

Title	A Kirillov model of a principal series representation of $GL_2(D)$
Author(s)	Nakamura, Yoshihide
Citation	Osaka Journal of Mathematics. 2004, 41(4), p. 819-830
Version Type	VoR
URL	https://doi.org/10.18910/4630
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A KIRILLOV MODEL OF A PRINCIPAL SERIES REPRESENTATION OF $GL_2(\mathcal{D})$

YOSHIHIDE NAKAMURA

(Received April 30, 2003)

0. Introduction

Let F be a non-Archimedean local field of arbitrary characteristic and \mathcal{D} a central finite dimensional division algebra over F. Godement [1] constructed a model of an irreducible admissible representation (π, V) of $GL_2(F)$, which is called the Kirillov model of (π, V) and is denoted by $\mathcal{K}(\pi)$. $\mathcal{K}(\pi)$ is realized as a certain space consisting of locally constant functions on F^* that vanish outside some compact subset of F. On $\mathcal{K}(\pi)$, upper triangular matrices act as

$$\pi\left(\begin{pmatrix}a&b\\0&d\end{pmatrix}\right)f(x)=\psi_F(d^{-1}xb)\omega_\pi(d)f(d^{-1}xa),$$

where ω_{π} is the central character of π and ψ_F is a non-trivial additive character of F. Godement obtained an irreducibility criterion of principal series representations by using the theory of Kirillov models, and then classified principal series representations of $GL_2(F)$.

Prasad and Raghuram [2] developed the theory of Kirillov models for admissible representations of $GL_2(\mathcal{D})$. Let (π, V) be an admissible representation of $GL_2(\mathcal{D})$ and $V_{N,\Psi}$ the twisted Jacquet module of (π, V) with respect to a non-trivial additive character Ψ of \mathcal{D} . The Kirillov model of (π, V) is defined to be a certain space consisting of $V_{N,\Psi}$ -valued locally constant functions on \mathcal{D}^* . If f is an element of the Kirillov model of (π, V) , f vanishes outside some compact subset of \mathcal{D} and upper triangular matrices act as

$$\pi\left(\left(\begin{array}{cc}A & B\\0 & D\end{array}\right)\right)f(X) = \Psi(D^{-1}XB)\pi_{N,\Psi}\left(\begin{array}{cc}D & 0\\0 & D\end{array}\right)f(D^{-1}XA).$$

In this paper we study a Kirillov model of a principal series representation $V(\pi_1, \pi_2)$ of $GL_2(\mathcal{D})$ induced from an irreducible representation $(\pi_1 \otimes \pi_2, V_1 \otimes V_2)$ of $\mathcal{D}^* \times \mathcal{D}^*$. Any element of $V(\pi_1, \pi_2)$ is a $V_1 \otimes V_2$ -valued locally constant function on $GL_2(\mathcal{D})$ and $GL_2(\mathcal{D})$ acts on $V(\pi_1, \pi_2)$ by right translations. Even if $V(\pi_1, \pi_2)$ is not irreducible, we construct its Kirillov model as follows. The element ξ_{φ} of the Kirillov model of $V(\pi_1, \pi_2)$ corresponding to $\varphi \in V(\pi_1, \pi_2)$ is given as a distri-

bution on $C_c^{\infty}(\mathcal{D})$ by the form

$$\xi_{\varphi}(X) = |X|^{1/2} 1 \otimes \pi_2(X) \sum_{n \in \mathbb{Z}} \int_{\mathfrak{v}(Y)=n} \overline{\Psi(XY)} \varphi\left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right) \left(\begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix}\right) dY,$$

where \mathfrak{v} denotes an additive valuation on \mathcal{D} . Raghuram [3] proved that the defining infinite series of ξ_{φ} converges. We give a proof of this fact by a different way from Raghuram in Lemma 2.2. As a consequence of the convergence of the series, we know that the Kirillov model is realized as a certain space of functions on \mathcal{D}^* . The asymptotic behavior of ξ_{φ} around 0 characterizes a principal series representation $V(\pi_1, \pi_2)$. Although Raghuram studied a behavior of $\hat{\phi}$ around 0, our statement in Theorem 2.3 is more precise than Raghuram's one.

Moreover, we give a condition under when the map $\phi \mapsto \hat{\phi}$ is injective in Proposition 2.4 and Theorem 2.6. From this theorem we get a sufficient condition for irreducibility of the principal series representations in Corollary 2.7. If the characteristic of F is 0, an irreducibility criterion of the principal series representations of $GL_n(\mathcal{D})$ was given by Tadić [4] by using the theories of the Langlands classification and Hopf algebras. If we apply the results of Tadić to $GL_2(\mathcal{D})$ case, the principal series representation $V(\pi_1, \pi_2)$ is reducible if and only if $\pi_2(X) = |X|^{\pm 1}\pi_1(X)$ for all $X \in \mathcal{D}^*$ when the characteristic of F is 0. As a consequence of this fact and Theorem 2.6 we know that if $\dim_F \mathcal{D} \neq 1$ and the characteristic of F is 0, there exists a reducible principal series representation $V(\pi_1, \pi_2)$ such that the maps from $V(\pi_1, \pi_2)$ to its Kirillov model and from $V(\pi_1, \pi_2)^{\vee}$ to its Kirillov model are injective. If $\dim_F \mathcal{D} = 1$, such representations do not exist.

