Title: Statistical Analysis of Dose-Response Relationship

Author(s): 山本，英二

Citation

Issue Date

Text Version: ETD

URL: http://hdl.handle.net/11094/464

DOI

rights

Note

Osaka University Knowledge Archive: OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Statistical Analysis
of
Dose-Response Relationship

1983

Eiji Yamamoto

Okayama University of Science
Summary

Three topics in statistical analysis of dose-response relationship are discussed. The first topic is the estimation method of a safe dose in dose-response relationship. The hockey stick regression method and the probit analysis are compared. Statistical analysis and computational results suggest that the probit analysis is preferable. The second topic is the conversion method of a safe dose which may be used for the long-range environmental standard of NO₂ in Japan. Two conversion methods, current and the author's, are compared. Under the assumption of the lognormal model for NO₂ concentrations, the author's method is shown by analytical and computational results to be preferable. The third topic is the statistical inference for the dose-response relationship in stratified populations. A set of three X^2 tests is proposed for the estimation and test of the linear regression line of adjusted prevalence rates on study factor intensities.
Contents

1 INTRODUCTION 1

References 3

2 A SAFE DOSE IN DOSE-RESPONSE RELATIONSHIP 4

2.1 A Threshold Value and the Hockey Stick Regression Method 5

2.2 Probit Analysis and a Risk Level 19

2.3 Discussion 22

References 23

3 CONVERSION OF A SAFE DOSE: CRITICAL REVIEW OF THE ENVIRONMENTAL STANDARD OF NITROGEN DIOXIDE 25

3.1 The Current Conversion Method 27

3.2 The Author's Method 36

3.3 Discussion 40

References 44
1 Introduction

Along with the arrival of the big industrial society of mass production and mass consumption, harmful influence of various and too much industrial chemical compounds to the human beings as well as to the biological environment has constituted a serious social problem. Many scientists and engineers are engaged in researching and preventing such influence. Statistical analysis of the dose-response relationship which reveals statistically the mechanism of the harmful influence is one of most important themes of biostatisticians. Many epidemiological surveys and their analyses have been carried out. Such analyses are expected to progress further both in theory and application. This paper takes up three topics which have aroused wide social interest in Japan.

In Chapter 2, a safe dose in dose-response relationship is discussed. It is concerned with administrative control over air pollutions, food additives or feed additives. Many techniques and methods to estimate the safe dose have been proposed and discussed. A convenient estimation method is the hockey stick regression method using segmented lines. The method described in Section 2.1 [1] is based on the assumption that
there exists a threshold value which defines a safe dose. The validity of the assumption is difficult to be shown. An alternative method which is not based on the assumption is the probit analysis described in Section 2.2 [3]. It introduces a risk level which defines a safe dose. Discussion on the two methods is presented in Section 2.3.

Chapter 3 deals with the conversion of a safe dose [2]. It gives a critical review of the current long-range environmental standard of NO₂, which is stated in terms of the 98 percent value of day means in a year. The 98 percent value is a converted value from the year mean which had been adopted previously as a safe dose from the standpoint of medical science. The conversion was done by using the regression line of 98 percent values of day means on year means. Under the assumption of the lognormal model for NO₂ concentrations, we show that the current conversion method is unacceptable and should be replaced by a conversion method using the linear regression model with the error term whose standard deviation is proportional to the independent variable. The former is discussed in Section 3.1 and the latter in Section 3.2. In our method, a tolerance limit should be recommended as a converted value. In Section 3.3, the deviation from the lognormal model is evaluated and our model proves to be robust. Throughout this chapter, the data on NO₂ concentrations at Okayama in 1977 are used as an illustration.

In Chapter 4, statistical inference for the dose-response relationship in stratified populations is taken up [4]. The adjusted prevalence rate which is used by many biostatisticians proves to be a useful tool in our study. The dose-response relationship between adjusted prevalence rates
and study factor intensities may be represented locally and approximately by a linear regression model. A set of three X^2 tests is proposed for an estimation and test procedure of the linear regression line in Section 4.1. It is shown that the same statistical inference as in the single stratum population is valid by introducing the adjusted prevalence rates and the adjusted sample sizes in stratified populations. In Section 4.2, the procedure is compared with usual statistical procedures. It is shown that three X^2 tests of the procedure are usually more powerful than the X^2 tests performed by summing up X^2 statistics in each stratum. In Section 4.3, the procedure is applied to the data involving the average concentrations of NO$_2$ and the prevalence rates of persistent cough and phlegm. Section 4.4 deals with an extension to the probit model and the logistic model.

REFERENCES

A Safe Dose in Dose-Response Relationship

Many techniques and methods to estimate a safe dose in dose-response relationship have been proposed and discussed. Estimation of the safe dose concerning various chemical compounds is important, though it is very difficult.

The hockey stick (HS) regression method is an interesting method proposed by Hasselblad et al. [10] to obtain the maximum no-adverse-health-effect concentration of photochemical oxidants. It is a kind of regression method using segmented curves [7], [8] and has attracted attention of many researchers. The method is based on the assumption that there exists a threshold value which defines a safe dose.

In this chapter, we study some properties of the HS regression method, especially its validity. For this purpose, the HS model is compared with other regression models such as the probit model. For the latter, a risk level is used to define a safe dose. A risk level was used by Mantel and Bryan [5] and has been supported by subsequent researchers. A safe dose does not mean here a dose which causes no harmful effects, and therefore should not be used as a standard by the administration as it stands. It should be considered rather as a criterion to estimate
the safety.

The data on which the current standard of SO_2 in Japan is partly
based are analyzed and discussed. A reanalysis of relationship between
photochemical oxidant and eye discomfort is given. Using two examples,
we compare the HS model and the probit model. Some conclusions and
suggestions are presented.

2.1 A THRESHOLD VALUE AND THE HOCKEY STICK REGRESSION METHOD

2.1.1 The HS Regression Method

Let $p(x)$ denote the population prevalence rate at a dose level x.
The HS regression function as a dose-response curve is defined as follows.
For some x_\circ,

\begin{equation}
(2.1) \quad p(x) = \beta_0 \quad \text{for } x \leq x_\circ,
= \beta_1 + \beta_2 x \quad \text{for } x > x_\circ.
\end{equation}

This means that for a suitable dose x_\circ, $p(x)$ remains constant for any
x less than x_\circ and increases linearly as x increases from x_\circ. The dose
x_\circ is considered as a physiological threshold value, whereas β_0 represents
a spontaneous or baseline response which is caused by background stimuli.

Suppose that the survey is done at N points and let x_i and y_i denote
the dose level and the sample prevalence rate at the ith point. The
HS model is that
\(y_i = p(x_i) + e_i \quad (i = 1, \ldots, N), \quad e_i \sim N(0, \sigma^2). \)

The HS regression method is the least square estimation method of \(x_0 \) under the HS regression model. Sometimes a flat line \(\beta_0 \) and a linear line \(\beta_1 + \beta_2 x \) are estimated by separated data. Data to estimate the former and the latter are considered as those of non-polluted and polluted areas, respectively. Generally, both lines are estimated simultaneously under the constraint that they are connected at the point \(x_0 \). Using the estimators \(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2 \), the estimator \(\hat{x}_0 \) of \(x_0 \) is defined by

\[
\hat{\beta}_0 = \hat{\beta}_1 + \hat{\beta}_2 \hat{x}_0.
\]

An assumption of the existence of a threshold value is necessary to consider \(x_0 \) as a safe dose, on which the HS regression model is based. This assumption seems to be serious, since we have no proof of the existence of such a value for substances such as food additives and environmental pollutants which many human beings are exposed to. Generally the HS model is only an operational one to obtain some value as the safe dose.

The HS method is accepted by Japanese research workers, epidemiologists, who are interested in finding a relationship between concentration of air pollutants and prevalence rate of some disease from epidemiological surveys. Such a relationship is needed to obtain a criterion on which
air quality standard should be based. An example is the current air quality standard of SO_2 in Japan. The surveys were conducted in Osaka, Akoh, and Yokkaichi cities [2]. A prevalence rate of positive simple chronic bronchitis for each area was obtained. Questionnaires given by British Medical Research Council [6] were made on respiratory symptoms. Thus chronic bronchitis is defined as persistent cough and phlegm. The prevalence rates and average concentrations of SO_2 during three years are listed in Table 2.1.

Table 2.1 Average concentrations of SO_2 and prevalence rates of chronic bronchitis.

<table>
<thead>
<tr>
<th>SO_2 (mg/day/100 cm2)</th>
<th>Prevalence rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>0.035</td>
</tr>
<tr>
<td>0.28</td>
<td>0.033</td>
</tr>
<tr>
<td>0.27</td>
<td>0.031</td>
</tr>
<tr>
<td>0.15</td>
<td>0.030</td>
</tr>
<tr>
<td>0.15</td>
<td>0.029</td>
</tr>
<tr>
<td>0.14</td>
<td>0.027</td>
</tr>
<tr>
<td>0.13</td>
<td>0.027</td>
</tr>
<tr>
<td>0.14</td>
<td>0.025</td>
</tr>
<tr>
<td>3.4</td>
<td>0.078</td>
</tr>
<tr>
<td>2.75</td>
<td>0.059</td>
</tr>
<tr>
<td>2.75</td>
<td>0.052</td>
</tr>
<tr>
<td>2.1</td>
<td>0.048</td>
</tr>
<tr>
<td>1.6</td>
<td>0.038</td>
</tr>
<tr>
<td>1.55</td>
<td>0.037</td>
</tr>
<tr>
<td>1.15</td>
<td>0.032</td>
</tr>
<tr>
<td>1.0</td>
<td>0.027</td>
</tr>
<tr>
<td>0.9</td>
<td>0.024</td>
</tr>
</tbody>
</table>
Since the sample size in each area is not mentioned, we regard it as 2000 when necessary. The original analysis [2] is as follows. The survey areas are divided into two groups: eight areas are considered as non-polluted and nine areas as polluted. Let y_i denote the prevalence rate, and x_i the average concentration of SO_2 in the ith area. The HS regression method is used: β_0 is estimated by the data from the non-polluted areas, while β_1 and β_2 by the data from the polluted areas. The fitted regression line is given by

$$
(2.4) \quad \hat{\beta}_0 = 0.02963, \\
\hat{\beta}_1 + \hat{\beta}_2 x = 0.00765 + 0.01898x,
$$

which is described in Fig. 2.1. From (2.3), x_o is estimated at 1.160.

Fig. 2.1 Data of SO_2 concentrations and prevalence rates of chronic bronchitis.
The HS methods was studied originally in [10] and used to get a relationship between daily maximum hourly oxidant levels and daily symptom rates reported by student nurses in Los Angeles [11]. The summary data are cited in Table 2.2.

Table 2.2 Relationship of average daily percent of adjusted eye discomfort to photochemical oxidant levels.

