = xzw—xz—bzs(xaw—xs)
and
2
o PRI 2 _ MuyMss—mis _ M
M3 = :L%.M = mu‘—‘zbnmm +bizemgy = A3 13 = 22

7
@=L m3s3 M33
n
Myg.3 = zlxl-aaxz-au = My —b13* Maa— bag* M3 +D13by3 My
«

— MMy —M3Mo3 __ __ M,

M33 Mgs
SV 2 % b2 _ M,
Mgy = D Laezg = Mgy — 2DagMya +b3smy; = ’
=1 m33

Uyg =1V M35 (b13—PB3) Uy =1V M3 (b —B23)
then it follows that
dmudmlzdmladmzzdm%dm% == m33du1.3du2.3dm11.3dm12.3dm22.3dm33 . (7- 6)

Since ,
NisAyr+ N3y + 5305, =0,
Mgy + A3y +Ag3A5, =0,

multiply the first by \,;, the second by \,;, and add up, then we get
MsAqy+ 2013 h23A05 + A33Ag0 +Ngs(N13Ags +Na3Ass) = 0,
or
A1y + 2030051, + AJeAgy + Nas(A —Ng3A55) =0,
because \j3Ay;+NasAss+Ag3As3 = 0. Therefore, we have

Ajs — ( A3 )2 An +2 Mg Mg Asp +( A3 )2 Agy + 1
A A3 /A Ags Az A Agz /A Ass
2 An Ay s A 1
= +2 ; 2 4B =%+,
Bis A 513823 A B33 A s
where it follows that
SCA A N A
Q =u§17\e— Myy = Au (myy + Bismss)+2 Kl—z— (M1y+ B13B23Ms33)
Azz 2 A13 Azs m
=22 (Myy + B33M3)+2 M3 +2 Myg +——2>
A (Mg + B33m3) A 13 A 23 Nas

11 2 A
=AU (1~ 28,,my, + Blymgy) +2 D12
( 11 1813 14 1813 33)

(M12—B13Mas — BasMys + B13BasMes)
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A A Ap , A
+X2,2ﬁ (Myy—2B23M 3 +ﬁ§5m33)+2m13 <,313 A11 + B1s A12 + A13)

+2myy <313 Az + B Aoy +ﬂ> 4 Mss.
A A AT N
An A A A A
= Myqgea +2 12 9 222 gy ZML g2 4 D P12 g gy,
A 11-3 A 1203+ 2zrp T Ui N st
+ Az Uy + 3. 7.7
A ' N33
On the other hand, we have
Mysm Mysm
My Mg Mag- My — 2218 g, — 713 23
M3 Mss
M=|my My My |= Mgy
Mgy Magm
My May Mgy Mg — 287028 gy, 287023
Mg M3
M3 Mageg
= Migs
Miz.3 Mg

Consequently, we have the decomposition

2 2
- i(1\11111-3 +2A5%y 3253+ Agau2.3)

2A
Wo(M; A; n—1) = e duq.sduy., %
] Mg Aiges B
2.
A2z Aages
Myt Migs 3
N (A11mmy1.3+2A39m1 2.3+ A2omas.3)
Migs Mages e dm11.3dm12.3dm22.3x
‘ An=2 Mis Mz [T [ -2\ ../ n—3
2 2 7[% 11. e 7) 1V<_v»7>
A12s Agzes \"2 2
yL;_3 _ 33
275
M33 ”j ;i"";:ss (7.8)
(27\'33) 2 'F< 2 )
where, of course,
Az Nory — A1gNos
n——/—— 12—
A11e3 7\'12-3} N33 33
Maes Agaeg 7\.12-—7—13)“23 Az Aighes
A3 A3z

The formula (7.8) may be written in the form
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A'11'3 >"12'3 }

Wy(M; A; n—1)=N2(u1-3,u;.3; )x

Mzs Mgz )

A1z Aizes
Wo(mi1.3, Migess Mizess

3 0—2)- Wi(mgs; Ng35n—1), (7.9)

KIZ-S 7\‘22'3
symbolically.
Next, if we put

3
I
Ms

(@130 —D123%2034)°

-3
[}
-

Il
M=

2
L1 —5:1 —'b12°3(x2w —5:2) _(b13 —b12'3b23) (xfm _5;.3)}

“u § - R L
=3 {xlu'4x1—b12-3(a73a—xz)-bla-z(xsm"xs)} = ’
@=1 M33
because
b1s—by3b bys —bisb
b13 —b12'3b23 = bls - iz_ bz:’i’azz byy = ]1.3— bzﬁk? = byi3.2,
and

Ugeas =1V Mz (braes —B12:3) s
then the probability element

>“11'3 x12°3 )

J;n-z)

Wo(Miy3, Mgz, Masea;

