<table>
<thead>
<tr>
<th>Title</th>
<th>Structure of Rapidly Quenched Li₂O-SiO₂ Glasses (Materials, Metallurgy & Weldability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Iwamoto, Nobuya; Umesaki, Norimasa; Tatsumisago, Masahiro; Minami, Tsutomu</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 17(2) P.369-P.379</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988-12</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/4643</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td>本文データはCiNiiから複製したものである</td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Structure of Rapidly Quenched Li$_2$O-SiO$_2$ Glasses†

Nobuya IWAMOTO *, Norimasa UMESAKI **, Masahiro TATSUMISAGO ***
and Tsutomu MINAMI ****

Abstract

Raman spectra of four glasses in the Li$_2$O-SiO$_2$ system (41.3 < Li$_2$O < 61.3 mole%) prepared by rapid quenching were measured. The proportions of SiO$_4$ units with 1, 2, 3 and 4 non-bridging oxygens per silicon (NBO/Si) and the fractions of bridging oxygens, non-bridging oxygen and free or fully-active oxygen were estimated for these glasses from the quantitative analysis of the obtained Raman spectra. X-ray structural analysis of the Li$_2$O-SiO$_2$ glasses were found to elongate the average atomic distance of Si-O pair with the increase of the Li$_2$O content due to the weakening of the Si-O bond.

KEY WORDS : (Raman spectroscopy) (X-ray structural analysis) (Rapid quenching) (Li$_2$O-SiO$_2$ glasses) (Lithium silicate glasses)

1. Introduction

Rapid quenching is one of the useful technique to develop new glassy materials and to extend the composition range of glass formation. In the system Li$_2$O-SiO$_2$, Tatsumisago1,2 indicated that the rapid quenching extended the limit of the glass formation from 40 mole% Li$_2$O for usual melt-cooling method up to 66.7 mole% Li$_2$O, which corresponds to the composition of lithium orthosilicate 2Li$_2$O-SiO$_2$, and the ratio T_q/T_i (T_q; glass transition temperature; T_i; liquidus temperature) of the Li$_2$O-SiO$_2$ glasses deviated from the so-called “Two-Third Rule” ($T_q/T_i = 2/3$) with increasing Li$_2$O content. They3 also found from the density measurement that the rapidly quenched Li$_2$O-SiO$_2$ glasses have an “Open Structure”. Our recent MD (Molecular Dynamics) results4,5 of 2Li$_2$O-SiO$_2$ melt and glass have revealed that this glass consists of some discrete SiO$_4$ units with 2, 3 and 4 NBO/Si’s (NBO/Si: Non-Bridging Oxygen per Si) because of the freezing of the corresponding melt by the rapid quenching. Therefore, these new dimensional silicate network structure cannot be formed at such a composition.

Raman spectroscopy is a powerful method for the identification of distinct SiO$_4$ units in silicate crystals and glasses. The stretching vibration modes of Si-O bonds in silicate crystals and glasses can easily be observed in the frequency region from 800 to 1200 cm$^{-1}$ by Raman spectroscopy. Many earlier investigations on silicate glasses were reported$^6-11$. Mysen and his coworkers7,8 pointed out the coexistence of anionic SiO$_4$ species such as SiO$_4^{4-}$ monomer (NBO/Si = 4), SiO$_4^{2-}$ dimer (NBO/Si = 3), SiO$_4^{3-}$ chain (NBO/Si = 2), Si$_2$O$_5^{2-}$ sheet (NBO/Si = 1) and SiO$_4^{4-}$ three-dimensional network unit (NBO/Si = 0) in alkali and alkaline earth silicate glasses from their Raman results. Tsunawaki et al.9,10 determined the fractions of bridging oxygen “—O—” or “O0” (i.e., coordinated to two Si$^{4+}$), non-bridging oxygen “O$^-$”(i.e., coordinated to one Si$^{4+}$) and free or fully active “O$^{2-}$” (i.e., not coordinated to Si$^{4+}$) in glasses PbO-SiO$_2$, CaO-SiO$_2$ and CaO-SiO$_2$-CaF from Raman intensities of Si-O stretching bands. Furukawa et al.11 remeasured glasses in the system Na$_2$O-SiO$_2$ in details.

