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Abstract

In this thesis, we discuss the dynamics and effects of Kaluza-
Klein (KK) modes in braneworld cosmology in the context of
the second Randall-Sundrum (RS) model. KX modes are waves
propagating in the extra-dimension, and may affect cosmology
and gravity on the brane non-trivially.

First, we discuss the backreaction of KK graviton modes quali-
tatively. For gravitons which are produced by high energy particle
interactions on the brane, we assume the KIK gravitons as ingo-
ing null dust flux which is emitted from the brane radially. We
discuss the bulk geometry, the brane dynamics in the bulk and
show that a strong, visible, naked singularity can he formed in
the bulk in a paticular situation. Then, for gravitons of a single
KK mode, which is produced guantum mechanically in the whole
hulk during brane inflation, we derive the effective stress-energy
tensor, adopting the averaging procedure where the existence of
the brane is taken into account. We show that a (massive) KKK
mode hehaves effectively as cosmic dust with negative energy den-
sity on the brane. The negativity of the energy density can be
explained phyically in terms of the energy conservation law in the
bulk, which is satisfied in the five-dimensional spacetime with a
maximally symmetric three-space.

In reality, however, what we observe is the sum of an infinite
number of KK modes. Thus for KK modes produced guantum
mechanically, we have to determine its amplitude in terms of
quantum field theory. As is well-known, however, there is a sig-
nificant pathology in attempting to quantify the quantized KK
backreaction. It is the divergence of the sum as one approaches
the brane from the bulk, even after a conventional ultra-violet
(UV) regularization. We show that a finite brane thickness can
regularize this divergence and the size of quantum backreaction
can be naturally reduced to below that of the background stress-
energy tensor.

Finally, as a more general extension of the RS model, we dis-
cuss the linearized effective gravity on the brane in the Einstein
Gauss-Bonnet (EGB) theory. We show that in the EGD theory
the effective gravity on a cosmological (de Sitter) brane is four-
dimensional on all distance scales, from short distances to large
distances. We also show that on high energy expanding branes as
well as on low energy expanding ones, effective gravity becomes
four-dimensional.

PACS numbers: 04.50. | h, 98.80.Cq
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1

Introduction

The idea that there are extra-dimensions other than the usual four-
dimensions (i.e., three spatial dimensions and one time dimension) has been
disenssed for a long time, since the proposals for unification of fundamental
interactions by Kaluza |1} and Klein [2]. Recent progress in string theory
revives the idea of using extra-dimensions for unification and suggests the
novel possibility that our universe is, in reality, a four-dimensional suhman-
ifold, called a brane, embhedded into a higher-dimensional spacetime, called
a bulk |3, 4]. This gives new paradigm for cosmology and gravity, which is
called braneworld. In braneworld, interactions other than gravity are trapped
on the brane, whereas only gravity can propagate into the bulk. This is a
quite different picture from one in the KIX theory. Several scenarios which
realize braneworld have been discussed [5, 6, 7, 8, 9]. Expecially among
them, the scenarios which were propesed by Randall and Sundrum (RS)
have heen attracted much attention, hecause it succeeds in the localization
of gravity through a new mechanism, the warping of the extra-dimension [9].
This model has been given phenomenological grounds from various aspects
of higher-dimensional theories of gravity.

In this Chapter, first we briefly give a historical review of the braneworld
model proposed by RS, cosmology realized on it and various extensions of
the RS model. And then, we state the purpose of this thesis and introduce
the outline.

1.1 Randall-Sundrum (RS) braneworld

In this thesis, we assume the five-dimensional bulk (i.e., codimension one).
We consider the five-dimensional Einstein theory with a negative cosmologi-
cal constant (As < 0) and a brane

(5)
Skg = i-z- /d%\/—g (R —2A5> + /d‘ix\/—qa, (1.1)
5

1 For more reviews abouf braneworlds, see e.g., [10, 11, 12, 13]
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where ¢, is the induced metric on the brane. 2 is the five-dimensional
gravitational constant. The brane has a positive tension o > 0. We assume
the Zy (mirror) symmetry with respect to the brane. This means that we first
cut a five-dimensional spacetime, then make a copy of the piece of spacetime
and finally glue them.

Without any dynamical matter other than the metric, the hulk solntion
hecomes Anti- de Sitter(AdS) spacetime,

ds® = dy* + e Wty dztda” {(1.2)

bounded by a brane located at y = 0 where 1, is the four-dimensional

Minkowski metric and
{6
Fom g —— 1.3
A5 T ( )

is the curvature radius of the AdS spacetime. In order to realize the
Minkowski spacetime on the brane, the brane tension is tuned, for the effec-
tive four-dimensional cosmological constant to vanish as
1 1
Ay = —kto? + “A; =0. 1.4
4 19 5 2 3 ( )
Though the extra-dimension is infinitely extended, due to the exponential
warping of it the effective volume is still finite. 2 The effective Planck scale
on the brane is given by the integration of the gravitational action over the
extra-dimension;

M3 = 23 f dye ™/t = pMBe, (1.5)
¢]

where M2 = k2 is the five-dimensional Planck scale.

In the above solution, the brane geometry becomes the four-dimensinal
Minkowski spacetime. When the tuning condition Eq.(1.4) is broken as A, >
0, the brane becomes a de Sitter (dS) spacetime. The bulk geometry is also
AdS and the metric in the Gaussian-normal coordinate is given by

ds® = dy® + (HE)? sinh? (y/0) Ywdatdz” (1.8)

where vy, is a four-dimensional dS metric with scalar curvature
1
R(y)=12H*, H*= S, (1.7)

and in this case the brane locates at y = yo as H = 1/(£sinh (H{)). One side
of the hulk region is restricted to 0 < y < y. The dS brane solution is useful

2The extra-dimension can be compactified by puttting another brane with a negatve
tension of the same size. This model has been discussed as a possible resolution of the

hierarchy problem in parficle physics, though in this thesis we mainly focus on single brane
models [8].
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in discussing cosmological inflation on the brane. Note that the size of the
extra-dimension itself is not, inflating. Inflation is deseribed as a motion of
the brane in the warped bulk.

In the case that there is no usual matter and only {time-independent)
tension on the brane, the four-dimensional part of hulk metric in a Gaussian-
normal coordinate can be written in a separable form as Egs. (1.2) and (1.6).
However, as discussed later, in the case that there is time dependent matter
component, on the brane, the bulk metric can not be written in a separable
form in general. The brane trajectory in the bulk is determined through the
junction condition across the brane [14].

1.2 Linearized gravity in RS braneworld and
Kaluza-Klein (KK) modes

Then, in the RS (single) hrane model, we consider the bulk metric perturba-
tions and the linearized effective gravity realized on the brane. In the bulk,
the metric Eq.(1.2) is perturbed as

Ny — N + h,uu(yy :E#) r (18)

where for convenience we take the gauge condition hqs = 0 and h*, = h¥, , =
0, which is called RS gauge [9, 15], whereas the brane position is fluctuated as
y = 0 — (z*) in general. The bulk metric perturbations and the Aluctnation
of the brane position can be analyzed hy using the bulk Einstein equations
and the junction conditions,

For simplicity, we focus on the bulk metric perturbations. The pertur-
hations are separable as A = f..(y)h{ (z#) where m? is the eigenvalue
which correponds to mass of gravitons for a four-dimensional observer,

(n**0,8, —m®) R (z*) = 0. (1.9)

The mass spectrum is determined hy

<_dd_:2. + V(z)) Fnl2) = m2fin(2),
15

V) = Mo

3
— 50(2), (1.10)

where z = [ dye~ ¥/t and fm is the rescaled function of f,, multiplied by
powers of the warp factor. V(z) is interpretted as the potential for pertur-
hations. The delta function part generates a bound state m? = 0, which is
called the zero mode. This zero mode can realize four-dimensional gravity
on the brane. On the other hands, there is continuum spectrum m? > 0
of excited modes, which are called Kaluza-Klein (KK) modes. They are the
main subject of this thesis. They correspond to waves propagating in the



4 1. Imtroduction

bulk and are ohserved as the infinite number of massive modes on the hrane.
The general solution for the metric perturbation is written as;

hyw = B +f dm b (1.11)
0

As an example, for putting a static, point-like source of mass A on the brane,
the gravitational potential on the brane at large distances r > £ hecomes

4 2
hoo = 26 (1 +0 (%)) : (1.12)
T T

Thus the gravity on the bhrane is four-dimenstonal and the small correction
comes from the contribution of KX modes [15]. From the experimental tests,
Newton’s law is confirmed up to sub-millimeter scales. So, we obtain the
bound on the size of the extra-dimension as £ < 0.1mm. Thus the size of the
extra~-dimension may be much larger than the Planck size. The non-linear
extension has been done by using the long wavelength (low energy expansion)
approximation [16].

For a dS brane, a potential for perturbations like Eq.{(1.10) is obtained.
The only differenece is the existence of the mass gap hetween the zero mode
(m? = 0) and KK modes (m? > 9H?%/4). This is an important nature for
a dS brane. During brane inflation, KK graviton modes may be produced
but they decay rapidly due to the presence of the mass gap [17]. Non-linear
realization of zero mode (and KK modes) has been discussed, see, e.g., [18].

In hrane cosmology, these KIK modes, especially these graviton modes,
are naturally produced at the early stage of the brane universe. These modes
may be excited mainly by the following two mechanisms: The first mecha-
nism is that they are generated by high energy particle interactions on the
brane. Non-standard particle interactions on the brane at the early stage
may produce gravitons. From the assumptions in hraneworld, gravitons can
escape into the bulk. ® The second one is that they are produced by quantum
flutuations in the whole bulk. In the cases that the brane univserse undergoes
inflation or an inflationary hrane universe is created via quantum tunneling
in five-dimensions, KK gravitational modes may be produced quantum me-
chanically or exist from the beginning [18|. In the former case, the amount of
KK modes is determined by the initial condition on the brane. In the latter
case, it is determined by the normalization condition for each KK mode in
the bulk in terms of quantum field theory.

In the case that the background bulk metric is not separable in the
Gaussian normal coordinate, e.g., for general cosmological branes other than
Minkoswski and dS ones, KIX modes are not well-defined in general. The

*One might worry about the production of low energy KK gravitons in the particle
interactions in the context of the standard model. But, the spectrum of KI{ modes is
vanishing for these smaller mass scales as m — 0. So, KK gravitons are not excited in the
conventional particle inferactions on the earth.
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bulk geometry around a brane with spatial flatness and cosmic scale factor
a(t) (and located at y = 0), is given by the metric [19]

ds? = —N*(t,y)dt® + Q(t, y)e (t)dx?® + dy* (1.13)
where
Q(t, ) = cosh{y/£) — nsinh(|yl/£)
N{(t,y) = cosh(y/f) — (n + %) sinh(|y|/£), (1.14)
with

nm\/W=1/(g)2£2+1. (1.15)

Although the bulk geometry is still AdS, clearly, this metric is non-separable.
However, in the low energy limit characterized by H{ <« 1 and H? < 1, we
have 7 ~ 1 and 7/H <« 1 so that the metric can be approximated hy

ds? = dy? + e 2V (—qt? + o?(t)da?) (1.16)

which is now separable. In these cases, they are approximately well-defined.

1.3 Brane Cosmology

In the case that there is time-dependent matter on the hrane, the brane

geometry deviates from both Minkowski and dS, even in assuming a cosmo-

logical symmetry. Here, we take a slightly different approach. In the previous

sections, we set a Gaussian normal coordinate with respect to the brane. In

this sense, it is somewhat brane-based. Now, we set a static coordinate in the

bulk. In this hulk-based picture, the hrane describes a trajectory in the bulk,
We assume that the bulk geometry is AdS-Schwarzshild spacetime

ds? = —(K+f _ M

T2 ﬂ/fg
Za= 2=

-1
Jait+ (K+% = 2) " dr® +77dSey, (117)
rather than purely AdS, where A is the mass of a black hole sitting in the
bulk and K = 1,0,—1. The case Afy = 0 is just the AdS solution. The
line element dE?Kﬁ) correspond to the three-sphere (K = +1), the three-
dimensional flat space (K = 0) and the three-hyperholoid (K = —1}, respec-
tively. Then, from the junction condition the cosmological evolution of the
hrane (i.e., its trajectory in the bulk) is given by |20, 21]
a2z K 1 K2 1 rpN2 My
- — T — —_— “ 1 — 1‘
(a,) +a2 3A4+ 3p+€2 (o*) at’ (1.18)
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where a(7) is the scale factor of the brane expansion as a function of the
proper time on the brane 7. The brane locates at the coordinate radius
r = a(7). The four-dimensional cosmological constant is given by

K 3 i 1
A = —5 2 —_— = —5 2 - " 1'1
4 120’ Iz 120" + 2A5 ( 9)

If the condition Eq. {1.4) is satisfied, then the effective cosmological constant,
vanishes. This is just a generalization of Friedmann equation in the standard
cosmology to braneworld cosmology.

In the effective Friedmann Eq. (1.18), the 3 term is just coming from the
tidal effect of the bulk black hole and behaves as usual radiation on the brane.
Thus, this term is called dark radiation [19, 12]. Dark radiation can be seen as
an additional relativistic degree of freedom other than those in the standard
model of particle physics. Such additional degrees of freedom increase the
expansion rate of the Universe and affect the Big Bang nucleosynthesis (BBN)
significantly, especially the abundance of *He, because in the case of a faster
expansion rate there is less time for neutrinos to dacay between the time
of the weak interaction freezeout and the onset of BBN, and the ratio of
neutrons to protons becomes larger [22, 23]. Thus, in order to realize the
successful nucleosynthesis, ohservational constraints on the dark radiation
have heen discussed, see e.g., Ref. [23].

The other main difference from the conventional Friedmann eqguation is
the presence of the squared density term. When the brane universe is high
energy, i.e., p > o, this term dominates the cosmological evolution of the
brane significantly [19, 12]. For radiation dominated universe, p o a~*,
the scale factor increases as a o« 7Y/%, whereas in standard cosmology a o
72, The squared density term does not affect BBN and CMB significantly
hecause this term dominates at much earlier time than the epoch of BBN
and recombination.

1.4 Extensions of the RS brane model

In previous sections, we have assumed that there is no dynamical degree of
freedom other than the spacetime metric in the hulk. More realistically, e.g.,
from the stringy point of view, it would be natural that there are dynamical
degrees of freedom other than the metric. We also have assumed that the
bulk gravitational theory is the Einstein gravity. But, in higher-dimensions
we may add curvature corrections in the gravitational theory in the bulk.
We may also add an induced gravity term into the boundary action.

From these considerations, several extensions of the braneworld from the

original RS model have been proposed. In this thesis, we also discuss KK
modes in these extended models.
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1.4.1 Bulk scalar fields and bulk inflaton models

We may add some dynamical degrees of freedom other than the spacetime
metric, e.g., a scalar field, in the bulk theory. These bulk fields appear as a
result of dimensional reductions of higher-dimensional theories, e.g., moduli
fields, dilatons and so on. As a simple model, we can consider brane models
with a bulk scalar field,

s = i—g / Fr/=g ((”?3 -+ (—(6¢)2—2V(¢>)))
+ / dzy/ = (~0(9)) (1.20)

In the context of the braneworld, the models including a bullk scalar field
has firstly been discussed from phenomenology, see e.g., [24, 25, 26, 27]. In
paticular sitnations, this type of scalar field behaves as an inflaton, namely
the dynamics of the field induces a cosmological inflation on the brane, see
e.g., |28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. In these cases, this type of scalar
field is often called bulk inflaton. The effective scalar field potential induced
on the hrane is given by [26]

_l, Lo, oo 1(do(@)\?
Ag = Sks (V(Gﬁ’) + 25 (0()" — 5 (—dqg“) ) : (1.21)

The static (time-independent) bulk fields are also used for supporting
thick braneworlds, i.e., classical domain walls in the bulk, see e.g.,[38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49]. We will discuss quantum fluctuations on a
thick brane model in Chapter 4.

1.4.2 Einstein Gauss-Bonnet (EGB) braneworld

We also may add higher-curvature terms into the bulk gravitational theory.
In the four dimensions, the tensor gravitational theory is uniquely given hy
the Einstein theory, but in higher dimensions, higher order curvature correc-
tions may also be added. For instance, the gravitational theory including the
Gauss-Bonnet (GB) term;

1
Sece = 52 dsﬂ?v —g
K5
(5) (5) 5) (5) (5} {8}
X R+Q(R2_4RcdRCd+ R cdes R"dﬁf) —2As]
+ [devTio), (1.2

gives the most natural tensor gravity in five dimensions *. « is coupling
parameter of the GB ferm of dimensions (length)?. Note that the GB term

“For general apects of the gravitatinal theory with the GB term, including a boundary
brane, see e.g., [50, 51, 52]
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is just a topological quantity in four-dimensional spacetime, namely just
gives a total derivative term for the variation of the gravitational action,
but it becomes dynamical in higher-dimensions. This type of correction also
appears as a low energy correction in the perturbative approach to string
theory. Braneworld models in the Einstein-Gauss-Bonnet (EGB) theory have
predicted new, interesting phenomena. A part of them will be discussed in
this thesis. Here we introduce some basic cosmological features of this model.

The AdS solution whose metric is given hy, for instance, Eq. (1.2) or
Eq. (1.6), has two possible branches,

1 1 4C¥A5
— = e 1 . .
s (1 £/1+— ) (1.23)

The (=) hranch is reduced to the solution in the Einstein gravity for o — 0,
whereas the (+) branch gives the completely new sequence of solution in the
EGB theory, which is known to be unstable for perturbations.

The modified Friedmann equation in this model, neglecting the dark ra-
diation term (i.e., without a black hole in the bulk), is given by

4\ 2
(1 + gozA;—,) cosh (ga:) -1, (1.24)

= |—(1+ —aA inhx.
pt+o Lmé( + 3& 5) } sinh z

1
2—_
H_4a

For the high energy regime, z > 1, we obtain H? x p*%. Cosmologies in
the EGB braneworld have been studied, see e.g., [53, 54, 55, 56, 57, 58, 59,
60, 61, 62, 63, 65, 64, 66, 67, 68]. Also higher-dimensional black holes in the
EGD theory have been studied, see e.g., [69, 70, 71, 72, 73, T4, 75, 76, 77, 78).

1.4.3 Dvali-Gabadazze-Porrati (DGP) braneworld

There are other possible extensions of RS model, although we will not, discuss
them explicitly in this thesis. The most familiar (and interesting) one is
adding an induced gravity term (i.e., four-dimensional scalar curvature) into
the hboundary action;

1 [, ®) \ 1 @
Spap = m’gfd TvV—g | R =275 | + fd #v/~q| =5 R —c) . (1.25)
2]{5 2"{'4

This type of model was originally discussed by Dvali, Gabadazze and Porrati
[79] and is called DGP model. The scalar curvature term on the brane is
assumed to be induced by quantum effects in the bulk.

In this model, again neglecting the dark radiation term, the modified
Friedmann equation on the brane is obtained as [80]

2nhy 217,0) 12
+ {1+e<1—-————+— } (196
£ o KIEPO P ( )

K K2
2 B Ky
H-i-az 3
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where ¢ = 4:1 denotes the possible hranches of the hulk solutions and

63 Bk2
n:m—44, p0:=o‘—l-—44. (1.27)
K5 g
A4 is the effective cosmological constant given by Eq. (1.19). Assuming a
flat bulk (A5 = 0) and zero tension brane (¢ = 0), i.e., Ay = 0, if we choose
¢ == +1 branch, at a later time, neglecting p terms, we obtain

H?=4~2 = r? (1.28)

(We also choose K = (). Although we assume a vanishing bulk cosmological
constant and a vanishing brane tension, we obtain an accelerating universe
with the expansion rate given by r. = &2/(2x3) = MZ/(2M3) [81]. This
late-time self-acceleration is an interesting feature in this type of model. As
we readily see, five dimensional effects dominate at larger distance scales
7 > 7. In this sense, the self-acceleration may result from the contributions
of KK modes. The self-accelerating universe has been discussed as one of
the possibilities for the present acceleration of the expansion of our Universe,
so-called dark energy, from the theoretical and phenomenological aspects,

see, e.g., |82, 83, 84, 85, 86] and from the obhservational aspects, see, e.g.,
187, 88, 89, 90|.

1.5 The purpose of this thesis

In this thesis, we focus on the Kaluza-Klein (KK) modes in braneworld cos-
mology in the context of the second RS model including its extensions. The
name "KK modes" just comes from Kaluza-Klein theory |1, 2| and their he-
havior in extra~dimensions is quite similar both in KK theory and in RS
braneworld. As we will see in this thesis, from four-dimensional ohservers
in the braneworld context the hehavior of KK modes is quite different. from
those in the original KIX theory.

