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0. Introduction

Let F be a non-Archimedean local field of arbitrary charasteriandD a cen-
tral finite dimensional division algebra ovét . Godement ¢bhstructed a model of
an irreducible admissible representation {) of GL,(F), which is called the Kirillov
model of r, V) and is denoted byC(w). (n) is realized as a certain space consisting
of locally constant functions o* that vanish outside some compact subsefof . On
K(x), upper triangular matrices act as

7 ((65)) 76)= vt honta) @ xa)

wherew, is the central character of and ) is a non-trivial additive character af
Godement obtained an irreducibility criterion of prindifz@ries representations by us-
ing the theory of Kirillov models, and then classified priveli series representations
of GLz(F).

Prasad and Raghuram [2] developed the theory of Kirillov et®dor admissi-
ble representations of G[D). Let (r, V) be an admissible representation of D)
and Vyy the twisted Jacquet module af, (/) with respect to a non-trivial addi-
tive characterd ofD. The Kirillov model of ¢r, V) is defined to be a certain space
consisting of Vy ¢ -valued locally constant functions @n. If f is an element of
the Kirillov model of ¢r, V), f vanishes outside some compact subseDadnd upper
triangular matrices act as

m ((/3 g)) f(X) =V (D IXB)ry.yw (zg g) f(D71XA).

In this paper we study a Kirillov model of a principal seriespresentation
V(m1, m2) of GLy(D) induced from an irreducible representationy ® 72, Vi ® Vo)
of D* x D*. Any element of V 1, m) is a V1 ® V,-valued locally constant func-
tion on GLy(D) and GLy(D) acts onV fr1, o) by right translations. Even iV n(, )
is not irreducible, we construct its Kirillov model as fols. The element, of
the Kirillov model of V (r1, m2) corresponding top € V (w1, m2) is given as a distri-
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bution onC>*(D) by the form

€o(X) = |X|1/21®wz(X)Z/m: VXY)e ((2 _ol>) ((é i))”’

nezZ

where v denotes an additive valuation dd. Raghuram [3] proved that the defining
infinite series of§, converges. We give a proof of this fact by a different way from
Raghuram in Lemma 2.2. As a consequence of the convergerbe skries, we know
that the Kirillov model is realized as a certain space of fioms onD*. The asymp-
totic behavior ofé, around O characterizes a principal series representatian, 74).
Although Raghuram studied a behavior &)faround 0, our statement in Theorem 2.3
is more precise than Raghuram’s one.

Moreover, we give a condition under when the map- &5 is injective in Propo-
sition 2.4 and Theorem 2.6. From this theorem we get a suftigendition for irre-
ducibility of the principal series representations in Glary 2.7. If the characteristic
of F is 0, an irreducibility criterion of the principal serigspresentations of GLZY)
was given by Tadi€ [4] by using the theories of the Langlaol@dssification and Hopf
algebras. If we apply the results of Tadi¢ to £§D) case, the principal series repre-
sentationV 1, ) is reducible if and only ifra(X) = |X|*17(X) for all X € D*
when the characteristic af is 0. As a consequence of thisgadt Theorem 2.6 we
know that if dim= D # 1 and the characteristic df is 0, there exists a reducikile pr
cipal series representation w1 72) such that the maps fro ={, m2) to its Kirillov
model and fromV 4, mp)Y to its Kirillov model are injective. If dimD = 1, such
representations do not exist.

1. Preliminaries

1.1. Notations. In this paperZ denotes the ring of integers arfd the field

of complex numbers as usual. L&t be a non-Archimedean loedd #f arbi-
trary characteristicOr the integer ring ofFF 3 the uniqgue maximal ideal oDr,
g the cardinality of Or/9r, and wr the prime element off . The additive valua-
tion vr and the multiplicative valuation | on F are normalized so thdtor|r =
g~ =) = 4=l We fix a nontrivial additive charactetr of F so chosen that
the maximal fractional ideal iF  on whichiz is trivial is Or. Let D denote a cen-
tral division algebra of dimensio@? over F, © the maximal order ofD, and 8
the unique maximal ideal of. Notice that the cardinality o/ is equal tog? .
There is a generatots of P as w? = wp. The additive valuation and the multi-
plicative valuation| | on D are normalized so thato| = ¢=°@® = ¢=¢. Let Tp,r
be the reduced trace from to F. Let ¥ be the additive character @& obtained by
composingTp,r and the charactepy. LetdX be the Haar measure dh normalized
so that the volume oD* is (1—¢~9)~ 1.