<table>
<thead>
<tr>
<th>Daily maximum hourly oxidant level (ppm)</th>
<th>No. of days</th>
<th>Average No. of nurses reporting daily</th>
<th>Average daily percent of adjusted eye discomfort (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.04</td>
<td>229</td>
<td>64</td>
<td>5.0</td>
</tr>
<tr>
<td>0.05-0.08</td>
<td>184</td>
<td>59</td>
<td>5.4</td>
</tr>
<tr>
<td>0.09</td>
<td>35</td>
<td>58</td>
<td>5.6</td>
</tr>
<tr>
<td>0.10-0.14</td>
<td>176</td>
<td>62</td>
<td>5.9</td>
</tr>
<tr>
<td>0.15-0.19</td>
<td>144</td>
<td>58</td>
<td>6.9</td>
</tr>
<tr>
<td>0.20-0.24</td>
<td>63</td>
<td>60</td>
<td>9.2</td>
</tr>
<tr>
<td>0.25-0.29</td>
<td>25</td>
<td>60</td>
<td>11.2</td>
</tr>
<tr>
<td>0.30-0.39</td>
<td>9</td>
<td>67</td>
<td>17.8</td>
</tr>
<tr>
<td>0.40-0.50</td>
<td>3</td>
<td>53</td>
<td>31.8</td>
</tr>
</tbody>
</table>

Eye discomfort is a typical symptom caused by photochemical oxidants. The daily maximum hourly oxidant level is obtained as the midpoint of each interval shown in Table 2.2. The original authors used the HS regression method, estimating the parameters \(\beta_0 \), \(\beta_1 \), \(\beta_2 \) by the constrained least-square method:

\[
\begin{align*}
\hat{\beta}_0 &= 0.0541, \\
\hat{\beta}_1 + \hat{\beta}_2 x &= -0.0172 + 0.491x.
\end{align*}
\]

The estimated threshold value is \(\hat{x}_0 = 0.145 \). It is described in Fig. 2.2.
Table 2.1 is the case in which β_0 and (β_1, β_2) are estimated separately. Table 2.2 is the case in which $(\beta_0, \beta_1, \beta_2)$ are estimated simultaneously.

2.1.2 Estimation of the Threshold Value

Under the HS model, we shall discuss two estimation methods of the threshold value x_\circ. One is the case of separated data and the other is the general case.

(1) Case of separated data

Data are separated into non-polluted areas and polluted areas, from which β_0 and (β_1, β_2) are estimated separately. A defect of the original analysis of Table 2.1 is its giving no evaluation for the variance of x_\circ. In order to consider x_\circ as a safe dose, the lower confidence limit of x_\circ is preferable to the estimator itself.

We shall discuss the distribution of the estimator \hat{x}_\circ. Let $(x_1, y_1), \ldots, (x_{N_1}, y_{N_1}), (x_{N_1+1}, y_{N_1+1}), \ldots, (x_{N_1+N_2}, y_{N_1+N_2}), N = N_1 + N_2$, be
the given data. The former part of size N_1 is for a flat line β_0 and the latter part of size N_2 is for a linear line $\beta_1 + \beta_2 x$. In Table 2.1, $N_1 = 8$ and $N_2 = 9$. The HS model for the data is as follows.

\[y = x_H(\beta_0, \beta_1, \beta_2)' + e, \]

where

\[
\begin{bmatrix}
1 & 0 & 0 \\
\vdots & \ddots & \vdots \\
1 & 0 & 0 \\
0 & 1 & x_{N_1+1} \\
\vdots & \ddots & \vdots \\
0 & 1 & x_{N_1+N_2}
\end{bmatrix}
\begin{bmatrix}
y_1 \\
\vdots \\
y_{N_1} \\
y_{N_1+1} \\
\vdots \\
y_{N_1+N_2}
\end{bmatrix}
\begin{bmatrix}
e_1 \\
\vdots \\
e_{N_1} \\
e_{N_1+1} \\
\vdots \\
e_{N_1+N_2}
\end{bmatrix}
\]

Then, it follows from the least square method that

\[\hat{\beta}_0 - \beta_0 \sim N\left(0, \sigma^2 \left(x_H'x_H\right)^{-1}\right), \]

where

\[\hat{\beta}_0 = \frac{1}{N_1} \sum_{i=1}^{N_1} y_i, \quad \hat{\beta}_1 = \frac{1}{N_2} \sum_{j=1}^{N_2} y_{N_1+j} \quad \text{and} \quad \hat{\beta}_2 = \frac{1}{N_2} \sum_{j=1}^{N_2} x_{N_1+j}. \]
Then, the distribution of \(\hat{x}_o = (\hat{\beta}_0 - \hat{\beta}_1)/\hat{\beta}_2 \) is not normal, but a noncentral-noncentral t distribution of one degree of freedom. It has no mean nor variance. The following explains the above contention.

Assume that

\[
\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \right),
\]

then we have

\[
(2.9) \quad W = \frac{X_1}{X_2} \sim \frac{\sigma_1 \rho}{\sigma_2} + \frac{\mu_1 - \frac{\sigma_1}{\sigma_2} \rho \mu_2 + \sigma_1 \sqrt{1 - \rho^2} Z_1}{\mu_2 + \sigma_2 Z_2},
\]

where random variables \(Z_1 \) and \(Z_2 \) are independently and identically distributed in \(N(0, 1) \). Fieller [4] gave the exact expression of the probability density function of \(W \). He also gave approximate expressions of the probability density function and the distribution function of \(W \) when the coefficient of variation of \(X_2 \) is small. They are given in Fig. 2.3 and Fig. 2.4, using the estimates \((\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2, \hat{\sigma}^2) \) from Table 2.1 instead of true values. Because the parameters are not known, we do not give the true distribution of \(\hat{x}_o \), but give a general view only. For the numerical computation of the distribution function, the \(L \)-function in statistical tables [3] was used.
The distribution of x_o is nearly equal to a normal distribution and unimodal, but it is not symmetric and its tails are heavier than in a normal case.

The lower confidence limit of x_o, \hat{x}_L, can be obtained by the inverse estimation of a regression curve, for example Takeuchi [1], as

\[
\hat{x}_L = \frac{(|\Sigma^{-1}|(\hat{\beta}_0 - \hat{\beta}_1)\hat{\beta}_2 - \frac{N_1N_2}{N_1 + N_2} \bar{x}_2^2) - \sqrt{\delta^2 |\Sigma^{-1}| (\hat{\beta}'\Sigma^{-1}\hat{\beta} - \delta^2)}}{|\Sigma^{-1}| \hat{\beta}_2^2 - \frac{N_1N_2}{N_1 + N_2} \delta^2},
\]
where
\[
\Sigma = \begin{pmatrix}
1 & -1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x_H'x_H
\end{pmatrix}^{-1}
\begin{pmatrix}
1 & -1 & 0
\end{pmatrix},
\]
(2.12)
\[
\delta^2 = F_{1,N_1+N_2-3;2\alpha} S_1/(N_1 + N_2 - 3),
\]
\[
S_1 = (y - x_H \hat{\beta})'(y - x_H \hat{\beta}),
\]
\[
\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)'.
\]

For various assurance levels, values of the lower confidence limits are given in Table 2.3.

Table 2.3 Lower confidence limits under the HS model with various kinds of assurance levels for data of Table 2.1.

<table>
<thead>
<tr>
<th>Level α</th>
<th>Lower confidence limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.160</td>
</tr>
<tr>
<td>0.05</td>
<td>0.953</td>
</tr>
<tr>
<td>0.01</td>
<td>0.834</td>
</tr>
<tr>
<td>0.005</td>
<td>0.786</td>
</tr>
</tbody>
</table>

(2) General case

The data in Table 2.2 cannot be separated into two groups. In this case, the estimator \hat{x}_α is obtained by minimizing the residual sum of squares of the whole HS regression line.

Suppose that the pair data $(x_1, y_1), \ldots, (x_N, y_N)$ are arranged in the order of increasing magnitude in x. For each integer $k (k = 1, \ldots, N-1)$, we give the HS regression model as follows.
(2.13) \[y = x_H^k(\beta_0, \beta_1, \beta_2)' + e, \]

where
\[
x_H^k = \begin{bmatrix} 1 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & \cdots & 1 \\ 0 & \cdots & 0 & x_{k+1} & \cdots & x_N \end{bmatrix}
\]

and
\[
x_k = \frac{\beta_0 - \beta_1}{\beta_2} < x_{k+1}.
\]

(2.14)

We compute the least square error under the restriction (2.14) for each \(k \), and seek the minimum value among them, \(N-1 \) in number. Let \(\hat{k} \) and \(\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)' \) be the estimators of \(k \) and \(\beta = (\beta_0, \beta_1, \beta_2)' \), respectively. Then,

(2.15) \[(y - x_H^k \hat{\beta})'(y - x_H^k \hat{\beta}) = \min_{1 \leq k \leq N-1} \min_{\beta_0 - \beta_1 \leq \beta_2} (y - x_H^k \beta)'(y - x_H^k \beta). \]

Minimization can be solved by a fairly easy computation (Hudson [7], Hasselblad et al. [10]). The estimator of \(x_o \) is given by

(2.16) \[\hat{x}_o = \frac{\hat{\beta}_0 - \hat{\beta}_1}{\hat{\beta}_2}. \]

The exact distribution of \(\hat{x}_o \) has not been given because of the restriction (2.14). Therefore, the exact lower confidence limit is not given. Hasselblad et al. [10] gave an approximate value by the asymptotic normality of \(\hat{x}_o \) (Hinkley [8]). For Table 2.2, the original authors [11] gave \(\hat{x}_L = 0.133 \).
as the approximate 95 percent confidence lower limit. But, in a epidemiological or environmental study, asymptotic properties may not be reliable because the sample size is restricted to maintain the homogeneity in the data. For example, $N = 9$ in Table 2.2. More detailed research for the confidence interval is desirable.

2.1.3 Evaluation of the HS Model

The HS regression model is based on two assumptions. One is for the regression curve, and the other is for the error terms. We shall first consider the latter.

Though the HS model employs the normality for the error terms, their true distribution is the binomial distribution. Let n_i and y_i denote the sample size and the sample prevalence rate, respectively, at a dose level x_i ($i = 1, \ldots, N$). Then

$$n_i y_i \sim Bi(n_i, p_i).$$

If n_i is large, y_i has an asymptotically normal distribution, that is,

$$y_i \sim N(p_i, \frac{p_i(1 - p_i)}{n_i}).$$

Thus, the assumption of normality holds asymptotically but the assertion of the homogeneity of variances contradicts the expression $p(x_i)(1 - p(x_i))/n_i$ in (2.18).
Suppose that the population prevalence rate at each survey point is a random variable denoted by

\begin{equation}
(2.19) \quad p(x, e) = p(x) + e,
\end{equation}

where e represents the deviation from $p(x)$, such as area variation or survey error. In contrast with designed experiments, epidemiological surveys are not sufficient to control data, so that the population prevalence rate is not represented by x only. From (2.18) and (2.19), the variance of y_i is determined as follows.

\begin{equation}
(2.20) \quad \sigma^2(y_i) = p(x_i)(1 - p(x_i))/n_i + \sigma^2(e)(1 - 1/n_i).
\end{equation}

The first term is the sampling error and the second is the individual deviation. The assumption of (2.19) enlarges the variance of (2.18). If n_i and $p(x_i)$ are nearly homogeneous and the individual deviation exists, the normality with homogeneous variances holds approximately.

In Table 2.1, the mean square error is computed as 0.130×10^{-4}. On the other hand, if we put $p = 0.03$, $n = 2000$, we have $p(1 - p)/n = 0.145 \times 10^{-4}$. These two values are nearly equal. Thus, the error of Table 2.1 data may be explained by the sampling error, that is, the binomial error. We may neglect the individual deviation. It shows the good quality of the data.

We are able to make a similar discussion on Table 2.2.