1. Preliminaries

1.1. Notations. In this paper \mathbb{Z} denotes the ring of integers and \mathbb{C} the field of complex numbers as usual. Let F be a non-Archimedean local field of arbitrary characteristic, \mathfrak{D}_F the integer ring of F, \mathfrak{P}_F the unique maximal ideal of \mathfrak{D}_F , q the cardinality of $\mathfrak{D}_F/\mathfrak{P}_F$, and ϖ_F the prime element of F. The additive valuation \mathfrak{v}_F and the multiplicative valuation $| |_F$ on F are normalized so that $|\varpi_F|_F =$ $q^{-\mathfrak{v}_F(\varpi_F)} = q^{-1}$. We fix a nontrivial additive character ψ_F of F so chosen that the maximal fractional ideal in F on which ψ_F is trivial is \mathfrak{D}_F . Let \mathcal{D} denote a central division algebra of dimension d^2 over F, \mathfrak{D} the maximal order of \mathcal{D} , and \mathfrak{P} the unique maximal ideal of \mathfrak{D} . Notice that the cardinality of $\mathfrak{D}/\mathfrak{P}$ is equal to q^d . There is a generator ϖ of \mathfrak{P} as $\varpi^d = \varpi_F$. The additive valuation and the multiplicative valuation | | on \mathcal{D} are normalized so that $|\varpi| = q^{-\mathfrak{v}(\varpi)} = q^{-d}$. Let $T_{\mathcal{D}/F}$ be the reduced trace from \mathcal{D} to F. Let Ψ be the additive character of \mathcal{D} obtained by composing $T_{\mathcal{D}/F}$ and the character ψ_F . Let dX be the Haar measure on \mathcal{D} normalized so that the volume of \mathfrak{O}^* is $(1 - q^{-d})^{-1}$.

Let $M_2(\mathcal{D})$ be the matrix algebra of 2×2 matrices with entries in \mathcal{D} , G =

 $\operatorname{GL}_2(\mathcal{D}) = \operatorname{M}_2(\mathcal{D})^*$ the unit group of $\operatorname{M}_2(\mathcal{D})$, *P* the subgroup of upper triangular matrices in *G* and *N* the unipotent radical of *P* consisting of matrices with 1's on diagonal. The Shalika subgroup *S* is defined to be the subgroup of *G* consisting of the matrices of the form $\begin{pmatrix} A & B \\ 0 & A \end{pmatrix}$ for $A \in \mathcal{D}^*$ and $B \in \mathcal{D}$. The subgroup of *S* consisting of the matrices of the form $\begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ for all $A \in \mathcal{D}^*$ is denoted by $\Delta(\mathcal{D}^*)$.

For a totally disconnected locally compact topological space X and an arbitrary vector space V, let $C^{\infty}(X, V)$ be the space consisting of V-valued locally constant functions on X and $C_c^{\infty}(X, V)$ be the subspace of $C^{\infty}(X, V)$ consisting of compactly supported functions. If V is one dimensional, we write simply $C^{\infty}(X)$ and $C_c^{\infty}(X)$ for $C^{\infty}(X, V)$ and $C_c^{\infty}(X, V)$, respectively.

Proposition 1.1. Let $w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Then G is decomposed into the disjoint union of P and PwP = PwN = NwP.

The subset PwP is called the big cell.

Proposition 1.2. The additive character Ψ of \mathcal{D} is a constant on \mathfrak{P}^{1-d} .

For the proof, refer to [5, Chapter 10].

1.2. Admissible representations and Kirillov models. Let (π, V) be a representation of G. In this paper, the representation space V is always a vector space over \mathbb{C} . (π, V) is called admissible if the stabilizer subgroup of v in G is open for all $v \in V$ and the subspace which consists of all elements that are invariant under G' is finite dimensional for all open subgroup G' of G.

Let (π_1, V_1) and (π_2, V_2) be two irreducible representations of \mathcal{D}^* . We extend π_1, π_2 to a representation of P on which N acts trivially. Let $V(\pi_1, \pi_2)$ denote the representation of G induced from $\pi_1 \otimes \pi_2$ of P. Namely,

$$V(\pi_1, \pi_2) = \left\{ \varphi \in C^{\infty}(G, V_1 \otimes V_2) \middle| \begin{array}{l} \varphi \left(\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} g \right) = \left| AD^{-1} \right|^{1/2} \times \pi_1(A) \otimes \pi_2(D)\varphi(g) \\ \left(\text{for all} \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \in P \text{ and } g \in G \right) \end{array} \right\}$$

and G acts on $V(\pi_1, \pi_2)$ by right translations. Then we obtain an admissible representation. Such a representation is called a principal series representation.