It is the purpose of this study to reveal the structures of the rapidly quenched Li$_2$O-SiO$_2$ glasses by Raman spectroscopy. Based on the Raman result, we discussed the abundance of the SiO$_4$ units existing in these glasses. Furthermore, in order to obtain the information of the Li$_2$O-SiO$_2$ glass structures such as the atomic distance and the coordination number, X-ray diffraction study was carried out.

† Received on October 31, 1988
* Professor Welding Research Institute, Osaka University, 11-1, Mihogaoka
** Research Instructor Welding Research Institute, Osaka University, 11-1, Mihogaoka
*** Department of Applied Chemistry, University of Osaka Prefecture, Moto-Umemachi, Sakai, Osaka 591

Transactions of JWRI is published by Welding Research Institute of Osaka University, Ibaraki, Osaka 567, Japan
2. Experimental

The Li$_2$O-SiO$_2$ glasses were prepared by the twin-roller apparatus with a thermal-image furnace, which was reported previously1). Table 1 provides a list of nominal compositions of the starting materials and analyzed compositions of the prepared glasses.

Raman spectra were measured with a JASCO model R-800 double-grating spectrophotometer. The excitation source was the 514.5 Å (19435.6 cm\(^{-1}\)) line of NEC GLG – 3300 Ar-ion laser power level from 300 to 400 mW. Each Raman spectrum obtained was deconvoluted into several Gaussian peaks using a nonlinear least square procedure. The calculated by the following equation.

\[
I_i = \sum_{i=1}^{n} I_{i,\text{exp}} \times \ln \left(\frac{2(\sigma - \omega_i)}{\Delta \omega_i}\right)^2, \tag{1}
\]

where \(I_{i,\text{exp}}\), \(\omega_i\), and \(\Delta \omega_i\) are the intensity, position and half-width of the peak \(i\), respectively. The area of this Gaussian peak \(i\) to total area, \(A_i\), that is, the relative intensity, is expressed by

\[
A_i = \frac{1}{2\sqrt{\pi/\ln 2}I_i \Delta \omega_i} / I_8. \tag{2}
\]

Deconvolution of the spectra was carried out for the digitized scattering data by microcomputer12).

X-ray diffraction measurement was carried out by Rigaku Denki X-ray diffractometer with a rotating anode generator, RAD-rA, with Mok \(\alpha\) (\(\lambda = 0.7107\) Å) radiation under 50 kW-120 mA. The X-ray scattering intensities were measured from \(\theta = 3^\circ\) to \(70^\circ\) at 0.25\(^\circ\) intervals using the step-scanning technique with a fixed time of 200sec. After the correction of background, polarization and Compton scattering, the coherent X-ray intensities, \(I_{\text{coh}}(S)\), were scaled by means of the high-angle region method and the Krong-Moe, Norman’s method to the theoretical intensities due to the independent atoms contained. The radial distribution function, D(r), were obtained from the reduced intensity, S\(_i\)-i(S).

\[
S_i(S) = S_\infty i(S) / \sum_{i=1}^{n} i_i(S)^2 - 1, \tag{3}
\]

\[
D(r) = 4\pi^2 \rho \sum_{i=1}^{n} \frac{1}{K_i} \int_{0}^{S_{\text{max}}} S_i(S) \sin(Sr) dr, \tag{4}
\]

where \(m\) is the number of atoms contained in the stoichiometric units, \(\rho\) the mean atomic density, \(i_i(S)\) the atomic scattering factor of atom \(i\) corrected for anomalous dispersion, \(K_i\) the effective electron number of atom \(i\) and \(S_{\text{max}}\) the maximum value of \(S(= 4\pi \sin \theta/\lambda)\) . The function, D(r)/r, calculated from the obtained X-ray intensities were deconvoluted into some Gaussian peaks based on the nonlinear least square procedure for the determination of the distances (\(r_{i,j} \pm 0.01\)Å) and coordination number (\(N_{i,j} \pm 0.1\) atoms) of the nearest-neighbor atomic pairs i-j in these glasses. We used the density values9 of these glasses determined by the heavy solution method, using a mixture of bromoform and carbon tetrachloride as a heavy solution. The detailed procedure for the measurement and the calculation method of the X-ray data were reported elsewhere13.

