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Summary

Three topics in statistical analysis of dose-response relationship
are discussed. The first topic is the estimation method of a safe dose
in.dose~response relationship. The hockey stick regression method and
the probit analysis*aré compared. Statistical analysis and computational
results suggest that the probit analysis is preferable. The second topic
is the conversion method of a safe dose which may be used for the lbng—

range envirommental standard of NO, in Japan. Two conversion methods,

2
current and the author's, are compared. Under the assumption of the

lognormal model for NO, concentrations, the author's methd is shown by

2
analytical and computational results to be preferable. The third topic
is the statistical inference for the dose-response relationship in
stratified populations. A set of three X2 tests is proposed for the

estimation and test of the linear regression line of adjusted prevalence

rates on study factor intensities.
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1 Introduction

Along with the arrival of the big industrial society of mass production
and mass consumption, harmful influence of various and too much industrial
chemical compounds to the human beings as well as to the biological
environment has constituted a serious social problem. Many scientists
and engineers are engaged in researching and preventing such influence.
Statistical analysis of the dose-response relationship which reveals
statistically the mechanism of the harmful influence i1s one of most
important themes of biostatisticians. Many epidemiological surveys and
their analyses have been carried out. Such analyses are expected to
progress further both in theory and application. This paper takes up
three topics which have aroused wide social interest in Japan.

In Chapter 2, a safe dose in dose-response relationship is discussed.
It is concerned with administrative control over air pollutiomns, food
additives or feed additives. Many techniques and methods to estimate
the safe dose have been proposed and discussed. A convenient estimation
method is the hockey stick regression method using segmented lines.

The method described in Section 2.1 [1] is based on the assumption that



there exists a threshold value which defines a safe dose. The validity

of the assumption is difficult to be shown. An alternative method which

is not based on the assumption is the probit analysis described in Section
2.2 [3]. It introduces a risk level which defines a safe dose. Discussion
on the two methods is presented in Section 2.3.

Chapter 3 deals with the conversion of a safe dose [2]. It gives a
critical review of the current long-range environmental standard of NOZ’
which is stated in terms of the 98 percent value of day means in a year.
The 98 percent value is a converted value from the year mean which had
been adopted previously as a safe dose from the standpoint of medical
science. The conversion was done by using the regression line of 98
percent values of day means on year means. Under the assumption of the

lognormal model for NO, concentrations, we show that the current conversion

2
method is unacceptable and shold be replaced by a conversion method using
the linear regression model with the error term whose standard deviation
isproportional to the independent variable. The former is discussed in
Section 3.1 and the latter in Section 3.2. In our method, a tolerance
limit shold be recommended as a converted value. In Section 3.3, the
deviation from the lognormal model is evaluated arnd our model proves to
be robust. Throughout this chapter, the data on NO2 concentrations at
Okayama in 1977 are used as an illustration.

In Chapter 4, statistical inference for the dose-response relationship
in stratified populations is taken up [4]. The adjusted prevalence rate

which is used by many biostatisticians proves to be a useful tool in our

study. The dose-response relationship between adjusted prevalence rates



and study factor intensities may be represented locally and approximately
by a linear regression model. A set of three X2 tests is proposed for an
estimation and test procedure of the linear regression line in Section 4.1.
It is shown that the same statistical inference as in the single stratum
population is valid by introducing the adjusted prevalence rates and the
adjusted sample sizes in stratified populatibns. In Section 4.2, the
procedure is compared with usuél statistical procedures. It is shown

that three X? tests of the procedure are usually more powerful than the

X2 tests performed by summing up X2 statistics in each stratum. In Section
4.3, the procedure is applied to the data involving the average concentrations
of NO2 and the prevalence rates of persistent cough and phlegm. Section

4.4 deals with an extension to the probit model and the logistic model.
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2 A Safe Dose in Dose-Response Relationship

Many techniques and methods to estimate a safe dose in dose-response
relationship have been proposed and discussed. Estiﬁation of the safe
dose concerning various chemical compounds is important, though it is
very difficult.

The hockey stick (HS) regression method is an interesting method
proposed by Hasselblad et al. [10] to obtain the maximum no-adverse~health
~effect concentration of photochemical oxidants. It is a kind of regression
method using segmented curves [7], [8] and has attracted attention of
many researchers. The method is based on the assumption that there
exists a threshold value which defines a safe dose.

In this chapter, we study some properties of the HS regression method,
especially its validity. For this purpose, the HS model is compared
with other regression models such as the probit model. For the latter,

.
a risk 1evel is used to défine a safe dose. A risk level was used by
Mantel and Bryan [5] and has been supported by subsequent researchers.
A safe dose does not mean here a dose which causes no harmful effects,

and therefore should not be used as a standard by the administration as

it stands. It should be considered rather as a criterion to estimate



the safety.

The data on which the current standard of SO2 in Japan is partly
based are analyzed and discussed. A reanalysis of relationship between
photochemical oxidant and eye discomfort is given. Using two examples,
we compare the HS model and the probit model. Some conclusions and

suggestions are presented.

2.1 A THRESHOLD VALUE AND THE HOCKEY STICK REGRESSION METHOD

2.1.1 The HS Regression Method
Let p(x) denote the population prevalence rate at a dose level x.
The HS regression function as a dose-response curve is defined as follows.

For some x,,

(2.1) px) = By for x X X,»

= B; + Byx for x > x,.

This méans that for a suitable dose x,, p (x) remains constant for any

x less than x, and increases linearly as x increases from x,. The dose

%, 1s considered as a physiological threshold value, whereas B represents

a spontaneous or baseline response which is caused by background stimuli.
Suppose that the survey is done at N points and let X, and Y, denote

the dose level and the sample prevalence rate at the ith point. The

HS model is that



(2.2) yl.=p(xi)+ei (i =1,..., N),

2
e, ~ N (0, 0%).

The HS regression method is the least square estimation method of

x, under the HS regression model. Sometimes a flat line By and a linear

°
line B; + Byx are estimated by separated data. Data to estimate the
former and the latter are considered as those of non-polluted and polluted
areas, respectively. Generally, both lines are estimated simultaneously
under the constraint that they are connected at the point x,. Using

~

the estimators By, Bj, By, the estimator x, of'xo is defined by

A A

(2.3) Bo = B1 * Box,-

An assumtion of the existence of a threshold value is necessary to
consider x, as a safe dose, on which the HS regression model is based.
This assumption seems to be serious, since we have no proof of the
existence of such a value for substances such as food additives and
environmental pollutants which many human beings are exposed to.
Generally the HS model is only an operational one to obtain some value
as the safe dose.

The HS method is accepted by Japanese research workers, epidemiologists,
who are interested in finding a relationship between concentration of
air‘pollutants and prevalence rate of some disease from epidemiological

surveys. Such a relationship is needed to obtain a criterion on which



air quality standard shold be based. An example is the current air
quality standard of 502 in Japan. The surveys were conducted in Osaka,
Akoh, and Yokkaichi cities [2]. A ?revalence rate of positive simple
chronic bronchitis for each area was obtained. Questionnaires given

by British Medical Research Council [6] were made on respiratory symptoms.
Thus chronic bronchitis is defined as persistent cough and phlegm. The

prevalence rates and average concentrations of SO, during three years

2

are listed in Table 2.1.

Table 2.1 Average concentrations of 502 and

prevalence rates of chronic bronchitis.

SO2 . Prevalence
mg/day/100 cm? rate
0.21 0.035
0.28 0.033
0.27 0.031
0.15 0.030
0.15 0.029
0.14 0.027
0.13 0.027
0.14 0.025
3.4 0.078
2.75 0.059
2.75 0.052
2.1 0.048
1.6 0.038
1.55 0.037
1.15 0.032
1.0 0.027
0.9 0.024




Since the sample size
és 2000 when necessary.
survey areas are divided
as non-polluted and nine

rate, and X, the average

in each area is not mentioned, we regard it

The original analysis [2] is as follows. The

into two groups: eight areas are considered

areas as polluted. Let Yy, denote the prevalence

in the ith area. The

concentration of SO2

HS regression method is used: By is estimated by the data from the

non-polluted areas, while B8; and B, by the data from the polluted areas.

The fitted regression line is given by

~

(2.4)

B1 + Box

which is described in Fig. 2.1.

Bo

0.02963,

0.00765 + 0.01898x,

From (2.3), x, is estimated at 1.160.

(9]
o~
o
o
= % ¢
&) 7+
o
@] 6} )
g 5l ///, x : Yokkaichi
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g A :/ 0 : Akoh
g o .
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SO2 concentration
Fig. 2.1 Data of S0, concentrations and prevalence rates of

2

chronic bronchitis.