Braneworlds predict, novel, interesting phenomena and hopefully give
possible resolutions of difficuluties in the standard four-dimensional cosmol-
ogy. For instance, as discussed in the previous section, the solution of self-
accelerating universe in DGP braneworld gives a possibility for the present
acceleration of the expansion of the Universe, without introducing any ex-
plicit dark energy source. Then, five-dimensional effects, i.e., KK modes,
play the role of the dark energy effectively. As in this case, KX modes
in braneworld cosmology may have further, intrigning effects, which should
be investigated. In the near future, the detection of signals from extra-
dimensions might also be realized in high-energy accelerators and/or cosmo-
logical observations. From this aspect, we need to clarify the signals from
extra-dimensions in braneworld context.
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On the other hand, recent observations are highly in agreement with the
predictions of four-dimensional general relativity. Cosmological observations
are also consistent with standard model of cosmology. So, in the present
situation, in order for braneworld cosmology to he viable, it is required that,
predictions of it should be at least consistent. with these observations. In this
sense, the amount of the KK modes on the brane which appear as corrections
to four-dimensional theory should not be so large. In the case that it is
large, some of the detailed assumptions of the model should be modified,
from realistic point of views. We need to evaluate the amount of the KK
modes carefully. Any confliction with observations and experiments may tell
us more realistic extentions of braneworld.

Keeping the things stated above in mind, we have planed to investigate
the hehavior of KIX modes in RS braneworld cosmology, especially their dy-
namics and effects, from varions aspects, in order to clarify their qualitative
nature on a cosmological brane, to cure their pathological nature and to find
new dynamics of them in more general context of brane cosmology. In this
thesis, we report our results of these investigations at. the present.

1.6 Omutline of this thesis

This thesis is organized as follows: In Chapiler 2, we first introduce the effec-
tive gravitational equations on the brane by using the geometrical projection
method. This formalism gives an useful tool to analyze non-linear aspects of
the effective theory on the brane. Furthermore, for a cosmological brane with
a maximally symmetric three-space, we show that there are local conserva-
tion laws as a natural extension of those in a four-dimensional spherically
symmetric spacetime. For such a brane model, we derive a closed set of
equations to describe the motion of the brane in the hulk in terms of these
locally conserved quantities.

In Chapter 3, we discuss the backreaction of KK gravitons produced in
the early stage of brane cosmology, in the hulk and on the brane. For KK
gravitons which are produced by high energy particle interactions on the
brane, we assume them as null dust fux emitted radially from the brane.
We discuss the bulk geometry and brane cosmology. We also discuss the
possibility of forming a naked singularity in the bulk. In terms of the locally
conserved guantities in the bulk with a maximally symmetric three-space,
which are derived in the previous Chapter, we also derive a set of equations
which dominate the cosmological evolution of the brane in the bulk. On the
other hand, we derive the effective stress energy tensor for gravitons of a
KK mode, which are produced quantum mechanically in the whole bulk and
discuss its qualitative nature on the brane and in the hulk for a single KK
mode.

In connection with the second case in the previous Chapter, what we
should note is that what we observe on the hrane is the sum of an infinite
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number of KK modes. Algo, we need to treat KK modes in terms of quantum
field theory because they are produced guantum mechanically. As is well-
known, however, the sum suffers divergence as one approaches the brane
from the hulk, even after a conventional UV regularization. In Chapter 4,
we propose a new regularization scheme for the sum of all KI{ modes on
the brane. We consider a thick brane model and show that a finite hrane
thickness can regularize the KK mocdes on the hrane. Then, we demonstrate
that the size of the quantum backreaction can be reduced below that of the
hackgronnd thick brane. From thes discussions, we give a theoretical bound
on the brane thickness parameter.

Finally, we extend our attention to braneworld model with the Gauss-
Bonnet, curvature correction. In Chapter 5, we discuss the linearized effective
gravity on a cosmological (de Sitter) brane in the five-dimensional Einstein
Ganss-Bonnet theory. We show that there are quite novel features in the
linearized effective theory on the brane, that the effective gravity on the hrane
is four-dimensional on all scales, from short distances to large distances. KK
modes, to sum np, play the role of a scalar field degree of freedom in the
effective four-dimensional theory on short distance scales. We also show that
on high energy expanding branes as well as on low energy ones, effective
gravity becomes also four-dimensional.

In Chapter 6, we shall summarize this thesis and mention issues related
to our work.






2

Non-linear effective equations in
the bulk and on the brane

Based on [91] (See also [34] for the case with bulk dynamical degree of freedom
other than the spacetime metric), we first derive the effective gravitational
equations on the brane by using the geometrical projection method. Then,
especially for the brane which has cosmological symmetry, i.e., homogeneity
and isotropy, we derive a set of equations to describe the motion of the brane

in the bulk in terms of these locally conserved quantities defined in the bulk
[92].

2.1 Effective gravitational theory on the brane
We set Gaussian normal coordinate around a brane
ds? = gudz®dz® = (neny + ¢o) dzdz® = dy? + gapdz®dzt  (2.1)

where we define the bulk coordinate dy = n,dx®. n® and g, are unit vector
field normal to time-like hypersurfaces and induced meric on the hypersur-
face, respectively. We assume that the brane is located at y = 0. The Latin
indices {a, b} denote tensors defined in the bulk whereas the Greek indices
{1, v} those defined on the brane in this thesis.
We start from the five-dimensional Einstein theory
®) 2 2

G+ Aﬁgab = H5Tab + H5Sab6(y) 3 (22)
and the surface stress-tensor is given by the summation of the tension and
localized matter

Sab = —0Qah T Tab (23)

where o denotes the brane tension and 7, does brae localized matter. In

. . ] {5}
this thesis, we denote curvature tensors defined in the bulk as " A" whereas
them defined on the brane as simply "A".

13
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Using the geometrical identities, we obtain

1 2 1
G = _§A5Qab + gfig (Tcdngg + (Tcdncnd - ZTCC> Q'ab)
c 1 2 cd
+ K Ko = KoeK = 5qa (K = K*'Kea) ~ B, (2.4)

where K, = ngfvcnd is the extrinsic curvature on the hypersurface whose
metric is given by q. (V, is the covariant derivative with respect to the hulk
metric gq). And

(3)
Eapy =C caefnnqlyl | (2.5)

(5) . .
where (' gpeg 18 five-dimensional Weyl tensor,
Then, we consider the junction {maching) condition across the brane,

[Q',W] =0
() = =2 (S = 3005 - (26)

Furthermore, taking the assumption of the Zs-symmetry with respect to the
hrane into account,

K2 1
K = —75 (SW - —ngS) . (2.7)

y—0-+

Substituting Eq. (2.7) into Eq. (2.4), we obtain the desired effective grav-
itational equation on the brane,

G + Mgy = H,?LT#,, + KET 0 + KET;S?;) — Fu, (2.8)

where

2 1
T,Eg} = g (ﬂdﬁqg + (Tcdncnd - _ch) q,uu) 3

4

T _—}-T T“—i-i’r'“ + = TagT® — —q,, T (2.9)

Hy = 4 pot 19 f Sq,uu af 249'#1! : .

Here we define
1
&ﬁ = gngoﬂ,

At = Shs + —slo? (2.10)

4= 5hs 12“5‘7 ; .

which are read as four-dimensional gravtational constant and cosmological
constant, respectively. [f there is only the first term in the right-handed-size
of Eq. (2.8), the conventional four-dimensional Einstein gravity is recovered.
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The m,, term is quadratic order of stress-energy tensor of brane-localized
matter. This term gives the term proportional to p? in the modified Fried-
mana equation Eq. (1.18}) for a cosmological brane. Tﬁi) term is just coming
from the projection of the stress-energy tensor of the bulk degrees of free-
dom. E,, is the contribution of the bulk gravitational field, which is one of
the most important quantities in hrane cosmology.

Stricktly speaking, the set of effective equations on the brane is not closed
even if the evolutions of the hulk metric and other huik dynamical degrees of
freedom are solved in the bulk. In general, we need to derive the equations of
motion of £, [93, 34]. However, for a cosmological brane with a maximally
symmetric three-space, the form of ¥, can be specified because of the high
degree of symmetry, apart from the depencence on the initial hypersurface.

2.2 Local conservation laws and brane cosmol-
ogy

In this section, we discuss the general property of a dynamical bulk spacetime
with maximally symmetric three-space, and consider cosmology on the hrane.
First, we derive local conservation laws in the bulk, as generalization of the

local energy conservation law in a spherically symmetric spacetime in four-
dimensions [94, 95, 96].

Next, we introduce the brane as a houndary of the dynamical spacetime.
The effective Friedmann equation is determined via the junction condition
and it is shown that the local mass corresponds to the generalized dark
radiation. Finally, we show that the projected Weyl tensor on the brane is
uniquely related to the local mass.

2.2.1 Local conservation law

We assume that the bulk allows slicing by a maximally symmetric three-
space. Then, the bulk metric can written in the double-null form

ds® = fl—z’;lidudv + r(u, v)ng%Kﬁ}, (2.11)

where we refer to v and u as the advanced and retarded time coordinates,
respectively. In Appendix A. 1, the explicit components of the connection
and curvature in an (n+2)-dimensional spacefime with maximally symmetric
n-space are listed.
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First, we consider the Einstein equations in the bulk. They are given hy

Tau T To Tu
3? (log ‘6‘)’15 = ﬁgTuu: 3"?':' (1Og 6 ),v = ‘%gTvm
Tulw K T v P 2rure
67 (1—-—§)+3T = KT — T2 A,
r2Q Tulw T
(o (52D 472 () o =i
—1'2’71']'1\5, (212)

where v;; is the intrinsic mefric of the maximally symmetric three-space.
Now, we derive the local conservation law. We introduce a vector field in
five-dimensional spacetime as

1 1 2 1 a\*°
@ — _ R 2.
¢ QQ ( 7w OV + T Bu) ' (213)

From the form of the metric (2.11), we can readily see that £% is conserved:
V=98 = (V=987 =27 ((FPra) — (rPro)u) =0, (2.14)

where v = det~;;. Note that, for an asymptotically constant curvature space-
Y Vg Y ¥ P

time, the vector field £* becomes asymptotically the timelike Killing vector
field —{(8/d¢)".
With this vector field £2, we define a new vector field,

§o = £, (2.15)

where
~ 1
Top = Tap — _2Aﬁgab- (216)
kg

Using the Einstein eqnations, the components of the vector field Sa are given
by

Ke/—gS? = %[H(K— Q)] NGE

,U

N e [ e Ve (2.17)

Ju
Then, we have the local conservation law as
Se,=0. (2.18)

Since £% is conserved separately, the conservation of S® implies that we have
another conserved current 5% defined by

g .= ‘EbTba (: gﬂ -+ :}Z'Af)ga) . (219)
5
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Thus we have the local conservation law for the energy-momentum tensor in
the bhulk.

From Egs. (2.17), we readily see the local mass corresponding to S is
given by [94]

M = (K - Q) 2, (2.20)

where the factor 3/2 in the original expression for 5* is eliminated for later
convenience. Alternatively, corresponding to S°, we have another local mass
that excludes the contribution of the bulk cosmological constant,

M= M- %Asr‘f = (K — Q)'r2 - %Ag,r‘i. (2.21)

In what follows, we focus on the matter part Af, rather than on the whole
mass M. It may be noted, however, that this decomposition of A to the
cosmological constant part and the matter part is rather arbitrary, as in the
case of a bulk scalar field. Here we adopt this decomposition just for con-
venience. For example, this decomposition is more useful when we consider
small perturbations on the static AdS-Schwarzschild bulk.

We note that, in the case of a spherically symmetric asymptotic flat space-
time in four-dimensions (hence K = +1 and with no cosmological constant),
this function M agrees with the Arnowitt-Deser-Misner (ADM) energy or
the Bondi energy in the appropriate limits.

2.2.2 Local mass and a charge associated with Weyl ten-
sor

From the five-dimensional Einstein equations (2.12), we can write down the
local conservation equation for M in terms of the bhulk energy-momentum
tensor explicitly as

M, = 2537“3 (T“v’r,u —T%r ,v);
M, = gﬁ,g'r'a (T”J,ﬂ _ T”vr,u), (2.22)
or in a hit, more concise form,
dM = §n§r3 (T”Ur!udv + 17,7 du — T”vdr). (2.23)

Using the above, we can immediately write down two integral expressions
for M given in terms of flux crossing the u = constant hypersurfaces from
vy to v, and flux crossing the v == constant hypersurfaces from u; to us,
respectively, as

2 V2
M(vz,u) ~ M(vy,u) = —K2 / dvr® (T“vr}u - T”vr,v) )
3 w1 U=COonst.
M (v, us) ~ M(v,uy) = %mg / dur (T“ur,,, - T‘;,r,u) (2.24)
s v=const.
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Finally, let us consider the Weyl tensor in the bulk. In the present case
of a five-dimensional spacetime with maximally symmetric three-space, there

exists only one non-trivial component of the Weyl tensor, say ((i”) w? The
explicit expressions for the components of the Weyl tensor are given in Ap-
pendix A. 1, Eqgs. {A.7). Using the Bianchi identities and the Einstein equa-
tions, we have [97]

(ﬂ+2) .d

abed

abes (2 25)
where

2n—1 1
Jabc = “gﬂ—)"{’fz—%Q (TcEa;b] + ( + 1) gc[bTa]) (226)

From this, we can show that there exists a conserved current,
Q¥ =rlnJ™; Q% =0, (2.27)

where £, and n, are a set. of two hypersurface orthogonal null vectors,

ly = \/5( —rydv), | fﬂ:-\/gi(;u)a,
\f (rudu), , n° _\/3 _(%) . (2.28)

The non-zero components are written explicitly as

Ty

Qv =—-rJv,, Q=-rJ",, (2.29)
and we have
(r c w"“) =1, (2-30)
(5) i

Vi .4 Tu
(T Cuu ) -Tjuu-
Rn

. , (5)
These are very similar to Egs. {2.17). Tt is clear that r* ' ,,*“ defines a local
charge associated with this conserved current.
Using the Einstein equations, we then find that this charge can he ex-
pressed in terms of M and the energy-momentum tensor as
4, (5)

(5) ~ (), 2 .
O o =3M+ %(6 GV G ) — 3M + % (670, - 7). (231)
This is one of the most important results in this paper. As we shall see below,

(5} _
the Weyl component. ¢ ,,*" is directly related to the projected Weyl tensor
E,., and hence this relation gives explicitly how the local mass M and the
local value of the energy-momentum tensor affects the brane dynamics.
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2.2.3 Apparent horizons

As in the conventional four-dimensional gravity, the gravitational dynamics
may lead to the formation of a black hole in the bulk. Rigorously speaking,
the black hole formation can be discussed only by analyzing the global cansal
structure of a spacetime. Nevertheless, we discuss the black hole formation
by studying the formation of an apparent horizon.

In four-dimensions, an apparent, horizon is defined as a closed two-sphere
on which the expansion of an outgoing (or ingoing) null geodesic congruence
vanishes. Here, we extend the definifion 0 our case and define an apparent
horizon as a three-surface on which the expansion of a radial null geodesic
congruence vanishes. Note that ‘radial’ here means simply those congruences
that have only the (v,u) components, hence an apparent horizon will not he
a closed surface if K = 0.

The expansions of the congruence of null geodesics forming the u =
constant and v = constant hypersurfaces, respectively, are given by [94]

1 1 Q 1 1Q

= —— ;a.am——— y = —— ;a'a:_____. 2.32

Pu g4 2rr,,’ P 9" 27, (2:32)

Naively, if €2 = 0, one might think that hoth p, and p, vanish. However,
from the regularity condition of the metric (2.11), we have

_qlxle S g, (2.33)

Hence, it must be that r,, =0orr, =0, Q=0 If Q= r, =0, we have
Py = 0 and an apparent horizon for the outgoing null geodesics is formed,
whereas if Q2 = r, = 0, we have p, = 0 and an apparent horizon for the
ingoing nnll geodesics is formed.

2.2.4 Brane cosmology

We now consider the dynamics of a brane in a dynamical bulk with maximally
symmetric three-space [21]. The brane trajectory is parameterized as (v,u) =
(v(r),u(7)). Taking 7 to be the proper time on the brane, we have

4%%@ =1, (2.34)

on the brane, where @ = du/dr and so on. The unit vector tangent to the
brane (i.e., the five-velocity of the brane) is given by

. L0 8 2r T /. .
e = (v-—v—i-u-w—) , Ua——Q—(udv—l—vdu)a, (2.35)

- - B 2T, i
n* = (—v——i—u—) : na——Q-(udv—vdu)a. (2.36)
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The components of the induced metric on the brane are calculated as

dze Oz°
= — 2
q,LLU ay“ ayy gﬂb ? (_1-37)
where u, v run from 0 to 3 and y* are the intrinsic coordinates on the brane
with ® = 7 and 3 = z* (i = 1,2, 3). Then the induced metric on the brane
is given by

The trajectory of the brane is determined by the junction condition under
the Z, symmetry with respect fo the brane. The extrinsic curvature on the
brane is determined as

K2 1
Kp:v = "'"""""‘2‘“"'(8,_[[; - gsqﬂu), (2.39)
where S, is assumed to take the form

with ¢ and p being the tension and energy density of the matter on the brane,
respectively, as introduced previously, and p being the isofropic pressure of
the matter on the brane. Substituting the induced metric (2.38) in Eq. (2.39),
we obtain

= 5[ 3 (p+0) - ], 24
Pl = %{%?2» (p + a) + H] , (2.42)

where H = r/r. Multiplving the above two equations and using the normal-
ization condition (2.34), we then obtain the effective Friedmann equation on
the brane:

K Kg 1 K M
H2+r_2= (5302—3—2) -I—%(de-l-pz) +g (2.43)

We see that M is a natural generalization of the dark radiation in the
AdS-Schwarzschild case to a dynamical bulk from the comparison with the
Eq. (1.18).

For a dynamical bulk, M varies in time. The evolution of A is determined
by Eq. (2.23), and on the brane it gives

M = Mo+ M

- e [nu(ltere) - )7l )]
2

- §R§T‘4 HT",. (2.44)
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From the Codaccl equation on the hrane [91],
DyK", — D, K", = w2 Tun’q%, , (2.45)

where D, is the covariant derivative with respect to ¢, and K, is the ex-
trinsic curvature of the brane, we obtain the equation for the energy transfer
of the matter on the brane to the bulk,

p+3H(p+p) =2 (—quyz + Twu2) . (2.46)

Equations (2.43), (2.44) and (2.46) determine the cosmological evolution on
the bhrane, once the bulk geometry is solved.

Now we relate the above result with the geometrical approach developed
in the previous section, in particular with the projected Weyl tensor E,, on
the brane, defined in Eq. (2.5). It has only one non-trivial component as

(5) (5) {5)
E-r-r = abcdnancvbvd z= 4 C uvuvﬂ2®2 =—-C vuvu- (247)

Using Eq. (2.31), this can be uniquely decomposed into the part proportional
to M and the part due to the projection of the bulk energy-momentum tensor
on the hrane. We find

B =
rt 6

3M 1/6), ) 3M K2y
- (Gii-6G") = -2+ 2(Ti—6T7).  (248)
If we eliminate the A/r! term from Eq. (2.43) by using this equation, we
recover the effective Friedmann equation on the hrane in the geometrical
approach [91},

K Ka 1 < Err
AR C LIRS CATIRL s S

where T comes from the projection of the bulk energy-momentum tensor

on the brane and is given in the present case by

|
T — ST =T, (2.50)






Backreaction of Kaluza-Klein
gravitons

In this Chapter, we discuss the backreaction of KK gravitons, i.e., the bulk
metric perturbations, in the bulk and on a cosmological brane. As we men-
tioned in the Chapter 1, it is considered that these XK gravitons are natu-
rally produced at an initial high-energy stage of the brane universe. There
are mainly two possibilities of the productions of KK gravitons, namely, via
high energy particle interactions on the brane and quantum fluctuations in
the hulk. Here, we show two different analyses corresponding to these fwo
cases. In the first analysis, we are interested in the KK gravitons which are
produced by non-standard parficle interactions on the brane. We assume
KK gravitons as null dust flux which is emitted from the brane radially [92].
First, we discuss the bulk geometry. We also derive a set of equations which
describe the cosmological evolution of the brane, i.e., its trajectory into the
bulk, by using the the locally conserved quanties defined in the previous
Chapter. Then, we discuss the possibility of formation of a naked singularity
in the bulk.