The following lemma is proved in the same way as [1, Theorem 5].

Lemma 1.3. The contragredient representation of $V(\pi_1, \pi_2)$ is isomorphic to $V(\pi_1^{\vee}, \pi_2^{\vee})$, where π_i^{\vee} denote the contragredient representation of π_i .

We study the Kirillov model in order to investigate when a principal series repre-

Y. NAKAMURA

sentation is irreducible. Let (π, V) be an admissible representation of G. Let $V(N, \Psi)$ be the subspace of V spanned by $\pi\left(\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\right)v - \Psi(X)v$ for all v in V and X in \mathcal{D} . The twisted Jacquet module $V_{N,\Psi}$ of V is defined as $V/V(N, \Psi)$. $V_{N,\Psi}$ is an S-module and the maximal quotient of V on which N acts via Ψ . It is known that if (π, V) is irreducible, $V_{N,\Psi}$ is finite dimensional. The next lemma was proved by Prasad and Raghuram in [2, Theorem 2.1].

Lemma 1.4. The twisted Jacquet module $V(\pi_1, \pi_2)_{N,\Psi}$ of a principal series representation $V(\pi_1, \pi_2)$ is isomorphic with $V_1 \otimes V_2$ as $\Delta(\mathcal{D}^*)$ -modules.

DEFINITION 1.1. For any infinite dimensional admissible representation (π, V) of *G*, let *L* be the natural projection from *V* to $V_{N,\Psi}$. Let ξ_v be the function on \mathcal{D}^* defined by $\xi_v(X) = L\left(\pi\left(\begin{pmatrix} X & 0\\ 0 & 1 \end{pmatrix}\right)v\right)$. Let $\mathcal{K}(\pi)$ denote the space consisting of functions ξ_v for all *v* in *V*. $\mathcal{K}(\pi)$ is called the Kirillov model of π .

The action of any element $\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$ of P on $\mathcal{K}(\pi)$ is easy to describe, which is

$$\pi \left(\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \right) \xi(X) = \Psi(D^{-1}XB)\pi_{N,\Psi} \left(\begin{pmatrix} D & 0 \\ 0 & D \end{pmatrix} \right) \xi(D^{-1}XA)$$

for all ξ in $\mathcal{K}(\pi)$ and X in \mathcal{D}^* . From this formula, each $V_{N,\Psi}$ -valued function ξ of $\mathcal{K}(\pi)$ is locally constant on \mathcal{D}^* and vanishes outside some compact subset of \mathcal{D} because the stabilizer subgroup of ξ is open. The *G*-intertwining operator $v \mapsto \xi_v$ is injective if (π, V) is irreducible. Prasad and Raghuram proved the following lemma [2, Theorem 3.1].

Lemma 1.5. For an admissible representation π , the Kirillov model $\mathcal{K}(\pi)$ contains the space $C_c^{\infty}(\mathcal{D}^*, V_{N,\Psi})$. Moreover, if π is a principal series representation, $C_c^{\infty}(\mathcal{D}^*, V_{N,\Psi})$ is a proper subspace of $\mathcal{K}(\pi)$.

2. Main results

2.1. Asymptotic behavior of an element of a Kirillov model. In this section, we study the Kirillov model of a principal series representation of $GL_2(\mathcal{D})$. Since \mathcal{D}^* is not always commutative, the irreducible representation of \mathcal{D}^* is not onedimensional. However since \mathcal{D}^* is compact modulo the center F^* , the irreducible representation is finite-dimensional. Let (π_1, V_1) , (π_2, V_2) be two irreducible representations of \mathcal{D}^* .

The element ξ_{φ} in the Kirillov model of $V(\pi_1, \pi_2)$ corresponding to φ is defined as

$$\xi_{\varphi}(X) = |X|^{1/2} 1 \otimes \pi_2(X) \sum_{n \in \mathbb{Z}} \int_{\mathfrak{v}(Y)=n} \overline{\Psi(XY)} \varphi\left(w^{-1} \begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix}\right) dY.$$

This map $\varphi \mapsto \xi_{\varphi}$ is a *G*-intertwining operator, but not always injective.

We introduce the functions ϕ on \mathcal{D} such that $\phi(X) = \varphi\left(w^{-1}\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\right)$. Let $\mathcal{F}(\pi_1, \pi_2)$ denote the space of such functions on \mathcal{D} . All functions ϕ of $\mathcal{F}(\pi_1, \pi_2)$ are locally constant on \mathcal{D} and $|X|\pi_1(X) \otimes \pi_2(X^{-1})\phi(X)$ are constant vectors for |X| large. We define $\hat{\phi}$ of ϕ as

(1)
$$\hat{\phi}(X) = \sum_{n \in \mathbb{Z}} \int_{\mathfrak{v}(Y)=n} \overline{\Psi(XY)} \phi(Y) \, dY.$$

 $\hat{\phi}$ makes sense if this is regarded as a Fourier transform of ϕ in the sense of distribution on $C_c^{\infty}(\mathcal{D}^*)$.