The HS methods was studied originally in [10] and used to get a
relationship between daily maximum hourly oxidant levels and daily symptom
rates reported by student nurses in Los Angeles [11l]. The summary data

are cited in Table 2.2.

Table 2.2 Relationship of average daily percent of adjusted eye discomfort

to photochemical oxidant levels.

Daily maximum Average No. Average daily percent
hourly oxidant No. of nurses of adjusted eye
level (ppm) of days reporting daily discomfort (Z)
<0.04 229 64 5.0
0.05-0.08 _ 184 59 5.4
0.09 35 58 5.6
0.10-0.14 176 62 5.9
0.15-0.19 144 58 6.9
0.20-0.24 63 60 9.2
0.25-0,29 25 60 11.2
0.30-0.39 9 67 17.8
0.40-0.50 3 53 31.8

Eve discomfort is a typical symptom caused by photochemical oxidants.
The daily maximum hourly oxidant levél is obtained as the midpoint of
each interval shown in Table 2.2. The original authors used the HS regression
method, estimating the parameters By, 8;, By by the constrained least-

square method:

(2.5) Bo = 0.0541,
B1 + Box = -0.0172 + 0.491x,
The estimated threshold value is x, = 0.145. It is described in Fig. 2.2.

[]
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Fig. 2.2 Data of photochemical oxidant and eye discomfort

Table 2.1 is the case in which By and (B3, 8,) are estimated separately.

Table 2.2 is the case in which (Bgy, B3, Bs) are estimated simultaneously.

2.1.2 Estimation of the Threshold Value
Under the HS model, we shall discuss two estimation methods of the
threshold value x,. One is the case of separated data and the other

is the general case.

(1) Case of separated data
Data are separated into non-polluted areas and polluted areas, from

which By and (B;, By) are estimated separately. A defect of the original

analysis of Table 2.1 is its giving no evaluation for the variance of x,.

~

In order to comsider x, as a safe dose, the lower confidence limit of x,
is preferable to the estimator itself.

We shall discuss the distribution of the estimator x,. Let (x15 Y1)s

Yyerwy ( y ), N =Ny + Ny, be

cv ey (X s Y )9 ( N1+N2

Ny Ny XN1+1’ yN1+l XN1+N2,



the given data. The former part of size N; is for a flat line B( and
the latter part of size No is for a linear line Bj; + Box. 1In Table 2.1,

N1 = 8 and Ny = 9. The HS model for the data is as follows.

(2.6) y = XH(BO, Bl’ B2)' + e,
where XH =1100 Y, y = Yy Y, €& = {ey Y-
100
01 x 1 g
N1+l N+l N+l
01 xy 1w, IN 41, eN1+N2J
\ y, \ P, \

Then, it follows from the least square method that

L )
~ _ - jzl(xN1+j - x2) _
(2.7) x, = (y1 - yp) ¥ + x5,
L (x 2) (y - y2)
+
=1 Nqi+ Nqi+7J
Ny No No
—_ — 1 —
where y; = — Z Y., Yp = — z y and xp = z .
Nli=l 1 N2j=l N1t N2j=l Nyt+Jj

We examine the distribution of x, in terms of the parameters (Bp, B3,

Bo, 62). The linear regression theory gives

11 —



~

Then, the distribution of x, = (By - B;)/By is not normal, but a
noncentral-noncentral t distribution of one degree of freedom. It has
no mean nor variance. The following explains the above contention.

Assume that

2
X1 8] 01 pO102
2.9 N~ N 2
(2.9) % N 2]
then we have
03
2
- — + 0¥l - p° 2
X1 51p (Ul OzDUz) 1 p 1
2.10 W=-— =~ +
( ) Xo o) Ho + 02Zy ’

where random variables Z; and Z, are independently and identically distributed
inN(O, 1). Fieller [4] gave the exact expression of the probability density
function of w. He also gave approximate expressiohs of the probability
density function and the distribution function of W when the coefficient

of variation of Xy, is small. They are given in Fig. 2.3 and Fig. 2.4,

using the estimates (éo, él, éz, &2) from Table 2.1 instead of true values.
Because the parameters are not known, we do not give the true distribution

A~

of x_,, but give a general view only. For the numerical computation of

o2

the distribution function, the L-function in statistical tables [3] was

used.

—_— 12 — .
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Fig. 2.4 Probability density

SO2 concentration

Fig. 2.3 Distribution function.
function.

The distribution of x_is nearly equal to a normal distribution and

unimodal, but it is not symmetric and its tails are heavier than in a

normal case.

~

The lower confidence limit of x_, X, can be obtained by the inverse

estimation of a regression curve, for example Takeuchi [1], as

PR ~ a NNy -1, o1
(s 8o - B1)B2 ~ gy, ¥28%) - /62|2 “lprzTlp - 62)
(2.11) x_ =
5 -
2 Ny + Np

- 13—



e[ b
(2.12) \ §2 = Fl,N1+N2—3;2dsl/(N1 + Ny - 3),
S1= (- X8 - foa),
B = (éo, él, Bo) .

For various assurance levels, values of the lower confidence limits are

given in Table 2.3.

Table 2.3 Lower confidence limits under the HS model
with various kinds of assurance levels for

data of Table 2.1.

Level o Lower confidence limit
0.5 1.160
0.05 0.953
0.01 0.834
0.005 0.786

(2) General case

The data in Table 2.2 can not be separated into two groups. In this
case, the estimator ;o is obtained by minimizing the residual sum of
squares of the whole HS regression line.

Suppose that the pair data (x1, Y1),..., (xN, yN) are arranged in

the order of increasing magnitude in x. For each integer k (k= 1,...,

N~-1l), we give the HS regression model as follows.

— 14



(2.13) y = Xk(BOQ Bl’ 82)’ + e,
H

where X§~= 1..10 . .0V and
0..01 . .1
0 . 0 Xpp1 Xy
Bg — By
(2.14) X, < BZM—-< X

We compute the least square error under the restriction (2.14) for each k,
and seek the minimum value among them, N~1 in number. Let k and B =

~ A ~ ' '

(Bg, B1, Bp) be the estimators of k and B = (By, By, B2) , respectively.

Then,

~ ~
PN

k a I
(2.15) (v - %7 B)' (Y = X5 B)

Min Min (y - X]I;s)'(y - X];,.ﬂ).

Bo-B1
1<k<N-1 XS B, X1

Minimization can be solved by a fairly easy computation (Hudson [7],

Hasselblad et al. [10]). The estimator of x, is given by

(2.16) x =

The exact distribution of x, has not been given because of the restriction
(2.14). Therefore, the exact lower confidence limit is not given. Hasselblad

et al. [10] gave an approximate value by the asymptotic normality of x,

(Hinkley [8]). For Table 2.2, the original authors [11] gave X, = 0.133

_ 15—



as the approximate 95 percent confidence lower limit. But, in a epidemiological
or envirommental study, asymptotic properties may not be reliable because

the sample size is restricted to maintain the homogeneity in the data.

For example, N = 9 in Table 2.2. More detailed research for the confidence

interval is desirable.

2.1.3 Evaluation of the HS Model

The HS regression model is based on two assumptions. One is for the
regression curve, and the other is for the error terms. We shall first
consider the latter.

Though the HS model employs the normality for the error terms, their
true distribution is the binomial distribution. Let n, and Yy, denote
the sample size and the sample prevalence rate, respectively, at a dose

level X, (i =1,..., N). Then

(2.17) nyy, " Bi(ni, p(xi)).

1f n, is large, Y, has an asymptotically normal distribution, that is,

p(x,) (1 - p(x,))
(2.18) y, v N(p(x,), ) -

n,
1

Thus, the assumption of normality holds asymptotically but the assertion

of the homogeneity of variances contradicts the expression p(xi)(l - p(xi))/ni

in (2.18).

—_— 16 —



Suppose that the population prevalence rate at each survey point is

a random variable denoted by

(2.19) p(x, e) = p(x) + e,

wheree represents the deviation from p(x), such as area variation or survey
error. In contrast with designed experiments, epidemiological surveys are
not sufficient to control data, so that the population prevalence rate

is not represented by x only. From (2.18) and (2.19), the variance of

v, is determined as follows.

(2.20) V() = p(x) (L = p(x))/n, + v(e) (A - 1/n).

The first term is the sampling error and the second is the individual
deviation. The assumption of (2.19) enlarges the variance of (2.18).

If n, and p(xi) are nearly homogeneous and the individual deviation exists,
the normality with homogeneous variances holds approximétely.

In Table 2.1, the mean square error is computed as O.l3OX10_u. On the
other hand, if we put p = 0.03, n = 2000, we have p(l - p)/n = 0.145X10_q.
These two values are nearly equal. Thus the error of Table 2.1 data may
be explained by the sampling error, that is, the binomial error. We may
neglect the individual deviation. It shows the good quality of the data.
We are able to make a similar discussion on Table 2.2.