3. Results and discussion

Figure 1 shows the Raman spectra of the Li$_2$O-SiO$_2$ glasses prepared by rapid quenching. The bands appearing these Raman spectra can be grouped conveniently into

<table>
<thead>
<tr>
<th>Glass sample</th>
<th>Li$_2$O (mol%)</th>
<th>SiO$_2$ (mol%)</th>
<th>NBO/Si number*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mixed</td>
<td>analyzed</td>
<td>mixed</td>
</tr>
<tr>
<td>2Li$_2$O · SiO$_2$</td>
<td>67.0</td>
<td>63.0</td>
<td>33.0</td>
</tr>
<tr>
<td>3Li$_2$O · SiO$_2$</td>
<td>60.0</td>
<td>59.6</td>
<td>40.0</td>
</tr>
<tr>
<td>Li$_2$O · SiO$_2$</td>
<td>50.0</td>
<td>50.4</td>
<td>50.0</td>
</tr>
<tr>
<td>2Li$_2$O · 3SiO$_2$</td>
<td>40.0</td>
<td>41.3</td>
<td>60.0</td>
</tr>
</tbody>
</table>

* NBO/Si: Non-Bridging Oxygen per Si

90
two frequency regions, 500 ~ 750 cm\(^{-1}\) and 800 ~ 1200 cm\(^{-1}\). As shown in this figure, with the increases of the Li\(_2\)O content, the bands at 500 ~ 750 cm\(^{-1}\), which are assigned to the bridging Si-O-Si vibration\(^{15}\) and labeled as B in Fig. 1, greatly reduce their intensities and shift toward higher frequency region. The continuous intensity drop and shift in the position of the B band with increasing the Li\(_2\)O must be related to the depolymerization between SiO\(_4\) units. The 800 ~ 1200 cm\(^{-1}\) frequency part of the measured Raman spectra are attributed to the non-bridging Si-O stretching mode of four SiO\(_4\) units with 1, 2, 3 and 4 NBO/Si's, that is, Si\(_2\)O\(_5^{2-}\) sheet, SiO\(_2^{2-}\) chain, SiO\(_2^{4-}\) dimer and SiO\(_4^{4-}\) monomer\(^{7-11}\). As summarized in Table 2, these four Raman modes caused by the SiO\(_4\) units with 1, 2, 3 and 4 NBO/Si’s appear on 1030 ~ 1100 cm\(^{-1}\), 950 ~ 970 cm\(^{-1}\), 900 ~ 930 cm\(^{-1}\) and 850 ~ 890 cm\(^{-1}\), respectively. In glasses containing relatively small amount of Li\(_2\)O, the main peaks are the bands due to the Si\(_2\)O\(_5^{2-}\) sheet and SiO\(_2^{2-}\) chain. On the other hand, in glasses containing large amount of Li\(_2\)O, the bands due to Si\(_2\)O\(_2^{4-}\) dimer and SiO\(_4^{4-}\) monomer are mainly observed. This Raman result indicates that the SiO\(_4\) units with higher NBO/Si ratio increase with the increase of the Li\(_2\)O content because of the depolymeri-

<table>
<thead>
<tr>
<th>SiO(_4) unit</th>
<th>Bonding state of bound oxygen</th>
<th>NBO/Si number</th>
<th>Frequency (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO(_4^{0}) three-dimensional network</td>
<td>-O-Si-O-</td>
<td>0</td>
<td>1060 - 1065</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1190 - 1200</td>
</tr>
<tr>
<td>Si(_2)O(_5^{2-}) sheet</td>
<td>-O-Si-O-</td>
<td>1</td>
<td>1030 - 1100</td>
</tr>
<tr>
<td>SiO(_2^{2-}) chain</td>
<td>-O-Si-O-</td>
<td>2</td>
<td>950 - 970</td>
</tr>
<tr>
<td>Si(_2)O(_2^{4-}) dimer</td>
<td>-O-Si-O-</td>
<td>3</td>
<td>900 - 930</td>
</tr>
<tr>
<td>SiO(_4^{4-}) monomer</td>
<td>-O-Si-O-</td>
<td>4</td>
<td>850 - 890</td>
</tr>
</tbody>
</table>
Fig. 1 Raman spectra of the rapidly quenched Li$_2$O-SiO$_2$ glasses. Included in this figure for comparison is the Raman spectrum of Li$_2$O-SiO$_2$ glass14.