Lemma 2.1. The map $\varphi \mapsto \xi_{\varphi}$ is injective if and only if the map $\phi \mapsto \hat{\phi}$ is injective.

Proof. The map $\varphi \mapsto \xi_{\varphi}$ is a composition of the maps $\varphi \mapsto \phi$, $\phi \mapsto \hat{\phi}$ and $\hat{\phi} \mapsto \xi_{\phi}$. The map $\hat{\phi} \mapsto \xi_{\varphi}$ is obviously isomorphic.

Since the big cell is dense in G, φ is completely determined on G by the corresponding ϕ . Hence the map $\varphi \mapsto \phi$ is an isomorphism from $V(\pi_1, \pi_2)$ to $\mathcal{F}(\pi_1, \pi_2)$.

As a consequence of this lemma, it is important to consider the map $\phi \mapsto \hat{\phi}$. We start to consider of the convergence of the series of (1).

Lemma 2.2. The series of (1) converges and the function vanishes outside some compact subset of \mathcal{D} .

Proof. It is clear that $\mathcal{F}(\pi_1, \pi_2)$ is the direct sum of $C_c^{\infty}(\mathcal{D}, V_1 \otimes V_2)$ and the subspace spanned by the functions

$$\phi_{v}(X) = \begin{cases} |X|^{-1}\pi_{1}(X^{-1}) \otimes \pi_{2}(X)v & \text{if } |X| \ge 1\\ 0 & \text{if } |X| < 1 \end{cases}$$

for all $v \in V_1 \otimes V_2$. If $\phi \in C_c^{\infty}(\mathcal{D}, V_1 \otimes V_2)$, $\phi \mapsto \hat{\phi}$ is a usual Fourier transform and therefore the series converges on every compact subset of \mathcal{D}^* .

Before considering ϕ_v , we give a filtration to $V_1 \otimes V_2$. We denote by f the minimal number such that $\pi_1(X) \otimes \pi_2(Y)v = v$ for all v in $V_1 \otimes V_2$ and X, Y in $1 + \mathfrak{P}^f$. Let

$$\begin{split} W'_f &= V_1 \otimes V_2, \\ W'_{i-1} &= \{ v \in W'_i \mid \pi_1(X) \otimes \pi_2(Y)v = v \text{ (for all } X, Y \in 1 + \mathfrak{P}^{i-1}) \} \quad \text{for } 2 \leq i \leq f, \\ W'_0 &= \{ v \in W'_1 \mid \pi_1(X) \otimes \pi_2(Y)v = v \text{ (for all } X, Y \in \mathfrak{O}^*) \}. \end{split}$$

There exists an $\mathfrak{O}^* \times \mathfrak{O}^*$ -invariant scalar product \langle , \rangle on $V_1 \otimes V_2$. Indeed, if we fix a scalar product (,) on $V_1 \otimes V_2$, then \langle , \rangle may be given by

$$\langle v, w \rangle = \int_{\mathfrak{O}^*} \int_{\mathfrak{O}^*} (\pi_1(X) \otimes \pi_2(Y)v, \pi_1(X) \otimes \pi_2(Y)w) d^*Y d^*X.$$

Let

$$W_i = \{ v \in W'_i \mid \langle v, v' \rangle = 0 \text{ (for all } v' \in W'_{i-1}) \},$$

for $1 \leq i \leq f$ and $W_0 = W'_0$. Then $V_1 \otimes V_2 = \bigoplus_{i=0}^f W_i$ and if $i \neq j$, $\langle v_i, v_j \rangle = 0$ for all $v_i \in W_i$ and $v_j \in W_j$. Notice that if W_0 is not $\{0\}$, $V_1 \otimes V_2$ is one-dimensional because all $\pi_1(X) \otimes \pi_2(Y)$, $X, Y \in \mathcal{D}^*$, are commutative with each other on W_0 . If v_i is an element of W_i , then

$$\phi_{v_i}(X) = \begin{cases} |X|^{-1} \pi_1(X^{-1}) \otimes \pi_2(X) v_i & \text{if } |X| \ge 1 \\ 0 & \text{if } |X| < 1, \end{cases}$$

and $\hat{\phi}_{v_i}$ is equal to

$$\sum_{n\leq 0}\int_{\mathfrak{v}(Y)=n}\overline{\Psi(XY)}\pi_1(Y^{-1})\otimes \pi_2(Y)v_i\,d^*Y.$$

If i = 0, then

$$\int_{\mathfrak{v}(Y)=n} \overline{\Psi(XY)} \pi_1(Y^{-1}) \otimes \pi_2(Y) v_0 d^*Y$$