Next, we shall evaluate the assumption of the regression curve. Though the HS regression line is simple, the assumption of the existence of the threshold value must be fulfilled. To avoid this difficulty, we may use
a smoothly increasing regression curve. One of most popular regression curves to interpret a dose-response relationship is the probit curve denoted by

\[p(x) = \beta_0 + (1 - \beta_0) \Phi(\beta_1 + \beta_2 \log(x)), \]

where \(\Phi(x) \) is the distribution function of the standard normal distribution and \(\beta_0 \) means a spontaneous prevalence rate which is assumed to be positive.

Under the binomial model of (2.17), we shall compare the HS regression line with the probit curve. The estimation method of the probit curve is the well known probit analysis [9]. The results for Table 2.1 and Table 2.2 are described in Fig. 2.5 and Fig. 2.6, respectively. The fit of the curve in each case is good.

Fig. 2.5 Fitted regression lines of Table 2.1. Fig. 2.6 Fitted regression lines of Table 2.2.
In Table 2.1, the chi-square value with 14 degrees of freedom for the test of goodness of fit is 9.138 under the HS model and 4.761 under the probit model. The fit is better for the probit curve than for the HS regression line.

In Table 2.2, the chi-square value with 6 degrees of freedom for the test of goodness of fit is 21.534 under the HS model and 6.436 under the probit model. The former is statistically significant with level 1 %. As the figure shows, the probit curve fits better.

This discussion shows that the probit model is suitable for Table 2.1 and Table 2.2. Since the probit model has no threshold value, we need a new definition of safety concentration instead of a threshold value. It is done by introducing a risk level. We discuss it in the next section.

2.2 PROBIT ANALYSIS AND A RISK LEVEL

In Section 2.1, we have a critical review of the HS regression method. The assumptions of the regression curve and the homogeneity of variances are not consistent. The fit of the probit curve is superior to that of the HS regression line.

Now we shall discuss the safe dose in the probit model. We introduce a risk level \(\rho \) which can be afforded from a social point of view. Then we define a safe dose \(x_0 \) by an introduced risk level \(\rho \) in the probit curve of (2.21).

\[
\beta_0 + (1 - \beta_0) \Phi(\beta_1 + \beta_2 \log(x_0)) = \beta_0 + (1 - \beta_0) \rho,
\]
that is,

(2.23) \[\log(x_0) = (\phi^{-1}(\rho) - \beta_1)/\beta_2. \]

This definition is in line with Mantel and Bryan [5] and others, who presented methods to estimate the safe dose against carcinogenicity from experimental data.

An estimator \(\hat{x}_0 \) of the safe dose \(x_0 \) is defined by a lower confidence limit of \(LD_\rho \), the lethal dose at level \(\rho \), with an assurance level \(1 - \alpha \), which can be obtained by a well known technique in the probit analysis [9].

Here we choose five values, 0.01, 0.005, 0.001, 0.0005 and 0.0001, as risk levels. A very small value like \(10^{-8} \) was adopted as a risk level by Mantel and Bryan [5] to estimate the safe dose against carcinogenicity, a fatal disease. But we do not choose such a small risk level, since chronic bronchitis and eye discomfort are not serious disease, but may be only a symptom.

For the data shown in Table 2.1, the fitted curve is given by

(2.24) \[0.0289 + (1 - 0.0289)\phi(-2.917 + 2.377\log(x)) \]

which is described in Fig. 2.5. The proposed value \(\hat{x}_0 \) for several risk levels and assurance levels are given in Table 2.4. Table 2.3 and Table 2.4 show that values of \(\hat{x}_0 \) obtained by the HS regression method are approximately equal to values of \(\hat{x}_0 \) obtained by the probit method with a risk level about 0.005 or less.
Table 2.4 Lower confidence limits under the probit model with various kinds of risk and assurance levels for the data of Table 2.1.

<table>
<thead>
<tr>
<th>Assurance level</th>
<th>Risk level p</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.01</td>
</tr>
<tr>
<td>0.5</td>
<td>1.780</td>
</tr>
<tr>
<td>0.05</td>
<td>1.461</td>
</tr>
<tr>
<td>0.01</td>
<td>1.286</td>
</tr>
<tr>
<td>0.005</td>
<td>1.213</td>
</tr>
</tbody>
</table>

In Table 2.2, the maximum likelihood estimates of \((\beta_0, \beta_1, \beta_2)\) are given by

\[(2.25) \quad 0.0523 + (1 - 0.0523)\Phi(0.402 + 3.307 \log(x)).\]

It is described in Fig. 2.6. Lower confidence limits with several assurance levels and risk levels are given in Table 2.5. Lower confidence limits with an assurance level 0.5 are reduced to point estimates. The estimate \(\hat{x}_0\) under the HS regression method is 0.145. The author does not calculate confidence intervals, since the test of goodness of fit of the HS regression line is statistically significant.

Table 2.5 Lower confidence limits under the probit model with various kinds of risk and assurance levels for the data of Table 2.2.

<table>
<thead>
<tr>
<th>Assurance level</th>
<th>Risk level p</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.01</td>
</tr>
<tr>
<td>0.5</td>
<td>0.150</td>
</tr>
<tr>
<td>0.05</td>
<td>0.134</td>
</tr>
<tr>
<td>0.01</td>
<td>0.127</td>
</tr>
<tr>
<td>0.005</td>
<td>0.124</td>
</tr>
</tbody>
</table>
2.3 DISCUSSION

Some conclusions and suggestions can be given through the above applications and other experiences.

The HS regression method is of omnibus use. In fact, the model is often well fitted rather than a simple linear regression model. But a defect is lack of scientific and medical interpretations of a safe dose x_0. It is hoped to be determined as the intersection of both lines. But for this purpose we need a certain physiological proof. That is, it is necessary to show the existence of a threshold value. Practically the model is often assumed only for convenience. A statistician is usually convinced that the dose-response curve is smoothly increasing, even when he uses the HS regression method.

A model with a smoothly increasing regression curve can delete this serious problem, but brings another difficulty. The regression curve does not present a point which suggests a safe dose directly. Thus a risk level is introduced to define a safe dose. This definition may be more natural than that by an intersection in the HS regression line.

Another trouble is how we choose a suitable family of regression curves. Fortunately, we have many conventional models of dose-response relationship, for example, the probit model, the logistic model, and so on. Our two examples show that the probit model is well fitted, even though the data are obtained not from designed experiments but from observational surveys.

The polynomial regression models are frequently used, when the linear regression model is not well fitted, but they are not applicable to
our problems. In fact, the regression model using the polynomial of
order 3 is well fitted to both data, but the estimated regression curves
are unacceptable because they are decreasing locally in the range of data.

REFERENCES

[1] 東田啓 (1966)。数理統計学、東洋経済新報社。
兵庫毎公害研究所報告、第1号、25－34。
[3] 日本規格協会 (1972)。統計数値表。
bivariate population, Biometrika, Vol. 24, pp. 428-441.
[6] British Medical Research Council (1965). Definition and classification
of chronic bronchitis for clinical and epidemiological purposes,
have to be estimated, J. Amer. Statist. Ass., Vol. 61, pp. 1097-1129.
phase regression, Biometrika, Vol. 56, pp. 495-504.
University Press.

3 Conversion of a Safe Dose: Critical Review of the Environmental Standard of Nitrogen Dioxide

The environmental standard of NO_2 is based on the criterion which is obtained from the results of biological experiments for acute and chronic toxicity and epidemiological surveys for chronic bronchitis etc. There are two standards of NO_2 in Japan. One is the short-range standard which gives the upper limit of an hour mean of NO_2 concentrations for the protection against acute toxicity. The other is the long-range standard which gives the upper limit of a day mean of NO_2 concentrations for the protection against chronic toxicity.

The environmental standards are used by national or local administrations for daily monitoring and controlling air pollutions. In air polluted areas, plans of controlling the pollutant sources to satisfy standards are drawn and performed. When a new air pollutant discharge source is built, the assessment for obeying the standards must be done.

In 1978, the Environmental Agency of Japan [7] changed the long-range environmental standard of NO_2 from "the rate of days which satisfy the standard of 0.02 ppm/day to all days in a year must be more than 98 percent" into "the rate of days which satisfy the standard of
0.04 ~ 0.06 ppm/day to all days in a year must be more than 98 percent". This change raised many problems and was criticized by many scientists: [8] among others. For example, the safe coefficient of 1/2 which had been adopted in the previous standard [1], [2] was discarded in the new one.

Apart from these criticism, the author questioned whether the conversion method which was used to obtain the long-range standard is appropriate or not. In the announcement [7] by the Environmental Agency, the part related to the conversion is read as follows. "Though the report [6] gave the criteria, that is, an hour mean 0.1 ~ 0.2 ppm against short-range exposure and a year mean 0.02 ~ 0.03 ppm against long-range exposure, the new long-range environmental standard would be given by a day mean as well as the previous standard. Since there exists a close relationship between day means and year means, the concentration 0.04 ~ 0.06 ppm day mean is nearly equivalent to the concentration 0.02 ~ 0.03 ppm year mean," where the day mean actually stands for the 98 percent value of day means in a year, which will be denoted by the 98 % value. The conversion from a year mean to a 98 % value was based on the linear regression function. The linear regression function used by the Environmental Agency is the one which was computed from NO₂ data observed at the stations, 1114 in number, of measuring air pollutions throughout Japan during three years, 1973 ~ 1975. In the Report [5], the linear regression function of 98 % values \(x(0.98) \) on year means \(m \) is reported to be

\[
x(0.98) = 1.82m + 0.0045 \quad \text{(ppm)} ,
\]

\[
\text{correlation coefficient} = 0.919 .
\]
With this relation, a year mean 0.02 ppm is converted to a 98% value 0.04 ppm.

But, it is dangerous that a linear regression function is used for the conversion solely on the ground of high correlation. Evaluation for the error terms in the regression model should be made. Since the environmental standard plays an important role in society, a statistical analysis to the above conversion should be performed.

In the following discussion, we put the assumption of the lognormal model for NO₂ concentrations. Under the assumption, we may introduce the conversion method which uses the linear regression function with the error term whose standard deviation is proportional to the independent variable and which adopts the tolerance limits. Since the lognormal model for NO₂ concentrations is not well fitted in some areas, robustness of the conversion method is discussed. NO₂ data in 1977 at Okayama Prefecture are used for illustration throughout the following statistical analysis.

3.1 THE CURRENT CONVERSION METHOD

3.1.1 Review of the Current Conversion Method

The current conversion method uses the linear regression function of 98% values on year means. We shall apply it to NO₂ data in Okayama 1977. Let N be the number of stations of measuring NO₂. Let \(x_{ij} \) (\(j = 1, \ldots, n_i \)) be available measurements of day means at the \(i \)th station in a year.
The year mean m_i and the 98% value $x_i(0.98)$ of the ith station are estimated respectively by

\begin{equation}
\hat{m}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij},
\end{equation}

\begin{equation}
\hat{x}_i(0.98) = x_i([0.98n_i + 1]),
\end{equation}

where $[\]$ is the Gauss symbol and $x_i(j)$ is the jth order statistic in the ith sample. From the estimated year means and 98% values of 46 stations in Okayama 1977, we get the following estimated linear regression function, which is described in Fig. 3.1.

\begin{equation}
x(0.98) = 1.623m + 0.006,
\end{equation}

\[\sqrt{\text{mean square error}} = 0.0093,\]

\[\text{correlation coefficient} = 0.926.\]

Using the equation (3.3), a year mean 0.02 is converted to a 98% value 0.039. We shall discuss the conversion method in the following section.
Fig. 3.1 Year means and 98% values of NO$_2$ concentrations at 46 stations in Okayama 1977.