Fig. 2 Raman spectrum of 63Li$_2$O-37SiO$_2$ glass deconvoluted into three Gaussian peaks due to SiO$_4^{4-}$ monomer, Si$_2$O$_6^{6-}$ dimer and SiO$_2^{2-}$ chain. As can be seen in this figure, most of the SiO$_4$ tetrahedra in the glass with the highest Li$_2$O content are present as the isolated SiO$_4$ units such as SiO$_4^{4-}$ monomer and Si$_2$O$_6^{6-}$ dimer. This fact was also recognized from our X-ray analysis and MD simulation results4,5 of this glass. Using the Debye scattering equation16, we calculated the reduced intensity $S(iS)$ curves can be seen in Fig. 3.

The relative intensity of each Raman band in the frequency from 800 to 1200 cm$^{-1}$ is associated with the abundance of SiO$_4$ units giving rise to the stretching vibration with the Raman bands in Fig. 1. Before determining the proportions of the SiO$_4$ units with 1, 2, 3 and 4 NBO/Si's in the rapidly quenched Li$_2$O-SiO$_2$ glasses, we empirically checked the normalized Raman cross section of the four SiO$_4$ units with 1, 2, 3 and 4 NBO/Si's by means of the solution of a system of linear equations, which was proposed by Mysen et al.17,18. The relative intensity of the Raman band i, A_i, is related to the proportion (mole fraction) of SiO$_4$ unit i, X_i, by the following

$$x_i = a_i A_i,$$ \hspace{1cm} (5)

where a_i is the normalized Raman cross section of SiO$_4$ unit i, and A_i in the equation (5) corresponds to the area
Table 3 Relative intensity of Gaussian peaks of four SiO₄ units with 1, 2, 3 and 4 NBO/Si, and fractions of O⁰, O⁻ and O²⁻ in the rapidly quenched Li₂O-SiO₂ glasses.

<table>
<thead>
<tr>
<th>Glass sample (mol%)</th>
<th>Relative intensity (%)</th>
<th>Oxygen fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Si₂O₅²⁻</td>
<td>SiO₂⁴⁻</td>
</tr>
<tr>
<td>63Li₂O · 37SiO₂</td>
<td>0</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>0⁺⁺</td>
<td>3.1⁺⁺</td>
</tr>
<tr>
<td>60Li₂O · 40SiO₂</td>
<td>5.2</td>
<td>30.5</td>
</tr>
<tr>
<td>50Li₂O · 50SiO₂</td>
<td>15.5</td>
<td>60.6</td>
</tr>
<tr>
<td>41Li₂O · 59SiO₂</td>
<td>65.6</td>
<td>33.0</td>
</tr>
</tbody>
</table>

* Peak area to total area represented by equation (1).

⁺⁺ MD results (….) of LiₓSi₁₋ₓ glass at 300K.

The Table lists the values of the relative intensities of the Raman bands due to the four SiO₄ units with 1, 2, 3 and 4 NBO/Si. The a₁ is a constant related to A₁ and is mass-balanced with the number of NBO/Si, nᵢ, which is 1, 2, 3 and 4 for Si₂O₅²⁻ sheet, SiO₂⁴⁻ chain, Si₃O₄⁻ dimer and Si₄O₄⁴⁻ monomer, respectively. Consequently, the summation of nᵢ is equal to the bulk NBO/Si, which can be calculated from the analysis of composition values in Table 1 as follows:

\[\sum aᵢAᵢnᵢ = \text{NBO/Si}, \]
\[\sum aᵢAᵢ = 1, \]

In the rapidly quenched Li₂O-SiO₂ glasses, the aᵢ factors calculated from the equations (5) ~ (7) were 1.04, 1.02, 1.15 and 0.90 for Si₂O₅²⁻ sheet, SiO₂⁴⁻ chain, Si₃O₄⁻ dimer and Si₄O₄⁴⁻ monomer, respectively. These estimated aᵢ factors indicate that scattering efficiency of the four SiO₄ units with 1, 2, 3 and 4 NBO/Si is almost equivalent. Therefore, the relative intensity of the Raman bands listed in Table 3 directly corresponds to the proportions of these four SiO₄ units existing in the rapidly quenched Li₂O-SiO₂ glasses.