In the second analysis, we discuss the backreaction of KK gravitons which
are prodnced quantum mechanically in the whole bulk, during brane infla-
tion (or exist from the beginning). We derive their effective stress tensor
by computing the curvature tensors up to the second order of perturbations
and averaging them, taking the existence of the infinitely thin brane into
account, [98]. Taking out a single graviton KK mode, we derive its effective
energy density and pressure, in the bulk and on the brane. We show that
a KIX mode, if sufficiently massive, behaves as cosmic dust. but, the energy
density hecomes negatve. Then, we discuss the physical reason of the neg-
ativity of the energy density in terms of the local conservation laws in the
hulk, discussed in the previous Chapter.

23
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3.1 Emission of radial Kaluza-Klein gravitons

In this section, by using the local mass derived in the previous Chapter, we
discuss the backreaction of the bulk geometry and brane cosmology in the
context of an ingoing null dust model |99]. Here, we are interested in KK
gravitons which are produced by matter exicitations on the brane.

3.1.1 Set-up

The energy-momentum tensor of a null dust fluid takes the form,
Tap = paloby + panamy, (3.1)

where £, and n, are the ingoing and outgoing null vectors, respectively, intro-
duced in Eqgs. (2.28). If we require that the energy-momentum conservation
law is satisfied for the ingoing and outgoing null dust independently, we have

Q  flv) 0 glu)

(ro)?r® 2 ° m_(r,u)zﬁmﬁm’ (3:2)

Hy =

where f(v) and g(u) are arbitrary functions of v and u, respectively, and

have the dimension (G5 x mass) 1. We assume the positive energy density,

ie., f(v) = 0and g(u) > 0. Thus, the non-trivial components of the energy-

momentum tensor are

(v) g(u

T’UU = 7"_3 3 Tuu - "“““")‘:‘él (33)
To satisty the local conservation law in an infinitesimal interval (u, u-+du)

and (v,v + dv), we find that the intensity functions f(v) and g{u) have to

satisfy the relation,

Q Q
f('v)(;;) =) (E)m' (3.4)
In general, if both f(v) and g(u) are non-zero, it seems almost impossible
to find an analytic solution that satisfies Eq. (3.4). Hence we choose to set
either f(v) = 0 or g{u) = 0. In the following discussion, we focus on the case
that g(u) = 0, that is, the ingoing null dust.

For g(u) = 0, Egs. (2.23) give

1,0

M, = —ki—f(v), M,=0. (3.5)
3 71y

The second equation implies M = M (v). Substituting Eq. (3.3) into the
Einstein eguastions (2.12), we find

@ = ) (3.6)

Ty
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where the function F(v) describes the freedom in the rescaling off the null
coordinate v. This equation is consistent with Eq. (3.4). Thus, we obtain
the solution as

r? M(v)

1 v
0= T;UBF(U) =K -} ﬁ - ']‘2 3 ﬂf[('v) = gf{,g/ dv EF(UJ f(U) + ﬂflr() ,(37)

where we have assumed that f{v) = 0 for v < v, that is, vy is the epoch
at which the ingoing flux is turned on. For definiteness, we assume that the
hulk is pure AdS at v < vg and set My = 0 in what follows.

Transforming the double-null coordinates (v,u) to the half-null coordi-
nates {v,r) as

rudu =dr —r,dv, (3.8)
the solution is expressed as
ds® = —4Q(r,v)e”Odv® + e T dv dr + 25T,  (3.9)

where () is given by the first of Eqgs. (3.7). This is an ingoing Vaidya solution
with a negative cosmological constant [99, 100]. For an arbitrary intensity
function f(v), this is an exact solution for the bulk geometry. Note that if
we re-scale v as dv — dit = e~ Fdv, f(v) scales as f(v) — f(v) = e ?Ff(v),
which manifestly shows the invariance of the solution under this rescaling.

An apparent horizon for the outgoing radial null congruence is located on
the three-space satisfying

Q=71,=0, while r,=finite. (3.10)
This gives
£ M(v)
2 =" 24 40N
T 5 ( K2+4 7 K). (3.11)

The direction of the trajectory of the apparent horizon is given by

dr My R&Ef(v)efWiey

dv 2(rt+ M) 6(r' + M)

(3.12)

Thus, for f(v) > 0, dr/dv 18 positive, which implies that the trajectory of
the apparent horizon is spacelike.

For the case of K = +1 or K = 0, the apparent horizon originates from
r = 0, while it originates from r = € for K = —1. A schematic view of the
null dust collapse is shown in Fig. 3.1. We assume that the the hrane emits
the ingoing flux during a finite interval (bounded by the dashed lines in the
figures). For all the cases, the cansal structures after the onset of emission
are very similar. The spacelike singularity is formed at r = 0, but it is hidden
inside the apparent horizon.
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Figure 3.1: Causal structure of a spacetime with ingoing null dust for the
cases of K = +1, 0 and —1. In each figure, The (almost vertical) wavy
curve represents the brane trajectory and the dotted line is the locus of the
apparent horizon. The thick horizontal line at r = 0 represents the spacelike
curvature singularity formed there. The ingoing flux is assumed to he emitted
during a finite interval bounded by the dashed lines.
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3.1.2 Brane trajectory in the bulk

In the null dust model, using Eq. (2.34), the proper time on the brane is
related to the advanced time in the bulk as

pw T EVE D
20

by = (3.13)
To determine the appropriate sign in the above, we require that the brane
trajectory is timelike, hence © > 0, and examine the signs of 94 for all possible
cases:

1)y +7>0,0>0 — 9,.>0, 0v.<0.
(2) 7>0,0<0 — 04<0, =<0
(3) 7<0,Q>0 — ©,>0, o.<0.
(4) 7<0, Q<0 — v,>0,7_>0.

From these, we can conclude the following. For an expanding hrane, 7 > 0,
the brane exists always outside the horizon, £} > 0, and ¥ is given by 9. On
the other hand, a contracting brane, # < 0, can exist either outside or inside
of the horizon. Thus, if the brane is expanding initially, the trajectory is
given by ¥ = v, and it stays outside the horizon unftil it starts to recollapse,
if ever. If the brane universe starts to recollapse, which is possible only in
the case K = +1, by continnity, the trajectory is still given by ¢ = 9,, and
the hrane universe is eventually swallowed into the black hole.
From the above result, we find

e AT
mu=f—mﬁ=1m7;im<o. (3.14)
Using Eq. (2.41), this gives an upper bound of the Hubble parameter on the
brane as

1
H < Emg (p + o*) . (3.15)

Let us now turn to the effective Friedmann equation on the brane. For
simplicity, we tune the brane tension to the Randall-Sundrum value, xic =
6/¢. The effective Friedmann equation on the hrane is

s KL
AT

1 ,, M@
36&5}9 + 7"4 3 (316)

where M(7) = M (v(7)) for notational simplicity. From Eq. (2.46), the energy
equation on the brane is given hy

p+3§@+p)=—z%?#, (3.17)
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where f{r) = f(v(7)). From Eq. (2.44), the time derivative of M is given by

- 2 1
M = gmg [Eﬁ:g (p+0o)— H] F(r)P* (3.18)
Thus, from Eq. (3.15), M continues to increase on the brane.

The advanced time in the bulk is related to the proper time on the hrane
by 7, in Eq. (3.13). Specifically, using the equality,

M 2 K3 2 2
Q_K_!“E'Q'_";é“_r (ﬁ(p%—d) —H), (3.19)
on the brane, we have
. efl) /2 -
U= (E(p—!- o) -~ H) : (3.20)

Note that the product f%? is invariant under the rescaling of v. Once f(7)
is given, we can solve the system of equations (3.16), (3.17) and (3.18) self-
consistently for a given initial condition, and determine the hulk geometry
and the brane dynamics at the same time 1.

3.1.3 Formation of a naked singularity

In the previous subsections, we assumed that there is no naked singularity
in the bulk. However, it has been shown that a naked singularity can he
formed in the null dust collapse 2. For instance, a naked singularity exists
in a Vaidya spacetime when the flux of radiation rises from zero sufficiently
slowly. We expect the same is true in the present case.

Without loss of generality, we set ™) = 2. We consider the following
situation. For v < 0, the hulk geometry is purely AdS. The radiative emission
from the hrane begins at v = 0. We choose the intensity function as

1) =20, (3.21)
£+

where A is a positive constant. This corresponds to the self-similar Vaidya
spacetime if the cosmological constant were absent [105]. The brane ceases
to emit radiation at v = vy and the bulk becomes a static AdS-Schwarzschild
for v > vy. Thus the local mass is given by

0 (v < 0)
M@)={ 52" (0<v<w) (3.22)

Xy (v < v).

VSimilar studies have been done, see e.g.,[100, 101, 102, 103, 104]
2Naked singularity formation in the Vaidya solution in four-dimensions has been dis-
cussed, see, e.g.,[105, 106, 107, 108, 109, 110]
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The singularity is formed at (r,v) = (0,0), and it is naked if there exists
a future-directed radial null geodesic emanating from it. The null geodesics
then form a Cauchy horizon. The trajectory of a radial null geodesic is
determined by the equation,

dr 1 riv)  M(v)
e (3.29

Let us analyze the ahove equation in the vicinity of v = 0. A future-directed
radial null geodesic exists if z = lil% dr/dv is positive. Using [."Hépital’s
' Raancd

theorem, we obtain

or{yy L dr 1 2\
”ﬁﬁ?—ma—ﬂKwﬁ- (8.24)
It is clear that the above equation has no solution when A =0 or K = —1.
Hence no naked singularity is formed for K = 0 or K = —1. Therefore, we
consider the case K = 1. We introduce a function,
qm=3f—%ﬁ+A. (3.25)

Then, the condition for the naked singularity formation is that @Q(z) = 0
has a solution for a positive z. The function @(z) has a minimal point at
z = 1/3. Therefore, the singularity is naked if

1
QU/3) = -3z +A<0, (3.26)
that is,
D<r< 2 (3.27)
f— 18 . -

Thus, the bulk has a naked singularity for small values of A, i.e., for the flux
of radiation which rises slowly enough.

Qur next interest is whether the naked singularity is local or global. If
it is globally naked, it may be visible on the brane. To examine this, we
integrate Eq. (3.23). In the vicinity of v = 0, we find

2
raan(V) = To v (1 4+ b 3—2- 4 - ) (3.28)

where zg is the largest positive root of Q(z) = 0;

T = %G+(1—%A+ﬁan1—mAﬂm
+ @m%Amm¢mu~wmfﬁ) (3.29)
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and

2
o

b= 1)

(3.30)

From the form of Q(x), we readily see that zy monotonically decreases from
1/2 to 1/3 as A increases from 0 to 1/18, and hence b is positive definite.
We compare this trajectory with the trajectory of the apparent horizon. Tt
is given by Eq. (3.11) with X = +1 In the vicinity of v = 0, it gives

2A Av
Tapp(¥) = Y (1— §3_2+) . (3.31)

Since zg > 4/2XA/3 for all the values of A in the range 0 < A < 1/18,
and drapp/dv is a decreasing function of v while dry, /dv is an increasing
function of v, it follows that the null geodesic lies in the exterior of the
apparent horizon and the difference in the radius at the same v increases as
v increases, at least when v is small. This suggests that the singularity is
globally naked.

In Fig. 3.2, we plot the loci of the null geodesic and the apparent horizon.
The result is clear. The null geodesic always stays outside of the apparent
horizon, thus outside of the final event horizon at v = . Mathematically,
this is due to the cosmological constant term in Eq. (3.23), which strongly
drives the null geodesic trajectory to larger values of . Thus, we conclude
that the naked singularity is glohal and visible on the hrane. The causal
structure in this case is illustrated in Fig. 3.3. Investigations on the effect of
the visible singularity on the hrane are necessary, but they are left for future
work.

Finally, let us mention the strength of the naked singularity as we ap-
proach it along a radial null geodesic. Let w be an affine parameter of the
geodesic, w = 0 be the qingularlfv and ’rhe %angent vector be denoted hy

k* = dz®/dw. We examine R awkkb and C’ "% From Eq. (3.3) and the
Einstein equations, we have

® o &2f) (dv\? 2w [dv\? 2) s
Rab kK" = _?"3 % == ';—3* a‘&; m ——-—xo(l . mg)gw . (332)

Also, from Eq. (2.31), we have

(5) 3M  2A0° 2) -2
i v " — rf _—6 EZUME o W E—% N (333)
ur=—3 0

L . . _ 2o
Thus the Ricci tensor and the Weyl tensor diverge as w™? and w T, 1e-

spectively, These facts means that this singularity is a strong curvature sin-
gularity.
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Figure 3.2: The loci of the null geodesic (the solid curve) and the apparent
horizon (the dotted curve) on the (v,r)-plane, scaled in units of the AdS
radius £, in the critical case A = 1/18. Their behaviors are qualitatively the
same for all the other values of X in the range 0 < A < 1/18.

3.2 Backreaction of KK gravitons in the bulk
and on the brane

For KK modes which are produced in the whole bulk quantum mechanically,
we take a different approach. We derive the effective stress energy tensor for
KK gravitons by computing the curvature tensors up to the second order of
perturbations. In this way, we can discuss the backreaction of non-radially
emitted KK gravitons in a correct way. There is a problem about how to
average the second order curvature tensors. We take an averaging procedure
where the presence of the brane as an infinitely thin object is taken into
consideration. The procedure is discussed in Appendix A. 2.

A similar analysis for KK modes of the massless, minimally coupled scalar
field is discussed in Appendix B. Our discussion in this section is basically
along this line, apart from the existence of the brane intrinsic contributions.
We adopt a more general perspective by considering a (d — 1)-brane embed-
ded in a (d + 1)-dimensional bulk spacetime, although we remain primarily
interested by the case d = 4.
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Figure 3.3: Causal structure of a spacetime with ingoing null dust when a
naked singularity is formed. The wavy and almost vertical curve represents
the brane trajectory and the dotted line is the locus of the apparent horizon.
A naked singularity is formed at r = 0 along the v = 0 null line. A radial,
future directed null geodesic originating from the naked singularity (the right-
pointed thick line) stays outside of the apparent horizon and reaches the

brane.
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3.2.1 Effective theory in the bulk

We now consider only pure gravity in the bulk. The action of the system is
given by

1 (d+1)
Slg] = T f dde\/‘Q( R “2Ad+1) - / dz/—qo,  (3.34)

where Ay.q is the bulk cosmological constant and ¢ is the brane tension. We
mainly consider a dS brane background in this subsection and assume that
its tension is larger than that of the corresponding RS value 2(d—1)/(x3,,{),
where £ = (—d(d — 1)/(2A441))*? is the bulk AdS eurvature radius.

0
We start, from an unperturbed metric ¢, which is a solution of Einstein’s
equations and thus satisfies

ol = 0 ) (335)

where and in what follows the notation, Q[a+g] lf, means that a functional

Qla + g] of g is evaluated for a function f, i.e.,
Qh+ﬂL=Qh+ﬂ. (3.36)

We then consider (small) linear perturbations of this metric, which we

. gy . . .
write € § and such that its average vanishes i.e.,

)
{(g)=0. (3.37)

Here we should specify our definition of averaging. We assume that the

(1 L.
perturbation ¢ has a typical wavelength A which is much smaller than the

characteristic curvature radius L of the background Eg'], A <€ L. Then we
take the average over a length scale much larger than A but much smaller
than L. In our case, we can take this average in the spacetime dimensions
parallel to the brane. However, the situation is dramatically different in the
direction of the extra spatial dimension because the brane is infinitesimally
thin, which implies that the curvature radius along the extra dimension is
infinitely small. Therefore one cannot take an average in that direction at or
around the brane. Thus our averaging will include only the average over the
14 (d—1) spacetime dimensions. (For spatially homogeneous perturbations,
we take only the time average.)

What we are interested in is the correction to the original metric due to
the backreaction of the metric perturbations. The total metric we consider
can thus be written as

om0
Gt =9 +€ 9 +€© 9, (3.38)
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.4 . .
where the quantity ¢ represents the backreaction due to the metric per-

turbations, so that the effective background (homogeneous) metric, after
averaging, is given hy

_ om0

=9+ g . (3.39)
For convenience, the parameter ¢ is infroduced as an expansion parameter,
which is to be set to unity at the end of the calculation.

. . (1]
If we expand the action with respect to g, we have

slo+<5) = s[a] + 1] (- 9) + 1251

{c %})QJF O(). (3.40)

. . 1
Hence the variation of the above expression with respect to § yields

55 58 2y 38
635[9+g] E@[g]‘;r O(e”) = 6;5-9-[9]

igl + 0(62) = 0(62) , (3.41)

1 =
€y
where we have used Eq. (3.35) in the final equality. This implies that, up to

. N I
O(e), the equation of motion for the perturbation g is given by

2517 49
dg I

m=0. (3.42)
€9

On the other hand, the variation of the action with respect to gy, gives

58 §ST T
0=gll. = 5l
_ 8817 , 6% iy 16%8 13 2 s
= 59 §+5—gz[g] g(e 9) 55?[9] g(e g) + O(e®)
557 11 828 my 1638 (12
= 5l e el (<) + bl (e 9)
+0(€%), (3.43)

where, to get the last expression, the argument of the coefficient of the

0] .

third term, §, has been replaced by ¢, which is justified within the accu-
racy of O(e?). If one averages the above expression, the second term on
the right-hand side vanishes and we obfain the equation that determines the
backreaction-corrected background metric g, in the form

48 1,/08%8 [

e = _- = X 3.44

59[9]9 2€<g(5939]‘3‘g> (3-44)

Substituting the explicit form for the braneworld action, we find that
Eq. (3.44) yields

(d+1) -
G ab + Ad+15ab = H’i-g-lTab + t(brane) %+ 6t(brane)ab ; (345)
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{d+1)
where G is the background bulk Einstein fensor including the backreac-
tion effects, i.e., for the metric §. And the stress-energy tensor due to the
backreaction in the hulk is given by

2
K T% = —<(d+1) Gab> ; (3.46)

where (d“)[(z,iab is the bulk Einstein tensor at quadratic order. Heve it may be
worth noting that averaging is necessary for this effective stress-energy ten-
sor to he physically meaningful, since there exists no locally covariant grav-
itational energy-momentum tensor due to the equivalence principle. The
tensor #(hrane)®s corresponds to the brane energy-momentum tensor in the
background configuration defined by the metric § and thus comes from the
variation of the brane action in the left-hand side of (3.44). Finally, 6¢brane) %
which comes from the brane-dependent part in the right-hand side of (3.44),
denotes the backreaction due to the brane fluctuations and will be discussed
later. The existence of this term is the most important. difference when com-
pared to the case of the scalar field, in which case the backreaction originates
purely from the hulk.

(d+1} (d+1)
Hereafter, we write G % as G % for simplicity. For the moment, we
concentrate on the effective theory in the bulk,

{d+1)
G %+ Mg 0% = k5, T%. (3.47)

Qur first task is to evaluate the effective bulk energy-momentum tensor 7%,
which is guadratic in the metric perturbations. Then we will take the limit
to the brane.

We now identify the background metric /¥ with the separable metric of
AdSgy; bulk-dS brane spacetime and gl!l as the linear perturhation of this
system. Namely,

ds® = dy* + b*(y) (Y + By )dzidz”, B% = ha'lg =0, (3.48)

where b(y) is the warp factor defined in Eq. (B.12) and -, is the metric of a
d-dimensional dS spacetime which is an extension of Eq. (B.13). Note that
we have adopted the so-called RS gauge for the perturbations [9, 111]. The
equation of motion for the perturbations in the bulk reads

1 1
[b—day (bdc")y) +5 (Dd — 207} |hag = 0. (3.49)
This equation is separable and one considers solutions of the form h.s =
F(y)pap(z*), where f(y) is the generalization of the solution of Eq. (B.15)
to the case of a d-dimensional brane with boundary condition 8, f(y) = 0 at
y = Yo because dyhas = 0 on the bhrane. Similarly to the scalar case, the
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separation constant m represents the effective mass of a KK graviton mode
and satisfies m > (d — 1)H/2. The d-dimensional part %4 satisfies

[Eld . 2H2] o5 = mp%. (3.50)

We focus on a KK mode with m® > H%. Furthermore, for simplicity, we
focus on perturbations of the tensor-type with respect to the spatial (d —1)-
geometry, namely on those with A'; = h*; = h%, = 0. Taking the slicing of
the de Sitter space with the flat spatial (d - 1)-geometry, they will have the
form,

i fm . 7
hj = W COS(?TLt)Q I (351)

where f,,, is the amplitude of the KIX mode and @; is the polarization tensor
on the flat (d — 1)-space. The amplitude f,,, can be determined, for instance,
by the normalization condition if one considers a quantized perturbation
theory.