3.1.2 Distribution of NO$_2$ Concentrations

As usual, the distribution of concentrations of an air pollutant subject such as S0$_2$ or NO$_2$ is considered to fit the lognormal distribution which has the probability density function

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left[-\frac{1}{2\sigma^2} (\log(x) - \mu)^2 \right].$$

The parameter μ is thought to represent the degree of concentrations and the parameter σ represent the area property such as meteorological and geographical features and air pollutant subject discharge forms.
We examined the goodness of fit of the lognormal model to NO$_2$ data in Okayama 1977. Two parameters (μ_i, σ^2_i) at the ith station ($i = 1, \ldots, N$) were estimated by the following two estimators, respectively.

\begin{equation}
\hat{\mu}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \log(x_{ij}),
\end{equation}

\begin{equation}
\hat{\sigma}^2_i = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} \left(\log(x_{ij}) - \hat{\mu}_i \right)^2.
\end{equation}

For each station, a X^2 test of the goodness of fit was performed by dividing concentration range into 10 intervals with equal probabilities. The results showed that 20 stations among 46 were statistically significant at 5 % level. NO$_2$ data of these stations plotted in the lognormal probability papers showed the upward deviation from the straight line in the lower concentrations. For example, lognormal plot of NO$_2$ data of the Siose station is shown in Fig. 3.2. The value of X^2 statistic of the Siose station was 47.7 with 7 degrees of freedom and statistically significant at 1 % level. We remark that the accuracy of measurement in the low level is worse and the measurements under a certain value are recorded as zero.

The characteristic values for the conversion such as year means and 98 % values are middle and high level values. Therefore, if we can devise estimators without using low level data, we may escape from the deviation of the lognormal model in the low level. Using the data
above the median, we estimated \((\mu_i, \sigma_i^2) (i = 1, \ldots, N)\) by the following estimators.

\begin{align*}
(3.6) \quad \tilde{\mu}_i &= \log(x_i([0.5 n_i + 1])), \\
(3.7) \quad \tilde{\sigma}_i^2 &= \sum_{\log(x_{ij}) \geq \tilde{\mu}_i} (\log(x_{ij}) - \tilde{\mu}_i)^2 / [(n_i + 1)/2].
\end{align*}
The diagram of $(\tilde{u}_i, \tilde{\sigma}_i)$ ($i = 1, \ldots, 46$) computed from data in Okayama 1977 is shown in Fig. 3.3.

![Diagram of (μ, σ)](image)

Fig. 3.3 Diagram of (μ, σ) in Okayama 1977.

The χ^2 tests of the goodness of fit which pool the intervals below the medians reduced the number of significant stations at 5% level to 10. Here the pattern of NO_2 concentrations of significant stations showed that the deviation from the straight line in the lognormal probability paper tended below. One explanation will be that when high concentrations appeared, the NO_2 discharge sources were controlled so that high concentrations were restrained.

In the following discussion, we first assume the lognormal model for NO_2 concentrations and use the estimators of (3.2), (3.6) and (3.7). Under the model, we criticize the current conversion method and introduce a new one. Then, the robustness of the new method is discussed.
3.1.3 Critical Discussion for the Current Conversion Method

Assume the lognormal model, that is, NO$_2$ concentrations (day means) x_{ij} ($j = 1, \ldots, n_i$) at the ith station are distributed lognormally with the parameters (μ_i, σ_i). Then, the year mean m_i and the 98 % value $x_i(0.98)$ are represented in terms of μ_i and σ_i as follows.

\[(3.8) \quad m_i = \exp(\mu_i + \frac{\sigma_i^2}{2}),\]

\[(3.9) \quad x_i(0.98) = \exp(\mu_i + \phi^{-1}(0.98) \sigma_i),\]

where $\phi^{-1}(\cdot)$ is the inverse function of the standard normal distribution function $\phi(\cdot)$. Therefore, the following relation between m_i and $x_i(0.98)$ holds.

\[(3.10) \quad x_i(0.98) = \exp(\phi^{-1}(0.98) \sigma_i - \frac{\sigma_i^2}{2}) m_i.\]

It shows that if all σ_i's for N stations are equal, $x(0.98)$ and m have the proportional relationship.

From the above discussion, the current conversion method of using the linear regression function may be considered to have postulated two assumptions. The first is the homogeneity in σ_i's of the error terms in the linear regression model and the second is that the error terms can be explained as sampling errors only. Under the assumption of sampling errors, $N = 1114$ is so large that confidence intervals are meaningless, that is, they become to be equal to the point estimation.
But two assumptions do not hold in practice. As easily seen in Fig. 3.3, the homogeneity of σ_i's does not hold in Okayama 1977. Moreover, the deviations from the linear regression line are larger than sampling errors. It will be seen in the following argument.

From the theory of order statistics, $x_i(0.98)$ is asymptotically distributed in the normal distribution

$$\left(3.11\right) \quad N \left(\frac{\exp(\Phi^{-1}(0.98)\sigma_i) - \sigma_i^2}{\frac{\sigma_i^2}{2}} m_i, \frac{0.04\pi\sigma_i^2}{n_i} \exp\left(\Phi^{-1}(0.98)\right)^2 + 2\Phi^{-1}(0.98)\sigma_i - \sigma_i^2 m_i \right).$$

We shall examine whether the asymptotic normal distribution (3.11) can be used as an approximate distribution of $x_i(0.98)$. Average numbers of days with available measurements of 46 stations in Okayama 1977 is 345. Since $[0.98 \times 345 + 1] = 339$, $x(0.98)$ is the 7th largest order statistic. The average values of 46 stations are $n = 345$, $\mu = -4.10$ and $\sigma = 0.4206$. We compare the exact distribution of $x(0.98)$ with the asymptotic distribution of (3.11) by using the parameter values computed above. Two probability density functions are described in Fig. 3.4.

The exact distribution is not symmetric and skewed positively. It has the mean 0.0397, the standard deviation 0.00267 and the skewness 0.36.

The asymptotic distribution (3.11) has the mean 0.0393 and the standard deviation 0.00257. The latter is 1% smaller in the mean and 4% smaller in the standard deviation in comparison with the former.

From the results, we may say that in the size of n_i now discussed, $x(0.98)$ is distributed approximately with the mean and variance of the
normal distribution (3.11) and skewed positively. Therefore, the regression line of $x_i(0.98)$ on m_i is approximately the regression line of (3.11) with the standard deviation of sampling error proportional to m_i.

The standard deviation of sampling error will be computed. At the typical station of Kencenter, it is 0.0032. It is smaller than the square root of the mean square error of the regression line, 0.0093. This results shows that the error term in the regression model is not explained by the sampling error only. The σ_i varies among stations, so that regression coefficient varies too. Let (k_1, k_2) be the range of the regression coefficients for all stations, then the linear regression line has the width of $(k_2 - k_1)m$. From the above discussion we may conclude that the linear regression line must be considered to represent the model of the average or typical station and to have the error term whose standard deviation is proportional to m, that is, proportional to $x(0.98)$, and which consists of sampling error and individual deviation.
yielded from the variation of σ_i, that is, area variation.

3.2 THE AUTHOR'S CONVERSION METHOD

In this section, using the linear regression model with the error term whose standard deviation is proportional to the independent variable, we shall introduce a conversion method of a year mean to a 98 % value. Since our purpose is to control m by the converted value $x(0.98)$, the linear regression of m on $x(0.98)$ will be reasonable. From the discussion in the previous section, the following empirical model is assumed.

\begin{equation}
M = \alpha x(0.98) + \beta + e,
\end{equation}

\begin{equation}
e \sim N(0, \sigma^2 x^2(0.98)),
\end{equation}

where M is a random variable which represents a year mean and the error term e consists of sampling error and individual deviation. Since we can not separate the two, the conversion should be done by the tolerance limit theory which can evaluate the individual deviation of area properties. Introducing three levels; c: threshold level, ρ: risk level and γ: assurance level, we define the converted value x_c which satisfies the following relation.

\begin{equation}
Pr\{Pr\{M \geq c \mid x(0.98) \leq \hat{x}_c \leq \rho\} \geq 1 - \gamma.
\end{equation}
The definition means that it holds with probability at least 1 - γ that when \(x(0.98) \) is under \(\hat{x} \), the probability that the year mean is larger than the threshold level \(c \) is less than the risk level \(p \).

Transforming \(M \) and \(x(0.98) \) into

\[
(3.14) \quad z = \frac{M}{x(0.98)} \quad \text{and} \quad y = \frac{1}{x(0.98)},
\]

we obtain the well known model

\[
(3.15) \quad z = \alpha + \beta y + \omega, \quad \omega \sim N(0, \sigma^2),
\]

in place of (3.12). Using \(N \) transformed pair data, \((y_i, z_i) \) \(i = 1, \ldots, N \), we can estimate \((\alpha, \beta, \sigma) \) with a usual method. From Takeuchi [3], \(\hat{x} \) can be computed with the upper tolerance limit \(g(y) \) of \(z \) in the following manner.

\[
(3.16) \quad \Pr\{\Pr\{Z \geq g(y)\} \leq p\} \leq 1 - \gamma,
\]

\[
(3.17) \quad \hat{x}_o g\left(\frac{1}{\hat{x}_o}\right) = c,
\]

where
\[g(y) = \hat{\alpha} + \hat{\beta} y + k(y)\hat{\sigma}_o, \]
\[k(y) = h(y)t_{\gamma}(n - 2, \lambda(y)), \]
\[h(y) = \left(\frac{1}{n} + \frac{(y - \bar{y})^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2} \right)^{-\frac{1}{2}}, \]
\[\lambda(y) = \frac{U_\rho}{h(y)}, \]
\[t_{\gamma}(n, \xi): \text{upper 100}\gamma\% \text{ point of the non-central} \]
\[\text{t distribution with } n \text{ degrees of freedom} \]
\[\text{and non-centrality parameter } \xi, \]
\[U_\rho: \text{upper 100}\rho\% \text{ point of the standard normal distribution.} \]

For the upper 100\gamma\% point of the non-central t distribution, we use
the following approximation:

\[t_{\gamma}(n, \xi) = \frac{U_\gamma + \xi}{\sqrt{1 - U_\gamma^2/2n}}, \]

then (3.17) can be rewritten as

\[\hat{\beta} + (\hat{\alpha} + \frac{U_\rho \hat{\sigma}_o}{\sqrt{1 - U_\gamma^2/2(n - 2)}})\hat{x}_o + \frac{U_\rho \hat{\sigma}_o}{\sqrt{1 - U_\gamma^2/2(n - 2)}} \sqrt{\frac{x_o^2}{n} + \frac{(1 - \bar{y}x_o)^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}} = c. \]

The value \(\hat{x}_o \) can be obtained as the larger solution of the following
quadratic equation,
(3.21) \[a_2 \hat{x}_o^2 + 2a_1 \hat{x}_o + a_0 = 0, \]

where

\[
(3.22) \begin{cases}
 a_0 = (c - \hat{\beta})^2 - \frac{\nu_0^2 \hat{\sigma}_o^2}{(1 - \nu_0^2/2(n - 2)) \left(\frac{\sum_i (y_i - \bar{y})^2}{L} \right)}, \\
 a_1 = \frac{\nu_0^2 \hat{\sigma}_o \bar{y}}{(1 - \nu_0^2/2(n - 2)) \left(\frac{\sum_i (y_i - \bar{y})^2}{L} \right)} - (c - \hat{\beta}) \left(\alpha + \frac{\nu_0 \hat{\sigma}_o}{\sqrt{1 - \nu_0^2/2(n - 2)}} \right), \\
 a_2 = (\alpha + \frac{\nu_0 \hat{\sigma}_o}{\sqrt{1 - \nu_0^2/2(n - 2)}})^2 - \frac{\nu_0^2 \hat{\sigma}_o^2}{1 - \nu_0^2/2(n - 2)} \left(\frac{1}{n} + \frac{\sum_i (y_i - \bar{y})^2}{L} \right).
\end{cases}
\]

Then we have

(3.23) \[\hat{x}_o = (-a_1 + \sqrt{a_1^2 - a_2a_0})/a_2. \]

The conversion with the data in Okayama 1977 is shown in Table 3.1.