Next, we.shall evaluate the assumption of the regression curve. Though

the HS regression line is simple, the assumption of the existence of the

threshold value must be fulfilled. To avoid this difficulty, we may use

— 17 —



a smoothly increasing regression curve. One of most popular regression

curves to interpret a dose-response relationship is the probit curve

denoted by

(2.21) p(x) = Bg + (1 - Bp) 9(B; + By log(x)),

where ®(x) is the distribution function of the standard normal distribution
and By means a spontaneous prevalence rate which is assumed to be positive.
Under the binomial model of (2.17), we shall compare the HS regression
line with the probit curve. The estimation method of the probit curve is
the well knowh probit analysis [9]. The results for Table 2.1 and Table

2.2 are described in Fig. 2.5 and Fig. 2.6, respectively. The fit of

the curve in each case is good.

.96 0.48;
0.88} 0.44}
0.80F . 0.40}
072 0.36¢
0.64F 0.32r ¢
=~ 0.56; 0.28}
‘S .
X 0.48F = 0.24t
2040 0.20
. -
0.32F, ¢ 0.16¢
0.24° . 012 Z
" 0.16 0.08}
0.08: 0.04f
000 s bttt O 65 5T 545 0.20 0.5 0.30 0.5 0.400.45 0.50
"'0.00 0,40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 0.000.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.
(mg/day /100cm?) X (ppm)
Fig. 2.5 Fitted regression Fig. 2.6 TFitted regression
lines of Table 2.1. lines of Table 2.2.
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In Table 2.1, the chi-square value with 14 degrees of freedom for the
test of goodness of fit is 9.138 under the HS model and 4.761 under the
probit model. The fit is better for the probit curve than for the HS
regression line.

In Table 2.2, the chi-square value with 6 degrees of freedom for the
test of goodness of fit is 21.534 under the HS model and 6.436 under the
probit model. The former is statistically significant with level 1 7.
As the figure shows, the probit curve fits better.

This discussion shows that the probit model is suitable for Table 2.1
and Table 2.2. Since the probit model has no threshold value, we need
a new definition of safety concentration instead of a threshold value.

It is done by introducing a risk level. We discuss it in the next section.

2.2 PROBIT ANALYSIS AND A RISK LEVEL

In Section 2.1, we have a critical review of the HS regression method.
The assumptions of the regression curve and the homogeneity of variances
are not consistent. The fit of the probit curve is superior to that of

the HS regression line.

Now we shall discuss the safe dose in the probit model. We introduce
a risk level p which can be afforded from a social point of view. Then

we define a safe dose x, by an introduced risk level p in the probit curve

of (2.21).

(2.22) Bp + (1 - BO)<I>(81 + leog(xo)) = Bg + a - BO.)Q’

_ 19 ——



that is,

(2.23) log(x,) = (¢ '(p) - B1)/Bs.

This definition is in line with Mantel and Bryan [5] and others, who
presented methods to estimate the safe dose against carcinogenicity from
experimental data.

An estimator ;o of the safe dose x, is defined by a lower confidence
limit of D , the lethal dose at level p, with an assurance level 1 - a,
which can be obtained by a well known technique in the probit analysis [9].

Here we choose five values, 0.01, 0.005, 0.001, 0.0005 and 0.0001,
as risk levels. A very small value like lO_8 was adopted as a risk level
by Mantel and Bryan [5] to estimate the safe dose against carcinogenicity,
a fatal disease. But we do not choose such a small risk level, since
chronic bronchitis and eye discomfort are not serious disease, but may
be only a symptom.

For the data shown in Table 2.1, the fitted curve is given by

(2.24) 0.0289 + (1 - 0.0289)0(~2.917 + 2.3771og(x))

~

which is described in Fig. 2.5. The proposed value x, for several risk

levels and assurance levels are given in Table 2.4. Table 2.3 and Table 2.4
show that values of x, obtained by the HS regression method are approxiﬁately

~

equal to values of x_, obtained by the probit method with a risk level

about 0.005 or less.

—_— %0 ——



Table 2.4 Lower confidence limits under the probit model with
various kinds of risk and assurance levels for the

data of Table 2.1.

Assurance level Risk level p
o 0.01 0.005 0.001 0.0005 0.0001
0.5 1.780 1.398 0.849 0.700 0.462
0.05 1.461 1.055 0.537 0.412 0.234
0.01 1.286 0.877 0.396 0.290 0.149
0.005 1.213 0.806 0.344 0.247 0.121

In Table 2.2, the maximum likelihood estimates of (Bp, B1s Bp) are

given by
(2.25) 0.0523 + (1 - 0.0523)%(0.402 + 3.30710g(x)).

It is described in Fig. 2.6. Lower confidence limits with several assurance
levels and risk levels are given in Table 2.5. Lower confidence limits

with an assurance level 0.5 are reduced to point estimates. The estimate

~

x, under the HS regression method is 0.145. The author does not calculate

confidence intervals, since the test of goodness of fit of the HS regression

line is statistically significant.

Table 2.5 Lower confidence limits under the probit model with
various kinds of risk and assurance levels for the

data of Table 2.2.

Assurance level Risk level p

a 0.01 0.005 0.001 0.0005 0.0001
0.5 0.150 0.126 0.088 0.076 0.057
0.05 0.134 0.110 0.073 0.062 0.044
0.01 0.127 ° 0.103 0.066 0.055 0.038
0.005 0.124  0.100 0.063 0.053 0.036

_ 21 —



2.3 DISCUSSION

Some conclusions and suggestions can be giventhrough the above applications
and other experiences.

The HS regression method is of omnibus use. In fact, the model is
often well fitted rather than a simple linear regression model. But a
defect is lack of scientific and medical interpretations of a safe dose

x_.. It is hoped to be determined as the intersection of both lines.

o
But for this purpose we need a certain'physiological proof. That is,

it is necessary to show the existence of a threshold value. Practically

the model is often assumed only for convenience. A statistician is

usually convinced that the dose-response curve is smoothly increasing,

even when he uses the HS regression method.

A model with a smoothly increasing regression curve can delete this
serious problem, but brings another difficulty. The regression curve
does not present a point which suggests a safe dose directly. Thus a
risk level is introduced to define a safe dose. This definition may be
more natural than that by an intersection in the HS regression line.

Another trouble is how we choose a suitable family of regression curves.
Fortunately, we have many conventional models of dose-response relationship,
for example, the probit model, the logistic model, and so on. Our two
examples show that the probit model is well fitted, even though the
data are obtained not from designed experiments but from observational
surveys.

The polynomial regression models are frequently used, when the linear

regression model is not well fitted, but they are not applicable to
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our problems. In fact, the regression model using the polynomial of
order 3 is well fitted to both data, but the estimated regression curves

are unacceptable because they are decreasing locally in the range of data.
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3 Conversion of a Safe Dose: Critical Review of

the Environmental Standard of Nitrogen Dioxide

The environmental standard of NO2 is based on the criterion which is
obtained from the results of biological experiments for acute and chronic
toxicity and epidemiological surveys for chronic bronchitis etc. There
are two standards of NO2 in Japan. One is the short-range standard which
gives the upper limit of an hour mean of NO2 concentrations for the
protection against acute toxicity. The other is the long-range standard
which gives the upper limit of a day mean of NO2 concentrations for
the protection against chronic toxicity.

The environmental standards are used by national or local administrations
for daily monitoring and controlling air pollutions. In air polluted
areas, plans of controlling the pollutant sources to satisfy standards
are drawn and performed. When a new air pollutant discharge source is
built, the assessment for obeying the standards must be done.

In 1978, the Envirommental Agency of Japan [7] changed the long-range
environmental standard of NO2 from "the rate of days which satisfy

the standard of 0.02 ppm/day to all days in a year must be more

than 98 percent'" into '"the rate of days which satisfy the standard of
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0.04 ~ 0.06 ppm/day to all days ina year must be more than 98 percent".
This change raised many problems and was criticized by many scientists:
[8] among others. For example, the safe coefficient of 1/2 which had
been adopted in the previous standard [1], [2] was discarded in the new
one.

Apart from these criticism, the author questioned whether the conversion
method which was used to obtain the long-range standard is appropriate
or not. In the announcement [7] by the Environmental Agency, the part
related to the conversion is read as follows. '"'Though the report [6]
gave the criteria, that is, an hour mean 0.1 v 0.2 ppm against short-
range exposure and a year mean 0.02 v 0.03 ppm against long-range exposure,
the new long-range environmental standard would be given by a day mean
as well as the previous standard. Since there exists a close relationship
between day means and year means, the concentration 0.04 ~0.06 ppm day
mean is nearly equivalent to the concentration 0.02 ~ 0.03 ppm year mean,"
where the day mean actually stands for the 98 percent value of day means
in a year, which will be denoted by the 98 % value. The conversion from
ayear mean to a 98 7 value was based on the linear regression function.
The linear regression function used by the Environmental Agency is the

one which was computed from NO, data observed at the statiomns, 1114 in

2
number, of measuring air pollutions throughout Japan during three years,

1973 ~ 1975. In the Report [5], the linear regression function of 98 %

values x(0.98) on year means m is reported to be

x(0.98) = 1.82m + 0.0045  (ppm),

correlation coefficient = 0.919.