As mentioned earlier, in order to obtain the stress-energy tensor that
embodies the backreaction due to the metric perturbations, one needs to
“average” the FEinstein tensor at guadratic order, according to Eq. (3.46).
The components of the bulk curvature tensors, up to quadratic order in the
perturbations are listed in Appendix A. 2. As explained after Eq. (3.37),
we take the spacetime average in the 1+ (d — 1) dimensions parallel to
the hrane, but not along the extra dimension. In particular, because of the
cosmological symmetry, we can take the average in the (d—1) dimensions over
the complete space. The derivatives along the extra dimension are replaced
by using the field equation (3.49) and the boundary conditions on the brane.
Our procedure is detailed in Appendix A. 2.

Using Eq. (A.24) of Appendix A. 2 and the computational rules detailed
in Appendix A. 2, we obtain in the limit y — +0 the expressions

<(d+1)[§yy> — _%<h""Dd hpa> ,
<(d+” g“ﬁ) N _%<hap|3dhpﬁ> - %5aﬁ<hmmdhﬁ">
B %<hm|ahm]ﬂ> . (3.52)

A priori, the effective energy-momentum tensor includes an anisotropic stress,
to which each mode will contribute with a factor O(m?). However, if the per-
turbations are described by a random field which is statistically homogeneous
and isotropic, the average over all modes of the anisotropic part must cancel.
What remains is thus to justify the randomness of the perturbations. In this
respect, the quantum fluctuations are indeed expected to have this property.

(2] ] ) -
Also, {¢*Dw,) vanishes on the brane by using the boundary conditions
Oyhap = 0 on it.
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3.2.2 Backreaction on the brane

Let us now discuss the effect of the backreaction onto the hrane. The pro-
jected gravitational equation on the brane reads

(b)

Gaﬁ = _Aeff 50,6 + H]i Taﬁ[h;, h] + Eﬁ_;.l T Qﬁ - Eaﬁ; (353)
where g d
-2 -2
Ao = =g~ Ran + gy enc” (354

is the effective cosmological constant on the brane, and

B T % = %:—?r@“ |72+ 0% (T3 - C%T“a)]
- ._g{._? [<(d+1) & aﬁ> + 5aﬁ(<(d+1) %yy> _ é<(d+1) o aa>):|
- 2—5&%@@@ hp5> + %Jaﬁ@mi}d h,,a>
+£1(—ddmi"2“1—)<hmlahpa|ﬁ> ; (3.55)

is the projection of the effective energy-momentum tensor of the hulk gravi-
tons. The tensor 7%, corresponding to ¢ (pranc)®s of the previous subsection,
describes the brane perturbation induced by the bulk perturbation. We will
show in the next subsection that, for our purposes, this term can he ne-
glected. We now concentrate on the effect of the effective energy-momentum

(b)
of the bulk gravitons projected on the brane, i.e., the terms T %5 and E%4.

Let, us first consider %? “3. Because of the assumed symmetries, i.e.,
the spatial homogeneity and isotropy, this gives in the brane an effective
perfect fluid with some energy density and pressure. Decomposing the metric
perturbations into KK modes, one finds that the contribution of a sufficiently
massive mode to the energy density and pressure is given by

() (d+3)(d—2) 1
2 to_ 2 r 12/ Akl
h’d+l T = lﬁd(d— 1) ad“—lm |fm| <Q Qkﬁ) )

; O, (R+3)(d-2) 1

2

Hd—i—i T J . 16d(d— 1)2 ad“l m2|fml2<chQ:€£> 51] " (356)

We must also take into account the projection of the Weyl tensor on
the brane, E%;. Although this term is not included in the "bulk energy-
monemtum" tensor because it is a part of the bulk Weyl tensor, it con-
tributes nevertheless to the projected gravitational equations as an “energy-
momentum" tensor. Although its direct evaluation is rather delicate, this
term can bhe computed by resorting once more to the cosmological symmetry.
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From Eq. (3.53), the contracted Bianchi identities D*@G P = 0, together
with the conservation of 7,2, give

(®)
D*E,, = 65.4D* T . (3.57)

Because of the cosmological symmetry, the only non-trivial component of the
above equation is the time component, which reads

; ( (b) ()
o8 +doi, =, (8. T+ (@- D2 P 2T @)

where, on the left-hand side, we have used the property that E,, is traceless
and thus Ei; = —E*,. The integration then vields

2 ¢ :
fo . fé:;/ dt’ad(at Tt 4 (d- 1)“ P, _ 3 ) (3.59)
As before, we neglect the contribution from the initial condition, which is
valid at late times.

Substituting a KK graviton mode given by Eq. (3.51) into the integrand
on the right-hand side of Eq. (3.59), and taking the time average, one finds

(b) , a (o), a
.‘wd_*_l(at t‘l‘(d 1) T t_ET z)

+3){d-2) H .
- léti(;(m 1) ) P A | falPmm <Qque>- (3.60)

This gives, af late times,

P+3)(d-2) 1 .
Et:——( 2 m2< e *_>. _

t 16d(d _ 1) ad_i m |f | Q QM.’ (3 61)

Becanse of the traceless nature of this tensor, we then obtain E*; = —(1/(d~
1))1:?‘%6}.

The total contribution of the two tensors is therefore
(5) d—2 1 s
Ko T 4 — By = T m2|fm[2<Qqué> - (3.62)

for the temporal part and

() . .
K2 T % — EL =0, (3.63)

for the spatial part. This means that the contributions of a KK mode to the
total effective energy density and pressure are respectively given by

d—2 1 o8y
r‘igp(cﬂ‘) = TG gt mz|fm|2<Qque> :

f{ip(eff) =0. (3.64)
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For instance, for d = 4, we obtain

1 oy
Kip(e) = "@m2|fm|2<Qque>=
KaPletty = 0. (3.65)

The effective isotropic pressure vanishes and the effective energy density is
negative. This is the same as in the case of the scalar field discussed in the
previous suhsection.

We note that the bulk energy density of a KK mode on the brane remains
positive

d+3 1 .
KgpaPouk) = —Rg T = Tod a—dt;mzlfml2<Q“le> >0,  (3.66)

as in the scalar case, Eq. (B.27). It shows again that there is no singular
effect in the bulk. The negativity of the effective energy density on the brane
originates from the projected Weyl tensor E,,.

3.2.3 Brane intrinsic contributions

We now consider the brane intrinsic contributions. In order to discuss the
gravitational perturbations in the brane world, it is not sufficient to consider
the contribution from the bulk. The brane perturbations must be taken into
acconnt. as well. We take an approach in which we derive the second order
boundary action and regard it as the action for an effective matter on the
brane.

The brane is treated as a thin wall. In the thin wall approximation,
the second order action on the boundary has been derived in the Appendix
of [111]. When there is no ordinary matter on the brane and thus no hrane
hending mode, the second order hboundary action is given by {111]

1

26441

~2 ..
/ % —q[—Akﬂﬁh,,ng—“—“dihﬂﬂhm], (3.67)
AL

2¢
5 = 2(d —1)

where hy, = 0*hu, kps = Oyhpe/2 and AQ = Q) — Q). For an AdS-bulk
configuration and with the assumption of Z, symmetry abouf the brane, this
reduces to

2o 3 f d = po
5°8 = e 1)0 azud z/ G hpah™ . (3.68)

The second order action can be regarded as an action for some effective
matter induced on the hrane

3
d —0 = ——— pd. .
/aMd:c\/ GLm, Lm: 2(d_1)ghmh (3.69)
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Its variation with respect to the background metric §,, yields the induced
matter energy—momentum tensor on the brane

\/_5(10!@ (\/—[' ) (haph B “Q’a,sh hpg)(l_’) 70)

Note that, strictly speaking, ¢, does not include the backreaction. However,
as discussed previously, for perturbations with small amplitude, the linear
perturbation equations are identical to those for the background metric in
which the backreaction is taken into account. Thus we can add this term as
a part of the (effective) matter contribution in the effective equation on the
brane.

We can readily calculate the effective energy density and pressure of this
contribution. One finds

ﬁ?ip(brane) = E%Hﬁdﬂ 2|fm|2 <QMQM>

3(d—2)(—d+5 ,
ng(brane}z ( lﬁ(d)( )+ ) d-§-1 2]fm| - 1<QAngE> (371)

However, its contribution to G%g is of order

K, 07 ~ E—E(l + (HO® ) hhy, (3.72)
where we use [111]
2d—1) 1/2
o= a (1+ (m0)") . (3.73)

For the cases Hf <« 1 and Hf >»> 1, the right-hand side of Eq. (3.72) is
O(£72h2) and O(H?h?), respectively. Thus as long as we consider sufficiently
massive KIX modes, with m 3> max{¢~', H}, the brane perturbations can he
safely neglected and only the projected bulk contributions are relevant for
the effective theory on the brane.

3.3 Brane dynamics in the bulk and the evolu-
tion of dark radiation

Intnitively, the “negative energy density” of a KK mode is rather puzzling.
However, we can understand its cause by regarding the KIK modes as a part
of the dark component, such as the dark radiation. The energy density of
the dark component evolves as

poy +4Hpy) = —2(1 + g) Twun® — 2(HOTopnn® (3.74)

where u® and n® are the tangent and normal vectors to the brane, respectively.
p(py is related to the bulk local mass defined in the preceding Chapter as

H)?
M= 3.75
3 ga PD)- (3.75)
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Since there is no matter on the brane and no brane-bulk energy exchange, the
first term on the right-hand side of Eq. (3.74) vanishes and only the second
one, related to the pressure transverse to the brane, survives. In terms of the
energy conservation law in the bulk discussed in previous Chapter, this has
the simple interpretation that the work done hy the pressure on the brane
to move it outward in the direction of the AdS infinity reduces the energy
in the hulk. As a result, the dark energy density decreases, since the dark
energy density on the brane is proportional to the total mass (energy) AJ.
We consider the case of a massless scalar field discussed in Appendix B,

but the case of KK gravitons is essentially very similar. For a massless scalar
field,

Tpnin® = %452 >0. (3.76)

Thus, the dark component decays faster than ordinary radiation. For the
KK modes, after time averaging, we have

1
b= Y | fon|?m? . (3.77)

The formal solution of Eq. (3.74) is

Tabn“n

2 [ e
2Dy = —g‘/; dt a4(HE)Tabn nb + ‘(1_4’ (378)

where C' denotes the initial mass in the bulk. For the KIK modes,

ft R g | [l [ dt i = g (a(t) = a(to) )|l (3.79)

0

Hence

4 C
oy = =5l fmlm? + =, (3.80)

where we have redefined the mass parameter C by absorbing into it the initial
data dependent term of the integral (3.79).

Anyway, in the case of a dS brane (or a cosmological brane which slightly
deviates from the dS geometry), the effective cosmological constant domi-
nates the cosmological evolution and the KK effect does not have a signifi-
cant impact on the brane. For a low energy hrane, especially for a radiation-
dominated hrane, naively one might worry that this result would imply the
appearance of a negative energy density within a finite time. However from
Eq. (3.74), the bulk pressure term is proportional to H. Hence if H < 0 at
H = 0, the energy density will remain positive at the expense of rendering
the universe to recollapse.

For simplicity, we consider the case where the cosmological evolution of
the brane is determined solely by the dark component. Note that this dis-
cussion can be generalized when one considers ordinary dust or radiation
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in addition to the dark component. The Hubble parameter on the hrane is
obtained from

K2 K2 k2 C k2 K2 C
H = __,,mm I R TR Y ¥
507 fnl'm® + 5 Tan®’+ g g2 - 389)
Taking the time derivative of this equation, we obtain
2 2 2
S| 5 o 2r3 C g an 285 C
=52 S A g _ I 82
" 4 a3|fm| T A 55 Tarnn 3¢ a? (382)
Therefore, at H = 0, we have
H= —%Tabnﬂnb <0, (3.83)

and the universe begins to collapse. Thus, the backreaction of the KIX modes
leads to a collapsing universe.

The situation is the same for the case of KK gravitons as long as the
brane fluctuations are negligible, because we have

2 Toynon = —<@yy>=%m2(hﬂ°hm>
_ 11_6| fm§2m2£§<Qka;f> >0. (3.84)

Thus, provided that the brane fluctnations can be neglected, the brane uni-
verse will start to collapse within a finite time. For more realistic situations
in cosmology, our result suggests that for a low energy brane the brane uni-
verse will eventually collapse unless the contribution of the true (normal)
dust matter is larger than that of KK modes.

3.4 Summary and issues

In the latter half of this Chapter, we investigated the effect of a Kaluza-Klein
(KK) graviton mode on brane cosmology by deriving the effective stress-
energy tensor in the bulk and on the brane.

The KK gravitons, which are just the metric perturbations in the bulk,
are produced during a de Sitter (dS) brane inflation phase via vacuum flue-
tuations. From the four-dimensional point of view they are effectively equiv-
alent to massive gravitons with masses m > 3H/2, where H represents the
dS expansion rate of the brane. The theory of linear perturbations reveals
that the squared amplitude of a KK mode decays as a3 and its contribution
rapidly hecomes negligible during the brane inflation. However, after brane
inflation in the radiation-dominated Friedmann-Lemaitre-Robertson-Walker
(FLRW) era the background radiation energy density decays as a=*, which
implies that the contribution of KK gravitons may have a significant impact
on brane cosmology at late times.
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We first derived the effective energy-monemtum tensor of a KK mode in
the bulk, and investigated the effect of the KK mode on the brane cosmology
by projecting the effective energy-monemtum tensor on the hrane. We have
found that a massive KK mode behaves as negative energy density dust. In
this Chapter, we discussed only the case of a dS brane background. However,
in Appendix B, we confirmed that a KK mode of a hulk scalar field also
gives a negative energy density on the brane for a low energy cosmological
brane. Thus, the feature is rather generic for any separable background.

The negative energy density of a KK mode may sound rather puzzling.
But, from the bulk point of view, we have shown that this result can bhe
regarded ag a natural consequence of the energy conservation law in the bulk.
Here the essence is to recall that the dark radiation term, which hehaves like
radiation on the brane, describes the total mass in the bulk. Then, a very
massive KI{ mode corresponds to a particle with a high momentum in the
direction of the extra dimension, which exerts a pressure on the brane and
pushes it outward in the direction of the AdS infinity. As a result, the energy
in the bulk decreases, leading to the decrease of the dark energy term. Thus,
a massive KIX mode gives a negative contrihution to the dark radiation term.
This is why a KK mode behaves like negative energy density dust.

Note that the negative energy of a KK mode emerges only from the ef-
fective four-dimensional point of view on the brane. The bulk energy density
for a KK mode still remains positive and thus there is no singular effect in
the hulk.

However, for a general cosmological brane, one cannot define a KK mode
since its very definition depends on the separability of the equations in the
bulk. Nevertheless, considering the discussion from the bulk point of view
given in the previous paragraph, it seems reasonable to expect that this back-
reaction effect of the bulk metric perturbations persists for a general cosmo-
logical brane. Thus we conclude that the effect of very massive KIK modes is
to reduce the energy density on the hrane and hence the expansion rate, and
for a low energy brane the nniverse will recollapse unless the contribution of
normal (true) dust matter is larger than that of the KK modes.

To quantify this effect in realistic cosmological models, there are some
additional issues that remain to be resolved. We have considered only a
single KK mode and calculated the effective energy density and pressure.
In reality, one should integrate over all the KKK modes that contribute to
the cosmology of the brane. This requires first, the knowledge of the whole
spectrum of the KK modes, which will presumahly be determined by vacuum
fluctnations in the bulk. However, knowing the whole spectrum may not be
enough, hecause a naive integral of the KK spectrum is expected to diverge.
One would then need an appropriate regularization scheme. In connection
with this, it may he important to take into account the thickness of a brane.
In the next Chapter, we discuss the effect of a finite brane thickness on the
KK spectrum.
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A new regularizaton scheme for
Kaluza-Klein modes on the brane

In this Chapter, we give a quantitatve study about the amplitude and back-
reaction of the Kaluza-Klein (IKK) modes of a massless scalar field, produced
in the whole bulk quantum mechanically, In the previons Chapter, we have
treated the KI{ gravitons classically, though they are considered fo he pro-
duced quantumly mechanically.

As is well-known, the sum of the KK modes suffers from divergence as
one approaches the brane from the bulk. It prevents us from evaluating fluc-
tuations and backreactions exactly on the brane. This implies that one may
take "structures" of the brane into account, to obtain successfully regularized
KK contribution. In this Chapter, we propose a new regularization scheme
for this type of divergence by a finite brane thickness.

As a demonstration of this scheme, we show that a finite brane thickness
can regularize the quantum fluctuation on the brane in an explicit thick
brane model. We consider KK modes of a massless scalar field evolving on
the thick hrane background. The reason we choose a massless scalar field
is that especially for the minimally coupled case, the equation of motion of
the scalar field is the same as that of the gravitons and also for technical
simplicity. First, we consider the quantum fluctuations. We show that a
finite brane thickness can regularize the quantum fluctuations on the hrane
[112]. We also calculate the amount of the scalar field backreacition for the
minimally coupled case and show that the the amount of the backreaction
can be reduced to below that of the background stress-energy [113]. We
finally mention the case of KI gravitons.

4.1 A thick de Sitter brane model

We consider the Einstein theory coupled to a bulk scalar field,

1 (d-+1)

5= 5/df“la:\/—_g,v( R —(8x)" - 2V(X)) , (4.1)

45
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where the potential of the scalar field is given by the axion like form {48, 49|,

V(0 = Va(eos | X])"7 (42)

Note that we once shall set «2_, = 1 in this Chapter and will back them if
needed.

We shall assume a static configuration, namely ¥ depends on only the
bulk coordinate and make the following metric ansatz

ds? = b(z)*(d2? + yuda*d”), {4.3)

where v, denotes the metric of d-dimensional de Sitter (dS) spacetime. Fol-
lowing the above ansatz, we obtain the Kinstein equations

dld—1) N2 dld—-1), 5 1 5 4
2 (b) T = bV,
2 ¥y2 1 d 1, .
(d—l)[b+§(d—4)(b) 2(d—2)H]_ SXT - BV (44)

and the field equation for the scalar field is

v ov
" d'“l-—’—bg—:
X"+ )X I

2 0, (4.5)

where the prime ’ denotes the derivative with respect to z. Note that only
two of these three equations are independent. For this potential, we find the
solutions

bz) = (cosh (ﬁg_z))‘ %(2) = xo5in""! (tanh (%)) (6)

where

i = (d— 1)[31@_ o]’ X0~ V(d-1o(1~0). (4.7)

This solution represents a dS domain wall whose energy is localized at, z =
0, i.e., the center of the wall. The parameter ¢ has the meaning of the
thickness of the wall (brane) from the physical point of view. In order to
keep the positivity in the square root, we should restrict the range to [48]

O<o<l. (4.8)

The classical stabilities of the thick brane model against the tensor and scalar
perturbations are discussed in Appendix C.1 and C.2, respectively.
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4.2 Quantized scalar field perturbations

Our purpose is to discuss the quantized scalar field perturbations on a thick,
inflating brane model. We achieve this by infroducing another scalar field
¢, which is coupled to the domain wall configuration and its fluctuations.
Hence, we add the action of the scalar field ¢ to the original action Eq.
(4.1), i.e.,

g - %/dd“m\/—_g((d?{l)—(8¢’)2"“2V(¢))
.1 /dd+1m\/~_—g(—(8¢)2-§(d§1) #), (4.9)

where £ is the scalar curvature coupling.

As discussed in [114, 115] the coupling of the field ¢ to ¢ can be ignored
hecause its hackreaction to the domain wall geometry is only important at
higher order, O(¢?)." This assumption allows us to treat the ¢-field contribu-
tion perturbatively. The minimally coupled case, £ = 0, will be of particular
interest, hbecause the perturbation equations are very similar to those for
tensor perturbations of the metric (see Appendix C.1).

4.2.1 Dimensional reduction approach

We shall evaluate the amplitude of the quantum field ¢, based on a dimen-
sional reduction of the higher dimensional canonically quantized field. This
method has been already discussed in [117] and we refer the reader to this
reference for more details.