Let My(D) be the matrix algebra of % 2 matrices with entries iD, G =
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GL2(D) = Mo(D)* the unit group of M(D), P the subgroup of upper triangular matri-
ces inG andN the unipotent radical &  consisting of matriceth Wis on diagonal.
The Shalika subgroup is defined to be the subgrougof comgisti the matrices
of the form (/3 ﬁ) for A € D* and B € D. The subgroup ofS consisting of the
matrices of the form(4 9) for all A € D* is denoted byA D).

For a totally disconnected locally compact topologicalcgp& and an arbitrary
vector spaceV , leC>°(X, V) be the space consisting of -valued locally constant
functions onX andC2°(X, V) be the subspace &> (X, V) consisting of compactly
supported functions. IV is one dimensional, we write simgl§°(X) and C2°(X)
for C>°(X, V) and C°(X, V), respectively.

Proposition 1.1. Letw = ( % ). ThenG is decomposed into the disjoint union
of P and PwP = PwN = NwP.

The subsetPwP is called the big cell.
Proposition 1.2. The additive charactelr oD is a constant orf3*—<.
For the proof, refer to [5, Chapter 10].

1.2. Admissible representations and Kirillov models. Let (7, V) be a repre-
sentation ofG . In this paper, the representation spHce isyalva vector space
over C. (w, V) is called admissible if the stabilizer subgroup of @h is oder
all v € v and the subspace which consists of all elements that areianvainderG’
is finite dimensional for all open subgroup’ of G.

Let (71, V1) and 2, V2) be two irreducible representations @1*. We extend
w1, 2 t0 a representation aP  on which  acts trivially. Létn1(7,) denote the rep-
resentation ofG induced from; ® m, of P. Namely,

¢ ((g g) g) =|AD7"% x m(A) @ ma D)o (g)
V(m, m2)=q ¢ €CT(G, V1@ Vy)

A B
(for all<o D)EP andgeG)

and G acts onV 71, m») by right translations. Then we obtain an admissible repre-
sentation. Such a representation is called a principaésegpresentation.
The following lemma is proved in the same way as [1, Theorem 5]

Lemma 1.3. The contragredient representation df(my, m2) is isomorphic to
V(ny,ny), wherer;” denote the contragredient representationzof

We study the Kirillov model in order to investigate when angipal series repre-
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sentation is irreducible. Letr( V) be an admissible representation@f . Detv,@ )
be the subspace of  spanned by((§%))v — W(X)v for all v in V and X

in D. The twisted Jacquet modul&y y of is defined BgV(N, V). Vyy is
an S-module and the maximal quotient of on whigh acts wia . lkiewn
that if (mr, V) is irreducible, Vy ¢ is finite dimensional. The next lemma wasved
by Prasad and Raghuram in [2, Theorem 2.1].

Lemma 1.4. The twisted Jacquet modubé(ry, m2)y ¢ Of @ principal series rep-
resentationV (71, m2) is isomorphic withVy ® V, as A(D*)-modules

Derinimion 1.1.  For any infinite dimensional admissible represemat{e, V)
of G, let L be the natural projection frod  tdyy . L&t be the function orD*
defined by&,(X) = L (7 ((§9))v). Let K(r) denote the space consisting of func-
tions ¢, for all v in V. K(x) is called the Kirillov model ofr.

The action of any elemer(t3 5) of P on K(r) is easy to describe, which is

™ <(/3 g)) £0X) = W(D X B)my g <(§ g)) &(D71XA)

for all £ in K(x) and X in D*. From this formula, eachVy y -valued functich
of K(x) is locally constant orflD* and vanishes outside some compact subseD of
because the stabilizer subgroup ofis open. TheG -intertwining operatar — &, is
injective if (m, V) is irreducible. Prasad and Raghuram proved the followermgna [2,
Theorem 3.1].

Lemma 1.5. For an admissible representation, the Kirillov model IC(7) con-
tains the spaceC®(D*, V. g). Moreover if « is a principal series representation
C>(D*, Vy.w) is a proper subspace of(r).

2. Main results

2.1. Asymptotic behavior of an element of a Kirillov model. In this sec-
tion, we study the Kirillov model of a principal series repeatation of Gk(D).
Since D* is not always commutative, the irreducible representatibrD* is not one-
dimensional. However sinc®* is compact modulo the centét*, the irreducible rep-
resentation is finite-dimensional. Lety( V1), (w2, V2) be two irreducible representa-
tions of D*.