= $\int_{\mathfrak{O}^*} \overline{\Psi(X\varpi^n Y)} \pi_1(Y^{-1}\varpi^{-n}) \otimes \pi_2(\varpi^n Y) v_0 d^*Y$
= $\pi_1(\varpi^{-n}) \otimes \pi_2(\varpi^n) v_0 \int_{\mathfrak{O}^*} \overline{\Psi(X\varpi^n Y)} d^*Y$
= $\pi_1(\varpi^{-n}) \otimes \pi_2(\varpi^n) v_0 \int_{\mathfrak{O}} \left(\overline{\Psi(X\varpi^n Y)} - |\varpi|\overline{\Psi(X\varpi^{n+1}Y)}\right) dY.$

Since Ψ is trivial on \mathfrak{P}^{1-d} , $\int_{\mathfrak{O}} (\overline{\Psi(X\varpi^n Y)} - |\varpi| \overline{\Psi(X\varpi^{n+1}Y)}) dY \neq 0$ is equivalent to $X\varpi^{n+1} \in \mathfrak{P}^{1-d}$. Hence $\hat{\phi}_{v_0}$ vanishes outside some compact subset of \mathcal{D} and the series turns out to be a finite sum whenever $\mathfrak{v}(X)$ is fixed.

Let $i \neq 0$. Since $v_i \in W_i$,

$$\int_{\mathfrak{v}(Y)=n} \overline{\Psi(XY)} \pi_1(Y^{-1}) \otimes \pi_2(Y) v_i \, d^*Y$$

=
$$\int_{\mathfrak{O}^*/1+\mathfrak{P}^i} \int_{1+\mathfrak{P}^i} \overline{\Psi(X\varpi^n AB)} \pi_1(B^{-1}A^{-1}\varpi^{-n}) \otimes \pi_2(\varpi^n AB) v_i \, d^*B \, d^*A$$

KIRILLOV MODEL OF REPRESENTATION OF $GL_2(\mathcal{D})$

$$= \int_{\mathfrak{O}^*/1+\mathfrak{P}^i} \pi_1(A^{-1}\varpi^{-n}) \otimes \pi_2(\varpi^n A) \int_{1+\mathfrak{P}^i} \overline{\Psi(X\varpi^n AB)} v_i \, d^*B \, d^*A$$
$$= \int_{\mathfrak{O}^*/1+\mathfrak{P}^i} \overline{\Psi(X\varpi^n A)} \pi_1(A^{-1}\varpi^{-n}) \otimes \pi_2(\varpi^n A) v_i \, d^*A \int_{\mathfrak{P}^i} \overline{\Psi(X\varpi^n AB)} \, dB.$$

Since Ψ is trivial on \mathfrak{P}^{1-d} , $\int_{\mathfrak{P}^i} \overline{\Psi(X\varpi^n AB)} dB \neq 0$ is equivalent to $X\varpi^n A \in \mathfrak{P}^{1-d}$. Hence $\hat{\phi}_{v_i}$ vanishes outside some compact subset of \mathcal{D} and the series turn out to be a finite sum whenever $\mathfrak{v}(X)$ is fixed.

This completes the proof since any function in $\mathcal{F}(\pi_1, \pi_2)$ can be written as a finite sum of the above functions.

By this lemma the Kirillov model is realized as a certain space consisting of locally constant functions on \mathcal{D}^* .

REMARK 2.1. Raghuram also considered the convergence of the series (1) in [3] as follows. For v(X) large, let

$$A(X) = \sum_{n \leq \mathfrak{v}(x)} \int_{\mathfrak{v}(T)=n} \overline{\Psi(T)}(\pi_1(T^{-1}) \otimes \pi_2(T)) d^*T.$$

A(X) is an element of End($V_1 \otimes V_2$). Then

$$\hat{\phi}_{v}(X) = \left(1 \otimes \pi_{2}(X)^{-1}\right) \cdot A(X) \cdot (\pi_{1}(X) \otimes 1)v$$

where the notations are the same as Lemma 2.2. He analyzed A(X) and proved that the defining series of A(X) is a finite sum.

Raghuram also calculated the asymptotic behavior of $\hat{\phi}$ around 0 and obtained

$$\hat{\phi}(X) = (1 \otimes \pi_2(X^{-1})) \cdot A(X) \cdot (\pi_1(X) \otimes 1)v_1 + v_2$$

for |X| enough small. By the proof of Lemma (2.2), we can calculate A(X) more precisely.

Let ω_i be the central characters of π_i for i = 1, 2 and $\omega = \omega_1 \cdot \omega_2^{-1}$.