In this method, the action of ¢ is rewritten as

)
Se=3 [ ¢aov=g6(0u ¢ B ), (4.10)

where we set. a regulator boundary at z = L in order to obtain a well-posed
quantum field theory on the dimensionally reduced spacetime. Then, the
bulk modes become discrete and the solution is written as

¢z, 2) = ZF z)on(z*) HY?, {(4.11)

where ¢, has the dimension of a scalar field in the d-dimensional dS space-
time. Due to the maximal symmetry of dS spacetime, we can integrate out
the dependence on the transverse directions, z*, assuming that the vacuum
respects the dS invariance. Hence, we shall drop it in the amplitude.

Integrating the action with respect to z, it is reduced to the summation
of theories of a d-dimensional massive scalar field with mass m,,:

- %Z f d?a/=7 a (@) (Dd - mi)(pn(:c“) , (4.12)

'These works nse the methods developed in [116].
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Figure 4.1: The potential for a minimally coupled bulk scalar field perturha-
tion is shown as a function of Hz for a four-dimensional dS wall. The thick,
thick-dashed and dashed curves correspond to the cases of ¢ = 0.01,0.05, 0.1,
respectively.

where we employed the normalization condition

2 fo (H d2) 5 () By (2) Fyp (2) = G (4.13)

Note that the multiplying factor of two is due to the Zso-symmetry. The
mass-squared m? is given by

d— 1)

m: =g H*+ £4—)H2. (4.14)

We introduce a new function f,, (2) := bl&1/2(2)F, (z), which obeys the
Schrédinger like equation

- f;;(z) - I}(Z)Hzfqu = Qinfqn(z) : (4.15)
where
- 2d 1

For the minimally coupled case, £ = 0, this potential reduces to the one for
the tensor perturbations, Eq. (C.3). In Fig. 4.1, we plot the potential for
the d = 4 case explicitly for £ = 0. Tt is evident that the potential becomes
deeper for smaller values of o.
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Figure 4.2: v/o is plotted as a funcfion of thickness, . The thick, thick-
dashed and dashed curves correspond to the cases for £ = 0,3/32,3/20,
respectively.

The solution of the KK modes is
fon(2) = CLP (2} + Co P70 (), (4.17)

where P¥(z) denotes the Legendre functions of the first kind, 2 =
tanh(Hz/o) and

. VTHAE = O@d—1)o” + 2do) 1
= 2 |

(4.18)
The coupling

d—1
§C= 4d

denotes the conformal coupling strength, e.g., for the d = 2 case £, = 1/8

and for the d = 4 case £, = 3/16. In this article, we restrict the coupling to
the range 0 < &€ < €.

The mass of the bound state mode is given hy

(4.19)

1
o= —, {4.20)
G

which has a maximal value of (d—1)/2 at £ = 0. For £ < 0, the bound state
hecomes tachyonic and non-normalizable. For £ = 0, it is the zero mode and
for £ = &, it becomes the lowest mass KK mode, irrespective of the choice
of o. In Fig. 4.2, we plot v/o as a function of o for several choice of £&. We
find that this ratio is almost independent of o. Note that the £ = 0 case is
equivalent to the bulk tensor perturbations.
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4.2.2 The zeta function method

Given the functions f, (2}, the vacuum expectation value is defined by

(¢(2)) = bd T )Zfi (2){g. (=), (4.21)

where the factor of two is due to the Zo-symmetry. From now on, we shall
discuss the quantized field theory in Euclidean space, i.e., the metric is

ds® = b%(2)(d2® + d%3) , (4.22)

where d¥4 is the line element of §¢ with unit radius, whose volume is given
hy

dtL
272

Vee = ————.
ST

(4.23)

Thus, in order to consider the gnantium fluctuations of a d-dimensional field,
we assume that the vacuum is given by the Euclidean vacuum, which corre-
sponds to the dS invariant, Bunch-Davis vacunm in the original Lorentzian
spacetime.

For the d-sphere, S%, any local quantities are related to global ones by
simply dividing by the volume of the sphere (a property of maximally sym-
metric spaces; see [117]). Thus, we are particularly interested in the local
vacuum expectation value as only a function of z (one non-trivial dimension),
implying

t) = /dda:\/f?Kn(:c,:r;;t) ) (4.24)

where K, is the dS heat kernel for each mode n, see [117]. Thus, due to the
maximal symmetry of dS space, the global heat kernel is simply related to
the local one by

Ko(t) = 22

HdK (z,z;t) . (4.25)

At this stage it is convenient to rescale the amplitude as

@) = ). (4.20)

where overall factors can be restored at the end of the calculation. Now we
may sum up all the KK modes in Eq. (4.21); however, as is well known, a
naive summation over all the KI{ modes gives rise to unwanted divergences.

To deal with such a problem, we construct the local zeta function, {(z, s),
along the lines of reference [117], where the parameter s is initially assumed
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to be Re(s) > (d + 1}/2 in (d 4 1)-dimensions. Once we obtain such a zeta
function, after analytic continuation to s — 1, we end up with

($2(2)) = lim ((z, 5), (4.27)
where
z b(2)* Wga 1 f"" 1
= e = a 1) 4.2
{(z, s) T ((z,s) &) dtt° K (z,t) (4.28)
K(z,1) is the local heat kernel defined as
K(zt)=2Y_ f2(2)Ka(t), (4.29)
n=1
and
oo
K, (t) = Zdj o lai G +1/2)% B , (4.30)
J=0

where d; is the degeneracy for each mode j given by

i+ d — 2)1
dj= (2 +d-1) 94z

FICER 3y

is the global heat kernel for each KK mode. Note that the dimension of ¢
is slightly different to the case discussed in [117], because of a difference in
dimension of the warp factor.

4.2.3 Comntour integral representation of the local zeta
function

First, as a resolution to the subile nature of the continnous modes, we intro-
duce another boundary at z = L. This then enables us to evaluate the zeta
function using the residue theorem, based on certain assumptions relating
to the zeros of the function in the contour. Then, after constructing such a
zeta function we show that we can take the one brane limit L — oo in a well
defined manner.?

The solution for the scalar field perturbations in general dimensions is
given by

ful2) = Ny, Pire (@) = B, i (2)) (4.32)
where for convenience, we choose the second solution R (z) to satisfy
. ) . , 1
FP (n) R (z) - R (@) B (@) = T— (4.33)

2The same approach cannot be used for the one-loop effective action because it is a
glohal quantity, e.g., see the discussion in [118].
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where z = tanh(Hz/¢). There are several candidates for Ri%(z) such as

I'(—igoc + v+ 1)
['(ige + v +1)

T
2i¢sinh(mqo)

Q. (2), P (), (4.34)
and so on. For now we do not need to specify the explicit form of the second
solution R%7(z), but only use the property of the Wronskian in Eq. (4.33).

To be specific, let us consider the case of Nenmann houndary conditions.
The boundary conditions at the center of the thick brane and the second
boundary are respectively

f.;(z)|z=0 =0, f;(z”z:L = 0. (435)

Note, the thick brane is not a boundary, we just fix the z derivative of the field
at a point to obtain a well-posed eigenvalue equation. From these boundary
conditions, we get an equation which determines the KK mass spectrum as

P ()R (21) ~ P (21) R(0) = 0. (4:36)

We denote the solutions for the eigen-equation as ¢, (n=1,2,3, ) whose
eigenfunctions are

Jau (D) = Ny, (0, PL27 (@) — By, B9 () (4.37)
where

G _ RET(0) _ R(zy)

ﬂqn qunﬁ'r(o) ijnd"(l'};) )

We assume ¢; < g2 < g3 < ---, respectively. Note that the final equality
is satisfied only for ¢ = g,. Without loss of generality, we can choose a, =
Ri#°'(0) and 8, = P5'(0). We shall also require the normalization constant
for n-th mode which is found to be

(4.38)

L ) ] 2
Nq:? = 2/0 (H dz) (aanjq""(m) —ﬁanf,q""(m))

— _L Riqnm(o) ) (Riqal(O)Piqaf(mL) - Piqa!(O)R'z‘/qoi(mL)) (4 39)
U.qn R:’an,(:EL) q v v v =g
See, Appendix D.1.
Now we have all the necessary tools to calculate the zeta function hy
applying the residue theorem as follows: from the equations given ahove, the
normalized mode functions can be written as

2 (2) = 0GnG(Gn, 2)

T R () gman | (440

where,

F(g) = - (B (0)BI” (e1) — P (O)RE (z2))  (4.41)
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and

Glq,2) = (B (0) P (2) P (0) R () ) (R () P29 (&) = P (1) R ()
(4.42)

This form is essential in order to apply the residue theorem. Whence, the

zeta function can be written as a contour integral in the complex u plane

((z,5) = 205 Z +(3 + d(?)i’] S

n=1 j=0 q“

— (s—1) JQn Qm dj
S i

n=1 j=0

_ du ouG(u, z) w—
2 2(s 1)% — y 4.43
e o i F(u)|u=qn Z [uz + (j‘ o d 1)2] H2s ( )

=0

where the poles at u = ¢, are on the positive side of real axis and therefore,
the closed contour C' has to be taken around the positive real axis in general.
Note that we have introduced a mass scale y to keep the dimension. This
term is in fact the renormalization scale and groups with any divergent terms
in the expression for the amplitude. Then, given the fact that there are no
poles in the complex u-plane, besides those on the real axis, we can naturally
deform the contour C into C' (see Fig. 4.3)

Ez,5) = 2#2(3_1)‘?{ du ouG(u, z) (4.44)

o 2 IJ’(u)|u_q,n Z [u2 + G+ d 1)2] 2

which is composed of a line parallel to the imaginary axis with a small real
part and a large semi circle on the positive real half of the complex plane,
which is depicted in Fig. 4.3. As we mentioned previously, initially keeping
s larger than (d+ 1)/2, the contribution from the larger semi-circle becomes
negligible.

A similar approach has been used e.g., in [119] for infinitely thin
Minkowski branes in a bulk AdS space; however, in our case the contour
we have to construct is complicated by the presence of the poles which come
from the hound state; and as we shall see, it will he convenient to evaluate
the bound state contribution separately. Therefore, as it turns out, we shail
only focus on the total amplitude from now on.

In particular, we are primarily interested in calculating the mode func-
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Figure 4.3: The contour C, used to evaluate the KK amplitude. The poles
on the real axis ¢; (¢ = 1,2, -} correspond to the KK modes, while those
on the imaginary axis correspond to the hound state. We can deform (' into
' because there are no poles in the complex plane hesides those on the real
and imaginary axes. The closed contour depicted by the dotted line is used
to evaluate the bound state amplitude.
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Figure 4.4: The contour C, used to evaluate the total amplitude.
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tions on the brane at z = 0 (z = 0), i.e.,
G(u, z)

F(u) |-
(B (©)Pit(0) — P'(0)Rix (0)) (R (1) P (0) — Pi!(zr) Rl (0))

~ (R O)P(e1) = PE= ()R (@)
P (a) Ry (0) = RS (z.) P2 (0)
(Re=" ()P (z1) — Piv'(0) Rix(a.)
P (2,) P (0) = P "'(21) Pi(0)
(B (O) P (az) = P 0) P (1)

where in the first step we used the Wronskian relation Eq. (4.33) and in the
final step we specified the second mode function as

T

igo —
R () 2i sinh{7go)

P (). (4.46)

Two types of decomposition are possible:

P;'ucrl (xL ) P‘;z’ua' (0) _ P;iua’(SCL ) P;'ucr (0)
Py )P (zr) — P (0P, 7 (o)

(4.45)

_ Bw(0)  PR'(wp) 2isinh(muo) 1
o Piual () Piuar(()) T Piuat(Q) Prival(g, ) — Piuot(g, ) Privat(())
_ py—iua(o)
- B(0)
Privel () 2isinh(muo) 1
- . . . . . A4
R B0 - B

It is important to note that the second term on the second line is negligible
in the z; — 1 limit on the upper half of the complex wu-plane, while the
second term on the third line is negligible in the same limit on the lower-half
of complex u-plane. Thus, in the single brane limit we use the first term on
the second and third lines as the single brane propagator on the upper and
lower half of the complex plane, respectively.

In the single brane propagator given above, Pio(0)/Pi/(0) has poles
that are situated on the negative imaginary axis, corresponding to purely
decaying modes, plus the bound state contribution at u = iv/o. However,
as we mentioned ahove, P2(0)/Pi'(0} is used for the upper half of the
complex plane and we need not worry about the purely decaying modes.
Thus, we only need to deal with the hound state mode at u = v/ in the
calculation of the KK amplitude. Similarly, the exact opposite occurs for
Prre(0)/Bro’(0) and we only need to deal with the pole at w = —iv/o.

The remaining problem then concerns the avoidance of the bound state
poles at u = #iv/o. We avoid the bound state poles by deforming the
contour to (', as depicted in Fig. 4.3, when we evaluate the KK amplitude.
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However, this contour gives a non-zero contribution (from the bound state
poles) when taking the Caunchy principal value on the imaginary axis. This
contribution simply corresponds to the subtraction of the bound state from
the total amplitude; we can calculate the bound state amplitude separately,
see the next section. Thus, it will be rather convenient for us to shift the
contour over the upper pole to C, as depicted in Fig. 4.4. This is equivalent
to adding the bound state contribution with a counter-clockwise contour (the
closed dotted line in Fig. 4.3) to . Then, by integrating along the contour ¢
and subtracting the bound state contribution, we can ohtain the desired KKK
amplitude. This is the approach we shall take to evaluate the KK amplitude
in this article.

4.3 Kaluza-Klein amplitude: d = 2 case

To demonstrate the method discussed in the previous suhsection as simply as
possible, we first evaluate the amplitude of the quantum fluctnations on the
brane for d = 2. That is, we construct the zeta function for the case of the
two-sphere in the transverse dimensions with one non-trivial bulk dimension.

Amplitude of the KK modes

The zeta function for total amplitude at the center of the wall is

F0,5) = 4pe § B JuG(u,O)i : (5 +1/2)
U

& 2m Flu) + (7 + 1/2)?s H?
2(s—1)
- 4‘(;H2 sin[m(s — 1)}
wle aG(em/2U 0) (g + 1/2)
P dut 4.48

where U = e™™#2y and we use the property

G(e™/?U,0)  G(e™™/?U,0) _ PyYo(0)
F(em2U) — F(e™/2U) — 2P;Us'(0)’

(4.49)

Here, Roman “P” (not to he confused with the Legendre function of the first
kind) means taking the Cauchy principal value in order to deal with the pole
at U = v/o. In Fig. 4.3, the confribution from the anti-clockwise semi-circle
around u = iv/o cancels with that from the clockwise semi-circle around
u=—iv/o.

In the following, we shall divide the integral into two; i.e., for U > 2v/o
which we denote as the “UV piece” and that for 0 < U < 2v/o which we
denote as the “IR, piece.” We emphasize that the reason for this splitting is
solely for technical reasons and that the choice of division has no physical
significance. We can set the splif at any value of O(1).
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To begin with, for the UV piece we will use the following asymptotic
expansion formula, e.g., see Ref. [120]|, for large U, i.e.,

E @AY lor 11
+ ;WF Y ¥ “y20,0(-24,0)] e (4.50)

Then, for the IR piece we employ the standard binomial expansions:

N LSV, B y () O
g[(ﬁ'+1/2)2—U2]s_J=ﬂ TG U Ge(@s+2/-1,5), (451)

which is valid for the range 0 < U < 1/2; while for the range 1/2 < U <
2v/o < 1 we must use [120, 121]

>0

J+1/2 1 1
Z [(G+1/2)2 - U2)° “2((§—U2)s

F=0

> J(Tfr*(‘ ‘;Y)sz (Qgﬂ(23+2J— 1,%) - (%)m _ ))-(4-52)

Then, the total amplitude on the center at the wall is given by the summation
of hoth pieces

€(0,9) = Cuv(0,5) + (0, 5). (4.53)
First, let us consider the analytic continunation of the UV piece

2u2 D sin[r(s — 1)]

(uv(0,8) = —r
cG(e™?U.0) .,
d s+3
8 2wfo v F(em/2U) d
1 1 P +s=1), o .

— -2 ;

% L -1 TYs) ; ! U 0aCr (=25, 0) a=1/2
(4.54)
Given the following relation {122]
—Ue T _g Ug v, Us 4 1

P70y 1 D=5+ (EF+ 5 +5) (4.5%)

PyUo(0) 2I(s+ = U" + 1)F(—— +% 4+ 4

and by employing the asymptotic expansion for large U of the Gamma func-
tions [122] we find the following asymptotic series, which in d-dimensions
is

P*Uo(o)

EJ:_ET Zum(cr 5 U 1= QE (456)
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where v is given by Eq. (4.18) and

wo(o,§) = “é-,

or(o6) = (2-£—J(d—-1))éij~d(—1+4§)) =~2}5f/(0), 457

wy(o,€) = —{(Q-E-o(d—1))(1+d(—1+4§))(8+6cr(1+d(—1+4§))
302 (—1+d)(1+d(-1+ 45))) }/(12804) (4.58)

The subtraction of the wy term just corresponds 0 that of the trivial back-
ground, whereas the wy term corresponds to the tadpole graph, see [114, 115].
Here, we require only the term wyg, in order to regularize the d = 2 case. For
the d = 4 case, terms up to w; are required.?

Thus, after analytic continnation to s — 1, we obtain the UV amplitude

. ~ P UU(O) w(](g: 6)
Hzil_l}}CUv(O}S) = —Q{LwodUU [P Us!(0) U ]

— w(@,6) (%)} (459)

As for the IR piece it is already finite in the limit s — 1; however, because
of the poles on the imaginary axis we make the principle value prescription,
ie.,

_ 0 4)!112(.9—1} .
(r(0,8) = TTHQS( T sinfm(s — 1)]
Y2 gUG(e™/2U,0) & F(s+J . 1
X P/ (20 Z iNe \y Cu(2s+2J ~1,5)
2(3-——1) 21//0' mi/2
2 U“G(e U,0)
+ AHE(—1) sin[n(s 1)]P/1/2 dUwF(e“i/gU)
1 (s +J) 20
- ALY 22
X ((;}-U?)SJ“J:O TIT(s)
1 1 —~2g-2J

where if 2v/c < 1/2 the second term is to be dropped. Then, given the

Laurent. expansion of the Hurwitz zeta function
(25 = 1,5) = —— —(1/2) + O(s — 1) (4.61)
-1l =)= - s—1), 4.
Hl4s 3 9 2(8 _ 1) (4 s

3In practice, for better numerical convergence we subtract off more terms than are
required to regnlarize the theory; thus, we include wy for d = 2 and we for d = 4,
respectively.
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we find that there is only a contribution from J = 0 in both terms. Thus, in
the limit s — 1, we obtain

_ 2u/o’ o wif2
HzE_IE}CIR(O: S) = _Pf 2 FG((eewz/2g)0)
B 2/%” dU D(—v/2+Us/2+ DI(w/2+ Ua/2+ 1/2)
B 0 U—I//O’( F(v/2+Ues/2+ DI (—v/24+ U2+ 1/2)
- L rI 1)y
vro Ty +1)

where in the final step, we used the fact that

2o flz) oo M) L P fla)
Pfo dx = P/o do—— P/G do——"

T — g T — 20 T —
_ [ LE /demlﬁﬁl (4.63)
o T—1z0  Jo t—xzo' '

where f(z) is an arbitrary regular function. The second term, which is equal
to zero, eliminates the singularity at x = x4 in the first term. This technique
will also be used for the d = 4 case.

Finally, we obtain the regularized total amplitude

(B Ohoe = lim (Cov(0,5) + Gn(0,5)) - (4.64)

As discussed in the preceding subsection the KK amplitude is obtained by
subtracting the bound state amplitude, which is evaluated in Appendix D.2,

(2 (0))xx = {F*(0) )0 — (B°(0))s - (4.65)

Interestingly, the total amplitude (¢?(0))o: does not depend on the renor-

malization scale u, whereas as shown in Appendix D.2 the bound state con-
tribution (¢2(0))bs does depend on it. Thus, the KI{ amplitude (qé?( WK
will also depend on y as can be readily seen from Eq. (4.65). In other words,
the dependence on g in the bound state and KK contribution cancels when
they are summed up.