Table 3.1 Conversion of a year mean 0.02 ppm to 98 % values of day means under various risk levels and assurance levels.

<table>
<thead>
<tr>
<th>Assurance level</th>
<th>Risk level (\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
<td>0.0273</td>
</tr>
<tr>
<td>0.05</td>
<td>0.0270</td>
</tr>
<tr>
<td>0.01</td>
<td>0.0265</td>
</tr>
</tbody>
</table>

(Threshold level \(c = 0.02 \))
3.3 DISCUSSION

The proposed conversion method is based on the assumption that the data are random samples and the distribution of NO₂ concentrations is lognormal. The assumption of randomness holds approximately, because day means are grasped in a package of one year so that time dependency as for hour measurements is inconceivable.

As for the assumption of lognormal model, the badness of fit in low level data can be delated by using the estimators (3.6) and (3.7). The deviation of the lognormal model in high level data will be evaluated later and we shall see the robustness of the new conversion method.

We evaluate the effect of the deviation against the proportional relationship between year means and 98 % values in (3.10). Let \(f(x) \) denote the real probability density function of NO₂ concentrations, and let \(\mu \) and \(\sigma \) denote the location and the scale parameters, respectively, of log-transformed NO₂ concentrations, \(\log(x) \). Let \(g(y) \) denote the real probability density function of \(y = (\log(x) - \mu)/\sigma \). Since \(f(x) \) may be near by the lognormal distribution, \(g(y) \) may be near by the standard normal distribution.

Now let us expand \(g(y) \) with the Gram-Charlier-Edgeworth expansion [4], that is,

\[
(3.24) \quad g(y) = \phi(y)\{a_0 + a_1 h_1(y) + a_2 h_2(y) + \cdots\},
\]

where \(a_j = E g[j(h_j(y))/j!] \), \(h_j(y) \) denotes the \(j \)th Hermite polynomial and \(\phi(\) \) denotes the probability density function of the standard normal
distribution. Since we estimate \((\mu, \sigma)\) with the upper half data, \(g(y)\) can be taken to be symmetric. Then the third moment, skewness, is zero.

We evaluate the deviation from the lognormal model by using the fourth moment \(\mu_4\), kurtosis. Thus,

\[
(3.25) \quad a_0 = 1, \ a_1 = a_2 = a_3 = 0, \ a_4 = (\mu_4/\sigma^4 - 3)/24, \\
(3.26) \quad g(y) = \phi(y) \ (1 + a_4 h_4(y)).
\]

From (3.26), we evaluate the effect of kurtosis to the year mean \(m\).

\[
(3.27) \quad m = \int_{0}^{\infty} xf(x)dx \\
= \int_{-\infty}^{\infty} \exp(\mu + \sigma y) g(y) dy \\
= \int_{-\infty}^{\infty} \exp(\mu + \sigma y) \phi(y)(1 + a_4 h_4(y)) dy \quad (y = z + \sigma) \\
= \exp(\mu + \frac{\sigma^2}{2}) \int_{-\infty}^{\infty} \phi(z)[1 + a_4(3 - 6\sigma^2 + \sigma^4) + a_4(4\sigma^3 - 12\sigma)z \\
+ a_4(6\sigma^2 - 6)z^2 + a_4 4\sigma z^3 + a_4 z^4]dz \\
= \exp(\mu + \frac{\sigma^2}{2})(1 + a_4\sigma^4).
\]

Since the distribution function \(G(y)\) of \(Y\) is approximately equal to

\[
(3.28) \quad G(y) = \phi(y) - \phi(y)a_4 h_3(y),
\]
the 98 % point of \(Y \) denoted by \(y' \) can be represented by the sum of the 98 % point of the standard normal distribution denoted by \(y \) and a modification term \(B(y) \) such that

\[
(3.29) \quad G(y') = \Phi(y) = 0.98,
\]

\[
(3.30) \quad y' = y + B(y).
\]

Because \(B(y) \) can be considered to be small, we neglect the second order and have the following equation.

\[
(3.31) \quad \Phi(y) = G(y') = G(y + B(y)) = \Phi(y + B(y)) - \Phi(y + B(y))a_4h_3(y + B(y)) = \Phi(y) + \Phi(y)[B(y) + a_4(y^4 - 6y^2 + 3)B(y) - a_4(y^3 - 3y)].
\]

From (3.31), we have

\[
(3.32) \quad B(y) = \frac{a_4(y^3 - 3y)}{1 + a_4(y^4 - 6y^2 + 3)}.
\]

Therefore, the effect of kurtosis to \(x(0.98) \) is as follows.

\[
(3.33) \quad x(0.98) = \exp(\mu + \sigma[\Phi^{-1}(0.98) + B(\Phi^{-1}(0.98))]).
\]

From (3.27) and (3.33), we have
The effect of kurtosis to the linear relationship between \(x(0.98) \) and \(m \) under fixed \(\sigma \) is measured by

\[
\frac{x(0.98)}{m} = \exp(\sigma^{-1}(0.98) - \frac{\sigma^2}{2}) \frac{\exp[\sigma B(\Phi^{-1}(0.98))]}{1 + a_u \sigma^4}.
\]

If (3.35) is nearly zero, we can neglect the effect of kurtosis. We shall check it for the \(\text{NO}_2 \) data in Okayama 1977. The mean and the standard deviation of (3.35) for 46 stations are 0.009 and 0.024, respectively. The maximum value and the minimum value are 0.060 and -0.093, respectively. Thus we can say that the effect of kurtosis is negligible so that the new linear regression model is robust.

The above discussion shows that the current conversion method is not appropriate because it provides no evaluation of the variability of the area properties. Especially, the lack of the principle of safety coefficient which may cover the above difficulty is serious.

Moreover, converted values in Table 3.1 should be considered as a criterion because the year mean previously given is a criterion. Since a criterion is given from a medical standpoint while a standard is given from an administrative standpoint, a converted value cannot be used directly as a standard.
REFERENCES

[1] 中央公害対策審議会大気部会（1972）。 窒素酸化物等に係る環境基準についての専門委員会報告。

[2] 環境庁（1972）。 \(\text{NO}_2 \) の環境基準と規制について。

[3] 竹内啓（1973）。 許容関係の定め方、応用統計学、第3巻、1/1/3。

[4] 竹内啓（1975）。 階級分布の近似、教育出版。

[5] 環境庁大気保全局企画課（1977）。 二酸化窒素による我国の大気汚染の現況についての考察、公害と対策、第3巻、7/1/7/5。

[7] 環境庁（1978）。 二酸化窒素に係る環境基準の改定について。

[8] 塚谷恒雄（1979）。 \(\text{NO}_2 \) の有害性、公害研究、第9巻、26－30。
Suppose that the prevalence rate of a disease and the intensity of a study factor that may be considered as the cause of the disease are observed in several districts, \(N\) in number. Let \(p_j\) be the prevalence rate and \(x_j\) the study factor intensity in the \(j\)th district. A \(X^2\) test procedure for a linear regression of \(p_j\) on \(x_j\), \(p_j = \alpha + \beta x_j\) \((j = 1, \ldots, N)\), was proposed by Cochran [3] and Armitage [4]. Their set of three \(X^2\) tests for total differences, linear trend and slope in the prevalence rates has been frequently used in epidemiological survey works.

When some confounding factors, not the study factor, that may affect the prevalence rates of the disease exist, a \(X^2\) test for the effect of the study factor on the prevalence rates has been done in the model of multiple \(2 \times N\) contingency tables (c.f. Mantel[5], Birch [6], [7], Armitage [8]). Denote it as \(X^2\)-test. Recently, Wood [11] proposed other \(X^2\) tests that are constructed by summing up \(X^2\) statistics for the measure of fitness of linear models in each stratum. Neither of these procedures provides a set of three \(X^2\) tests for total differences, linear trend, and slope in the prevalence rates, nor do they provide the estimators of the adjusted prevalence rates that can indicate the dose-response relationship in stratified populations.
relationship.

In Section 4.1, we propose a set of three χ^2 tests for total differences, linear trend, and slope in the adjusted prevalence rates and then give their approximate powers. The χ^2 test procedure involves controlling the confounding factors by stratification and adjusting the prevalence rates for the stratification, and is similar to the Cochran and Armitage procedure. Our tests are compared with the χ^2-test and the χ^2 tests performed by summing up χ^2 statistics in each stratum in the style of Wood in Section 4.2. Their application to the data by Tsubota [1], [2] involving cough and phlegm is given in Section 4.3. Discussion is given in Section 4.4.

4.1 AN ESTIMATION AND TEST PROCEDURE FOR LINEAR TREND IN ADJUSTED PREVALENCE RATES

4.1.1 A χ^2 Test Procedure

Let g be the number of the confounding factors and h_{s} be the number of levels of the sth confounding factor. Put $k = \prod_{s=1}^{g} h_{s}$. To control the confounding factors, we subdivide each district into k strata. Suppose that the ith stratum of the jth district has w_{ij} population rate, \[\sum_{i} w_{ij} = 1, \] and p_{ij} prevalence rate ($i = 1, \ldots, k; j = 1, \ldots, N$). Let n_{ij} be the number of observations and m_{ij} the number of cases with positive symptoms in the (i, j) cell. Let x_{j} ($j = 1, \ldots, N$) be the intensity of the study factor in the jth district.
Generally, the crude prevalence rate of each district, \(P_j^* = \sum_{i=1}^{k} w_{ij} P_{ij} \) (\(j = 1, \ldots, N \)), is not controlled with respect to the effects of the confounding factors because the population composition varies among districts. Thus we consider the adjusted prevalence rates defined by \(P_j = \sum_{i=1}^{k} w_{ij} P_{ij} \), where \(\{w_{i}, i = 1, \ldots, k; \sum_{i} w_{i} = 1, w_{i} > 0 \} \) are the standard population rates of the standard district.

