<table>
<thead>
<tr>
<th>Title</th>
<th>Metallurgical mechanism of ductility-dip cracking in multipass welds of alloy 690</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Okauchi, Hironori; Nomoto, Yuki; Ogiwara, Hiroyuki; Saida, Kazuyoshi; Nishimoto, Kazutoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 39(2) P.221-P.223</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-12</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/4632</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
Metallurgical mechanism of ductility-dip cracking in multipass
welds of alloy 690†

OKAUCHI Hironori *, NOMOTO Yuki *, OGIWARA Hiroyuki *, SAIDA Kazuyoshi * and
NISHIMOTO Kazutoshi *

KEY WORDS: (Alloy 690) (Multipass weld metal) (Microcracking susceptibility) (Impurity elements)
(Grain boundary segregation) (Molecular orbital calculation) (Cracking mechanism)

1. Introduction
A Ni-base superalloy, alloy 690 is highly susceptible
to ductility-dip cracking, and the primary cause of
ductility-dip cracking in the reheated weld metal of alloy
690 is likely to be the reduction of hot ductility attributable
to grain boundary segregation of impurity elements such as P and S [1]. The objective of the
present study is to clarify the cause of the increased ductility-dip cracking susceptibility with an increase in
the P and S contents based on a grain boundary
segregation analysis and a molecular orbital analysis of
the binding strength of the grain boundary.

2. Materials and Experimental Procedures
The base metal used is a commercial alloy 690.
Several kinds of commercial filler metals (FM1-FM3),
lab-melting filler metals (FF1-FF5) and extra high-purity
filler metal (EHP) were employed for comparison. The
chemical compositions of base metal and filler metals
used are shown in Table 1. The ductility-dip cracking
susceptibility in the reheated weld metal was evaluated
by the spot-Varestraint test.

Table 1 Chemical compositions of steels used (mass%)

<table>
<thead>
<tr>
<th>Metal</th>
<th>C</th>
<th>Mn</th>
<th>Cr</th>
<th>Co</th>
<th>Ni</th>
<th>Al</th>
<th>Fe</th>
<th>Cu</th>
<th>P</th>
<th>S</th>
<th>Cr3</th>
<th>Cu3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>0.015</td>
<td>0.005</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
<td>0.010</td>
</tr>
<tr>
<td>FM1</td>
<td>0.02</td>
</tr>
<tr>
<td>FM2</td>
<td>0.03</td>
</tr>
<tr>
<td>FM3</td>
<td>0.04</td>
</tr>
<tr>
<td>FF1</td>
<td>0.05</td>
</tr>
<tr>
<td>FF2</td>
<td>0.06</td>
</tr>
<tr>
<td>FF3</td>
<td>0.07</td>
</tr>
<tr>
<td>FF4</td>
<td>0.08</td>
</tr>
<tr>
<td>FF5</td>
<td>0.09</td>
</tr>
<tr>
<td>EHP</td>
<td>0.10</td>
</tr>
</tbody>
</table>

3. Effects of P and S on Ductility-Dip Cracking
The relationship between (P+1.2S) content in the weld metals and the DTR evaluated is shown in Fig. 1.
Open and filled symbols indicate crack-free and cracking in the multipass weld cracking test, respectively. There is a good linear relationship between the
compositional parameter of (P+1.2S) and the DTR for all weld metals. According to the multipass weld
(cracking test results, the critical DTR where microcracks didn’t occur during multipass welding could be
estimated as approx. 200K. It follows that the amount of
(P+1.2S) in the weld metal should be limited to 30ppm
in order to prevent ductility-dip cracking in the multipass
weld metal.

4. Grain Boundary Segregation of P and S
Numerical Model of Grain Boundary Segregation
The numerical model of microsegregation involves
segregation during the solidification stage and
segregation/ desegregation during the cooling/reheating
stage following solidification in welding under the initial

† Received on 30 September 2010
* Dept. of Materials & Manufacturing Science,
Graduate School of Eng., Osaka University, Osaka, Japan
Metallurgical mechanism of ductility-dip cracking in multipass welds of alloy 690

condition of an inhomogeneous distribution formed by solidification segregation. The solidification segregation behaviours of P and S were calculated for pseudo-binary systems of (Ni-30%Cr-10%Fe)-P and -S. The cosegregation effect of P with S was considered in the equilibrium grain boundary segregation using pseudoternary systems of (Ni-30%Cr-10%Fe)-P-S. The distribution of solutes during solidification was determined by the non-equilibrium solidification segregation theory, and that in the solid phase during cooling/reheating processes was calculated by the equilibrium cosegregation theory. The one-dimensional diffusion model in a regular triangle assuming that the morphology of dendrite is basically a hexagonal prism, as shown in Fig. 2.