4.3.1 Results of numerical calculations

The total amplitude {(¢?(0))io is shown in Fig. 4.5. For small thicknesses,
the UV piece dominates the total amplitude. The leading order divergent
hehavior can be estimated as follows: by changing variables from U to x =
Ug, the UV piece can he written as

. 1 [ PE(0) 1Y 2
H2 EE% CUV(O:S) = -2 (E ~/:};y dxx (P;T'((O)) + 5) + %) . (466)

(4.62)
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As shown previously (see Fig. 4.2), v/o is almost independent of o and
v = O(o) for ¢ < 1. Then by Taylor expanding the Gamma functions in
Eq. (4.55) about v we find that

Pr=(0) 1, v x r+1 z ) ,
P0) - 7 2 (10(‘2‘) — 2(—; ) —HD(E + 1)) +0(c®). (4.67)
Therefore,
Plimin(0,9) = —% [“ae (0 -2 +uG+ )
+ 0O(a%). (4.68)

In the case of d = 2 the divergence arises only from the leading order. Fur-
thermore, for z > 1 the integrand behaves as z~2 and thus, the contribution
from the npper bound vanishes. However, in the opposite limit, z < 1,

W) -2

where v = 0.57721 -+ - is Euler’s constant, and therefore

) (5 1) = == + (=27 - 2(1/2)) + O(a), (469

A 2
H?lim G (0, 5) = —?”’ In (2v) + O(a®). (4.70)

Thus, we find a positive logarithmic divergence in the thin wall limit.
The amplitude of the bound state is derived separately in Appendix D. 2.
Here, we recapitulate the final result,

HFOR = (2 () -2/~ 4o (5) _2
- SR a6 (3) )

Ju=l

X ( fow dycosh"Q”(y))_l. (4.71)

In Fig. 4.6, the amplitude of the bound state is plotted as a function of the
brane thickness for each coupling, with g = H. Interestingly, the resulting
amplitude is almost independent of the brane thickness o and still finite in
the thin wall limit.

Thus, as expected, the divergence of the total amplitude in the thin wall
limit arises solely from the KI{ contribution. Regardless, for finite values of
o ~ 0.1 the total amplitude settles down to finite positive values. The result
shows that the surface divergence for the KK modes can be regularized by
introducing a finite brane thickness. This is one of the main results of this
article.

The bound state amplitude depends on the choice of renormalization
scale, p. In Fig. 4.7, the running of the scale is shown as a function of p. It is
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Figure 4.5: The total amplitude is shown as a function of the brane thickness,
o, in the case of d = 2. The thick, thick-dashed and dashed curves correspond
to the cases of £ = 0,1/32,1/186, respectively.
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Figure 4.6: The amplitude of the bound state is shown as a function of the
brane thickness, o, in the case of d = 2, with ¢ = H. The thick, thick-dashed
and dashed curves correspond to the cases of £ = 0,1/32, 1/18, respectively.
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Figure 4.7: The running of the hound state is shown as a function of the
renormalization scale In g in the case of d = 2, with ¢ = 0.01. The vertical
and horizontal axes show the bound state amplitude and log,o{u/ H), respec-
tively. The thick, thick-dashed and dashed curves correspond to the cases of
& =0,1/32,1/16, respectively.
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Figure 4.8: The relative amplitude of the KIKX modes to the bound state mode

is shown as a function of the brane thickness, o, for minimal coupling, & = 0,
for d =2, with y = H.
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essentially proportional to In g. The tilt becomes steeper for smaller coupling
parameter £. There are several possible choices for the renormalization scale,
for example, one could choose the expansion rate of the brane 4 = H or
another choice is the brane thickness yu = H/o. We still have no signature
ahout braneworlds today and therefore no quantity that we can renormalize
into. The renormalzation scale p should he determined hy future observations
and /or experiments. In this article we just plot the running of the scale and
take the optimal choice p = H for cases where one has to make a choice.
Note that from Eq. (4.65) the KK amplitude is also proportional to In{u)
with negative tilts. In this article we just plot the running of the scale and
take the optimal choice u = H for cases where one has to make a choice.
Note that from Eq. (4.65) the KK amplitude is also proportional to In(u)
with negative tilts.

It is also interesting to compare the relative amplitude of the KK modes
to the hound state mode. The relative amplitude is given by

_ @Ok _ (@ O)kx _ (PO _
(@20bs (0o (P*(0))us

where in the final step we used Eq. (4.65). The result depends on the choice
of the renormalization scale ¢ and brane thickness, o. It is meaningful to
show the plot for physically reasonable cases. As an example, in Fig. 4.8, we
have plotted r as a function of ¢ for the minimally coupled case, £ = 0, i.e.,
for tensor perturbations, with = H.

(4.72)

4.4 Kaluza-Klein amplitude: d = 4 case

In this subsection, we perform the calculation for the more realistic case of
d = 4. The caleulation follows in an identical manner to the d = 2 case, if
only for more tedium.

Anmplitude of the KK modes

In this case the degeneracy factor for the four-sphere (d = 4) is

17 3Y,. .
dj=—3—(j—i—§) (1+1){7+2) (4.73)
and hence, the zeta function for the total amplitude can be reduced to

- 2 gy [ duouG(u,0) N (G+3/2)(F + DI +2)
(0.5) = ™ fg oM Flu) Z W2+ (j + 122 12
2“2(s»~1)

= S 5% sin[w(s — 1)]

cUG(e™/2U,0) & 3+1 i +2)(G+32)
PA du em/2U Z ]“”f' )2]

. (4.74)
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where we used the properties of bulk propagator Eq. (4.49). Again, Roman
“P” represents taking the Cauchy principal value to deal with the pole at
U=v/o. As for the d = 2 case, we divide the total zeta function into a UV
piece, i.e., for U > 2v/0; and an IR piece, i.e., for 0 < U < 2v/0. Similarly,
the cholce of the division is just for later convenience.

To begin with, for the UV piece we shall use the asymptotic formula | 120]

2~ (F+3/2) G+ 1 +2)

3;; (U2~ (G +3/27)°

2h_ (G432 1S (1+3/2)
sg[w (7+3/2)%)° 6§[U2—(j+3/2)2]5

- (4)8(- 12(5—1)(51— AR 2)+I§Gl_—1)aa9(—uz,a, 5)
- 5= li(s gy 00U 0,5~ 1)) »
= 12?(5) [ g“ 5= D 200 (24, G)L=3 ,
— U 3)ZF(J +Jf 3) U292 (— 23,&)’ s
+ au—zts—mZm—+jfi?lu—2faacH(—zj,a) ol (4.75)
where
0(q%, a, s) i — . (4.76)

‘=0 j—i—a)Q-%-q]

Then, for the IR piece, we use the following hinomial expansions [120,
121):

I G+ DG+ 2)( +3/2) 1 D(s+.0), .,
5; (5 +3/2)% - 32 TG U
% (gH(zs+2J—3, %)—ZCH(Qs—i—QJ—l,%)), (4.77)

which is valid for the range 0 < U < 3/2; while for the range 3/2 < U < 5/2
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we must use

IS HDGHIG+3Y ]
34 (G320 | (-7

[(s+J)
o JIT(s)

- (g) WQHJ} , (4.78)

and finally, for the range 5/2 < U < 2 we have

U2J

(qH(z +or—3, )m_g,,(zs+2J—1 -g-))

1 3+1(J+2)(3+3/2) 1 D

32, G+ 8/ U] ‘(%mm)“r(ﬂf—v‘z)s
I SN NS
J=0

&0

The total zeta function is obtained from Eq. (4.53).
First, let us focus on the analytic continuation of the UV piece. Some
simple manipulations lead to the following expression

1M2(s—1) /oo UO'G(BM/zU,O)
wfe

CUV (03 S) E H2s F(e“i/zU)

X {U_23+3 Si}l[ﬂ"(s - 2)] [S_i'i‘aaCH (0’ a)]a$3/2
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+ Z !I-. 8) 2JaaCH(_2.7=a)

i=1

wmard
1
H[(s—l)(s—?)(.s 3)

U se(na v
(s—l)(s—E)B“CH( % )am3/2+2(8 1)

L +5—3), g3 :
+ ;:‘; jIF(S) U aaCH( 2.710')

— 6U = sin[r(s — 3)]{

U—-2s+7

ﬁgCH(Ov CL)

sin[r(s — 4

a=3/2

93y (—4,a)

a=3/2

a“—“3/2:|
1

maacx'{(o: ‘1)‘

a=3/2
U_

-2
(~2.0) a=3/2

+ Z “S P02 g ¢4(-24,a)

F=2

a=3/z] } . (4.80)
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Like for the d = 2 case, after analytic continnation to s — 1, this leads to

. 1 BU(0) <
H2lim Cov (0, 5) = —ga(/zy/gdUUB(m—;we(mé)U 23)
! 2320, £) v \3-%
+ ;:; 20 — 3 (E)
1 * PrY(0) -
T Ea( 2u/adUU(m_w0(a=£)U 1)
- 2’{1}0(0’, 5) (g)) : (481)

where w(€, o) are the coefficients of the asymptotic expansion in Eq. (4.56)
given by Eq. (4.57), for d = 4.
The IR piece is already finite for s — 1, and some calculation shows that

. ouils=1 3 oUG(e™/*U,0)
C}R(O, S) = m&n[ﬁ(s — 1)] P . dU F(e"”'/QU)
“Pls+J), oy 3, 1 3
X £ _—MU CH(2$+2J—3,§) _ZCH(28+2JW1: "'2":)
221 3% sUG(e™*U,0) 1
— - 1P :
+ 7]'H25(—]_)3 SIH[W(S )] £/2 dU F(ewi/QU) (% _ UQ)S
“T(s+J), 0s(1 3, 1 3
+ 2 "“"j"]"]'_:,“"("s““)“"U 3 CH(Q.S%“QJ—B,i)— ZCH(QS-I—QJ-——I,-Z-)
3 —25—2J
@)
2#2(5—-1) . /o O.UG(en-iﬁU O)
—_— - 1P d .
- TH2(—1)s sinfm(s —1)] /5/2 u F(em20)
o 1 + 3
G-v0) EF-uv

s+ J) .01 3, 1 3
2 —meﬂ [5 (CH(QS + 2J— 3,5) - :lCH(28+ 2J — 1, “))

2
} (%) - (5/2)52””]) |

Note that the number of terms depends on the range of U. For 3/2 < 2v/0 <
5/2 the third term should be dropped; while both the second and third terms
should be dropped if 2v/0 < 3/2.

(4.82)
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In the s — 1 limit, as before, just terms with leading order

3 i

(u(2s—1.35)= WD

W(3/2)+ O(s — 1), (4.83)

contribute to the resulting IR amplitude. Thus, taking the limit s — 1, we
ohtain the IR amplitude as

. 1 2y/o= U3G(e’”/2U 0) 2vfa UG(en-i/zU 0)
21 _ _= :
H EE%CIR(O’S) = BO'P/ e’”/2U) + 126Pf0 au P20
S 4+ +ITG+E+Y)
3o U—— F@+U“+UH——+”“+%

1 31"1/-1-
Bl ﬁ a I‘(u+1)

_ 1]”” yLCE+ 5+ OI(5 + 2 + )
12 —5 L5+ % +r(-3+%+3
1 vy (v +3)
B ﬁ(a) 1“(y+1))’ (4.84)

where in the final step Eqg. (4.63) was used.

Finally, we obtain the total regularized amplitude from Eq. (4.64). Fur-
thermore, the KK amplitude is obtained by subtracting the bound state
amplitude (evalnated in Appendix D. 2) obtained from Eq. (4.65). Note
that the KIK amplitude again has a dependence on the renormalization scale
Lt

4.4.1 Results of numerical calculations

In Fig. 4.9, a numerical plot of (¢*(0))1; is shown. Again, the divergence for
the thin wall limit, can be seen. The power of the divergence can he estimated
as follows: the dominant contribution in the thin wall limit comes from the
first term on the right hand side of Eq. {4.81). By changing variables to
z = Uo and following the same steps as for d = 2, we ohtain

e 1 93-2 252ty(0, £) 3-2¢

- ) (%mz(g) (¢(§) 2¢(m+l)+w(§+1)) _____(‘3116@)

+ O(@h). (4.85)
In this case, the contribution from the lower bound of the integration does

not contribute to any power of o. Thus, in the thin wall limit the regularized
amplitude diverges as ¢~2. This is more divergent than the case of d = 2
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Figure 4.9: The total amplitude is shown as a function of the brane thick-
ness, ¢, in the case of d = 4. The vertical axis shows log(~H%{¢*(0))kk)-
The thick, thick-dashed and dashed curves correspond to the cases of
£ =0,3/32,3/20, respectively.

and is related to the fact that in higher dimensions we need higher powers of
UV subtraction.

The amplitude of the bound state is caleulated in Appendix D. 2 and is
. 1 0o -1
HEOm = 5o ([ dveosi ()
20 \ Jp
1 2 /un\2 L 2 3 1
A3 m () +Fr P+ e
vy 2 1 2 1 3
(E) <—§ + 57!')(3/2) + =Cu(3, 5))

6
ECHCEEERTCRE)
— 2{2: (5&0 (%) "2} . (4'86)

This is plotted in Fig. 4.10 and we see that the bound state is almost inde-
pendent of the brane thickness and still finite in the thin wall limit. Thus,
like for d = 2, the divergence in the total amplitude arises solely from the
KK modes.

Again, the amplitude depends on the choice of the renormalization scale
. In certain cases the amplitude of the bound state can become negative.
In Fig. 4.11, the running of the bound state amplitnde is shown as a function
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Figure 4.10: The amplitude of the bound state mode is shown as a function
of the hrane thickness, o, in the case of d = 4, with u = H. The thick,
thick-dashed and dashed cmrves correspond fo the cases of £ = 0,3/64,3/32,
respectively,

of . It is basically the same as the case of d = 2; however, a new feature is
that negative tilts of the running are realized for larger values of coupling &
which satisfy

S 20+1
430 +2)’

as can be seen from Eq. (4.86). The critical coupling parameter in Eq. (4.87)
is smaller than conformal coupling, £, = 3/16, for any choice of brane thick-
ness, o. This fact means that there always exist coupling parameters which
realize negative tilts of the running.

The relative amplitude of the KK to bound state ratio, defined hy Eq.
(4.72), depends on the choice of renormalization scale u. As we stated in the
previous section, we have no observational singnature about braneworlds and
no way to determine the renormalization scale. Again as one of the possible
physical choices, in Fig. 4.12, we plot the relative amplitude in the case of
p = H for minimal coupling, £ = 0.

In this section, we discussed the quantum fluctuations in a thick brane
model in order to show that a finite brane thickness can act as a natural
cut-off of for the Kaluza-Klein (KK) mode spectrum. The thick brane maodel
we examined was supported by a scalar field with an axion-type potential.
The thin brane limit of this model is smoothly matched to the system of a
de Sitter (dS) brane in a Minkowski hulk.

Here, we investigated the quantum fluctuations in a particular model of
thick hraneworld. However, the qualitative behavior of the quantum fluc-

3 (4.87)
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Figure 4.11: The running of the amplitude of the hound state is shown as a
function of the brane thickness, o, in the case of d = 4, with ¢ = 0.01. The
vertical and horizontal axes show the bound state amplitude and log,o(p/ H),
respectively. The thick, thick-dashed and dashed curves correspond to the
cases of £ = 0,3/32,3/20, respectively.

10

Figure 4.12: The relative amplitude of the KK modes to the hound state
mode is shown as a function of the brane thickness, o, for the minimal cou-
pling, £ = 0, for d = 4, with u = H. The vertical axis shows log,, ()]
given by Eq. (4.72).
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tuations should be independent of the choice of the model. This can be
understood as follows. For a thick brane model, for which the spacetime
is smooth everywhere, there will he no divergence. Now if we look at the
behavior of the hackground solution, Eq. (4.6), when ¢ is sufficiently small,
we find ¢ ~ ¢o(Hz/o) for Hz < o. This is a very general hehavior that. one
finds at the center of any domain wall solution, independent of the global
features of the bulk potential. Thus the divergence in the thin wall limit is
due to the spacetime singularity caused by the divergence of d¢/dz = 0 at

z = 0, which is common to any thick brane model supported by a bulk scalar
field.

4.5 Quantum backreaction and the self-
consistency on the brane

In this section, we shall demonstrate that, similarly, a finite thickness also
regilarizes the quantum backreaction. We give a theoretical bound on the
thickness in terms of brane self-consistency ¢ ® and comment on the realistic
case of a four-dimensional brane.

In this subsection, we shall discnss the quantum backreaction of the scalar
field ¢ on such a thick-hrane background, specifically at z = 0. By varying
the ¢-field part of the action, in Eq. (B.1), with respect to the hulk metric
we obfain the stress-energy tensor for the ¢-field,

1
Tab = ¢;a¢;b - igabgm!qb;cgb;d . (488)

Furthermore, for simplicity we shall consider the three-dimensional (d =
2) case. The method is then bhased on a dimensional reduction of the higher
dimensional canonically quantized fields, see [117]. For a given vacuum,
we can caleulate the vacunm expectation value of the stress-energy ten-
sor. Hereafter, we work in the Euclideanized space '}’E,,dm”’da:” = H*(d6* +
sin’ 8dip?), where the substitution § — /2 — i Ht Wick rotates back to the
Lorentzian frame. Choosing the Euclidean vacuum corresponds to a dS in-
variant, vacuum in the original Lorentzian frame. The Hamiltonian density for
the field ¢ in this frame is classically defined by p(z, z) == —b*(2)T%(z, z) .

In general, for one non-trivial extra dimension we can have untwisted,
fH(—=2) = f*(2), and twisted field configurations, f~(~z) = —f (z), [114,
115]. Note that the nntwisted and twisted solutions are equivalent to the

* Self-consistency in the RS (two-brane) model has been investigated in {123] and [124]
in terms of how quantum corrections contribute to the gravitational theory in the bulk.
Stability of brane solutions including quanium backreaction has also been discussed, see
e.g., [125]. What we do here is rather to compare the size of the quantum backreaction
with that, of the background stress-energy on the brane, i.e., brane self-consistency.

"Bounds on the brane thickness have also been discussed in terms of phenomenological
experiments, see e.g., [126].
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mode degeneracy (for one non-trivial dimension). As we shall see, the total
Hamiltonian density is given hy a combination of untwisted and twisted fields,
ie., p= p 4+ p-). This quantity diverges when all the modes are naively
summed up and we need to employ some kind of regularization scheme. To
this end, after a dimensional reduction, we shall employ the point-splitting
method in conjunction with zeta function regularization {112, 117], hoth for
untwisted and twisted modes:

2u*-VH () FE (2
51/2(2)51/2 Hz(s 1) Zf (z f

Z ["m(x) i ), (4.89)

2+ G+

(Hz o', 72 s) =

where fF(z) and f,;(z) correspond to normalized untwisted and twisted field
configurations respectively. The solutions ff(z) are written in terms of as-
sociated Legendre functions and Y},,(z*) are the usnal spherical harmonics
defined on the two-sphere, 52

Given that we are interested only in the dependence of the backreaction
on the bulk coordinate z we integrate out over the trivial dimensions, in this
case over S§2:

. . ]- i ! it
o(z) = f dhlimy Yim = (H?0,0, +8,0.) (2,2, 7,2 5) (490)

where df); is the volume element of S?. Note that hecause of the spherical
symmetry transverse to the hrane we may focus on the the equatorial plane
8 = 7/2 and remove the dependence on @ [127| Hence, we obtain the angle-
integrated Hamiltonian density

2 ’
+ j+3 Ly 42 (:&r V(z) 4 )2
z) = 2HIlm —HJj+1 z) + z) — z .
P ( S%IZ [qn_!_(‘?_'_ z]s [ 2 J(j )fn ( ) fn ( ) 2b(z)fn( )
We are primarily interested in the backreaction on the brane at z = 0,
given that this is supposed to be where our world is localized. In this case the
contribution from the untwisted and twisted parts can be expressed simply
as

) = H i S g2 g2y S0 DG D)

pH(0) = Hlm ) H OV e
iti

[ +(+ 3%

p~(0)=2H hmz 1772(0) (4.91)

respectively. The total backreaction is given by the sum of each:

p(0) = p*(0) +p7(0). (4.92)
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We can also derive similar expressions for the pressures normal and par-
allel to the brane; 77,(z, «') and T%,(z, 2%), respectively. Like for the Hamil-
tonian density they are given by a combination of untwisted and twisted
fields. In the Buclidean frame these pressures are defined by p.(z,2%) =
V2 (2)T% (2, %) and po(z,zt) := b%(2)T% (2, xt) . Then, as for the case of the
Hamiltonian density, the angle-integrated total pressure normal to the hrane
po(2) = [ dQap.(z,") becomes

p=(0) = —p*(0) + p(0) (4.93)

on the brane. The angle-integrated pressure parallel to the brane (p,(z) =
J dp,(z,2%)) has the same amplitude with opposite sign, Le., p,(z) =
—p.(z). Thus, and hereafter, we may concentrate only on p.(0). Tt is also
worth mentioning that the angle-integrated trace of the stress-energy tensor
in the Euclidean frame has the same amplitude of the Hamiltonian density
with the opposite sign; *(2)T%(z) = [ d0b*(2)T%(z, %) = —p(z) .