With this relation, a year mean 0.02 ppm is converted to a 98 7 value
0.04 ppm.

But; it is dangerous that a linear regression function is used for
the conversion solely on the ground of high corfelation. Evaluation for
the error terms in the regression model should bemade. Since the
environmental standard plays an important role in society, a statistical
analysis to the above conversion should be performed.

In the following discussion, we put the assumption of the lognormal
model for NO2 concentrations. Under the assumption, we may introduce
the conversion method which uses the linear regression function with
the error term whose standard deviation is proportional to the independent
variable and which adopts the tolerance limits. Since the lognormal
model for NO, concentrations is not well fitted in some areas, robustness

2

of the conversion method is discussed. NO2 data in 1977 at Okayama
Prefecture are used for illustration throughout the following statistical

analysis.

3.1 THE CURRENT CONVERSION METHOD

3.1.1 Review of the Current Conversion Method

The current conversion method uses the linear regression function of
98 % values on year means. We shall apply it to NO2 data in Okayama 1977.
Let N be the number of stations of measuring NOZ' Let x,. (7 =1,..., n.)

be available measurments of day means at the ith station in a year.
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The year mean m, and the 98 7 wvalue xi(0.98) of the ith station are

estimated respectively by

>

(3.1) m, =

Hl

(3.2) *1(0-98) = %5 (r0.98n, + 11)

where [ ] is the Gauss symbol and Xi(j) is the jth order statistic in

the ith sample. From the estimated year means and 98 % values of 46
stations in Okayama 1977, we get the following estimated linear regression

function, which is described in Fig. 3.1.

(3.3) x(0.98) = 1.623m + 0.006,

Y mean square error = 0.0093,

correlation coefficient = 0.926.

Using the equation (3.3), a year mean 0.02 is converted to a 98 % value

0.039. We shall discuss the conversion method in the following section.
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x (0.98)

Fig. 3.1 Year means and 98 7 values of NO2 concentrations

at 46 stations in Okayama 1977.

3.1.2 Distribution of NO2 Cancentrations

As usual, the distribution of concentrations of an air pollutant

subject such as SO2 or NO2 is considered to fit the lognormal distribution

which has the probability density function

1 2
exp[- — (log(x) -~ u)71].
V2mox 202

f(x) =

The parameter u is thought to represent the degree of concentrations
and the parameter ¢ represent the area property such as meteorological

and geographical features and air pollutant subject discharge forms.
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We examined the goodness of fit of the lognormal model to NO, data
in Okayama 1977. Two parameters (ui, 0%) at the ith station (i = 1,..., N)

were estimated by the following two estimators, respectively.

. 1 ;i
(3.4) v, =— ) log(x,.),
iony o ij
n,
"9 1 * ~L2
(3.5) Ry Z (109(xij) -
i =1

For each station, a X2 test of the goodness of fit was performed by
deviding concentration range into 10 intervals with equal probabilities.
The results showed that 20 stations among 46 were statistically significant
at 5 7 level. NO2 data of these stations plotted in the lognormal
probability papers showed the upward deviation from the straight line
in the lower concentrations. For example, lognormal plot of NO2 data
of the Siose station is shown in Fig. 3.2. The value of X2 statistic
of the Siose station was 47.7 with 7 degrees of freedom and statistically
significant at 1 7Z level. We remark that the accuracy of measurement
in the low level is worse and the méasurments under a certain value
are recorded as zero.

The caracteristic values for the conversion such as year means and
98 % values are middle and high level values. Therefore, if we can

devise estimators without using low level data, we may escape from the

deviation of the lognormal model in the low level. Using the data
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Fig. 3.2 NO2 data of the Siose station plotted in

the lognormal probability paper.

above the median, we estimated (ui, 0%) (i =1,..., N) by the following
estimators.
(3.6) M T log(xi([O.Sni L1 e
. o2 = - )2 + 2].
(3.7) 0% ) ~(log(Xl.j) Ui) /[(ni 1)/2]

>
log(xij)=u1
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The diagram of (;i’ oi) (i =1,..., 46) computed from data in Okayama 1977

is shown in Fig. 3.3.

al

0.90
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0.60
..
. . ." '.0 ., .
L4 [ ]
. * ..' L4 o
0.30 - o - ". . . * °
* - .' .
-1 L]
0.00 T T 7 T T T T T T T T T T T I
-6.00 -5.60 -5.20 -4.80 -4.40 -4.00 -3.60 -3.20 -2.80
“

Fig. 3.3 Diagram of (uy, o) in Okayama 1977.

The X2 tests of the goodness of fit which pool the intervals below
the medians reduced the number of significant stations at 5 7% level to
10. Here the pattern of NO2 concentrations of significant stations
showed that the deviation from the straight line in the lognormal
probability paper tended below. One explanation will be that when

high concentrations appeared, the NO, discharge sources were controlled

2
so that high concentrations were restrained.

In the following discussion, we first assume the lognormal model
for NO2 concentrations and use the estimators of (3.2), (3.6) and (3.7).

Under the model, we criticize the current conversion method and introduce

a new one. Then, the robustness of the new method is discussed.
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3.1.3 Critical Discussion for the Current Conversion Method

Assume the lognormal model, that is, NO, concentrations (day means)

2
Xij (7 =1,..., ni) at the ith station are distributed lognormally

with the parameters (ui, Gi). Then, the year mean m, and the 98 %

value Xi(0-98) are represented in terms of Wy and Oi as follows.

g2
_ i
(3.8) m, = exp(ui + —5= ),
-1
(3.9 Xi(0-98) = exp(ul. + & (0.98) oi),

-1
where & () is the inverse function of the standard normal distribution
function ®( ). Therefore, the following relation between m, and xi(0.98)
holds.

o2

= -1 1
(3.10) Xi(0.98) = exp(® ~(0.98) o, " 5 ) m, .

It shows that if all Gi'sforbistationsare equal, x(0.98) and m have
the proportional relationship.

From the above discussion, the current conversion method of using
the linear regression function may be considered to have postulated
two assumptions. The first is the homogeneity in ci's of the error
terms in the linear regression model and the second is that the error
terms can be explained as sampling errors only. Under the assumption
of sampling errors, N = 1114 is so large that confidence intervals

are meaningless, that is, they become to be equal to the point estimation.
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But two assumptions do not hold in practice. As easily seen in Fig. 3.3,
the homogeneity of Oi'sdoesnot hold in Okayama 1977. Moreover, the
deviations from the linear regression line are larger than sampling
errors. It will be seen in the following argument.

From the theory of order statistics, ;i(0.98) is asymptotically
distributed in the normal distribution
(3.11)

o2 0.04m02
1

-1 _ X -1 -1 2 ~1 2y 2
N |exp(® (0.98)Oi 7 )n&, — exp({® "(0.98)} +‘2® (0.98)Oi Oi)mi

We shall examine whether the asymptotic normal distribution (3.11) can
be used as an approximate distribution of ;1(0.98). Average numbers
of days with available measurments of 46 stations in Okayama 1977 is
345. Since [0.98 x 345 + 1] = 339, ;(0.98) is the 7th largest order
statistic. The average values of 46 stations are n = 345, p = -4.10
and 0 = 0.4206. We compare the exact distribution of ;(0.98) with the
asymptotic distribution of (3.11) by using the parameter values computed
above. Two probability density functions are described in Fig. 3.4.
The exact distribution is not symmetric and skewed positively. It has
the mean 0.0397, the standard deviation 0.00267 and the skewness 0.36.
The asymptotic distribution (3.11) has the mean 0.0393 and the standard
deviation 0.00257. The latter is 1 7 smaller in the mean and 4 7 smaller
in the standard deviation in comparison with the former.