Let us consider the hypotheses similar to those of Cochran and Armitage. We denote by \(P_1 \) the set of the \(N \)-dimensional vectors \(p = (p_1, \ldots, p_N)' \), where \(0 < p_j < 1 \) (\(j = 1, \ldots, N \)) and then define two subsets of \(P_1 \), \(P_2 = \{p; p = \alpha l + \beta x \in P_1, \alpha, \beta \in \mathbb{R}^1 \} \) and \(P_3 = \{p; p = \alpha l \in P_1, \alpha \in \mathbb{R}^1 \} \), where \(l = (1, \ldots, 1)' \) and \(\mathbb{R}^1 \) is the one dimensional Euclidian space and \(x = (x_1, \ldots, x_N)' \). We denote in general by \(H(P_i; P_j) \) the hypothesis \(H \) that \(p \in P_i \) against the alternative \(p \notin P_j - P_i \). We say that \(H \) is true if \(p \in P_i \) and false if \(p \notin P_j - P_i \). The assertion that \(p \in P_i \) is referred to as the null hypothesis of \(H \). The 1st hypothesis \(H_1(P_3; P_1) \) is for total differences in the adjusted prevalence rates. The 2nd hypothesis \(H_2(P_2; P_1) \) is for linear trend. The 3rd hypothesis \(H_3(P_3; P_2) \) is for the slope of the linear trend.

Now, we shall give a \(\chi^2 \) test procedure for \(H_1(P_3; P_1), H_2(P_2; P_1) \) and \(H_3(P_3; P_2) \). If we have exact information of the confounding factors in each district before sampling, we can stratify each district into \(k \) strata by using this information and select a sample of appropriate size from each stratum. But, in many epidemiological survey, we have no such information before sampling. In these cases, we select a sample of size \(n_j \) from the \(j \)th district, and stratify it into \(k \) strata by
using the subdata of confounding factors of observations. Since w_{ij}
is a nuisance parameter and its sufficient statistic is n_{ij}/n_j, we
shall consider the conditional tests given \{n_{ij}\}.

We estimate p_{ij} by $\hat{p}_{ij} = m_{ij}/n_{ij}$, where m_{ij} has the binomial distribution
$Bi(n_{ij}, p_{ij})$. Using the prior standard population rates, we estimate
p_j by $\hat{p}_j = \sum_i w_i \hat{p}_{ij}$.

If a sequence of random variables $\{x_n\}$ converges in probability to
a constant c, we denote it by $x_n \overset{P}{\rightarrow} c$. If $\{x_n\}$ converges in law to the
distribution D, we denote it by $x_n \overset{i.i.d.}{\rightarrow} D$.

When each n_{ij} tends to infinity subject to n_{ij}/n_j remaining fixed, it holds that

\begin{equation}
\frac{\sqrt{n_{ij}}(\hat{p}_{ij} - p_{ij})}{\sqrt{p_{ij}(1 - p_{ij})}} \overset{\mathcal{L}}{\rightarrow} N(0, 1) \quad \text{and}
\end{equation}

\begin{equation}
\frac{(\hat{p}_j - \sum_i w_i \hat{p}_{ij})}{\sqrt{\sum_i w_i^2 \frac{p_{ij}(1 - p_{ij})}{n_{ij}}}} \overset{\mathcal{L}}{\rightarrow} N(0, 1).
\end{equation}

We define the jth adjusted sample size n_{o_j} by

\[n_{o_j} = \frac{(\sum_i w_i p_{ij})(1 - \sum_i w_i p_{ij})}{\sum_i w_i^2 \frac{p_{ij}(1 - p_{ij})}{n_{ij}}}, \]
which is an increasing function of \(\{n_{ij}, i = 1, \ldots, k\} \). Using \(n_{ij} \), we can simplify (4.2) to a well known expression:

\[
\frac{\sqrt{n_{ij}}(p_j - \hat{p}_j)}{\sqrt{p_j(1 - p_j)}} \xrightarrow{d} N(0, 1).
\]

(4.3)

By using the weights, \(\omega_j = n_{ij} / p_j(1 - p_j) \) \((j = 1, \ldots, N)\), we can give a set of \(\chi^2 \) test statistics for \(H_1(P_3; P_1) \), \(H_2(P_2; P_1) \) and \(H_3(P_3; P_2) \) which satisfy the following identity:

\[
\sum_j \omega_j(p_j - \hat{p})^2 = \sum_j \omega_j(p_j - \tilde{p}_j)^2 + \sum_j \omega_j(p_j - \hat{p})^2,
\]

(4.4)

where \(\hat{p} = \sum_j \omega_j p_j / \sum j \omega_j \), \(\tilde{p}_j = a + b x_j \), \(a = \hat{p} - \bar{x} \),

\[
b = \frac{\sum_j \omega_j x_j (x_j - \bar{x})}{\sum_j \omega_j (x_j - \bar{x})^2} \text{ and } \bar{x} = \frac{\sum_j \omega_j x_j}{\sum_j \omega_j}.
\]

From (4.3) and normal regression theory, it holds that the 1st \(\chi^2 \) test statistic is asymptotically distributed according to the \(\chi^2 \) distribution with \(N - 1 \) degrees of freedom, which will be denoted by \(\chi^2_{N-1} \) in the sequel, if \(H_1 \) is true. The 2nd \(\chi^2 \) test statistic is similarly asymptotically distributed according to \(\chi^2_{N-2} \) if \(H_2 \) is true, and the 3rd \(\chi^2 \) test statistic is asymptotically distributed according to \(\chi^2_1 \) if \(H_3 \) is true.

The parameters \(\omega_j \) are unknown, so that we estimate them by

\[
\hat{\omega}_j = \frac{n_{ij}}{p_j(1 - p_j)} \quad (j = 1, \ldots, N),
\]

--- 49 ---
where

\[n_{o_j} = \frac{\left(\sum_i w_i \hat{p}_{ij} \right) \left(1 - \sum_i w_i \hat{p}_{ij} \right)}{\sum_i w_i \frac{p_{ij}(1 - p_{ij})}{n_{ij}}}. \]

Since \(n_{o_j} \) is a function of \(\{p_{ij}, i = 1, \ldots, k\} \) which are continuous at the points \(\{p_{ij}, i = 1, \ldots, k\} \), and \(p_{ij} \to p_{ij} \), it follows that \(n_{o_j}/n_{o_j} \to 1 \).

Then it follows from \(\hat{p}_{ij} \to p_{ij} \) that \(\hat{w}_j/\hat{w}_j \to 1 \). When \(w_j \) is replaced by \(\hat{w}_j \) in (4.4), we have the following theorem for the set of three \(X^2 \) tests.

THEOREM 1 The \(X^2 \) test statistics for \(H_1(P_3; P_1), H_2(P_2; P_1) \) and \(H_3(P_3; P_2) \):

\[X^2_{\text{total}} = \sum_j \frac{n_{o_j}(\hat{p}_j - \hat{p})^2}{\hat{p}_j(1 - \hat{p}_j)}, \]

\[X^2_{\text{linear}} = \sum_j \frac{n_{o_j}(\hat{p}_j - \hat{p})^2}{\hat{p}_j(1 - \hat{p}_j)} \quad \text{and} \]

\[X^2_{\text{slope}} = \frac{(\sum_j n_{o_j}(x_j - \bar{x}) / (1 - \hat{p}_j))^2}{\sum_j n_{o_j}(x_j - \bar{x})^2 / \hat{p}_j(1 - \hat{p}_j)} \]

are asymptotically distributed according to \(\chi^2_{N-1} \) if \(H_1 \) is true, \(\chi^2_{N-2} \) if \(H_2 \) is true and \(\chi^2_1 \) if \(H_3 \) is true, respectively. The three test statistics satisfy the identity: \(X^2_{\text{total}} = X^2_{\text{linear}} + X^2_{\text{slope}} \).
If we estimate \(\omega_j \) by \(\hat{\omega}_j = \hat{n}_{o,j} / \hat{\omega}_o(1 - \hat{\omega}_o) \), where \(\hat{\omega}_o = \sum_j \hat{n}_{o,j} \hat{p}_j / \sum_j \hat{n}_{o,j} \), and replace \(\omega_j \) of (4.4) by \(\omega_j \), we have \(\chi^2 \) test statistics which are similar to those of the theorem 1. Since \(\hat{\omega}_j / \hat{\omega}_j \xrightarrow{p} 1 \) if \(H_1 \) is true, we have the following theorem.

Theorem 2 The \(\chi^2 \) test statistics for \(H_1(P_3; P_1) \), \(H_2(P_2; P_1) \) and \(H_3(P_3; P_2) \):

\[
\chi^2_{total} = \sum_j \frac{\hat{n}_{o,j} (\hat{p}_j - \hat{\omega}_o)^2}{\hat{\omega}_o(1 - \hat{\omega}_o)},
\]

\[
\chi^2_{linear} = \sum_j \frac{\hat{n}_{o,j} (\hat{p}_j - \hat{\omega}_o)^2}{\hat{\omega}_o(1 - \hat{\omega}_o)}
\]

\[
\chi^2_{slope} = \frac{(\sum_j \hat{n}_{o,j} \hat{p}_j (x_j - \bar{x}))^2}{\hat{\omega}_o(1 - \hat{\omega}_o)(\sum_j \hat{n}_{o,j}(x_j - \bar{x})^2)}
\]

are asymptotically distributed according to \(\chi^2_{N-1} \), \(\chi^2_{N-2} \) and \(\chi^2_{1} \), respectively if \(H_1 \) is true, and have the identity: \(\chi^2_{total} = \chi^2_{linear} + \chi^2_{slope} \).

We remark that \(\chi^2_{total} \), \(\chi^2_{linear} \) and \(\chi^2_{slope} \) are the adjustments of the \(\chi^2 \) test statistics of Cochran and Armitage for stratification. But \(\chi^2_{linear} \) is not asymptotically distributed according to \(\chi^2_{N-2} \) if \(H_2 \) is true. If the denominator of \(\chi^2_{linear} \) is changed by \(\hat{p}_j(1 - \hat{p}_j) \), we have
a \chi^2 test statistic which is similar to \chi^2_{\text{linear}}:

\begin{align*}
\chi^2_{\text{linear}} &= \sum_j \frac{n_j (\hat{p}_j - \hat{p}_j^2)}{p_j (1 - p_j)}.
\end{align*}

Since \hat{p}_j \xrightarrow{P} p_j if H_2 is true, \chi^2_{\text{linear}} is asymptotically distributed as \chi^2_{N-2} if H_2 is true. \chi^2_{\text{total}} and \chi^2_{\text{total}}, \chi^2_{\text{linear}} and \chi^2_{\text{linear}}, \chi^2_{\text{slope}} and \chi^2_{\text{slope}} are asymptotically equivalent, respectively, so that we may also use a set of three statistics, \chi^2_{\text{total}}, \chi^2_{\text{linear}} and \chi^2_{\text{slope}}, although they have no identity, that is, \chi^2_{\text{total}} \neq \chi^2_{\text{linear}} + \chi^2_{\text{slope}}.

4.1.2 Powers

In this section, by using the limiting powers under the appropriate sequences of alternative hypotheses, we give the approximate powers of our three tests.