The regularization scheme we shall employ is basically the same as the one
developed in the prevous sections. Essentially, we convert the mode sums over
{n} into an integral along the contour as depicted in Fig. 4.4 including the
hound state by employing the residue theorem. For the twisted configuration
there is no hound state and hence, we need not worry about how the contour
approaches the imaginary axis.

Hence, for untwisted conﬁgurations we obtain

N _crH3 oo 3 cr/2 ’(0) : we(o)
Puv(0) 5 {/1 duy ( G/gm(o) — U1+2e)
~ wi(o) 1 570)  2wp(o)
o Z 3 2_ 2F o Z[ ay (PU—/;JU;(O) I ) - wﬁ(g)il :
3 1 e Ue
Pr(®) = % . Y (U i ) FE" +E" +1I)1F)(F—(9jrr U i 2% (4.9

where we have split the untwisted contribution into two pieces, i.e., an ultra-
violet (UV) and an infrared (IR) piece. Here we used the following asymptotic
expansion

“‘*UO' o0
Po;gal(o) - £=O wﬁ(U)U )wo(a) - 0_7 wl (J) 8 2 F ’(4 95)

to regularize the UV piece. The regularized untwisted Hamiltonian density
is given by p* = piry + pik -
Similarly, for twisted configurations we find

o / mdUU(p;/gm Zq (0)Ur'%) —i ()
oV s | PE(0 ‘ £3-20|"

25 F( +5+ l)I‘(~2 + 5 +3)

®(0) = dUU 4 e el

(1.96)
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where this time we nsed the slightly different asymptotic expansion

P im0 & 940
L2 = S @)U qlo) = —o, qilo) = 22, - (497)
Po'/2 (0) =0 8

The twisted Hamiltonian density is also given by p™ = pgy + p1» -

Before considering the total backreaction, we also wish to hriefly discuss
the backreaction for the bound state mode, which for the untwisted case is
given hy

H3 20 f2 () JG+DG+ D)
po(z,8) = MHz(swl) Z o 1)0 B (4.98)

where

cosh™7 (=)
20 Jo" dycosh™(y)

As can easily he verified the twisted solution has no localized bound state.
Note that po(z,s) = —p.o(z,s). As a result of employing the renormalization
discussed in [128], the backreaction for the bound state is given hy

o (2) =

(4.99)

mlz) = H?’fJ?(z){cH(—l,l)m1—%@(3,3)%

+ 2 (5) o -1~ e+ 1. ]}

In the case above {of massless, minimal coupling) the backreaction of the
bound state mode is found to be independent of the renormalization scale.
This happens only for the case of minimal coupling. Also, contrary to the
backreaction, the squared amplitude itself does depend on the renormaliza-
tion scale even for minimal coupling, £ = 0, [112|. If required, the contribu-

tion from the KK modes can easily be obtained by employing the relations
[112]

pri(z) = P(z) —po(2), pxx(z) = p(2) ~ pol2) . (4.100)

Note that, like for the amplitude [112]|, po is also insensitive to the brane
thickness, ¢. Particularly in comparison to the KK contribution.

Similar to the calculation for the amplitude [112] in the thin wall limit,
o — 0, the leading order behavior for p*(0) can easily be obtained

3

H _ H?
pro) — 53l P0) = —— 1

I: ifomm[ﬁ(w( )—2@0("“‘“) (g+1))+1]
~= (.213139. (4..101)

l
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Thus, from Eq. (4.92) and Eq. (4.93), the thin wall hehavior for the Hamil-
tonian density and pressure are
3 3
2(0) = _%I;E_I, p:(0) — _%51, (4.102)
respectively. Thus, in the thin wall limit both the total Hamiltonian density
and pressure exhihit guadratic divergences.

We now come 1o discuss the brane self-consistency of the quantum cor-
rected Finstein equations: The stress-energy of the backreaction should not
become larger than the hackground stress-energy on the brane. In Figs. 4.13
and 4.14 the Hamiltonian density, p(0), and bulk pressure, p,{0), are com-
pared with respect to their {angle-integrated) classical connterparts:

2 T 2
i (3 (G - PRV ) 0% = e T,
TH? o ’
i (GO =PV IXED) = ey = it

for the special case H = 1 == M3. Note, that in Fig. 4.13 the Hamiltonian
dengity is multiplied hy a power of o, in order to easily distinguish between
the two, and the three-dimensional Planck mass M := 37 is set to unity.
The quantum backreaction scales as H3/o?, whereas the background
stress-energy scales as H2Mj; Jo. Thus, the ratio of the backreaction to the
background energy density scales as O(H/Msc). From Figs. 4.13 and 4. 14,
for the special case H = M;, we can infer that for brane thicknesses with
o 2 0.3 the quantum backreaction is at least an order of magnitude smaller
than the classical value. Thus, taking these facts into consideration, we ob-
tain a plausible theoretical bound on the brane thickness, o 2 0.3 (H/M;).
Of course, this bound is only valid on the brane not in the whole bulk. In
this sense it might not be a sufficient condition, but just a necessary one.
However, we are mainly interested in the behavior of the quantum backreac-
tion at z = 0, where the backreaction is expected to be largest and our world
exists hy assumption. Thus, it may be considered as a stringent bound on the
brane thickness. We note that the backreaction vanishes in the limit H — 0,
hecaunse the brane tension (in the sense of the thin wall limit) vanishes in our
model. This is in contrast to RS models, where the presence of a negative
cosmological constant in the hulk allows for a flat hrane with finite tension.
Now let us consider the more realistic case of d = 4. Following steps simi-
lar to that in (4.101), it is not hard o convince ourselves that in the thin wall
limit, o — 0, the quantum backreaction exhibits a quartic divergence pro-
portional to H®/o* for d == 4 (times a numerical factor, like 7 in Eq. (4.101)
for d = 2), whereas the background stress-energy scales as H2M;*/a. Thus,
the ratio of the quantum backreaction to the background stress-energy will
he of order O(H*/(oM;)3). Therefore, the brane should satisfy o 2 H/M;
in order to have hrane self-consistency. Actually, this hound depends on the
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Figure 4.13: The backreaction of the Hamiltonian density (thick curve) and
the background energy density (dashed curve), multiplied by a power of the
brane thickness, o, are shown as a function of o for the case of H = 1(= AMj3).
Note, the scale of the vertical axis is set to logy.

mk— h— ok — — F— — ke — — %

l'l

Figure 4.14: The backreaction of the pressure (thick curve) and the hack-
ground pressure (dashed curve) are shown as a function of the brane thick-
ness, o, for the case of H = 1(= M3). Note, the scale of the vertical axis is
set to logg-
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ratio between the energy scale for brane inflation, A, and Af5. Hence, in
order for the hbound to be consistent with the assumption 0 < ¢ < 1 we
should require H < Ms. This condition can also be regarded as a bound on
the energy scale for brane inflation.

We might, ask whether or not this bound on the brane thickness is consis-
tent within the framework of the background model. The thick brane model
we have investigated in this letter has an asymptotically flat bulk, which can
he regarded as the high-energy limit (H¢ — oo) of an asymptotically Anti de
Sitter (AdS) bulk, where £ is curvature radius of AdS spacetime. Quite cleatly
o & Hf and thus, combining this inequality with the previous theoretical
hound, ¢ 2 H/Ms, we find that H/M; <« H¢ for brane self-consistency.
Note that in the RS II set-up the four-dimensional Planck scale on the brane
effectively becomes M2 = Mz*£ (=~ 10'%GeV), which is determined at low
energies (H{ < 1) |9, 18]. Then, brane self-consistency, H/Ms < H{, is
equivalent to the condition A, > My, which seems to be quite a natural
one. Indeed, it is not difficult to construct a model with M5 < M,,; just as
long as the scale is larger than 10° GeV, derived from constraints on the size
of any extra-dimensions, £ < 0.1lmm, which is determined from experimental
tests of Newton’s law on short distance scales. Thus, we conclude that thick
hraneworlds, even if they are extremely thin, can be brane self-consistent.

4.6 Outlook for the case of KK gravitons

Finally, we shall comment on the quantum bhackreaction of the KIX modes
of gravitons on the brane. As we mentioned previously, they are just metric
perturhations in the hulk and their existence is rather common in braneworld
cosmology, independently of the details of the models. The quantification of
the graviton backreaction has been a longstanding issue in brane cosmology.
Part of the motivation is that the KK gravitons satisfy the same equation
of motion as a massless, minimally coupled scalar field and therefore suffer
from a similar pathology on the brane, surface divergences. Hence, we expect,
that the graviton hackreaction behaves in a similarly manner to the scalar
case, namely the backreaction exhibits quadratic and quartic divergences for
d = 2 and d = 4, respectively. ® Furthermore, any discussion on the self-
consistency of the scalar backreaction should also carry over to the graviton
hackreaction similarly, though any explicit demonstration of this fact is left
for future work.

80ne point. that we should note is that the degeneracy for gravitons (L.e., a spin 2 field)
on the d-sphere is different from that for a scalar field (i.e., a spin 0 field) 4.31, see, e.g.,
[129].






5

Linearized gravity in the Einstein
Gauss-Bonnet braneworld

In the previous Chapters, we discussed the Kaluza-Klein (KK) modes in
braneworld cosmology in the context of the five-dimensional Einstein (or
Einstein-scalar) theory. But in reality, in five-dimensions the Einstein theory
is not the most general tensor gravitational theory and one may add curvature
cotrections of quadratic order. In general, these curvature corrections give
higher order derivatives in the bulk gravitational equations of motion and
may induce instabilities. It is well-known that the Gauss-Bonnet term, which
is the special combination of second order curvature corrections, uniguely
gives the second order equations of motion in the bulk. In this Chapter, we
discuss the linearized effective gravity on a de Sitter brane in the Einstein
Gauss-Bonnet {(EGB) theory, in order to obtain the implications of the GB
term to brane cosmology|130]. The GB term becomes nontrivial in higher-
dimensions, whereas in four dimensions it is a toplogical quantity.

First, we derive a dS brane solution in the EGB theory. Then, we
solve the tensor metric perturbations in the bulk and derive a closed set
of integro-differential equations which describe the effective gravitatioal the-
ory on the brane. We investigate its various limiting cases. Interestingly,
the linearized eflective gravity on the brane becomes four-dimensional on all
distance scales, from short distances to large distances, Also for high energy
expanding branes as well as low energy ones, gravity on the brane hecomes
four-dimensional.

5.1 Braneworlds in the Einstein Gauss-Bonnet
theory

We consider a braneworld in the EGB theory with a cosmological constant.
As usual, we assume the Z, symmetry with respect to the brane. Then we
may focus on one of the two identical copies of the spacetime M with the

79
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brane as the boundary M. The action is given hy |50, 52;
1 )
S = / d5$\/ —g—z- [R —2A5
M 255
(3) (3 3 () (6)
+ a(R2=4 R R+ R ai Ra"“‘)] (5.1)
1
toy/—q|— S K+ 20 J - 26", K
[ dtoyTilrok Lnt (K04 2a(7 - 2000, )],

where « is the coupling constant for the Gauss-Bonnet term which has di-
mensions (length)?, As is the negative cosmological constant, g and g, are
the bulk and brane metrics, respectively. L,, is the Lagrangian density of
the mafter on the brane, and ¢ is the brane tension. The second term in the
second line in Eq. (5.1) denotes the generalized Gibbons-Hawking term [131}
which is added to the boundary action in order to obtain the well-defined
boundary value problem. K, is extrinsic curvature of the brane and

2 2
Tty = =S KKK+ SR, o+ %K“,, (K”"Km - Kz). (5.2)

Extremizing the action § with respect to the bulk metric, the vacuum
bulk Einstein Gauss-Bonnet equation is obtained as

{5)
G ab + As gap
(5) (5) &) ) 8y (8 (5)(5)
+o [Q(R acde R boede — 2 R ed R acbd — 2 R ac R Cb+ RR ab) (53)
1 & B (5) (5}

—Egab((laR)z—il Roca R R caer ijef)] =0.

The brane trajectory is determined by the junction condition which is ob-
tained by varying the action § with respect to the brane metric [132, 133]:

1
BH, = K", — K", + 405(%}“” - %Jcﬁ‘ﬂ, - P",MK”") = ~KIT",, (54)

Z

where
P,u.pvd = Rp:pva' + (R#JQ,OU - R,ocrq;w -+ vaq;m' - R#Vq,oa‘) (55)
1
_ER(Q;MQ,OV - qWQ',M):

and T}, is the energy momentum tensor of the matter on the brane, defined
as

5(\/__‘515?7&) = _%\/__unudquy- (5.6)

Notfe that the extrinsic curvature here is the one for the vector normal to
OM pointing outward from the side of M.
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5.2 de Sitter brane in the Einstein Gauss-
Bonnet theory

Let us consider a de Sitter brane in the AdS bulk in the EGD theory, and
investigate the linearized gravity on the de Sitter brane.

5.2.1 de Sitter brane in the Einstein Gauss-Bonnet the-
ory

We take the Gaussian normal coordinate with respect to the brane, and
agsiume the bulk metric in the form [1§],

ds? = dy? + b (y)ywdzidz” (5.7)
where 7, is the metric of the four-dimensional de Sitter spacetime with

R(vy) = 12H2
The background Einstein Gauss-Bonnetl equation is

I
— 3H? +3b"b + 3b” — 120% (v — H?) = —Asb. (5.8)

This has a solution,

b(y) == Hisinh(y/t), (6.9)
where £ is given by
1 1 daAs
= 1
7= (1 /14 ) (5.10)

This agrees with the Minkowski brane case [134, 135|. Without loss of gen-
erality, we choose the location of the de Sitter brane at

b(yo) = 1. (5.11)

Thus H is the expansion rate of the de Sitter brane.

5.2.2 Bulk gravitational perturbations

First. we consider gravitational perturbations in the bulk. We take the RS
gauge [9, 15, 136],

hss = hs, =0, K, =D, =0, (5.12)

where D, denotes the covariant derivative with respect to -y, and the per-
turhed metric is given by

ds” = dy? +5(y) (v + h“y)dz‘“dm” . (5.13)
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The (u,v)-components of the linearized Einstein Ganss-Bonnet equation
are given hy

(1 _ a) {s~——i111141(y 0 (Sin114(y/€)8y) + Siihz =B (O, - 2H2)]hw
=0, (5.14)

where
&=, (5.15)

and O; = D*D, is the d’Alembertian with respect to «,.. Throughout this
paper, we assume & 7 1.
Equation (5.14) is separable. Setting k., = %,(y) ¥, &% (z*), we obtain

mZ

[m@, (Sinh4(y/f)3y> + W] Po(y) =0, (5.16)

[m — (m®+ z)HQ]ngz) =0, (5.17)

where p*> = m? — 9/4 and Yjﬁ”z) are the tensor-type tensor harmonics on the
de Sitter spacetime which satisfy the gauge condition [111],

Y(p,2),u,u’ — Dyy(p,Z}u” —0. (5.18)

The properties of these harmonics are discussed in Appendix E.

The equation {5.16) is the same as that for a massless scalar field in the
bulk [28]. There exists a mass gap for the eigenvalue 0 < m < 3/2 [18].
There is a unique hound state at m = 0, which gives ,(y) =constant, and
it is called the zero mode. For m > 3/2, the mass spectrum is continuous
and they correspond to the Kaluza-Klein modes. The general solution is

1

voly) = sinh®%(y/0)

|4 Pif(cosh(y/0)) + ByQ@(cosh(y/0)],  (519)

where PF(z) and Q#(z) are the associated Legendre functions of the 1st and
2nd kinds, respectively.

For p > 0 (m > 3/2), we choose those harmonic functions Y2 that
hehave as e in the limit ¢ — oo. Then, assuming that there is no incoming
wave from the past infinity y = 0, we find we should take B, = 0. In fact,

the asymptotic behavior of P;}; for y — 0 is [137]

1 ; 2t sinh(y/€) \ —i»—3/2
— P h(y/¢ s
sinh®/ 2(y/6) s2(cosh(y/)) y—0 T'(1 — ip) (cosh(y/t’))

2P (N iy
~_—= (¥ iplnfs 2
F(l—ip)(é’) ¢ . (5:20)
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which guarantees the no incoming wave (i.e., retarded) boundary condition.
Thus the bulk metric perturhations are constructed by

b = § AoV ("), (5.21)

where the contour of integration D is chosen on the complex p-plane such
that it runs from p = —oo to p = oo and covers the bound state pole at
p = 3i/2 below the contour [31].

5.2.3 Linearized effective gravity on the brane

We now investigate the effective gravity on the brane. The position of the
brane in the coordinate system is displaced in general as

y = yo — Lip(z), (5.22)

where the second term in the right-hand-side describes the brane hend-
ing [134, 111]. The induced metric on the brane is given by

d32](4J = ('Y,uu + Byy) daoPde” : B#u = h#y -2 COth(y{)/f) OV - (523)

The extrinsic curvature on the brane is given by
K*, = %coth(yg 10)%, + éh“w +0(DrD, + ). (5.240)

We consider the junction condition (5.4). The background part gives the
relation hetween the brane tension and the location of the brane,

6 & 20
2o = — cotl f(l—— —— - 5.25
50 = 7 coth(yo/t) 3 Senn(/0) ) (5.25)
where
1
coth(ye/€) = /1 + (HE)?, sinh(y/f) = — {5.26)

HE
In the limit H¢ < 1, Eq. (5.25) reduces to the Minkowski tension,
1

Ko o %(1 — 5@). (5.27)

The perturbative part of the junction condition gives
1
(1 + 5) (D“DV — Oy ~ BHQ%,,) 0+ o (1 - a) By

Suw (5.28)

2
=5

1_ 2
—sacoth(yo/6) (Os = 2H2 ) by = 5 :



84 5. Linearized gravity in the Einstein Ganuss-Bonnet braneworld

where

. cosh®(yp/0) +1 _ 2 v s 2 _
= B (2coth®(yo/0) — 1) a = (2(HO* + 1) &. (5.29)

The trace of Eq. (5.28) gives the equation to determine the brane hending

as

K3

6(L+ B)¢
where S = 5#,. Note that the field ¢ seems to be tachyonic, with mass-
squared given hy —4H?2. However, in the case of a de Sitter brane in the
Einstein gravity, there was a similar equation for the brane hending, but it
was found to be non-dynamical [111]. We shall see below that the sitnation
is quite similar in the present case of the KGB theory.

To find the effective gravitational equation on the brane, we manipulate as
follows. Using the expression for the induced metric on the brane, Eq. (5.23),
the perturbation of the hrane Finstein tensor is given hy

(54 + 4H2) o=— s, (5.30)

: 1
6Gyulh] = —5Dihu — 2Hhy + 2coth(yo/0) [DuD,, _ O fyw,] o
= -3H* (h#,, - 2c0th(yg/€)fngo)
- %(134 - 2H2) By
+ 2coth(yo/?) [DMDV — Oy ~ 3H2'ym,] o. (5.31)

Using the perturbed junction condition (5.28) we can eliminate the term
involving ¢ from the above equation to obtain

- - 1-a 1—a
5G.uy[h.] + Bth.w, _Q(ITC;) (D4 - 2H2) hw, — m‘_};.é) COth(y(]/f) h#y’y
2
K5 coth(yo/%)
T w a (5.32)

Bliminating the term proportional to (0y — 2H?)h,, from Eqgs. (5.31) and
{5.32) we obtain

w2 tanh(ye/£)
2

&
tanh(yo/£) (DpDu — Yy — SHQ')/#,,) ¥

6G bl + 3H?hy S

o

&
T tanh(yo/ )Ry - (5.33)

Together with Eq. (5.30), this may he regarded as an effective gravitational
equation on the brane. The effect of the bulk gravitational field is contained
in the last term proportional to h,,,. Note that the limit & — 0 is singular in
the above equation. Thus an Einstein Gauss-Bonnet brane exhibits entirely
different effective gravity from an Einstein brane even if & < 1.
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5.2.4 Harmonic decomposition

Using the harmonic functions defined in Appendix E. 1, we may obtain a
closed (integro-differential) system on the brane. We decompose the pertur-
hations on the brane as

o0 o0
Sw =59 +52; 8U= f dp (Spo¥s?), S = / d (Spa¥,2?),
. - o

o0 -

o= / dp Y 0,

-0

—O0

where Y0 are the scalar harmonics and Y#(,,’O) are the scalar-type ten-

sor harmonics given in terms of ¥ ®, as defined in Appendix E. 1. Note
that, because of the energy-momentum congervation, D*S,,, = 0, there is no
contribution from the vector-type tensor harmonies which do not, satisfy the
divergence free condition. If a bound state exists, we have to deform the con-
tour of integration so that the corresponding pole is covered, as mentioned
at the end of the subsection 5.2.2. _

With the above decomposition, the metric perturbation on the brane Ay,
given hy Eq. (5.23) consists of the isotropic scalar-type part and tensor-type
part. The scalar-type part is determined by Eq. (5.30), which gives

2
Ky
= —2— N
(10(10) 2(1 + ﬁ)g‘{ P S(P;G)
I 1
= S(p,ﬂ) s (5-35)
A+ /5[ (2+ 8) (52 + B) 2

where N, is the normalization factor for the harmonics defined in Appendix
E. 1. We see that the propagator part of the above (i.e., the coefficient of
So) do not contain the pole at p = (5/2)i which would corresponds to
the tachyonic mode with mass-squared —4H?2, Instead, it becomes a hranch
point and a branch ent. appears hetween the points p = (v/21/2)i and p =
(5/2)i. Thus we find the tachyonic mode is absent and there is no instability
associated with the brane bending due to the matter source on the brane.
Before we proceed, it is useful to note the equation,

2
_ - 2 L B () 36
(D#D,, ywlly — 3H fyw,)tp TR (5.36)
which directly follows from Eq. (5.35) and the definition of the scalar-type
(p.0)

tensor harmonics Y.