Figure 4 shows the proportions of the SiO₄ units with 0, 1, 2, 3 and 4 NBO/Si and the fractions of bridging oxygen "= O = " or "O" (i.e., coordinated to two Si⁺⁺), non-bridging oxygen "O⁻" (i.e., coordinated to one Si⁺⁺) and free or fully-active oxygen "O²⁻" (i.e., not coordinated to Si⁺⁺) in the rapidly quenched Li₂O-SiO₂ glasses as a function of the Li₂O content. The contents of Si₂O₅²⁻ sheet (NBO/Si = 1) approximately have maximum at 60, 50 and 33 mole% Li₂O, respectively. These Li₂O compositions correspond to Li₁₀Si₁₂O₁₇ (NBO/Si = 3), Li₅Si₈O₁₃ (NBO/Si = 2) and Li₃Si₉O₁₄ (NBO/Si = 1), respectively. The proportion of Si₄O₄⁴⁻ three-dimensional network unit (NBO/Si = 0) remarkably decreases with increasing the Li₂O content. This rapid decrease in the proportion of SiO₂⁴⁻ three-dimensional network unit with the increase of the Li₂O content is similar in trend to the considerable drop in viscosity with increasing Li₂O concentration for lithium silicate melt. This result of Raman analysis illustrated in Fig. 4 suggests that any glass is not composed of only one SiO₄ unit. For example, the result that the 63Li₂O · 37SiO₂ glass consists not only of SiO₄⁴⁻ monomer but also of Si₃O₄⁻ dimer and Si₂O₅²⁻ chain suggests that the glass structure should arise from the following equilibrium reaction:

\[\text{SiO}_2 \text{O} = \text{SiO}_4 \leftrightarrow \text{Si}_3 \text{O}_4 - + \text{Si}_2 \text{O}_5 \]
Fig. 4 Proportions of O^0, O^- and O'^- in the rapidly quenched Li$_2$O-SiO$_2$ glasses. Included in this figure for Rb$_2$O·4SiO$_2$ glass(20).

- The proportions of O^0 and O^- obtained from XPS measurement(20).
- The proportions of O^0, O^- and O'^- calculated from Yokokawa and Niwa's thermodynamical model(20) by using an optimal equilibrium constant $K (= 0.0078)$ derived from the Raman analysis.
- The proportion of O^- can be given by $2x/(1-x)$ if the compositional formula of the rapidly quenched Li$_2$O-SiO$_2$ glasses is regarded as xLi$_2$O·(1-x)SiO$_2$. This curve was calculated from above mentioned equation.

This analysis of the Raman result shows a satisfactory agreement in quantity with 29Si Magic Angle Spinning NMR result(22) in the Li$_2$O-SiO$_2$ glasses ($15 \leq$ Li$_2$O \leq 40 mol%) prepared by the usual melt-cooling method, as shown in Fig. 5. This Raman result is also in quantitatively satisfactory agreement with our MD simulation results(24,55), as indicated in Table 3.

As previously mentioned, oxygen ions in the silicate glasses can be generally classified as bridging oxygen

O'^-, non-bridging oxygen "O^-" and free or fully-active oxygen "O^{2-}". As indicated in Table 3, the fractions of O^0, O^- and O^{2-} in the 63Li$_2$O·37SiO$_2$ glass derived from the Raman result were 4%, 83% and 13%, respectively. On the other hand, the proportions of O^0, O^- and O^{2-} calculated from our MD simulations(24,55) were 5%, 90% and 5%, respectively. The agreement with these Raman and MD(24,55) values is satisfactory. Furthermore, as shown in Fig. 4(B), we compared the fractions of O^0, O^- and O^{2-} obtained from the Raman result with those calculated on the basis of a thermodynamical model proposed.
by Yokokawa and Niwa\(^{23}\), so that an excellent agreement in these two results can be seen. In Fig. 6, the ratios of bridging to non-bridging oxygen, \(R (= N_{O^2} / N_{O^-})\), are compared with the values predicted for each glass from its composition and charge balance consideration. All ratios are found to agree with the predicted values. The equilibrium constant \(K\) of the following reaction between \(O^0\), \(O^-\) and \(O^{2-}\) can be given by the following equation:

\[
2O^- \rightleftharpoons O^0 + O^{2-} ; \quad K = [O^0][O^{2-}] / [O^-]^2.
\] (8)