From the results, we may say that in the size of ni now discussed,

~

x(0.98) is distributed approximately with the mean and variance of the
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Fig. 3.4 Exact and asymptotic distributions of x(0.98).

normal distribution (3.11) and skewed positively. Therefore, the regression
line of xi(0.98) on m, is approximately the regression line of (3.11)
with the standard deviation of sampling error proportional to mi;

The standard deviation of sampling error will be computed. At the
typical station of Kencenter, it is 0.0032. It is smaller than the
square root of the mean square error of the regression line, 0.0093.
This results shows that the error term in the regression model is not
explained by the sampling error only. The o, varies among statiomns, -
so that regression coefficient varies too. Let (kj, k) be the range
of the regression coefficientsbfor all stations, then the linear regression
line has the width of (ks - k;)m. From the above discussion we may
conclude that the linear regression line must be considered to represent
the model of the average or typical station and to have the error term
whose standard deviation is proportional to m, that is, proportional to

x(0.98), and which consists of sampling error and individual deviation
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yielded from the variation of O that is, area variation.

3.2 THE AUTHOR'S CONVERSION METHOD

In this section, Using the linear regression model with the error
term whose standard deviation isproportional to the independent variable,
we shall introduce a conversion method of a year mean to a 98 7 value.
Since our purpose is to control m by the converfed value x(0.98), the
linear regression of m on x(0.98) will be reasonable. F¥rom the discussion

in the previous section, the following empirical model is assumed.

(3.12) M=0x(0.98) + 8B + e,

e v N(O, O%X’2(0.98)),

where M is a random variable which represents a year mean and the error

term e consists of sampling error and individual deviation. Since we

can not separate the two, the conversion should be done by the tolerance
limit theory which can evaluate the individual deviation of area properties.
Introducing three levels; c: threshold level, p: risk level and y: assurance

level, we define the converted value x_, which satisfies the following

relation.

(3.13) priprim > c| x(0.98) é:;o} <pl>1-v.



The definition means that it holds with probability at least 1 - y
that when x(0.98) is under x,, the probability that the year mean is
larger than the threshold level ¢ is less than the risk level p.

Transforming M and x(0.98) into

(3.14) Z =098 2 Y= Gosye

we obtain the well known model

(3.15) Z =oa+ By + w,

w v N(O, G%),

in place of (3.12). Using N transformed pair data, (yi, zi) i =1,..., &),

we can estimate (o, B, 0,) with a usual method. From Takeuchi [3],

~

can be computed with the upper tolerance limit g(y) of Z in the following

XO
manner.
(3.16) prirriz > g(y)} <o} 21 - v,
(3.17) x,9(=—) = ¢,
XO
where
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(3.18) f ;(y) = o+ éy + k(y)f;o,

x(y) ='h(y)tY(n -2, AM(y),

L w-w?o 1
a(y) = (—+ % )2,
L (y; - 02
i=1
§ A(y) = Up/h(y),

ty(n, g£): upper 100y % point of the non-central

t distribution with n degrees of freedom

and non-centrality parameter £,

Up: upper 100p % point of the standard normal distribution.

\.

For the upper 100y % point of the non-central t distribution, we use

the following approximation:

U + &
- Y
(3.19) ty(n, £) = s
Y1 - v2/2n
Y
then (3.17) can be rewritten as
(3.20) R . . L
- n Uo, - U o, x2 (1 - yx,)
B+(oc+/ e )xo+/ 0 — _—
1 - v2/2(n - 2 1 - v2/2(n - 2 —2
Y/ (n ) ) Y/ (n ) z (yi _ )
i=1

~

The value x_, can be obtained as the larger solution of the following

quadratic equation,
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(3.21) asx2 + 2a1x, + apg = 0,

where
(3.22) ]
( ~ 2 vZo3
apg = (¢ - B) - 1 : — 2
(1 -v2/2(n - 2) (g, - )
Y !
U?E)'%; ~ -~ U ;o
{ ay = X — — (e - B) (o + )
(1 - v2/2(n - 2) Qg - D) A - 0226 - 2)
i
A U c;o UZ(;% 52
ap = (o + < )2 - . (l+——*‘:—7)-
/1 - v2/2(n - 2) 1-022-2) " [y -
\. i

Then we have

(3.23) X (-a; + Va% - asag)/as.

The conversion with the data in Okayama 1977 is shown in Table 3.1.

Table 3.1 Conversion of a year mean 0.02 ppm to 98 % values of day

means under various risk levels and assurance levels.

Assurance level Risk level p
o 0.01 0.005 0.001
0.01 0.0273 0.0266 0.0251
0.05 0.0270 0.0263 0.0249
0.01 0.0265 0.0258 0.0244

(Threshold level ¢ = 0.02)
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3.3 DISCUSSION

The proposed conversion method is based on the assumption that the
data are random samples and the distribution of NO2 concentrations is
lognormal. The assumption of randomness holds approximately, because
day means are grasped in a packege of one year so that time dependency
as for hour measurments is inconceivable.

As for the assumption of lognormal model, the badness of fit in low
level data can be delated by using the estimators (3.6) and (3.7).

The deviation of the lognormal model in high level data will be evaluated
later and we shall see the robustness of the new conversion method.

We evaluate the effect of the deviation against the proportional
relationship between year means and 98 7 values in (3.10). Let f(x)

denote the real probability density function of NO, concentrations,

2
and let y and o denote the location and the scale parameters, respectively,

of log-transformed NO, concentrations, log(x). Let g(y) denote the real

2
probability density function of y = (log(x) - u)/o. Since f(x) may

be near by the lognormal distribution, g(y) may be near by the standard
normal distribution.

Now let us expand g(y) with the Gram-Charlier-Edgeworth expansion [4],

that is,
(3.24) g(y) = ¢(y){ag + ayhy(y) + azhy(y) + ++-},

vwhere aj = Eg[hj(Y)/j!], hj(g) denotes the jth Hermite polynomial and

¢( ) denotes the probability density function of the standard normal
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distribution. Since we estimate (u, o) with the upper half data, g(y)

can be taken to be symmetric. Then the third moment, skewness, is zero.
We evaluate the deviation from the lognormal model by using the fourth

moment 1y, kurtosis. Thus,

(3.25) ag =1, ay = ap = ag =0, ay = (1JL+/CSL+ -~ 3)/24,

(3.26) g(y) = ¢(y) (1 + ayhy(y) ).

From (3.26), we evaluate the effect of kurtosis to the year mean m.

(3.27)

=
|

= f xf(x)dx
0

J exp(u + oy)g(y)dy

= J exp(u + oy)¢(y) (1 + ayhy (y))dy (y = z + o)
2 [os]
= exp(u + %ZOJ ¢(z)[1 + ay(3 - 602 + o) + a4(4o3 - 120)z

+ aq(602 - 6)z2 + a440z3 + aqz“]dz

2
o]
exp(u + —2—') (1 + aqdq) .
Since the distribution function 6(y) of ¥ is approximately equal to

(3.28) G(y) = ¢(y) - ¢(yayhs(y),



the 98 % point of Y denoted by y' can be represented by the sum of the
98 % point of the standard normal distribution denoted by y and a modification

term B(y) such that

(3.29) G(y")

o(y) = 0.98,

(3.30) y'

y + B(y).

Because B(y) can be considered to be small, we neglect the second order

and have the following equation.

(3.31)  o(y) =6G6(y') = G(y + B(y))

o(y + B(y)) — ¢(y + B(y))ayh3(y + B(y))

o(y) + ¢y [BW) + ay(y* - 6y% + 3)B(y) - ay(y3 - 3y)].

From (3.31), we have

au(ys - 3y)

(3.32) B(y) =
1+ aL,(yL+ - 6y2 + 3)

Therefore, the effect of kurtosis to x(0.98) is as follows.

(3.33) x(0.98) = exp(u + o[®_1(0.98) + B(®_1(0.98))]).

From (3.27) and (3.33), we have
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x(0.98) _1 o2 exploB(2(0.98))]
(3.34) — = exp(c® "(0.98) - TZ_)

1+ a40”

The effect of kurtosis to the linear relationship between x(0.98) and

m under fixed ¢ is measured by

exp[oB(871(0.98)) ]

(3.35) 1-

1+ aqoq

If (3.35) is neary zero, we can neglect the effect of kurtosis. We shall
check it for the N02 data in Okayama 1977. The mean and the standard
deviation of (3.35) for 46 stations are 0.009 and 0.024, respectively.

The maximum value and the mimimum value are 0.060 and -0.093, respectively.
Thus we can say that the effect of kurtosis is negligible so that the

new linear regression model is robust.

The above discussion shows that the current conversion method is not
appropriate because it provides no evaluation of the variability of the
area properties. - Especially, the lack of the principle of safety coefficient
which may cover the above difficulty is serious.

Moreover, converﬁed values in Table 3.1 should be considered as a
criterion because the year mean previously given is a criterion. Since
a criterion is given from a medical standpoint while a standard is given

from a administrative standpoint, a converted value can not be used directly

as a standard.
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4  Dose-Response Relationship in Stratified Populations

Suppose that the prevalence rate of a disease and the intensity of
a study factor that may be considered as the cause of the disease are
observed in several districts, N in number. Let pj be the prevalence
rate and X 4 the study factor intensity in the jth district. A X? test
procedure for a linear regression of pj on Xj’ pj = q + ij ( =1,..., N},
was proposed by Cochran [3] and Armitage [4]. Their set of three X2
tests for total differences, linear trend and slope in the prevalence
rates has been frequently used in epidemiological survey works.