Grain Boundary Segregation Behaviour of P and S

A computer simulation was carried out with the peak temperatures in the 2nd and 3rd cycles being 1200 K. Figure 3 shows the relation between the elapsed time in multiple welding thermal cycles and the calculated P and S concentrations at the grain boundary. In this figure, the calculated P and S concentrations without considering the cosegregation effect (i.e., “independent segregation”) are also depicted. The P and S concentrations at the grain boundary allowing for cosegregation were slightly reduced compared with those in independent segregation because of the competitive effect between P and S. However, similar changes can be seen in the grain boundary concentrations for both situations. Namely, in the solidification process, the P and S concentrations in the liquid phase increased with the progress of solidification, and were rapidly reduced to their equilibrium concentrations (desegregation) when the weld metal was cooled down. However, they increased again at lower temperatures and were saturated at constant values below about 1000 K. In the reheating process, the P and S concentrations at the grain boundary slightly increased during the cooling stage in the reheating process, and afterwards changed cyclically with each thermal cycle. The grain boundary concentration of S during multipass welding was relatively higher than that of P even when their initial contents were identical. Furthermore, the P and S concentrations at the grain boundary slightly increased with an increase in the number of thermal cycles employed. This fact suggests that grain boundary segregation of S as well as P would be promoted by the multiple thermal cycles occurring during multipass welding.

5. Grain Boundary Embrittlement due to P and S Analysed by Molecular Orbital Method

The binding strength of the grain boundary was numerically analysed by a molecular orbital analysis (DV-Xα method). Figure 4 schematically illustrates the cluster model used in the present computation, the Σ15 coincidence boundary of Ni consisting of 67 atoms. One or two Ni atoms on the grain boundary were replaced by P or S atoms to simulate grain boundary segregation. The binding strength of the grain boundary was evaluated from the bond order between intergranular and intragranular Ni atoms in the near neighbourhood of P and S atoms. The calculated bond orders of Ni atom at the grain boundary for different segregation situations are shown in Fig. 5. Ni67 indicates the non-segregated situation, Ni66X1 and Ni65X1Y1 (X, Y=P, S) indicate the segregated situations where one and two intergranular Ni atoms were replaced by an X and/or Y atom, respectively. When P and S were segregated at the grain boundaries, the bond orders of the Ni atoms were reduced compared to the non-segregated situation, and it decreased with an increase in the number of segregated P and S atoms. The bond orders of the Ni atoms when S was segregated to the grain boundary were lower than those for P segregation. However, the fact that the calculated bond order of Ni atom in Ni65P1S1 ranked between Ni65P2 and Ni65S2 prevented the confirmation of any discernible effect of cosegregation of P with S in the present analysis.

222
6. Mechanism of Ductility-Dip Cracking in Multipass Weld

A grain boundary segregation analysis revealed that P and S (especially S) were segregated to the grain boundary in the weld metal during multipass welding. A molecular orbital analysis suggests a possibility that grain boundary segregation of P and S leads to grain boundary embrittlement. It follows that the ductility-dip cracking in the reheated weld metal of alloy 690 would be dominantly caused by the embrittlement of grain boundaries resulting from the imbalance between intergranular strength and intragranular strength at high temperature attributable to grain boundary segregation of impurity elements such as P and S.

7. Conclusions

(1) A numerical analysis of the segregation behaviours of P and S revealed that these elements were cosegregated at the grain boundary during multipass welding. P and S concentrations at the grain boundary slightly increased with an increase in the number of thermal cycles applied.
(2) A molecular orbital analysis suggested a possibility that grain boundary segregation of P and S led to grain boundary embrittlement.

References