Theorem 2.3. For each $\phi \in \mathcal{F}(\pi_1, \pi_2)$, there exist four vectors $v_{\alpha}, v_{\beta}, v_{\gamma}, v_{\delta}$ in $V_1 \otimes V_2$ such that

(2)
$$\hat{\phi}(X) = \left((1 \otimes \pi_2(X^{-1})) \cdot A_1 \cdot (\pi_1(X) \otimes 1) + \sum_{t=0}^{\lfloor m/d \rfloor} \omega(\varpi^{td}) A_2 + A_3(m) \right) v_\alpha + \pi_1(X) \otimes \pi_2(X^{-1}) v_\beta + m v_\gamma + v_\delta$$

for $X \in \mathfrak{P}^m$, $X \notin \mathfrak{P}^{m+1}$ with m large. Here

$$A_{1} = \sum_{1-d-f \le n \le 1-d} \int_{\mathfrak{v}(Y)=n} \overline{\Psi(Y)} \pi_{1}(Y) \otimes \pi_{2}(Y^{-1}) d^{*}Y,$$

$$A_{2} = \sum_{1-d \le n \le 0} \int_{\mathfrak{v}(Y)=n} \pi_{1}(Y^{-1}) \otimes \pi_{2}(Y) d^{*}Y,$$

$$A_{3}(m) = \sum_{1-d-m \le n \le -d-[m/d]d} \int_{\mathfrak{v}(Y)=n} \pi_{1}(Y^{-1}) \otimes \pi_{2}(Y) d^{*}Y,$$

considered as elements of $End(V_1 \otimes V_2)$.

Proof. Similarly as in previous lemma, we start from the case ϕ is in $C_c^{\infty}(\mathcal{D}, V_1 \otimes V_2)$. Since $\phi \mapsto \hat{\phi}$ is Fourier transform, in some neighborhood of 0, $\hat{\phi}(X)$ is a constant vector $\int_{\mathcal{D}} \phi(Y) dY$.

Let $m = \mathfrak{v}(X)$ be enough large. From the proof of the previous lemma, we have

$$\hat{\phi}_{v}(X) = \sum_{-d-f-m \le n \le 0} \int_{\mathfrak{v}(y)=n} \overline{\Psi(XY)} \pi_{1}(Y^{-1}) \otimes \pi_{2}(Y) v \, d^{*}Y$$

for v in $V_1 \otimes V_2$. If v_0 is a non-zero element of W_0 , π_1 and π_2 are characters. Then,

$$\begin{split} \hat{\phi}_{v_0}(X) &= \sum_{-d-m \le n \le 0} \int_{\mathfrak{v}(y)=n} \overline{\Psi(XY)} \pi_1(Y^{-1}) \pi_2(Y) v_0 \, d^*Y \\ &= \sum_{-d-m \le n \le 0} \pi_1(\varpi^{-n}) \pi_2(\varpi^n) v_0 \int_{\mathfrak{O}^*} \overline{\Psi(X\varpi^n Y)} \, d^*Y \\ &= \sum_{-d-m \le n \le 0} \pi_1(\varpi^{-n}) \pi_2(\varpi^n) v_0 \int_{\mathfrak{O}} \left(\overline{\Psi(X\varpi^n Y)} - |\varpi| \overline{\Psi(X\varpi^{n+1}Y)} \right) dY. \end{split}$$

If we assume $\pi_1(\varpi)\pi_2(\varpi^{-1}) \neq 1$, since Ψ is trivial on \mathfrak{P}^{1-d} ,

$$\begin{split} \hat{\phi}_{v_0}(X) &= - |\varpi| \pi_1(\varpi^{d+m}) \pi_2(\varpi^{-d-m}) v_0 + (1-|\varpi|) \sum_{1-d-m \le n \le 0} \pi_1(\varpi^{-n}) \pi_2(\varpi^n) v_0 \\ &= -\pi_1(X) \otimes \pi_2(X^{-1}) \\ &\times \left((1-|\varpi|) \frac{\pi_1(\varpi^d) \otimes \pi_2(\varpi^{-d})}{1-\pi_1(\varpi) \otimes \pi_2(\varpi^{-1})} + |\varpi| \pi_1(\varpi^d) \otimes \pi_2(\varpi^{-d}) \right) v_0 \\ &+ \frac{1}{1-\pi_1(\varpi) \otimes \pi_2(\varpi^{-1})} v_0. \end{split}$$

The last is the behavior of $\hat{\phi}_{\nu_0}$ around 0 in this case.

826

If we assume $\pi_1(\varpi)\pi_2(\varpi^{-1}) = 1$,

$$\begin{split} \hat{\phi}_{v_0}(X) &= -|\varpi| \pi_1(\varpi^{d+m}) \pi_2(\varpi^{-d-m}) v_0 + (1-|\varpi|) \sum_{1-d-m \le n \le 0} \pi_1(\varpi^{-n}) \pi_2(\varpi^n) v_0 \\ &= -|\varpi| v_0 + (1-|\varpi|)(d+m) v_0 \\ &= m(1-|\varpi|) v_0 + ((1-|\varpi|)d - |\varpi|) v_0. \end{split}$$

The last is the behavior of $\hat{\phi}_{v_0}$ around 0 in this case.