Theorem 3 Against the null hypothesis of \(H_1\), consider the following alternative:

\[A_1; \quad p_j = a + d_1 j \quad (j = 1, \ldots, N), \]

where \(d_1 j\) is nearly equal to zero. Then an approximation to the power of the \chi^2_{\text{total}}-test of level \(\epsilon\) for \(A_1\) is

\begin{align*}
(4.5) \quad \Pr(\chi^2_{\text{total}} > \chi^2_{N-1, \epsilon} | A_1) &= \Pr(\chi^2_{N-1, \epsilon} > \chi^2_{N-1, \epsilon}).
\end{align*}
where
\[
\lambda_t = \frac{1}{\alpha(1-\alpha)} \left[\sum_j d_{ij}^2 q_{i,j} - \left(\sum_j d_{ij} q_{i,j} \right)^2 \right],
\]
\[
X^2_{r,\alpha}; \text{ upper 100\(\alpha\) \% point of the } X^2 \text{ distribution with } r \text{ degrees of freedom},
\]
\[
X^2_r(\lambda); \text{ non-central } X^2 \text{ random variable with } r \text{ degrees of freedom}
\]
\[
\text{and non-centrality parameter } \lambda,
\]
\[
Q_{o,j} = n_{o,j}/n_{o}.
\]

PROOF Against the null hypothesis of \(H_1\), consider the sequence of alternative hypotheses:

\[A_{n_o}; \quad p_j = \alpha + c_{1,j}/\sqrt{n_o}. \quad (j = 1, \ldots, N).\]

Under \(\{A_{n_o}\}\), the statistic \(X^2_{total}\), in the limit as \(n_o\) tends to infinity subject to \(Q_{o,j}\) remaining fixed, is distributed as the non-central \(X^2\) distribution with \(N - 1\) degrees of freedom and non-centrality parameter

\[
\lambda' = \frac{1}{\alpha(1-\alpha)} \left[\sum_j c_{1,j}^2 q_{i,j} - \left(\sum_j c_{1,j} q_{i,j} \right)^2 \right].
\]

Its proof is clear from Chapman and Nam [9]. Since \(X^2_{total}'\) and \(X^2_{total}\) are asymptotically equivalent under \(\{A_{n_o}\}\), \(X^2_{total}'\)'s limiting power of level \(\varepsilon\) for \(\{A_{n_o}\}\) is

\[
\lim_{n_o \to \infty} Pr(X^2_{total} > X^2_{N-1,\epsilon} | A_{n_o}) = Pr(X^2_{N-1}(\lambda') > X^2_{N-1,\epsilon}).
\]

Then, by approximating its power for \(A_1\) by using (4.6), we have (4.5).

Q.E.D.
From the parallel discussions to the theorem 3, we have the following theorems.

THEOREM 4 Against the null hypothesis of H_2, consider the following alternative:

$$A_2; \quad p_j = \alpha + \beta x_j + d_{2j} \quad (j = 1, \ldots, N),$$

where d_{2j} is nearly equal to zero. Then an approximate power of the X^2_{linear}-test of level ε for A_2 is

$$\text{Pr}(X^2_{\text{linear}} > X^2_{N-2, \varepsilon} | A_2) = \text{Pr}(X^2_{N-2}(\lambda_k, n_\varepsilon) > X^2_{N-2, \varepsilon}),$$

where

$$\lambda_k = \frac{\sum_j d_{2j} z_j q_{o,j} - (\sum_j d_{2j} z_j)^2 / \sum_j z_j - (\sum_j d_{2j} z_j x_{o,j})^2 / \sum_j z_j x_{o,j}^2,}{(\alpha + \beta x_j)(1 - (\alpha + \beta x_j))},$$

$$z_j = \frac{q_{o,j}}{(\alpha + \beta x_j)},$$

$$x_{o,j} = x_j - \bar{x}.$$

THEOREM 5 Against the null hypothesis of H_3, consider the following alternative:

$$A_3; \quad \beta = d_3,$$

where d_3 is nearly equal to zero. Then an approximate power of the
The above three theorems show that the three approximate powers are monotone increasing functions of \(n_o \) because the three non-centrality parameters are linear functions of \(n_o \). Thus the larger the sample sizes, the larger the powers.

4.2 COMPARISONS BETWEEN THE PROPOSED METHOD AND OTHER STATISTICAL METHODS

In the previous sections, we discussed \(\chi^2 \) tests for a linear regression of the adjusted prevalence rates on the study factor intensities. On the other hand, when we are interested in a linear regression of the prevalence rates on the study factor intensities in each stratum, we can construct other \(\chi^2 \) tests based on the regression in each stratum.

In this case, three hypotheses parallel to \(H_1(P_3; P_1), H_2(P_2; P_1) \) and \(H_3(P_3; P_2) \) are as follows.

\[
K_1(P_3; P_1): p_i \in P_3 \text{ against } p_i \in P_1 - P_3 \text{ for all } i's,
K_2(P_2; P_1): p_i \in P_2 \text{ against } p_i \in P_1 - P_2 \text{ for all } i's,
K_3(P_3; P_2): p_i \in P_3 \text{ against } p_i \in P_2 - P_3 \text{ for all } i's,
\]
where $p_i = (p_{i1}, \ldots, p_{iN})'$ and $p_i \neq p_{i'}$, $(i \neq i')$ in general.

4.2.1 Mantel's X^2-test

Mantel [5] proposed the X^2 test statistic given by

$$X^2_M = \frac{\left(\sum_{ij} x_{ij} (m_{ij} - e_{ij})\right)^2}{\sum_i \frac{n_i - m_i}{n_i} \left(\sum_j e_{ij} x_{ij}^2 - \frac{1}{m_i} \left(\sum_j e_{ij} x_{ij}\right)^2\right)},$$

where $e_{ij} = m_{i1} n_{ij} / n_i$, for the hypothesis of equi-prevalence rates against the ordered alternative for each stratum:

$$K_4(P_3; P_4): p_i \in P_3 \text{ against } p_i \in P_4 - P_3 \text{ for all } i's,$$

where $P_4 = \{p; p_1 \leq \ldots \leq p_N\}$ and $p_i \neq p_{i'}$, $(i \neq i')$ in general. This is also the test statistic for $K_3(P_3; P_2)$.

We shall compare X^2_{slope} with X^2_M. We give first an approximation to the power of X^2_M which can be proved by a discussion parallel to that in Section 4.1.2.

THEOREM 6 Against the null hypothesis of K_3, consider the following alternative:

$$A_4; \beta_i = d_{4i} (i = 1, \ldots, k),$$

where d_{4i} is nearly equal to zero. Then an approximate power of the
\(X_M^2\) test of level \(\epsilon\) for \(A_u\) is

\[
Pr\{X_M^2 > X_M^2_{1, \epsilon} \mid A_u\} = Pr\{X_M^2(\lambda_M n_{..}) > X_M^2_{1, \epsilon}\},
\]

where

\[
\begin{align*}
\lambda_M &= \frac{\left(\sum_i d_{i\cdot} \sum_j Q_{ij} x_{ij}^2\right)^2}{\sum_i a_{i\cdot} (1 - a_{i\cdot}) \left(\sum_j Q_{ij} x_{ij}^2\right)}, \\
Q_{ij} &= n_{ij}/n_{..}, \\
x_{ij} &= x_{j\cdot} - x_{i\cdot}.
\end{align*}
\]

Put an assumption that \(p_i = p\) for all \(i\)'s. Under the assumption, \(H_3(P_3; P_2)\) includes \(K_3(P_3; P_2)\). Thus we can compare the power of the \(X^2_{slope}\) test with the power of the \(X_M^2\) test by comparing \(\lambda_{s\cdot} n_{..}\) with \(\lambda_M n_{..}\).

We define the ratio of \(\lambda_{s\cdot} n_{..}\) to \(\lambda_M n_{..}\) by \(\Lambda\). Since \(\Lambda\) is a complicated function of \(\{Q_{ij}\}, \{w_{i\cdot}\}, \{d_{i\cdot}\}\) and \(\{a_{i\cdot}\}\), a general comparison is difficult.

Hence, we shall compare two tests in a simple situation.

THEOREM 7 Put an assumption that \(p_i = p\) for all \(i\)'s. Against the null hypothesis of \(K_3\), consider the following alternative:

\[A_u'; \beta_i = d_3 \quad (i = 1, \ldots, k).\]

Use the rates of the strata sizes to the total size as the standard population rates, that is, \(w_{i\cdot} = n_{i\cdot\cdot}/n_{..}\) (\(i = 1, \ldots, k\)). Then if

\[
n_{ij} = n_{i\cdot\cdot} n_{j\cdot\cdot}/n_{..},
\]

--- 57 ---
it holds that $\Lambda = 1$ under A_i.

PROOF Under the assumptions, $Q_{o,j} = 1 / \sum_i Q_{i,j}^2$ holds. Thus Λ is a function of $\{Q_{i,j}\}$:

$$\Lambda(\{Q_{i,j}\}) = \sum_j Q_{o,j} x_j^2 / \sum_{ij} Q_{i,j} x_{i,j}^2.$$

The appendix shows that $Q_{o,j} \leq Q_{o,j}$, with equality when $Q_{i,j} / Q_{i} = Q_{i,j} / Q_{i,j}$ ($i \neq i'$) which is equivalent to (4.10). Since (4.10) gives the equality:

$$x_{o,j} = x_{i,j} \quad (i = 1, \ldots, k),$$

it holds that $\Lambda = 1$. Q.E.D.

4.2.2 Summing up X^2 Statistics in Each Stratum in the Style of Wood

By using "summing up X^2 statistics in each stratum" procedure, we can give three statistics for $K_1(P_3; P_1)$, $K_2(P_2; P_1)$ and $K_3(P_3; P_2)$:

$$X^2_1 = \sum_{i=1}^{k} \sum_{j=1}^{N} \frac{n_{i,j} (\hat{p}_{i,j} - \hat{p}_i)^2}{\hat{p}_{i,j} (1 - \hat{p}_{i,j})},$$

$$X^2_2 = \sum_{ij} \frac{n_{i,j} (\hat{p}_{i,j} - \hat{p}_{ij})^2}{\hat{p}_{i,j} (1 - \hat{p}_{i,j})},$$
\[
X_3^2 = \frac{\sum_i \sum_j n_{ij} (x_j - \bar{x}_i)^2}{\sum_i \sum_j n_{ij} (x_j - \bar{x}_i)^2 / \hat{p}_{ij}(1 - \hat{p}_{ij})},
\]

where

\[
\begin{cases}
\hat{p}_i = m_i / n_i, & \hat{p}_{ij} = a_i + b_i x_j, \quad a_i = \hat{p}_i - b_i \bar{x}_i, \\
\bar{x}_i = \sum_j n_{ij} x_j / n_i, & \text{and } b_i = \sum_j m_{ij} (x_j - \bar{x}_i) / \sum_j n_{ij} (x_j - \bar{x}_i)^2.
\end{cases}
\]

The set of three statistics, \(X_1^2, X_2^2\) and \(X_3^2\) which will be called the individual \(X^2\)'s, has the property that \(X_1^2 = X_2^2 + X_3^2\), but contains no estimators of the adjusted prevalence rates. A parallel discussion as in Section 4.1.2 illustrates that the individual \(X^2\)'s are approximately distributed according to the non-central \(X^2\) distributions under the alternatives.

Put the assumption in 4.2.1, that is, \(p_i = p\) for all \(i\)'s. Under the assumption, \(H_1(P_3; P_1), H_2(P_2; P_1)\) and \(H_3(P_3; P_2)\) include \(K_1(P_3; P_1), K_2(P_2; P_1)\) and \(K_3(P_3; P_2)\), respectively. Put one more assumption that all \(w_i\)'s are equal and \(n_{ij} = n_{ij} (i \neq i', j = 1, \ldots, N)\). Under the adequate alternatives parallel to \(A_n^*\), their non-central parameters are equal, respectively, to those of \(X^2_{total}, X^2_{linear}\) and \(X^2_{slope}\) which will be called the overall \(X^2\)'s. Since the inequality:

\[
Pr(X^2_t(\lambda) > X^2_{t,a}) < Pr(X^2_r(\lambda) > X^2_{r,a}), \quad \text{if } t > r,
\]

holds generally (c.f. Gupta and Perlman [10]), the powers of the individual \(X^2\)'s are smaller than those of the overall \(X^2\)'s because the former's
degrees of freedom are k times larger than the latter’s.