The Raman-estimated value \(K\) calculated by equation (8) is 0.0078, which is in reasonable agreement with the value of 0.14−0.003 for \(M^2O\)−
SiO\(_2\) binary melts (\(M\): Mn, Pb and Ca) from the thermodynamical calculation\(^{23}\). It is presumed that the value \(K\) relates to the cohesive energy of network modifying oxide \(M_aO\) (\(M_a\): alkali metal) such as Li\(_2\)O in the silicate melt and glass\(^{24}\). Usually a lowering of bonding strength \(z_{M^2}^+ (r_{M^2}^+ : r_{O^2}^-\) (\(z_{M^2}^+\): the formal charge of ion \(M^{a+}\); \(r_{M^2}^+\) and \(r_{O^2}^-\): the ionic radii of ions \(M^{a+}\) and \(O^{2-}\)) between \(M^{a+}\) and \(O^{2-}\) tends to decrease the values \(K\)\(^{24}\). It is, therefore, concluded that the value \(K\) for the 63Li\(_2\)O-37SiO\(_2\) glass is much smaller than that for molten CaO-SiO\(_2\) system\(^{25}\). From the obtained value \(K\), it is possible to predict activity coefficient for silicate melts and glasses. Activity coefficient is one of the most important thermodynamical parameters. Therefore, by the use of the following Yokokawa and Niwa’s equations (9) and (10) with the value \(K\) obtained, we calculated the activity curves for the Li\(_2\)O-SiO\(_2\) glasses at room temperature, as indicated in Fig. 7.

\[
a_{SiO^2} = \frac{2x_{SiO^2}}{1 + x_{SiO^2}} \left(\frac{1}{1 + \frac{x_{SiO^2}}{2x_{SiO^2}}^2} \right)^{2(1-4K)}
\] (9)

\[
a_{LiO} = \frac{2x_{LiO}}{1 + x_{LiO}} \left(\frac{1}{1 + \frac{x_{LiO}}{2x_{LiO}}^2} \right)^{2(1-4K)}
\] (10)

where \(x_{SiO^2}\) and \(x_{LiO}\) are the mole fractions of SiO\(_2\) and Li\(_2\)O in the glassy system Li\(_2\)O-SiO\(_2\), respectively.

By using the proportions of the four SiO\(_4\) units existing in the rapidly quenched Li\(_2\)O-SiO\(_2\) glasses, we attempted to determine the average coordination numbers of the nearest-neighbor atomic pairs Si-Si, Si-O and O-O, \(N_{SiSi}, N_{OSi}\) and \(N_{O-O}\). We can estimate these coordination numbers using the following two ways:

1) Table 4 indicates the average coordination numbers of the nearest-neighbor correlations Si-Si, Si-O and O-O for the SiO\(_4\) units with 0, 1, 2, 3 and 4 NBO/Si’s, \(n_{SiSi}, n_{SiO}\) and \(n_{O-O}\). The relationship between the bulk’s and SiO\(_4\) unit’s coordination number can be given as follows

\[
N_{Si/Si} = 3f_{NBO/Si} + 2f_n + 3f_{3n},
\] (11)

\[
N_{O/Si} = 1.75f_{NBO} + 1.50f_{n} + 1.25f_{3n} + f_{4n},
\] (12)

\[
N_{O/O} = 5.25f_{NBO} + 4.50f_{n} + 3.75f_{3n} + 3f_{4n},
\] (13)

where \(f_i\) (\(i = 1−4\)) is the proportion of the SiO\(_4\) unit with NBO/Si \(i\) as indicated in Table 3.

2) The fractions of \(O^0\), \(O^−\) and \(O^{2−}\) can be given by the following equations

\[
N_{Si/Si} = 4N_{O^2},
\] (14)

\[
N_{O/Si} = 2N_{O^+} + N_{O^{2+}},
\] (15)

\[
N_{O/O} = 6N_{O^+} + 3N_{O^{2+}},
\] (16)

where \(N_{O^0}, N_{O^−}\) and \(N_{O^{2−}}\) are the fractions of \(O^0, O^-\) and \(O^{2−}\) as listed in Table 3.