Next, we assume v_i is an element of W_i for $i \neq 0$. Since Ψ is trivial on \mathfrak{P}^{1-d} ,

$$\begin{split} \hat{\phi}_{v_{i}}(X) &= \sum_{1-d-f-m \leq n \leq -d-m} \int_{\mathfrak{v}(Y)=n} \overline{\Psi(XY)} \pi_{1}(Y^{-1}) \otimes \pi_{2}(Y) v_{i} \, d^{*}Y \\ &+ \sum_{1-d-m \leq n \leq 0} \int_{\mathfrak{v}(Y)=n} \pi_{1}(Y^{-1}) \otimes \pi_{2}(Y) v_{i} \, d^{*}Y \\ &= (1 \otimes \pi_{2}(X^{-1})) \\ &\times \left(\sum_{1-d-f \leq n \leq -d} \int_{\mathfrak{v}(Y)=n} \overline{\Psi(Y)} \pi_{1}(Y^{-1}) \otimes \pi_{2}(Y) d^{*}Y \right) (\pi_{1}(X) \otimes 1) v_{i}) \, d^{*}Y \\ &+ \sum_{1-d-[m/d]d \leq n \leq 0} \int_{\mathfrak{v}(Y)=n} \pi_{1}(Y^{-1}) \otimes \pi_{2}(Y) v_{i} \, d^{*}Y \\ &+ \sum_{1-d-m \leq n \leq -d-[m/d]d} \int_{\mathfrak{v}(Y)=n} \pi_{1}(Y^{-1}) \otimes \pi_{2}(Y) v_{i} \, d^{*}Y \\ &= (1 \otimes \pi_{2}(X^{-1})) \cdot A_{1} \cdot (\pi_{1}(X) \otimes 1) v_{i} \\ &+ \sum_{t=0}^{[m/d]} \omega(\varpi^{td}) \left(\sum_{1-d \leq n \leq 0} \int_{v(Y)=n} \pi_{1}(Y^{-1}) \otimes \pi_{2}(Y) v_{i} \, d^{*}Y \right) + A_{3}(m) v_{i}. \end{split}$$

Then the asymptotic behavior around 0 is

$$\hat{\phi}_{v_i}(X) = (1 \otimes \pi_2(X^{-1})) \cdot A_1 \cdot (\pi_1(X) \otimes 1)v_i + \sum_{t=0}^{[m/d]} \omega(\varpi^{td}) A_2 v_i + A_3(m)v_i$$

in this case.

Any function in $\mathcal{F}(\pi_1, \pi_2)$ is a finite sum of above functions. Hence (2) is obtained.

2.2. Injectivity of the map to a Kirillov model. Here we study the condition under when the map from $V(\pi_1, \pi_2)$ to its Kirillov model is injective. Since this map is *G*-intertwining, $V(\pi_1, \pi_2)$ is reducible if the map has non-zero kernel.

Y. NAKAMURA

Proposition 2.4. The mapping $\phi \mapsto \hat{\phi}$ is injective unless there exists a non-zero subspace of $V_1 \otimes V_2$ on which $\pi_1(X) \otimes \pi_2(X^{-1})$ acts as $|X|^{-1}$, in which case its kernel is the set of constant vector-valued functions in $\mathcal{F}(\pi_1, \pi_2)$.

Proof. We fix a basis of *n*-dimensional vector space $V_1 \otimes V_2$. Then, $\hat{\phi}(X)$ is written as $(\hat{\phi}_1(X), \ldots, \hat{\phi}_n(X))$ and also $\phi(X)$ is $(\phi_1(X), \ldots, \phi_n(X))$, where each $\hat{\phi}_i$ is the Fourier transform of ϕ_i . If $\hat{\phi}_i = 0$ on \mathcal{D}^* , the measure $\hat{\phi}_i(X) dX$ is proportional to Dirac measure, which means ϕ_i is a constant on \mathcal{D} . Hence ϕ is a constant vector on \mathcal{D} . This happen if and only if there exists a non-zero subspace in $V_1 \otimes V_2$ on which $\pi_1(X) \otimes \pi_2(X^{-1})$ acts as $|X|^{-1}$.

Proposition 2.5. Let *H* be an arbitrary group, (π_1, V_1) and (π_2, V_2) finite dimensional irreducible representations of *H*, and χ a one dimensional representation of *H*. There exists a non-zero element v of $V_1 \otimes V_2$ such that $\pi_1(X) \otimes \pi_2(X^{-1})v = \chi(X)v$ for all $X \in H$ if and only if $\pi_1 = \chi \cdot \pi_2$ and dim $V_1 = \dim V_2 = 1$.