The element,, in the Kirillov model of V (r1, 72) corresponding tap is defined
as

€00 = [X[Y21e m(x) S / et (w—l <; ﬁ)) av.

ne”Z
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This mapy — &, is a G -intertwining operator, but not always injective.

We introduce the functions) on D such that¢(X) = ¢ (wt(5%)). Let
F(m1, m2) denote the space of such functions Dn All functions ¢ of F(w1, m2) are
locally constant orD and | X|r1(X) ® m2(X ~1)¢(X) are constant vectors fdX| large.
We defines of ¢ as

(1) x)=>" / U(XY)h(Y)dY.

nez v(Y)=n

<;3 makes sense if this is regarded as a Fourier transforigh iof the sense of distribu-
tion on C°(D*).

Lemma 2.1. The mapy — &, is injective if and only if the mag — & is
injective

Proof. The mapy — &, is a composition of the mapg — ¢, ¢ — q§ and
¢ — &,. The mapg — &, is obviously isomorphic.
Since the big cell is dense i& ¢ is completely determined o by the corre-
sponding¢. Hence the map — ¢ is an isomorphism fronV =y, m2) to F(ry, m2).
]

As a consequence of this lemma, it is important to considerntiap ¢ — (;3 We
start to consider of the convergence of the series of (1).

Lemma 2.2. The series o{1) converges and the function vanishes outside some
compact subset db.

Proof. It is clear thatF(my, ) is the direct sum of”°(D, V1®V,) and the sub-
space spanned by the functions

60(X) = {|X|_1771(X_1)®7r2(X)v i.f 1X|>1
0 if [X| <1

for all v e Vi@ Vo. If ¢ € C(D, V1 ® V), ¢ — ¢ is a usual Fourier transform and
therefore the series converges on every compact subsbt .of

Before consideringy,, we give a filtration toV; ® V,. We denote byf the min-
imal number such that;(X) ® m(Y)v =v for all v in Vi® Vo and X Y in 1 +3/.
Let

Wi =V1® Va,
W ={veW |mX)om¥)v=v (forall X,y c 1+ 1} for2<i<Ff,
Wg={ve W | m(X)®m(Y)v=u (for all X,Y € O%)}.
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There exists arD* x O*-invariant scalar product , ) on Vi1 ® V,. Indeed, if we fix
a scalar product () orVy ® Vo, then( , ) may be given by

(v, w) = / / (m(X) @ m2(Y)v, m(X) @ ma(Y)w) d*Y d* X.
O JO*
Let
W, ={ve W |(v,v)=0 (for all v' € W/_,)},
for 1<i < fand Wy = Wj. ThenVi® V, = EB,.f:OW,- and if i # j, (v;,v;) =0 for
all v; € W; andv; € W;. Notice that if Wy is not {0}, V1 ® V> is one-dimensional

because allr1(X) ® m(Y), X,Y € D*, are commutative with each other d¥. If v;
is an element ofW; , then

X| im(x—1 X, if |X|>1
5 () = [XIT MY @ mu it [X] 2
0 if |X]<1,

and ¢,, is equal to

Z/ ‘-IJ(XY)7T1(Y71)®7T2(Y)U,' d'y.
n<0 v(Y)=n

If i=0, then
/ UXY)m (YY) @ mo(Y)ved*Y
v(Y)=n
= / V(X"Y)m (Yt ") @ ma(w"Y)vod* Y
D*
=m(@™)® Wz(w")vo/ U(Xw"Y)d*Y
D*

=m(w ™) ® ﬂg(w"’)vo/ (V(X@"Y) — |w|¥(Xw"*1Y) ) dY.
O
Since ¥ is trivial onB~¢, [ (V(X@"Y) — |w|¥(Xw"*1Y))dY # O is equivalent
to X"t € Pi-<. Henceo,, vanishes outside some compact subseDaéind the se-

ries turns out to be a finite sum wheneugX) is fixed.
Leti #0. Sincev; € W;,

/ U(XY)m(Y Y @ mo(Y)v; d¥Y
v(Y)=n

= / / U(Xw"AB)m(B A7 Y™ ® ma(w" AB)v; d*B d*A
O /14 J 149
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= / m (A7 ™) @ mo(w" A) V(X" AB)v; d*Bd*A
O /14 1+

i

:/ V(X" A)m(A Yo ™) @ mo(w" A)v; d*A/ V(Xw"AB)dB.
O /1+p

Since ¥ is trivial on3t—¢, fmimw # 0 is equivalent toXw"A € P17,
Hence&v‘. vanishes outside some compact subsefDoand the series turn out to be
a finite sum wheneves(X) is fixed.