When some confounding factors, not the study factor, that may affect
the prevalence rates of the disease exist, a X2 test for the effect of
the study factor on the prevalence rates has been done in the model
of multiple 2 x N contingency tables (c.f. Mantel[5], Birch [6], [7],
Armitage [8]). Denote it as Xéftest. Recently, Wood [11] proposed
other X2 tests that are constructed by summing up X2 gtatistics for the
measure of fitness of linear models in each stratum. Neither of these
procedures provides a set of three X? tests for total differences, linear

trend, and slope in the prevalence rates, nor do they provide the estimators

of the adjusted prevalence rates that can indicate the dose-response



relationship.

In Section 4.1, we propose a set of three X2 tests for total differences,
linear trend, and slope in the adjusted prevalence rates and then give
their approximate powers. The X2 test procedure involves controlling
the confouding factors by stratification and adjusting the prevalence
rates for the stratification, and is similar to the Cochran and Armitage
procedure. Our tests are compared with the_Xﬁ—test and the X2 tests
performed by summing up X? statistics in each stratum in the style of
Wood in Section 4.2. Their application to the data by Tsubota [1], [2]
involving cough and phlegm is given in Section 4.3. Discussion is given

in Section 4.4.

4.1 AN ESTIMATION AND TEST PROCEDURE FOR LINEAR TREND IN ADJUSTED
PREVALENCE RATES

4.1.1 A X2 Test Procedure
Let g be the number of the confounding factors and hs be the number

g
of levels of the sth confounding factor. Put k= I h . To control

s=1
the confounding factors, we subdivide each district into k strata.
Suppose that the ith stratum of the jth district has wij population rate,
Z Wij = 1, and pij prevalence rate (i = 1,..., k; 7 =1,..., N). Let
iij be the number of observations and mij the number of cases with positive

symptoms in the (i, j) cell. Let Xj ( =1,..., N) be the intensity

of the study factor in the jth district.



k

Generally, the crude prevalence rate of each district, p§ = Z
i=1

(= 1,..., N), is not controlled with respect to the effects of the

V15217

confounding factors because the population composition varies among districts.

k
Thus we consider the adjusted prevalence rates defined by p. = z Wipij’
i=1
where {wi, i=1,..., k; z w, = 1, W > 0} are the standard population

i
rates of the standard district.

Let us consider the hypotheses similar to those of Cochran and Armitage.
We denote by P; the set of the N-dimensional vectors p = (pl,...,pN)',
where 0 < pj <1 (j=1,..., N) and then define two subsets of P,
P, = {p; p=oal +8x €Py, a, B € R} and P3 = {p; p = al € Py, a ¢ RL},
where 1 = (1,..., 1)' and R! is the one dimensional Euclidian spacé
and X = (Xx7,..., xN)’. We denote in general by H(Pi; Pj) the hypothesis
H that p ¢ Pi against the alternative p ¢ Pj - Pi' We say that H is
true if p ¢ Pi and false if p & Pj - Pi' The assertion that p & Pi is
referred to as the null hypothesis of H. The 1lst hypothesis H;(P3; P;)
is for total differences in the adjusted prevalence rates. The 2nd
hypothesis H,(P,; Py) is for linear trend. The 3rd hypothesis H3(P3; P»)
is for the slope of the linear trend.

Now, we shall give a X? test procedure for Hy(P3; P1), Hy(Py; Pp)
and fl3(P3; Py). If we have exact information of the confounding factors
in each district before sampling, we can stratify each district into
k strata by using this information and select a sample of appropriate
size from each stratum. But, in many epidemiological survey, we have
no such information before sampling. 1In these cases, we select a sample

of size n.j from the jth district, and stratify it into k strata by



using the subdata of confounding factors of observations. Since wij
is a nuisance parameter and its sufficient statistic is nij/ n.j, we
shall consider the conditional tests given {nij}.

We estimate p.. by p.. =m,./n. ., where m,. has the binomial distribution

17 17 17 17 17
Bi(nij, pij)' Using the prior standard population rates, we estimate
. by p. =) w.p...

p] y J § 17

If a sequence of random variables {Xn} converges in probability to

a constant ¢, we denote it by x S c. If {Xn} converges in law to the

n
. 2
distribution D, we denote it by Xﬁ——?D.

When each nij tends to infinity subject to nij/n.. remaining fixed,

it holds that

4.1) 17 47 > N(O, 1) and

(4.2)

We define the jth adjusted sample size n°j by

(Z wipy ) (L= Z Wipij)
1 1
noj = ’
pl.j(l - pl.j)

w2

> 1 n. .,
i ij




which is an increasing function of {nij’ i=1,..., k}. Using o we
b

can simplify (4.2) to a well known expression:

Vnoj(pj - pj) ,
(4.3) e > N(0, 1).
pj(l - pj)

By using the weights, wj = n°j / pj(l - pj) ( =1,..., N), we can give
a set of X2 test statistics for Hi(P35 P1), Ha(Pos Py) and H3(P3; Py)

which satisfy the following identity:

T 0N2 = T N2 o 0N\2
(4.4) % w,(p; = p) ; wip, - %+ ; w(p; - P)?,

where p = z w.p., / z W., p. =a+bx.,, a=p - bx,
3 3 J J

b =) w.;.(x. -x) /Y w,(x,-x)2and x =) w.x,/ ) w,.
3 J 3 7 3 J 7 3 J 7 3 J

From (4.3) amd normal regression theory, it holds that the 1st X2
test statistic is asymptotically distributed according to the X2 distribution
with ¥ - 1 degrees of freedom, which will be denoted by X;—l in the
sequel, if H; is true. The 2nd X? test statistic is similarly asymptotically

distributed according to X;_ ‘if H, is true, and the 3rd X? test statistic

2

is asymptotically distributed according to Xi if Hy is true.

The parameters wj are unknown, so that we estimate them by

W, =—d (G =1,..., N),



where

(g wp; ) (L - % WP, 3

~

pij(l - pij)

w2
7 1 n,,
i i3

Since noj is a function of {pij’ i=1,...,k} which are continuous at the

. . i P . - P
points {pi i=1,...,k}, and P, s ——a_pij, it follows that noj/noj —>1.

.3
J
Then it follows from pj-—£7 P that wj/wj 25 1. When Wy is replaced
by wj in (4.4), we have the following theorem for the set of three X2

tests.

THEOREM 1 7The X2 test statistics for Hy(P3s Pl), Ho(Po; P1) and H3y(P3s Po):

~

i TN2
n._ ., . -
oJ(pj D)

2 =
Teotal gé(l-é)’
j bj
n, (p., - p.)?
X2 e e A—— and
linear 3 p.(1 - p.)
J bj
n, (x. -3 / (1=-p))2
(Z HOJ(XJ x) ( pj))
2 - _J
slope - N2 o 1 - -
§ n°j(Xj x)< / Pj( Pj)

are asymptotically distributed according to X;—l if Hy is true, Xﬁ_z

if Hy, is true and Xi if Hg is true, respectively. The three test

statistics satisfy the identity: X2 = X2 . + X2 .
7 e ntity total linear slope



If we estimate w, by wj = n°j / p,(1 - p,), where p, = Z n,.p./ Z n°j’
J

J 3 77
and replace wj of (4.4) by wj, we have X2 test statistics which are

gsimilar to those of the theorem 1. Since wj/wj L5 if Hy is true,

we have the following theorem.

THEOREM 2 The X2 test statistics for Hy(P3; P1), Ho(Py; P1) and Hi(P3; Py):

n,.{p. - po)2

XZ, - z J J
total . N
i p.(1 - p,)
n (p,-p )2
XZI = z °3 J J and
linear a A
j  p.(1 - p,)
( n,.p,(x, - x))2
Z ]pj J
X21 = )
slope A - - =
Pe p,(1 - p (] n, (x. - 0?)
: J J
J
are asymptotically distributed according to Xﬁ—l' Xﬁ;z and Xi, respectively
;. ; ‘ ; irus X2 = X2 X2 .
if Hy is true, and have the identity rotal T inear + slope
We remark that X2! , X2r and X2! are the adjustments of the
total linear slope

X% test statistics of Cochran and Armitage for stratification. But

X2I

. y N . , )
I ineay 1S MOt asymptotically distributed according to XN—Z if Hy is

, 2 . - _
true. If the denominator of Xlinear is changed by pj(l pj), we have



2

a X2 test statistic which is similar to X%. :
linear

~ ~

n, . (p.~p.
oj(pj pj)

X2n = z

linear 7 -
j (1 - p.
J pj( pJ)

o - P , . 2n . . . .
Since pj pj if Hy, is true, Xlinear is asymptotically distributed

if Hy is true. X2 and X2’ X2 and X2 X2

as X2 s . :
N—- total total linear linear, slope

2

and Xiiope are asymptotically equivalent, respectively, so that we may

also use a set of three statisti X2 X2Zn and X2 although
e €8s Meotal’ "linear slope’ ug

i ity, that is, X2' X2n + X2t
they have no identity, at is, X' o # i near Slope

4.1.2 Powers
In this section, by using the limiting powers under the appropriate
sequences of alternative hypotheses, we give the approximate powers of

our three tests.

