<table>
<thead>
<tr>
<th>Title</th>
<th>On the Singularities of the Scattering Kernel for the Elastic Wave Equation in the case of Mode-Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>大田, 靖</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>none</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/46447</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
論文内容の要旨

本論文は、弾性波の反射現象の考察を弾性方程式における散乱核の特異性により考察したものである。この問題は、波動方程式において Lax-Phillips 式の散乱理論から導き出される散乱核の表示式を利用して、その台形特異性から凸包を再構築した研究が始まり、その後様々な研究がなされてきた。特に、back-scattering と呼ばれる入射波のある入射方向に対して、同じ方向に帰ってくる反射波を観測する場合に対して多くの研究結果が得られている。

弾性方程式においては様々な速さを持つ弾性波が存在し、特に方程式に等方性の仮定をおいた場合、弾性波は P 波と S 波と呼ばれる縱波と横波の 2 つの波になる。従って、弾性方程式における散乱核の考察は、これらの波を区別して反射現象を考察する必要があるために、波動方程式のそれと比べてより複雑なものになる。その中でも特に、モードの変換と呼ばれる入射波と反射波の速度が異なる場合の考察は、back-scattering の場合においても複雑な問題となる。その理由は、散乱核の特異性を考察する場合、散乱核の適当な検定展開式を導きその展開式の中で一番強い特異性を持つ初項の詳しい解析を行う方法が一般的であるが、back-scattering の場合においてはその検定展開の初項が消えてしまうので、第 2 項目以降の詳しい解析が必要になるためである。

本論文においては、反射方向を back-scattering の場合から少しだけ変化させた方向を考えることによってより強い特異性を持つ検定展開の初項が残ることを示している。その証明においては、特に散乱核の検定展開式を導く場合、back-scattering の場合より細かい考察が必要となるが、等方性の仮定のもとで適当な座標変換を考えることにより展開式の初項の具体的な表示式を導き、更に等方性の仮定を利用することによりその展開式の初項が残ることをより直接的な計算方法で示している。

論文審査の結果の要旨

本論文は、弾性波の反射現象を弾性方程式の散乱核の特異性を考察することにより、研究したものである。この問題は波動方程式に始まり、その後様々な研究がなされてきた。特に back-scattering と呼ばれる、入射波と同じ方向
に帰ってくる反射波を観測する場合について多くの研究結果が得られている。
弹性方程式においては、さまざまな速さを持つ波が存在し、散乱核の挙動は波動方程式の場合に比べてより複雑なものとなる。特に、モードの変換と呼ばれる、入射波に対して速度の異なる反射波が帰ってくる場合は、散乱核の非単性の解析はより複雑なものとなる。
本論文においては、等力的な弹性方程式を考察し、反射方向が back-scattering の場合から少しだけ異なる場合を考察し、散乱核の座標変換下における不変性を巧みに利用し、複雑な計算を遂行して、散乱核が back-scattering の場合より、より強い特異性を持つことを示したものである。
以上により、本論文は博士（理学）の学位論文として十分価値あるものと認める。