We also expect that these approximations of the individual X^2's are less accurate than those of the overall X^2's respectively because the sample size of each stratum is smaller than the total sample size.

4.3 AN APPLICATION

Tsubota [1], [2] studied the relationship between air pollution and the prevalence rates of persistent cough and phlegm in Okayama Prefecture. We shall apply the procedure just discussed to his data. The survey districts consist of 12 communities. In each district, about 400 observations were collected from men and women in the range of 40 to 60 years of age. We employ the average concentration of NO$_2$ as an index of air pollution. For details, the original article may be referred to.

In this case, the confounding factors are sex, age and smoking habit. The age factor has two levels (40-49, 50-59). The factor of smoking has five levels (no smoking, ex-smoking, 1-10 cigarettes/day, 11-20 cigarettes/day and more than 20 cigarettes/day). Since female smokers are few in number, we combine ex-smokers and smokers for them. Fourteen strata are given in Table 4.1. The numbers of observations and cases who complain of persistent cough and phlegm are given in Table 4.2 and Table 4.3, respectively. The average concentrations of NO$_2$ are given in Table 4.4.
Table 4.1
14 strata of observations.

<table>
<thead>
<tr>
<th>Number of stratum</th>
<th>Sex</th>
<th>Age</th>
<th>Smoking habit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>male</td>
<td>40-49</td>
<td>no smoking</td>
</tr>
<tr>
<td>2</td>
<td>male</td>
<td>40-49</td>
<td>ex-smoking</td>
</tr>
<tr>
<td>3</td>
<td>male</td>
<td>40-49</td>
<td>1-10 cigarettes/day</td>
</tr>
<tr>
<td>4</td>
<td>male</td>
<td>40-49</td>
<td>11-20 cigarettes/day</td>
</tr>
<tr>
<td>5</td>
<td>male</td>
<td>40-49</td>
<td>more than 20 cigarettes/day</td>
</tr>
<tr>
<td>6</td>
<td>male</td>
<td>50-59</td>
<td>no smoking</td>
</tr>
<tr>
<td>7</td>
<td>male</td>
<td>50-59</td>
<td>ex-smoking</td>
</tr>
<tr>
<td>8</td>
<td>male</td>
<td>50-59</td>
<td>1-10 cigarettes/day</td>
</tr>
<tr>
<td>9</td>
<td>male</td>
<td>50-59</td>
<td>11-20 cigarettes/day</td>
</tr>
<tr>
<td>10</td>
<td>male</td>
<td>50-59</td>
<td>more than 20 cigarettes/day</td>
</tr>
<tr>
<td>11</td>
<td>female</td>
<td>40-49</td>
<td>no smoking</td>
</tr>
<tr>
<td>12</td>
<td>female</td>
<td>40-49</td>
<td>ex-smoking or smoking</td>
</tr>
<tr>
<td>13</td>
<td>female</td>
<td>50-59</td>
<td>no smoking</td>
</tr>
<tr>
<td>14</td>
<td>female</td>
<td>50-59</td>
<td>ex-smoking or smoking</td>
</tr>
</tbody>
</table>
Table 4.2

The number of observations.

<table>
<thead>
<tr>
<th>District</th>
<th>Total</th>
<th>(n_i/n_\cdot) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratum</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.56</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>46</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>133</td>
<td>117</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>91</td>
<td>81</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>404</td>
<td>335</td>
</tr>
<tr>
<td>Adjusted size (n_{ij})</td>
<td>471</td>
<td>317</td>
</tr>
</tbody>
</table>
Table 4.3

The number of cases who complain persistent cough and phlegm.

<table>
<thead>
<tr>
<th>Stratum</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>31</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>11</td>
<td>32</td>
<td>25</td>
<td>24</td>
<td>30</td>
<td>18</td>
<td>17</td>
<td>280</td>
</tr>
</tbody>
</table>
Table 4.4

Average concentrations of NO$_2$ and estimated values of three types of the prevalence rates in 12 districts.

<table>
<thead>
<tr>
<th>District</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_2$ (ppm)</td>
<td>.022</td>
<td>.030</td>
<td>.023</td>
<td>.023</td>
<td>.027</td>
<td>.022</td>
<td>.022</td>
<td>.020</td>
<td>.016</td>
<td>.020</td>
<td>.017</td>
<td>.016</td>
</tr>
<tr>
<td>Crude prevalence rate (%)</td>
<td>5.2</td>
<td>9.3</td>
<td>7.2</td>
<td>6.4</td>
<td>10.8</td>
<td>6.4</td>
<td>8.0</td>
<td>6.3</td>
<td>6.7</td>
<td>6.9</td>
<td>4.3</td>
<td>4.6</td>
</tr>
<tr>
<td>Adjusted prevalence rate (%)</td>
<td>4.8</td>
<td>10.5</td>
<td>8.1</td>
<td>6.4</td>
<td>9.8</td>
<td>6.5</td>
<td>7.6</td>
<td>6.1</td>
<td>6.4</td>
<td>6.5</td>
<td>4.3</td>
<td>4.5</td>
</tr>
<tr>
<td>Estimated prevalence rate (%)</td>
<td>6.7</td>
<td>9.6</td>
<td>7.1</td>
<td>7.1</td>
<td>8.5</td>
<td>6.7</td>
<td>6.7</td>
<td>6.0</td>
<td>4.6</td>
<td>6.0</td>
<td>4.9</td>
<td>4.6</td>
</tr>
</tbody>
</table>
We use the proportions of the stratum sizes to the total size as the standard population rates. From these data, we have

\[p(x) = -0.01 + 3.56x, \]

\[\chi^2_{\text{total}} = 20.68 \text{ (11 d.f.)}, \]

\[\chi^2_{\text{linear}} = 8.37 \text{ (10 d.f.)}, \]

\[\chi^2_{\text{slope}} = 12.31 \text{ (1 d.f.)}. \]

Fig. 4.1 The dose-response relationship between the average concentration of NO\(_2\) and the adjusted prevalence rate of persistent cough and phlegm.
The results show that the difference of adjusted prevalence rates at 12 districts are statistically significant \((p < 0.05)\). It seems that NO\textsubscript{2} index of air pollution explains this difference, for the linear model is admitted and the regression coefficient is statistically significant \((p < 0.01)\). The dose-response relationship is graphed in Fig. 4.1. To compare \(X_{slope}^2\) with \(X_M^2\), we also compute \(X_M^2\) and \(\Lambda\):

\[
X_M^2 = 14.24**
\]

\[
\Lambda = 0.9327.
\]

Thus, we can say that the difference between \(X_{slope}^2\) and \(X_M^2\) is negligible in this case.

4.4 DISCUSSION

The situation where the prevalence rates of a disease may be affected by a number of confounding factors is considered. The population in each district is stratified according to the confounding factors. The dose-response relationship between the study factor and the disease is given by the linear regression model for the adjusted prevalence rates, adjusted by the population composition, on the study factor intensities.

A set of three \(X^2\) tests is proposed for an estimation and test procedure of the linear regression. The main feature of this procedure is the use of the adjusted prevalence rates and the adjusted sample sizes.
After computing these values, this procedure is similar to the procedure of single stratum \(\chi^2 \) tests (Cochran [3] and Armitage [4]).

The \(\chi^2 \)-test leads to no regression line and is useful only to test the slope in the linear regression. Contrary to it, our procedure has the following superiority.

1. It gives the regression line of the adjusted prevalence rates on the study factor intensities.

2. It gives a set of three \(\chi^2 \) tests for the regression line. Compared with the individual \(\chi^2 \)-tests, the overall \(\chi^2 \)-tests of this procedure have the following merits.

3. They are usually more powerful.

4. Their \(\chi^2 \) approximation may be more accurate.

As their subspecies, we have \(\chi^2_{\text{total}}, \chi^2_{\text{linear}}, \chi^2_{\text{linear}} \) and \(\chi^2_{\text{slope}} \).

In the above discussion, we have assumed a linear regression line for dose-response relationship. We can extend it to a general regression curve defined by

\[
(4.11) \quad p(x) = \int_{-\infty}^{\alpha + \beta x} \phi(t) \, dt.
\]

For example, \(\phi(x) = \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) \) leads to a probit curve, and

\(\phi(x) = \exp(-x) / (1 + \exp(-x))^2 \) to a logistic curve. Here, we remark that after a suitable transformation of the adjusted prevalence rates, for example, probit transformation or logit transformation, the model of (4.11) reduces to the linear regression model. Then, we can make a parallel discussion as mentioned above. The effect of the transformation...
appears only in the weight at each regression point. That is, the weights in Section 4.1.1 are changed into

\[\omega_j = \frac{n_{o_j}}{p_j(1 - p_j)\phi^2(p_j)}. \]

We shall apply the three \(\chi^2 \) tests under probit model or logistic model to the data in Section 4.3. The results are tabled in Table 4.5. Estimated probit curve and logistic curve are shown in Fig. 4.1 and they are nearly equal to each other in the data range.

Table 4.5 Estimated curve and three \(\chi^2 \) tests under probit model or logistic model.

<table>
<thead>
<tr>
<th>Regression model</th>
<th>Estimated curve</th>
<th>(\chi^2) total</th>
<th>(\chi^2) linear</th>
<th>(\chi^2) slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>probit</td>
<td>(p(x) = \int \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2} \right) dt) #2.10 + 28.0x #21.96* #7.24 #14.72**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>logistic</td>
<td>(p(x) = \int \frac{\exp(-t)}{(1 + \exp(-t))^2} dt) #22.05* #7.04 #15.01**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* statistically significant at 5 %
** statistically significant at 1 %
APPENDIX

\[
Q_j \left(\sum_i \frac{Q_{i,j}^2}{Q_{ij}} \right) - 1 = Q_j \left(\sum_i \frac{Q_{i,j}^2}{Q_{ij}} \right) - \left(\sum_i Q_{i,j} \right)^2
\]

\[
\sum_i Q_{i,j}^2 + \sum_i \frac{Q_{i-1,j} + \cdots + Q_{i+1,j}}{Q_{ij}} + \cdots + \frac{Q_{k,j}}{Q_{ij}} \cdot Q_{i,j}^2 - \sum_i Q_{i,j}^2 - \sum_{i > i'} 2Q_{i,j} Q_{i',j} \geq 0
\]

then it holds that \(1 \leq Q_j \left(\sum_i \frac{Q_{i,j}^2}{Q_{ij}} \right) \), that is, \(Q_{o,j} \leq Q_j \). The equality sign holds when \(Q_{i,j} / Q_{i,j} = Q_{i',j} / Q_{i',j} \) \((i \neq i')\).

REFERENCES

[1] 野田信喜 (1979)。 岩山県における呼吸器症状に関する疫学的研究、
日本公衆衛生学会誌、第26巻、第7号、333-350。

[2] 野田信喜 (1979)。 大気汚染と持続性せきたん有症率の関係、
日本公衆衛生学会誌、第26巻、第9号、481-492。

ACKNOWLEDGEMENT

The author wishes to thank Professor M. Okamoto of Osaka University for his valuable suggestions and helpful comments. He is also grateful to Doctor T. Yanagimoto of the Institute of Statistical Mathematics, who is the coauthor of the papers which include the contents of Chapter 2, for his advice and encouragement.