THEOREM 3 Aagainst the null hypothesis of Hy, consider the following

alternative:

where dlj is nearly equal to zero. Then an approximation to the power

2 _ ;.
of the Xtotal test of level e for A; is
2 2 - 2 2
(4.5) Pr{Xtotal > XN—l,slAl} Pr{XN_l(tho.) > XN—l,e}’



_ 1 2 _ 2
t - O(’(1 _ u) [% dleoj (% dleoj) ]9

where A

Xi o5 upper 100a % point of the X? distribution with r degrees
b .
{ of freedom,

Xi(l); non-central X? random variable with r degrees of freedom

and non~centrality parameter A,

PROOF Against the null hypothesis of {1, consider the sequence of alternative

hypotheses:

A ; pj = o + clj/Vno. (7 =1,..., M.

n,-

Under {An }, the statistic X2’ , in the limit as n,. tends to infinity

. total

[~

subject to on remaining fixed, is distributed as the non-central X?

distribution with ¥ - 1 degrees of freedom and non-centrality parameter

1 2 2
VN = -—
At d(l _ 0L) [Z cleoj (Z cleoj) ]-
J J
Its proof is clear from Chapman and Nam [9]. Since X2’ and X2

total total

2

[} l . . .
total S imiting power of

are asymptotically equivalent under {An }, X
o-
level ¢ for {An } is

0"

, 2 2 = 2 ! 2
(4.6)  dim PriXar K, elA, B =G 0D > X )

Then, by approximating its power for A; by using (4.6), we have (4.5).

Q.E.D.



From the parallel discussions to the theorem 3, we have the following

theorems.

THEOREM 4 against the null hypothesis of H,, consider the following

alternative:
Az p; = o+ Bx, ¥ dg, (G=1,..., N),

where dzj is nearly equal to zero. Then an approximate power of the

X2, -test of level e for A, is
linear

2 2 _ 2 2
(4.7) Pr{Xlinear g XN—2,8|A2} B Pr{XN—Z(A n,-) > XN—Z,S}’
h A=) dy.Z2.0,. - d, .7z )2 - Z.x, )2 z .x2 .,
vhere e T L A0 Azt L2y - G dagzp, )P L) 2yx
J J J j j
O,
\Z.= J ’
J
+ Q1 - + R
. (a ij)( (a ij))
Xpoe = X, — x.
7 j

THEQREM 5 Against the null hypothesis of H3, consider the following

alternative:

A3; B = dsz,

where d3 1s nearly equal to zero. Then an approximate power of the
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2 -test of level € for A3 is

slope
2 2 = 2 2
(4.8) pr{xslope > xl’€|A3} Pr{Xi(x n,.) > xl,e},
5 Qo
where A =d3[) v.x2,] and v, =t
s j J "7 J a(l ~ a)

The above three theorems show that the three approximate powers are
monotone increasing functions of n,. because the three non-centrality
parameters are linear functions of n_,.. Thus the larger the sample

sizes, the larger the powers.

4.2 COMPARISONS BETWEEN THE PROPOSED METHOD AND OTHER STATISTICAL METHODS

In the previous sections, we discussed X? tests for a linear regression
of the adjusted prevalence rates on the study factor intensities. On
the other hand, when we are interested in a linear regression of the
prevalence rates on the study factor intensities in each stratum, we can
construct other X? tests based on the regression in each stratum;

In this case, three hypotheses parallel to H;(P3; P;), Hy(Po; P3)

and H3(P3; P,) are as fllows.
Ki(P3; Py): p, ¢ P3 against P, e Py - P3 for all i's,
Ko (Pps Py P, € P, against P, € Py - P, for all i's,

Kg(Pg; Pz): pi & P3 against pi S P2 - P3 for all i'S,



where p, = (pil,...,piN) and P, # pi, (i # i') in general.

4.2.1 Mantel's X2-test

Mantel [5] proposed the X2 test statistic given by

where e.. = m..n,./n.., for the hypothesis of equi-prevalence rates
ij SN B M |

against the ordered alternative for each stratum:
Ky (P3; Pu): p; € P3 against P, € Py, - P3 for all i's,

where P, = {p; Py ;:...é:pN} and pi # pi, (i # i') in general. This
is also the test statistic for K3(P3; Py).
X2 . X2. . . « .
We shall compare slope with i We give first an approximation to
the power of Xé which can be proved by a discussion parallel to that

in Section 4.1.2.

THEOREM 6 against the null hypothesis of K3, consider the following

alternative:

Ays Bi = dqi i=1,..., k),

where d”i is nearly equal to zero. Then an approximate power of the



X;—test of level e for A, is

2 2 - 2 2
(4.9) Pr{XM > Xl,EIAq} Pr{Xl(AMn..) > Xl,e}’

where () d“iz Qi'X§.)2
- i 3 J iJ
M Z 2
a.(1 - a.)(z Q..x%.)
4 ! 175 Tig 7
0 =n,./n..

ij ij

X,,=x, - X,.
ij J i

\ .
Put an assumption that pi = p for all i's. Under the assumption,
H3(P3; Py) includes K3(P3; Py). Thus we can compare the power of the

X2

_ . 2_ . .
slope test with the power of the XM teat by comparing Ksno. with XMn...

We define the ratio of Asno. to AMn.. by A. Since A is a complicated
function of {Qij}, {wi}, {d”i} and {ui}, a general comparison is difficult.

Hence, we shall compare two tests in a simple situation.

THEOREM 7 pPut an assumption that P, = P for all i's. Against the null

hypothesis of K3, consider the following alternative:

A;; Bi=d3 (i=1,..., k).

Use the rates of the strata sizes to the total size as the standard

population rates, that is, w, = ni./n.. (i =1,..., k). Then if

(4.10) n,,=n,.n../n..,
1 J
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it holds that A = 1 under Ay.

02.
PROOF Under the assumptions, on =1/) Ql holds.

i~ ij

of {Qij}:

i iF°

’ - 2 2
A({Qij}) ; onxoj / §§ Q..x

The appendix shows that on < Q.j, with equality when Qij/Qi' = Qi’j/Q

Thus A is a function

i L

(i # i') which is equivalent to (4.10). Since (4.10) gives the equality:

x .,=x,,((i=1,..., k), it holds that A = 1. Q.E.D.

°J 17

4.2.2 Summing up X2 Statistics in Each Stratum in the Style of Wood

Wood [11] summed up X2 statistics in each stratum for the measure of

fitness of linear models in each stratum.

By using "summing up X? statistics in each stratum" procedure, we

can give three statistics for K;(P3; Py), Ko(P2; Pyp) and K3(P3; Py):

>
>
-



ij ij
X2=Z ~ ~ ’
i) n,.(x —Xi)/plj(l-pl-j)
J
where p;, = mi./ni., pij = a, + bixj’ a, =p, - bi;g’
o 3 = —* —_ 2
X, g nijxj/ni. and bi g mlj(xj Xl) / § nij(xj xl) .

The set of three statistics, X%, X% and X% which will be called the
individual X2?'s, has the property that Xi = X% + X%, but contains no
estimators of the adjusted prevalence rates. Aparallel discussion as
in Section 4.1.2 illustrates that the individual X2's are approximately
distributed according to the non-central X2 distributions under the
alternatives.

Put the assumption in 4.2.1, that is, pi = p for all i's. Under
the assumption, H;(P3; Py), Ho(Po; Py) and H3(P3; Py) include Kq(P3; Pi),
Ko (Py; Py) and K3(P3; Py), respectively. Put one more assumption that
all wi's are equ§l and nyg = 0y, (i{ # i', =1,..., N). Under the
adequate alternatives parallel to'A;, their non-central parameters are
equal, respectively, to those of Xiotal’ X%inear and Xilope which will

be called the overall X2'g, Since the inequality:
2 2 2 2 .
Pr{Xt(A) ;‘Xt,u} < Pr{Xr(A) ;=Xr,a}’ if t > r,

holds generally (c.f. Gupta and Perlman [10]), the powers of the individual

X?'s are smaller than those of the overall X2's because the former's



degrees of freedom are k times larger than the latter's.
We also expect that these approximations of the individual X2's are
less accurate than those of the overall X2's respectively because the

sample size of each stratum is smaller than the total sample size.