This completes the proof since any function{r,, m2) can be written as a finite
sum of the above functions. ]

By this lemma the Kirillov model is realized as a certain spaonsisting of loca-
lly constant functions orD*.

Remark 2.1. Raghuram also considered the convergence of the qéjien [3]
as follows. Foro(X) large, let

A(X) = U(T)(n(T™YH @ mo(T)) d*T.
(X) ;) /U(T):n )T © mo(T))

A(X) is an element of Endfy ® V»). Then
$o(X) = (1@ ma(X) ) - AMX) - (ma(X) ® Lo

where the notations are the same as Lemma 2.2. He analyzgd nf@ praved that
the defining series oA X ) is a finite sum.
Raghuram also calculated the asymptotic behaviop @fround 0 and obtained

H(X) = (1@ ma(X 1) - AX) - (r2(X) @ Loy + v

for |X| enough small. By the proof of Lemma (2.2), we can calculat& roje pre-
cisely.

Let w; be the central characters of for i =1, 2 andw = wy - wz‘l.

Theorem 2.3. For each¢ € F(my, m2), there exist four vectors,, vg, vy, vs in
V1 ® Vo such that

[m/d]
@ S(X)= | Q@ m(X ™) A1 (mX) @ 1)+ Y w(@")Az + As(m) | va
=0

+71(X) @ mAX " Hvg + mu, +vs
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for X € mlnl X ¢ ;Bm+l with m Iarge Here
A=) / V(¥ )m(Y) @ ma(Y ) d*Y,
1-d—f<n<l-d o(Y)=n
A= ) / m(Y ) @ m(Y)d*Y,
1-d<n<0 o(Y)=n
As(m) = Z / (v Y @ m(Y) d*Y,
1-d—m<n<—d—[m/d]ld o(Y)=n

considered as elements Bhd(V1 ® V>).

Proof. Similarly as in previous lemma, we start from the cases in C°(D,
Vi ® V). Since ¢ +— ¢ is Fourier transform, in some neighborhood of &I,X) is
a constant vector, (Y)dY.

Let m =v(X) be enough large. From the proof of the previous lemma, we ha

H(X)= > /n o V(XY)m (Y ) @ mo(Y)vd*Y

—d—f—m<n<0

for v in V1 ® V. If vg is a non-zero element diy, 71 and m» are characters. Then,

Buy(X) / 0 (XY (Y " Yma(Y)vod* Y
v(y)=n

—d—m<n<0

> m@ " ma(w")vo /D * UV(Xwo"Y)d*Y

—d—m<n<0

Z 7T1(w7”)7rg(w”)vo/ (V(X@"Y) — |w|¥(Xw"*tY)) dY.
—d—m<n<0 O

If we assumer(w)mo(w™1) # 1, since¥ s trivial onj3i—¢,

Duo(X) = — |w|mi (@ ™)ma(ww "o + (1 - |w]) Z mi(w " )ma(w")vo
1-d—m<n<0
=—m(X) @ m(X )
m1(w?) @ ma(w™9)
1-—
g (( )@ @ oD
1

+ .
1- m(@) @ mo(@ 1)

+elm(e) @ Wz(w_d)> %

The last is the behavior aﬁvo around O in this case.
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If we assumer(@)mo(w?) = 1,

buu(X) = —|@lm (@ ) ma(@ ™ o+ (1= [w) D m(@)ma(=")vo
1-d—m<n<0

= —|w@lvo + (1 — [w|)(d +m)vo
=m(1l— |w|)vo + (1 — |w|)d — |@|)vo.

The last is the behavior o;%vo around O in this case.
Next, we assume; is an element®f  fog 0. Since¥ s trivial on3*—¢,

B (X) > o, TR 8w d Y

1-d—f—m<n<—d—m

* Z / (Y ™Y @ ma(Y)v; d*Y
1-d—m<n<0 o(Y)=n

(1o m(X )

A= / W)y Y @ m(V)d"Y | (m(X) @ D) d"Y
1—d—f<n<—d”o()=n

Y [ mehemnmuay
v(Y)=n

1—d—[m/d]ld<n<0
Y [ merhemmuay
1-d—m<n<—d—[m/dld ’ °)=n
= (1@ m(X 1) A1 (m(X) ® L)
[m/d]
+> w@) | Y] / (YY) @ ma(Y)v; d*Y | + As(m)v;.
1=0 v