A‘12’3 A’22'3

can be decomposed into the product

N (%1235 0523) Wi(M11.03;5 05053 B—2)s Wi(Mgp.55 0555 1 —2),  (7.10)
where

2 Aa.s
0T.23 = Ai1e28 = Aq13———

Agzes
2 —
03.3 = Aa2.3

Finally we have the decomposition

A‘11‘3 k'12'3

Ws(M; A;n—1)= Nz(’“l-s y Ugegs )e Ni(2y.035 0'%-23) X

X12'3 A‘12'3

X11’3 )\'12-3

»

2 . .2 . o
Wi(My1.355 05235 18— 2)W (Mg 05eg; B— 2)e Wo(M11.5, Mags, Mags;

Mizes Agze3
n—2)W(ms3; Ag3; n—1), (711)

which is the Bartlett’s decomposition of the Wishart distribution in
three-varites case,
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7.2. Bartlett’s decomposition theorem in the general case. We shall
derive the Bartlett’s decomposition theorem for %k-dimensional Wishart
distribution by means of the normal regression theory in multivariate
case described in section 6.

The population considered here has the probability element

p(x)dy = (27r)"%A“‘3" exp [—-;- (x—m)A~Yx— m)’] dx,

and the conditional probability distribution of (&, --+,#,_,) under the
condition that x, is fixed is the (k—1)-dimensional normal distribution
whose probability element is

p(xlt ooy Ty lxk)dxl e dx,c_l

x—1 _1 k—1
— (27,)“TAL1) Z exp [___1_ pa A%ljxn(inﬂgl)] dy - da,_,, (7. 12)
2AM 5=
where
A
a(zn =M;— By M L= &,
A’.’ck

The least-square estimates a$¥,b,,i=1,2,,k—1 of o, By, =1,2,
e+, k—1 and the residual variates

xil - ‘—ut - buc(xkl - Ek)

Vg = xt2—§:i—b:ik(xk2—§:k) , i=1,2 -, k—1

Lin—%;— bii(Tn —Zrc)

are independent in the stochastic sense.
Since
b Bu= gt 3 (Hram B Ds i=1,20, k=1
Z(ka_ftk)z ot
w=1

the conditional joint distribution of the variates

U = Vm‘kk Ow—Bu) = “n‘l———— mz:]l(ka‘ 5’k)’7(z}z)
'\/w=21 (xlm - :7:,6)2
i=112, ""k-‘l (7. 13)

is the (k—1)-dimensional normal distribution of zero means and
variance-covariance matrix
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A“)=<M—'%M>’ i,j=1,0,-,k—1,

kk

The joint distribution of the elements of the matrix
Y= (9u¥m)» 4i=12 ..., k-1
is the Wishart distri_bution of (k—l)-'dimensions
WYy AP n--2) (7.14)

All the distributions of the variates above considered are independent
of the conditioning variate «,, so we have the following decomposition;
i.e.,
WM, A;n—1)= Ny (U1 5 o+ » Uy AD) W, _(Yi; AD; 2—1)
WMy Ngs 1—1) (7.15)

The variates can be written in the form

( Eil 1

|

Vu=Pol &2 |, i=1,2,0, k-1,

E"l}ﬂl—2
where the system of vectors
&= (£1a> Eowr s Eu1,a)y A= 1,2, ,n—2

are the random sample of size (n—2) from the (k—1)-dimensional
normal distribution whose probability . element was given by (7.10),
and P, is a nx(n--2)-matrix depending only on the k-th variate z,
and of which the rows satisfy the orthogonality conditions. Hence it
follows that, since

n—2
y::'kyj'k: = zlgmém s Li=1, 2, , k-1,
=

the joint distribution of Y, is determined completely by the joint
distribution of &, &,, -+, &,

If we apply the above arguments to the joint distribution of
£1, &5y -0+ E,_,, then the following decomposition can be obtained; i.e.,

Wier(Yis AV m--2)
= Ny o(Urgoy, 9 *** s Ypmzek1s %5 A®P) W, (Y13 AP;n—3)
Wi(m,_,, K1k > Miols ke1ok s n--2), (7. 16)

where
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ui-k—-lyk - l/mlc-—ly k—l'k.(bi'k'—l’E—Bi'k—l,k)
— 1 n—2 @y i—=1,2 L-.2
n—ztdzgk—paﬂ]“g, 1=1,2,,k-2,
=1
Y S8
a=1

2) __ 2 :
"7%4») - Em“"a% ')—182'70—-1yk'fk—1:u y 1= 1’ 2: *ct k-2 ’

A9 = (o~ Mrmrhans k—l"“’“’f’*?i"‘) Vo =1,2, k-2,

'k‘lc—-ly R:'.-],"k

Thus we can obtain successively .the decomposition of the Wishart
distribution into the product of the normal variates, chi-sqnare variate,
and Wishart distribution of reduced dimensions by one, and all of them
are mutually independent in the stochastic sense absolutely. The
Bartlett’s decomposition of the Wishart distribution can be easily
obtained in this manner.
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an
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N—S o _ ST
sor = Fn-s
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