The results calculated from these ways 1) and 2) are graphically in Figures 8 and 9, respectively. As shown in these figures, the values \(N_{SiSi}, N_{OSi}\) and \(N_{O-O}\) estimated from these two ways 1) and 2) reasonably drop with the increase of the Li\(_2\)O content due to the depolymerization reaction between SiO\(_4\) units. The tendency of these coordination numbers confirms the prediction from simple consideration on the basis of compositional dependence and charge balance of alkali silicate glass structure. For instance, the \(N_{O-O}\) value of the 63Li\(_2\)O·37SiO\(_2\) glass is 2.7
Table 4 Coordination numbers of nearest-neighbour correlations Si-Si, O-Si and O-O for SiO₄ units with 0, 1, 2, 3 and 4 NBO/Si's.

<table>
<thead>
<tr>
<th>SiO₄ unit</th>
<th>Bonding state of bound oxygen</th>
<th>NBO/Si number</th>
<th>Coordination number</th>
<th>nSi/Si</th>
<th>nO/Si</th>
<th>nO/O</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO²³⁻ three-dimensional network</td>
<td>-O-Si-O-</td>
<td>0</td>
<td>4.00</td>
<td>2.00</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>Si₂O⁵⁻ sheet</td>
<td>-O-Si-O-</td>
<td>1</td>
<td>3.00</td>
<td>1.75</td>
<td>5.25</td>
<td></td>
</tr>
<tr>
<td>SiO³⁻ chain</td>
<td>-O-Si-O-</td>
<td>2</td>
<td>2.00</td>
<td>1.50</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>Si₂O⁷⁻ dimer</td>
<td>-O-Si-O-</td>
<td>3</td>
<td>1.00</td>
<td>1.25</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>SiO⁴⁻ monomer</td>
<td>-O-Si-O⁶</td>
<td>4</td>
<td>0</td>
<td>1.00</td>
<td>3.00</td>
<td></td>
</tr>
</tbody>
</table>

-3.4, and is almost equal to the values obtained from our X-ray diffraction result (N_{O-O} = 3.8) and MD simulation (N_{O-O} = 3.3). Included in these two figures for comparison are the values of the coordination numbers for molten Na₂O-SiO₂ melts obtained from X-ray diffraction measurement by Waseda et al. Waseda and his coworkers systematically carried out X-ray structural analyses of several alkali and alkaline earth silicate melts. As shown in Figs. 8 and 9, Waseda's results indicates that the addition on Na₂O up to 60 mole% has no effect on N_{SiSi} and N_{O-O} in the molten Na₂O-SiO₂ system, which is in no agreement with our Raman result. When Na₂O is added to SiO₂ melt and/or glass, it is well-known that the physical properties such as viscosity dramatically changes, owing to the rupture of three-dimensional network structure. Therefore, we consider that there is room for re-measurement with respect to X-ray results reported by Waseda and his coworkers.

The S-i(S) curves for the rapidly quenched Li₂O-SiO₂ glasses are shown in Fig. 10. Periodical profiles of the curves are similar to each other among these glasses with different composition. The increase of the Li₂O content, however, causes the change of the peak in the S-i(S) curves may correspond to the changing of the atomic co-
Structure of Rapidly Quenched Li₂O-SiO₂ Glasses

Fig. 8 Composition dependence of coordination numbers of nearest-neighbor pairs Si-Si, O-Si and O-O in the rapidly quenched Li₂O-SiO₂ glasses obtained from Raman analysis by means of way 1. The full lines represent these coordination numbers estimated from composition dependence of silicate glass structure. Included in this figure for comparison are the data for molten Na₂O-SiO₂ melts obtained from X-ray diffraction measurement by Waseda et al.²⁶.

Fig. 9 Composition dependence of coordination numbers of nearest-neighbor pairs Si-Si, O-Si and O-O in the rapidly quenched Li₂O-SiO₂ glasses obtained from Raman analysis by means of way 2. The full lines represent these coordination numbers estimated from composition dependence of silicate glass structure. Included in this figure for comparison are the data for molten Na₂O-SiO₂ melts obtained from X-ray diffraction measurement by Waseda et al.²⁶.

Table 5 Atomic distances and coordination numbers of nearest-neighbour pairs Si-O, Li-O, O-O and Si-Si in the rapidly quenched Li₂O-SiO₂ glasses determined from X-ray analysis. Include in this table for comparison are the data for lithium disilicate glasses²⁶, ²⁷ and several Li₂O-SiO₂ crystals²⁸-³².