4.3 AN APPLICATION

Tsubota [1], [2] studied the relationship between air pollution and
the prevalence rates of persistent cough and phlegm in Okayama Prefecture.
We shall apply the procedure just discussed to his data. The survey
districts consist of 12 communities. In each district, about 400 observations
were collected from men and women in the range of 40 to 60 years of agé.
We employ the average concentration of NO2 as an index of air pollution.
For details, the original article may be referred to.

In this case, the confounding factors are sex, age and smoking habit.
The age factor has two levels (40-49, 50-59). The factor of smoking
has five levels (no smoking, ex-smoking, 1-10 cigarettes/day, 11~-20
cigarettes/day and more than 20 cigarettes/day). Since female smokers
are few in number, we combine ex-smokers and smokers for them. Fourteen
strata are given in Table 4.1. The numbers of observations and cases
who complain of persistent cough and phlegm are given in Table 4.2 and
Table 4.3, respectively. The average concentrations of NO2 are given

in Table 4.4.



Table 4.1

14 strata of observations,

Number
of Sex Age Smoking habit
stratum
1 male 40-49 no smoking
2 male 40-49 ex~smoking
3 male 40-49 1-10 cigarettes/day
4 ' male 40-49 11-20 cigarettes/day
5 male 40-49 more than 20 cigarettes/day
6 male 50-59 no smoking
7 male 50-59 ex-smoking
8 male 50-59 1-10 cigarettes/day
9 male 50-59 11-20 cigarettes/day
10 male 50-59 more: than 20 cigarettes/day
11 female 40-49 no smoking
12 female 40-49 ex-smoking or smoking
13 female 50-59 no smoking
14 female 50-59 ex—smoking or smoking
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Table 4.2

The number of observations.

District
Stratum 1 2 3 4 5 6 7 8 9 10 11 12 Total ni./n.. (%)
1 5 9 9 6 5 7 20 11 7 13 8 8 108 2.56
2 10 13 6 10 3 13 12 6 17 14 8 118 2.80
3 11 11 9 5 5 4 9 15 6 19 10 10 114 2.70
4 46 29 54 22 17 14 36 47 39 61 40 36 441 10.46
5 30 14 18 24 14 9 25 29 31 27 42 25 288 6.83
6 6 6 9 6 2 6 8 3 7 6 8 70 1.66
7 8 4 7 7 6 10 9 5 9 7 12 6 90 2.13
8 3 7 3 6 7 4 16 7 8 9 4 3 77 1.83
9 17 19 19 18 23 17 34 30 32 39 25 31 304 7.21
10 20 11 ll 16 15 8 18 16 - 14 16 13 16 174 4,13
11 133 117 101 131 37 42 109 115 110 106 132 110 1243 29.47
12 11 5 10 11 5 7 13 8 5 18 22 5 120 2.84
13 91 81 - 77 101 56 39 77 79 81 83 76 102 943 22.36
14 13 12 4 9 14 4 17 16 7 13 15 4 128 3.03
Total 404 335 334 375 213 173 402 398 358 435 419 372 4218 100.00
Adjusted
sample 471. 317. 290. 369. 228. 197. 415. 425. 392. 465. 420. 407. 4395,

size n,
J




Table 4.3

The number of cases who complain persistent cough and phlegm.

District

Total

11 12

10

Stratum

11

48
43

12

31
26

10
11
12

30
14
39

13

14

280

31 24 24 23 11 32 25 24 30 18 17

21

Total
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Average concentrations of NO

Table 4.4

2

of the prevalence rates in 12 districts.

and estimated values of three types

District
1 2 3 4 5 6 7 8 - 9 10 11 12
(Egm) .022 .030 .023 .023 .027 .022 .022 .020 .0l6 .020 .01l7 .016
Crude

prevalence 5.2 9.3 7.2 6.4 10.8 6.4 8.0 6.3 6.7 6.9 4.3 4.6
rate (%) ‘
Adjusted
prevalence 4.8 10.5 8.1 6.4 9.8 6.5 7.6 6.1 6.4 6.5 4.3 4.5
rate (%)
Estimated
prevalence 6.7 9.6 7.1 7.1 8.5 6.7 6.7 6.0 4.6 6.0 4.9 4.6

rate (%)




We use the proportions of the stratum sizes to the total size as

the standard population rates. From these data, we have .

p(x) = -0.01 + 3.56x,

X2 = * .F.

Xtotal 20.68 (11 d.£.),
2 3

Xlinear 8.37 (10 d.£.),
2 = %%

Xslope 12.31 (14d.f.).

probit or logistic

Adjusted prevalence rate

o] ) 1 1 ] ] I
.015 .020 .025 .030 .035 pom

Average concentration of NO2

Fig. 4.1 The dose-response relationship between the average
concentration of NO2 and the adjusted prevalence

rate of persistent cough and phlegm.
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The results show that the difference of adjusted prevalence rates
at 12 districts are statistically significant (p < 0.05). It seems that

NO, index of air pollution explains this difference, for the linear model

2

is admitted and the regression coefficient is statistically significant
(p < 0.01). The dose-response relationship is graphed in Fig. 4.1. To

compare Xi with Xﬁ, we also compute X; and A:

lope

X2 = 14.24%%
M
A= 0.9327.

Thus, we can say that the difference between Xi and Xi is negligible

lope

in this case.

4.4 DISCUSSION

The situation where the prevalence rates of a disease may be affected
by a number of confounding factors is considered. The population in
each district is stratified according to the confounding factors. - The
dose-response relationship between the study factor and the disease is
given by the linear regression model for the adjusted prevalence rates,
adjusted by the population composition, on the study factor intensities.

A set‘of three X2 tests is proposed for an estimation and test procedure
of the linear regression. The main feature of this procedure is the

use of the adjusted prevalence rates and the adjusted sample sizes.



After computing these values, this procedure is similar to the procedure
of single stratum X2 tests (Cochran [3] and Armitage [4]).

The X;-test leads to no regression line and  is wuseful only to test
the slope in the linear regression. Contrary to it, our procedure has
the following superiority.

1. It gives the regression line of the adjusted prevalence rates

on the study factor intensities.

2. It gives a set of three X2 tests for the regression line.
Compared with the individual X2-tests, the overall X%-tests of this
procedure have the following merits.

3. They are usually more powerful.

4. Their X2 approximation may be more accurate.

XZI X21 X2n and XZI

As their subspecies, we have A : .
P i total’ " linear’ “linear slope

In the above discussion, we have assumed a linear regression line
for dose-~response relationship. We can extend it to a general regression
curve defined by

o + Bx
(4.11) p(x) = J o (t) dt.

- O

For example, ¢(x) = 1 exp(- x2/2) leads to a probit curve, and
2w

0(x) = exp(- x) / (1 + exp(- x))2 to a logistic curve. Here, we remark
that after a suitable transformation of the adjusted prevalence rates,
for example, probit transformation or logit transformation, the model
of (4.11) reduces to the linear regression model. Then, we can make

a parallel discussion as mentioned above. The effect of the transformation



appears only in the weight at each regression point. That is, the weights

in Section 4.1.1 are changed into

n,.
(4.12) W, = J

j _ 2 :
pj(l pj)d> (pj)

We shall apply the three X2 tests under probit model or logistic
model to the data in Section 4.3. The results are tabled in Table 4.5.
Estimated probit curve and logistic curve are shown in Fig. 4.1 and

they are nearly equal to each other in the data range.

Table 4.5 Estimated curve and three X2 tests under probit

model or logistic model.

Regression Estimated X2 X2 X2

model curve total linear  slope

- 2.10 + 28.0x

. _ 1 £2
probit p(x) = | — exp(- TZ)dt 21.96% 7.24 14.,72%%
27

- 3.88 + 57.4x

logistic  p(x) = [ exp(-t) dt 22.05%  7.04 15.01%%

(l-l-exp(—t))2

-0

* sgtatistically significant at

- W
9

*% gtatistically significant at



APPENDIX

2 QZ

0..(J 29 -1=0..0 2y - §o,.)2
O, + 0,  H0. L+ O
=] +] 17 = 1,;9 itl, ] kJ 0%. -T2 -1 2, .0,-
i i 17 it oisir 7

Q.. Q..
ZE( _i__loi._j.g_;l_l_g".)z?__o’

it | Yiy it

then it holds that 1 é:Q-j(X Qi./Qij), that is, on ;:Q'j' The equality
i

sign holds when Qij/Qi' =Q '/Qi" (i #1i').

i'j
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