1—d<n<0” v(¥)=n

Then the asymptotic behavior around O is

[m/d]
Gu(X) = Q@ m(X 1) Ar- (m(X) @ Dvr + > w(@)Agu; + As(m)v;
=0
in this case.
Any function in F(m, m2) is a finite sum of above functions. Hence (2) is ob-
tained. O

2.2. Injectivity of the map to a Kirillov model. Here we study the condition
under when the map fron¥ «{, m2) to its Kirillov model is injective. Since this map
is G-intertwining, V r1, m2) is reducible if the map has non-zero kernel.
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Proposition 2.4. The mappingp — ¢ is injective unless there exists a non-zero
subspace o, ® V, on whichm(X) ® m(X 1) acts as|X|~1, in which case its kernel
is the set of constant vector-valued functionsFtry, 7).

Proof. We fix a basis of: -dimensional vector spade® V.. Then, <ZS(X) is
written as (¢1(X), ..., ¢.(X)) and alsop(X) is (#1(X), ..., #.(X)), where eachy; is
the Fourier transform ofy;. If ¢; = 0 on D*, the measure);(X)dX is proportional
to Dirac measure, which meanrs is a constant orD. Hence¢ is a constant vector

on D. This happen if and only if there exists a non-zero subspadg ® V», on which
m1(X) ® ma(X 1) acts as| x| L. O

Proposition 2.5. Let H be an arbitrary group (71, V1) and (w2, V») finite dimen-
sional irreducible representations @, and x a one dimensional representation #f.
There exists a non-zero elemant 14f® V, such thatr(X) ® (X v = x(X)v for
all X € H if and only if r; = x - m2 and dimVy = dimV, = 1.

Proof. We assume there exists a non-zero element V;6fV, such thatr(X)®
(X~ = x(X)v for all X € H and (r1, V1) and ¢, Vo) are finite dimensional and
irreducible. Notice that

m1(X) ® v = x(X)(1 @ m2(X))v.

Any element of V1 ® V, is written as
> ai(m(y) @ Ly,
where the sum is finiteg; € C*, andY; € H. For any elemenX off , one has
(X)) @ ma(X 1) <Z ai(m(Y;) ® 1)”)
=Y a@e wz(X*ll))(m(xm @ 1)
=2 a1 @ m(n))(m(X ) @ m(X¥) ")
= 2 ax(XY)(L @ ma(Y)v

= X(0) Y a(m(¥) @ Do,

Hence m1(X) ® m(X 1) acts onVy ® Vo as x(X). Next we consider the action
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of m(XY)®1lonVi® V, forall X,Y € H. If wis any element ofV; ® V>,

(m(XY) @ Dw = x(Y)(m(X) @ ma(Y))w
= x(¥)(A @ ma(Y))(r(X) ® 1w)
= (m(Y X) ® Dw.

By Schur's lemma, dirii, = 1. Similarly, dimV, = 1.
The converse is obvious. O

These two propositions yield immediately the next theorem.

Theorem 2.6. The map from an induced representati®driry, m2) to its Kirillov
model is injective unless; = | |71 .7, and dimV; = dimV, = 1.

By this theorem we obtain a sufficient condition for the ratility of a principal
series representation.

Corollary 2.7. If dimVy=dimV,=1and my =| |[*1. 1, V(m1, m) is reducible.

Proof. Since the map/ g, m) > ¢ — &, € K(n) is a G -intertwining op-
erator, if this map is not injectivey ={, m2) is reducible. By Lemma 1.3, the map
from V (my, m2)¥ to its Kirillov model is not injective ifry = | | - mp and dimV; =
dimV, = 1. Ol

Tadic obtained the irreducibility criterion of principaseries representations
of GL,(D) when the characteristic af is 0 by using theories of Landgacdlassifica-
tion and Hopf algebras [4, Lemma 2.5 and 4.2]. The followihgarem is a G(D)
case of the results of Tadic.

Theorem 2.8 (Tadi€). When the characteristic of* i€, the representation
V (1, m2) is reducible if and only ifry = | |[*17o.

As a consequence of Corollary 2.7 and Theorem 2.8, ¥ 2 and the character-
istic of F is 0, there exists a reducible principal series espntationV #%, ;) such
that the maps fromV n;, m2) to K(x) and from V {1, m2)¥ to K(r)Y are injective.
If d=1, i.e. D is a commutative field, such representatidnr, gr.) does not exist [1,
Theorem 6].
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