<table>
<thead>
<tr>
<th>Glass sample (mol%)</th>
<th>Atomic distance (Å)</th>
<th>Coordination number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r₃i-O</td>
<td>r₃i-O</td>
</tr>
<tr>
<td>63Li₂O·37SiO₂</td>
<td>1.64</td>
<td>2.23</td>
</tr>
<tr>
<td>60Li₂O·40SiO₂</td>
<td>1.60+</td>
<td>1.93+</td>
</tr>
<tr>
<td>50Li₂O·50SiO₂</td>
<td>1.61</td>
<td>2.21</td>
</tr>
<tr>
<td>41Li₂O·59SiO₂</td>
<td>1.61</td>
<td>2.24</td>
</tr>
<tr>
<td>Li₂O·2SiO₂(±²⁵)</td>
<td>1.64</td>
<td>2.23</td>
</tr>
<tr>
<td>Li₂O·2SiO₂(±²⁸)</td>
<td>1.62</td>
<td>2.07</td>
</tr>
<tr>
<td>Li₂SiO₃ crystal</td>
<td>1.63</td>
<td>2.11</td>
</tr>
<tr>
<td>Li₂SiO₅ crystal</td>
<td>1.64</td>
<td>2.07</td>
</tr>
<tr>
<td>Li₂SiO₆ crystal</td>
<td>1.63</td>
<td>2.07</td>
</tr>
</tbody>
</table>

+ MD results "" of Li₂SiO₃ glass at 300K.
Fig. 10 X-ray reduced intensity curves $S^{-1}(S)$ for the rapidly quenched Li$_2$O-SiO$_2$ glasses.

figuration of mid- and long-range order of SiO$_4$ units caused by depolymerization with increasing the Li$_2$O content. The average atomic distances and coordination numbers for nearest-neighbor pairs Si-O, Li-O, O-O and Si-Si derived from the functions D(r)/r of Figure 11 are listed in Table 5. Included in this table for comparison are the data for Li$_4$SiO$_4$, Li$_6$Si$_2$O$_7$, Li$_2$SiO$_3$ and Li$_2$Si$_2$O$_5$ crystal$^{29-32)}$. From this table, we can find the fact that the average bond length of Si-O pair, r_{Si-O}, tends to increase from 1.60 to 1.64 Å with the increase of the Li$_2$O content. It is considered that the elongation of Si-O bond length takes place due to the weakening of the Si-O bond produced from the introduction of modifier oxide into silicate network structure$^{33)}$. Misawa et al.$^{25)}$ reported the similar elongation of the Si-O bond length in three alkali disilicate glasses from time-of-flight total neutron scattering experiment. Although the coordination numbers of nearest-neighbor oxygen around silicon, the value N$_{SiO_4}$, is almost 4 because of SiO$_4$ tetrahedra, the coordination number around lithium, N$_{LiO}$, is increased from 2.0 to 3.1 with increasing the Li$_2$O content. Compared with the lithium silicate crystals$^{29-32)}$, the N$_{LiO}$ of the glasses is much smaller than that of crystals. The small N$_{LiO}$ is in accordance with the results of our MD simulation$^{4,5)}$ for Li$_2$SiO$_4$ glass.

4. Conclusion

The result of our Raman analysis of the rapidly quenched Li$_2$O-SiO$_2$ glasses lead to the conclusion that the Raman relative intensities of the four SiO$_4$ units with 1, 2, 3 and 4 NBO/Si’s existing in these glasses are equal to the abundance of the corresponding SiO$_4$ units. By the use of the proportions of the SiO$_4$ units and the fractions of bridging oxygen, non-bridging oxygen and free or full-active oxygen, we attempted to determine the coordination numbers of the nearest-neighbor pairs Si-Si, O-Si and O-O in the Li$_2$O-SiO$_2$ glasses. As a result, we could indicate that the obtained coordination numbers reasonably drop with the increase of the Li$_2$O content due to the depolymerization reaction between SiO$_4$ units. Furthermore, in order to obtain the structural information of the Li$_2$O-SiO$_2$ glasses, X-ray diffraction measurement was carried out. The X-ray result was found to elongate the average atomic distance of Si-O pair with increasing the Li$_2$O content due to the weakening of the Si-O bonds.

References

Structure of Rapidly Quenched Li$_2$O-SiO$_2$ Glasses