Proof. We assume there exists a non-zero element v of $V_1 \otimes V_2$ such that $\pi_1(X) \otimes \pi_2(X^{-1})v = \chi(X)v$ for all $X \in H$ and (π_1, V_1) and (π_2, V_2) are finite dimensional and irreducible. Notice that

$$\pi_1(X) \otimes 1v = \chi(X)(1 \otimes \pi_2(X))v.$$

Any element of $V_1 \otimes V_2$ is written as

$$\sum_i a_i(\pi_1(Y_i)\otimes 1)v,$$

where the sum is finite, $a_i \in \mathbb{C}^*$, and $Y_i \in H$. For any element X of H, one has

$$\pi_{1}(X) \otimes \pi_{2}(X^{-1}) \left(\sum_{i} a_{i}(\pi_{1}(Y_{i}) \otimes 1)v \right)$$

= $\sum_{i} a_{i}(1 \otimes \pi_{2}(X^{-1}))(\pi_{1}(XY_{i}) \otimes 1)v$
= $\sum_{i} a_{i}(1 \otimes \pi_{2}(Y_{i}))(\pi_{1}(XY_{i}) \otimes \pi_{2}((XY_{i})^{-1}))v$
= $\sum_{i} a_{i}\chi(XY_{i})(1 \otimes \pi_{2}(Y_{i}))v$
= $\chi(X) \sum_{i} a_{i}(\pi_{1}(Y_{i}) \otimes 1)v.$

Hence $\pi_1(X) \otimes \pi_2(X^{-1})$ acts on $V_1 \otimes V_2$ as $\chi(X)$. Next we consider the action

828

of $\pi_1(XY) \otimes 1$ on $V_1 \otimes V_2$ for all $X, Y \in H$. If w is any element of $V_1 \otimes V_2$,

$$(\pi_1(XY) \otimes 1)w = \chi(Y)(\pi_1(X) \otimes \pi_2(Y))w$$
$$= \chi(Y)(1 \otimes \pi_2(Y))(\pi_1(X) \otimes 1w)$$
$$= (\pi_1(YX) \otimes 1)w.$$

By Schur's lemma, $\dim V_1 = 1$. Similarly, $\dim V_2 = 1$. The converse is obvious.

These two propositions yield immediately the next theorem.

Theorem 2.6. The map from an induced representation $V(\pi_1, \pi_2)$ to its Kirillov model is injective unless $\pi_1 = | |^{-1} \cdot \pi_2$ and dim $V_1 = \dim V_2 = 1$.

By this theorem we obtain a sufficient condition for the reducibility of a principal series representation.

Corollary 2.7. If dim
$$V_1 = \dim V_2 = 1$$
 and $\pi_1 = ||^{\pm 1} \cdot \pi_2$, $V(\pi_1, \pi_2)$ is reducible.

Proof. Since the map $V(\pi_1, \pi_2) \ni \varphi \mapsto \xi_{\varphi} \in \mathcal{K}(\pi)$ is a *G*-intertwining operator, if this map is not injective, $V(\pi_1, \pi_2)$ is reducible. By Lemma 1.3, the map from $V(\pi_1, \pi_2)^{\vee}$ to its Kirillov model is not injective if $\pi_1 = | | \cdot \pi_2$ and dim $V_1 = \dim V_2 = 1$.

Tadić obtained the irreducibility criterion of principal series representations of $GL_n(\mathcal{D})$ when the characteristic of F is 0 by using theories of Langlands classification and Hopf algebras [4, Lemma 2.5 and 4.2]. The following theorem is a $GL_2(\mathcal{D})$ case of the results of Tadić.

Theorem 2.8 (Tadić). When the characteristic of F is 0, the representation $V(\pi_1, \pi_2)$ is reducible if and only if $\pi_1 = | |^{\pm 1} \pi_2$.

As a consequence of Corollary 2.7 and Theorem 2.8, if $d \ge 2$ and the characteristic of F is 0, there exists a reducible principal series representation $V(\pi_1, \pi_2)$ such that the maps from $V(\pi_1, \pi_2)$ to $\mathcal{K}(\pi)$ and from $V(\pi_1, \pi_2)^{\vee}$ to $\mathcal{K}(\pi)^{\vee}$ are injective. If d = 1, i.e. \mathcal{D} is a commutative field, such representation $V(\pi_1, \pi_2)$ does not exist [1, Theorem 6].

ACKNOWLEDGEMENTS. The author would like to thank Professor Takao Watanabe for many helpful advice. The author also thank Department of Mathematics of Osaka University for very pleasant studying environments.

829

Y. NAKAMURA

References

- [1] R. Godement: Notes on Jacquet-Langlands theory, Institute for Advanced Study, Princeton, 1970.
- [2] D. Prasad and A. Raghuram: Kirillov theory for $GL_2(\mathcal{D})$ where \mathcal{D} is a division algebra over a non-Archimedean local field, Duke Math. J. **104** (2000), 19–44.
- [3] A. Raghuram: On representations of p-adic $GL_2(\mathcal{D})$, Pacific J. Math. 206 (2002), 451–464.
- [4] M. Tadić: Induced representations of GL(n, A) for p-adic division algebras A, J. Reine Angew. Math. 405 (1990), 48–77.
- [5] A. Weil: Basic number theory, Springer-Verlag, New York, 1967.

Department of Mathematics Graduate School of Science Osaka University Toyonaka 560-0043, Japan e-mail: nakamura@gaia.math.wani.osaka-u.ac.jp