There is a free propagating tachyonic mode corresponding to the homo-
geneous solution of Eq. (5.30), which does not couple to either the scalar
or tensor-type matter perturbations on the brane. However, we shall argue
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in the next subsection that the mode that corresponds to the exponential

growth of the perturbation is unphysical, namely, the only physical mode

associated with this tachyonic mode is exponentially decaying with time.
The traceless part of Eq. (5.28) gives

1 2 sinb(yo/£) Pyl (20)

hp (o) = - (ip+3/2) (1= &) Py(z0) + G (—ip + 3/2) (HE)2 cosh(yo/L) Pihy(20)
> "‘?? Sp2) » (5.37)

where zy = cosh(yo/¢). This shows that the harmonic component of the
tensor-type metric perturbations on the brane has a simple pole at p = (3/2):
on the complex p-plane, which corresponds to the zero mode.

For convenience, we also write down the y~derivative of Ay,

1 P ;72(30)
anh(?’) (yO) —\ Dip — . 9 ip
(1 — @) Py} (20) + {—ip + 3/2)(HE)? cosh(yo/€) Py (20)
2
X %i S(;n,z) . (538)

Then, Eqs (5.30), (5.33) and (5.38) constitute the effective gravitational equa-
tions on the brane that form a closed set of integro-differential equations.

5.2.5 Source-free tachyonic mode

Now, we discuss the source-free tachyonic mode on the brane [136]. This
mode corresponds to the homogeneous solution of Eq. {5.30), so does not
couple to the matter perturbations on the hrane.

On the complex p-plane, the solution corresponds to the pole at p =
(5/2)i. Thus, the solution is given by

w= (p(gi/g)y(mlz’ﬂ) . (5.39)

For this mode, the junction condition (5.28) tells us that it is associated with
a non-vanishing h,,,. The solution in the bulk is given by {136]

b = Oy Lo, L = DDy, + Hyp. (5.40)
This satisfies the transverse-traceless condition and
(54 - 4H2) By = 0. (5.41)

Thus, this mode falls within the mass gap between m = 0 and 3/2, with the
mass mH = v/2H.

Let us first analyze the behavior of the function ¢(y). It should satisfy
Eq. (5.14), which becomes

s (oon)

sinh*(

2

* £2 sinh” (y/é’)] #(y) = 0. (5.42)
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The general solution is given by

Hy) = c1dr(y) + c202{y) 5
é1(y) = coth(y/0), ¢a(y) = 1 + coth’(y /L), (5.43)

where the coefficients ¢; and ¢y are related through the junction condi-
tion (5.28) as

1+ @coth®(yo/£)
1+ 7

Ag readily seen, this mode diverges badly as y — 0. Therefore, the regularity
condition at y = 0 will eliminate this mode. Nevertheless, since its effect on
the brane seems non-trivial, it is interesting to see the physical meaning of
it..

We note that ¢, is a gauge mode. This can be checked by calculating the
projected Weyl tensor E,, := (5)6*“”,1,, |91, 59] which is gange-invariant. We
find that only the coeflicient ¢z survives:

1
1- 5H2 Cc1 — H2 coth(yg/ﬁ) Co = 0. (544)

B*,(y,2%) = = L () (5.45)

2 sinh*(y /¢
This means that the junction condition (5.44) does not fix the physical am-
plitude c¢s. It just fixes the gauge amplitude ¢;.

To understand the physical meaning of this mode, it is useful to ana-
lyze the temporal hehavior the projected Weyl tensor. For simplicity, let
us consider a spatially homogeneous solution for ¢. Choosing the spatially
closed chart for the de Sitter brane, for which the scale factor is given by
a{t) = H! cosh( Ht), we find

P*2(tanh(Ht P2 (tanh(Ht - -
2 7 D, L (3/2 W) Cr et + Gy et (5.46)
cosh™ “{ Ht) cosh™=(Ht) t—oo

where ¢y and Cp differ from C) and Cs, respectively, by unimportant nu-
merical factors. We see that the solution associated with € is the one that,
shows instability. If we insert this solution to Eq. (5.45), however, this un-
stable solution disappears. In fact, we obtain

— 15Hzég Co ~ 15(H€)262 Co
"7 @2sinhi(y/0etFt T 16(HE) sinh (y/0)ad(t)

(5.47)

We note that E?, on the brane decays as 1/a*(t). This is exactly what one
expects for the hehavior of the so-called dark radiation. We also note that,
although F,, does not vanish for spatially inhomogeneous modes, they decay
as 1/a3(t) [136], giving no instability to the brane.

In the Einstein case, the dark radiation term appears if there exists a
black hole in the bulk. This is also true in the EGB case. There also exists a
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spherically symmetric black hole solution in the EGDB theory {69, 70, 71, 72,
73, 74]. The metric is given by

dR? R? 6ay 4
ds® = —f(R)dT® + oM RdQ%y;  f(R) =1+ (1 - \/ 1+ 3gf + §QA5)5.48)

where i = k20 /(27*) and M is the mass of the black hole. For this solution,
the projected Weyl tensor is given by

7! 4 16cepy —3/2 4 16 i 4 -1/2_
Ett=ﬁ(1+§al\5+ 3R4 ) (1‘*“‘5(11’\5‘? 9R4) Zw‘é-z(l-i-gal\s) (’(}49)

for B > (au)% |59]. Comparing Eq. (5.47) with Eq. (5.49), with the
identification R = {sinh(y/¢) cosh(Ht), we find

: 1Ou ( 2 )_1/2 (5.50)

C2G2mm l+§Cl!A5

Thus the solution that decays exponentially in time corresponds to adding a
small black hole in the bulk [138].

In the two-brane system, the mode discussed here corresponds to the
radion, which describes the relative displacement of the branes [111, 136]. As
the case of the Einstein gravity, the radion mode is truly tachyonic. However,
for the EGB theory, there is a tachyonic bound state mode other than the
radionic instability, as in the limit of the Minkowski brane [139], as discussed
explicitly in Appendix E. 2. This renders the two-brane system physically
unrealistic in the EGB theory without any prescriptions.

5.3 Linearized gravity on a Minkowski brane
and its limiting cases

Before investigating limiting cases for a dS brane, we review the results for a
Minkowski brane [134, 140|. In the next subsection, we compare these results
with those for a dS brane.

5.3.1 Effective equations on the brane

As the same manner in the case of a d5 brane, in the RS gauge as bhefore,
the perturbed bulk metric in the bulk is written

ds? = dy® + () (N + hyw Jdztdz”,  bly) = e”W/E (5.51)

where 7, 18 the Minkowskl metric. The brane locates at y = 0 in the back-
ground. The background part of the Einstein Gauss-Bonnet equation (5.3)
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gives the relation of the AdS radius to the bulk cosmological constant,
Eq. (5.10). The perturbative part of Eq. (5.3) gives

1
(1-4a) (a; — 450, + 0, Yy = 0. (5.52)
Again, we consider the case @ 3¢ 1. The location of the brane is perturbed
to bhe at. y = —fy. Indnced metric on the brane is given by
dsﬂ(é) = (M + o) A", By = sy — i (5.53)

The solution for Ay, on the brane which satisfies the junction condition
is given by

1
M| = -4 / el gre £ }(qg)
y= e J @) (1 -a)gHY (gf) + agre2 M (gb)
Publy
[S.mf(p) (nw — ; ) S(p )} (5.54)
where H{" is the Hankel function of the first kind and ¢> = —p> The
equation that determines the brane bending is
2
kg 1
— 05 : 5

Hiv=—513a" (5.55)

As for the dS brane case, the brane bending mode is not dynamical.

The perturbed four-dimensional Einstein tensor is expressed as
= 1

(5Gﬂy{h] = —584 huy -+ 2 (8#3,, — nm,lj,; ) . (556)

Ingerting Eq. (5.54) into Eq. (5.56), we obtain the effective equation on the
brane, which reads

} K2 1—é& 1—a

§G b = 2;’ gs,u, — (Ou0y — Mwa )0 + g5 T
s,y = 3 [ 20 #1(ge)
] e 2@4 - &) HM (ql) + ageH (g0)

< [Suto) - (mw - E O P,

5.3.2 Short distance limit
In the short distance limit ¢f > 1, Eq. (5.57) becomes

. I 1-&
0GR = 20563”" == (0,0, — 104 ) . (5.58)
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Comparing Eqs. (5.55) and (5.58) with the linearized Brans-Dicke gravity,

- 81 G 1 e
§Gulh] = ";—04 o (= 1u04) 38, 0400 = — -

Sy
H—E_@O

S, (5.59)

we find the correspondences,

8vGy _ ki 80 1-a L 3@

B, 2l B, & P 1-a

(5.60)

The brane bending scalar ¢(z#) turns to be dynamical. The reason is ex-
plained as follows: In neglecting the KK contribution to the effective grav-
itational equation, the pole at p = 0 in Eq. (5.57) seems to dissapear in
the theory. This pole contribution just plays the role of the scalar degree of
freedom in the effective gravitational theory on the brane. Thus, the scalar
degree of freedom is higher-dimensional and comes from KK modes.

The corrections are rewritten as

. K2 ' e (1—-a)¢H {1)(q€)
(5G’”"’[h]) . 2ad 2 z° = (1 = (1)
at | (27) (1 — a)gtHM (gf) + ag?2H" (gf)
1
X {Sﬂv - g (Tfpw - P;];u) Sjl . (561)

5.3.3 Large distance limit

In the large distance limit ¢f < 1, Eq. (5.57) becomes

5GT k2 1
pw[h'] = 71 T @S,Lw- (562)
Thus we obtain the Einstein gravity with
2
Ky 1
= -2 : 5.63
Sma = 3173 (5.63)

For & — 0, this reduces to the result in the Finstein theory.

5.4 Linearized gravity on a de Sitter brane in
limiting cases
In this subsection, we discuss the effective gravity on the brane in various lim-

iting cases. We find the effective gravity rednces to four-dimensional theories
in all the limiting cases.
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5.4.1 High energy brane: H¢{ > 1

For a high energy brane, i.e., H¢ > 1 limit, we have tanh(ye/¢) =~ 1/(HE)
and 3 ~ 2(H{)?. We assume that matter perturbations on the brane are
dominated hy the modes p ~ Q(1). Namely, we consider the case HZ > p.
Then, from Eq. (5.36) and Eq. (5.38), we find that the second and the third
terms in the right-hand-side of Eq. (5.33) are suppressed by the small factor
1/(H?)? relative to the first term,

w2 tanh(yo/£)

3G, [R) + 3H?h,, = T

(SW + o((He)—2)) . (5.64)

Thus, we obtain Einstein gravity with the cosmological constant 3H?, with
the gravitational constant G4 given by

87 = 54 B(yo/€) ~ i (5.65)
= opg IS o e :

The terms we have neglected give the low energy non-local corrections:

(56*#,,[.;1]) = —M tanh(yo/£)

corr, H ¢ 26

X f dp {YJE’Z)S@'Q)
1?2 (20)

X -
[(1_a)P;72(zo)+a( —ip + 3/2) (H¢)? cosh(yo/£) Pyl (20)

1
(p,o) Sin.0) 50 } (5.66)

5.4.2 Short and large distance limits

In order to discuss short and large distance limits, it is convenient to start
from the expression (5.31) for the perturbed Einstein tensor, and Eq. (5.36)
which relates the blane hending scalar ¢ to the scalar part of the energy
momentim tensor S’W Let us recapitulate these expressions:

G 0 [R] + 3H Ty = 2coth(yo/f) (D“DU — i — 3H2~{W) 0

1 2
~ (134 — 25 )y, (5.67)
2
(D”Dy - ')’,uul:lﬁl - 3H2’Y'uy)g0 m SSI]}) . (568)
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1. Short distance limit: r < min{¢, H~*}

For the short, distance limit p — oo, using Eq. (5.37), we find

—-;- (D - 26
(HE) (—ip +3/2) Pihy(20) / Py (20)

=3[ dpy2?s
2% f Pl e (1) + a(HE)? cosh(yo/€) (—ip + 3/2) Pty (z0) Pty (20)

s ? tanh(yo/€) / Y{p Z)S(p 2) (5.69)

Also, using Eq. (5.68), we manipulate as
2 coth(yo/0) (DMD,, — Ty — 3H2fyﬂ,,) o

K2 b
= ﬁ tanh(yo/f) /_ . dp S(p'o)Yﬁ(ﬁ’o}

— % anh(yo/0) (DuDV — D~ 3H2ryw) o, (570
where we have usec an identity,

2coth(yo/€) = 2coth(ye/f) — '8 tanh(yg/ﬁ) + !

ﬁ tanh{y,/¢)

— g tanh(yofﬁ) X (5.71)

l—a
= — @a tanh(yg/f) +

which follows from the definition of the parameter 3, Eq. (5.29).
Substituting Egs. (5.69) and (5.70) in Eq. (5.67), the linearized gravity
on the brane at, short distances hecomes

_ _ 2
5G,o R + 3HRy, = 2’% tanh(yo/0) S,y

—@ tanh(yo/f) (D“Dl, = Oayp — SHQWW)@, (5.72)
with
2
2\, _ Ry
(L—_Iq-i—élH)tp— TamES (5.73)

This is a scalar-tensor type theory.

As in the case of a Minkowski brane, the scalar field  which describes the
brane hending degree of freedom turns to be dynamical. As we have seen in
the previous subsection, there is no intrinsically dynamical mode associated
with the brane bending. Therefore, this emergence of a dynamical degree of
freedom is due to an accumulative effect of the whole Kaluza-Klein modes,
like a collective mode. Furthermore, hecause of the tachyonic mass, the
system appears to be unstable. However, this is not the case. Since we have
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taken the limit p — oo, all the perturbations have energy much larger than

H, and the tachyonic mass-squared —4H? is completely negligible. In other

words, the spacetime appears to be flat at sufficiently short distance scales.
We can rewrite Eq. (5.72) in the form,

~ . 1 8l
5 lh] + Ay = (D Dy, — Oy — 3H 'y#,,) 50+ 2g
Do o
871’G4
O 4H2) 56 = 5.74
(D+ TS (5.74)
with the identifications,
STI"G4 i 1-a
=——t —_— = — I
B, 2€ anh(yo/?), 3, = tanh(yo/€) e,
w= 3_ z coth®(y/8), Ay = 3H2. (5.75)
Neglecting the tachyonic mass of 6®, as justified above, this is the linearized

Brans-Dicke gravity with a cosmological constant. For H¢ < 1, we have
tanh(yg/f) ~ coth(yo/¢) ~ 1. Then

8?TG4 h% 5¢’N 1—-a& o 3
“TTa © YTica

B, _ 2al

This is in agreement with the Minkowski brane case investigated re-
cently [140].
The corrections are written as

(5.76)

(5G'UV [h}) corr, gl
Hg (p2)
= - 5@"‘(_; tanh(yo/ﬁ) ~ Y S(p 2)
% . (1 - d)Pl%(zﬂ)
(1 — @) Phy(20) + G(HE?(—ip + 3/2) cosh(yo/€) Py (20) |

(5.77)

2. Large distance limit: r > max{¢, H~'}
For the limit p — 0, using Eq. (5.37), we have
1 2
—§(u4 _9H )hw

_ l/ yoag sz sinh(yo/€) H*(—ip + 3/2) Py, (20)/ Pi}y(20)

2/ 0 TPT1 — @+ a(HE? coshiye/6) (—ip + 3/2)P§‘;’2(zo)/ o (20)
. 33 (HL)Psyn(z0)/ Prja(20)
T4 (1—- @)+ (3/2)(HL) coth(yo/€)aPssa(20)/ Prye(z0)

X f dp Sy Y, 22 . (5.78)
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As for the term involving ¢, we pull out the part that takes the same form
as the above equation. Using Eq. (5.35), we find

2 coth(yo/f) (D“Du — s — 3H2’Yuv) ®

_ 35 (H) Pyja(20)/ Pyya(20)
40 (1 — @) + (3/2)(HE) coth(yo/€)aPs2(20)/ Piy2(z0)
x / dp Spoy Y,

_ (Hf)(l — @)P_l/g(Z())
2(1 + ﬁ)Pl/g(Zo) e (Hﬂ) COth(yo/g)C_kPmlfg(ZQ)

X (DMDU — ol — 3H2m)<p, (5.79)
where we have used the recursion relation,
3 1
§P3/2(Zo) = 220P jo( %) — §P-1/2(z0) : (5.80)

Thus, the effective gravitational equation is expressed as

. . 2
§Gu[B] + 3H%, = %FT S — Fs (D#D,, P 3H2’ylm,) @,

(54 + 4H2)<;6 - m%? s, (5.81)

where we have rescaled ¢ to ¢ = 6(1 + ), and Fr and Fs are constants
that represent the tensor and scalar coupling strengths, respectively, given

by

(HI) (4 cosh(yo/€) Pry2{z0) — P_z/z(zo))

2(2(1 + B)Puja(20) — (Hé)zcosh(yg/lf)aP_l/g(zo)) ’

FS _ (HE)(]. - @)P_l/g(ZO) {582)

6(1+ 8)(2(1 +8)Piya(z0) — (HE) cosh(y/)P-1y2(=))

Fr =

In the intermediate range of HY, i.e., when H¢ = O(1), then Fr and Fjg are
comparable and we obtain a Brans-Dicke type theory given by Eq. (5.74)
with the identifications,

87TG4 . H,g 53 _ - _ 9
5 = o §o=—Fs8, A=K (5.83)
_Fr—apy _ 80+ 9 cosh(u/)Ra(a) - 3(1+ (HO?G) P_ya(0)
. 2Fg o (1- &)P_l/g(ZU) )

A potential problem in this case is that the tachyonic mass of the scalar field
seems to make the system unstable. However, as discussed in suhsection
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5.2.4, the tachyonic pole is not excited by the matter source. Further, as
discussed in subsection 5.2.5, the source-free tachyonic mode do not cause an
instability either.

For H¢ <« 1, w > 1 and the scalar field decouples to vield

r_ rcoth(ye/d)
5G| + 3H?h,, = LS/ 6 84
G [R] + =TT Ta Sy (5.84)
Thus we obtain the Einstein gravity with
K2 coth{yp/£)
8 =S 825
e 7 1+3 (5 )
In the limit H{ — 0,
2
1

‘This is the result for the Minkowski hrane.

In the limit H¢ > 1, w > 1 and we recover the four-dimensional Einstein
gravity on the brane with

2
KE
BrGy = o . 5.87
YT o(HOal (5.87)
Note that this is just a special case of the high energy hrane case.
Thus we conclude that despite the presence of the tachyonic mass, the

gystemn is stable and well-hehaved for all ranges of H¢.

5.5 Summary of this Chapter

We have investigated the linear perturbations of a de Sitter brane in an Ant-
de Sitter bulk in the five-dimensional Einstein Gauss-Bonnet (EGB) theory.
We have derived the effective theory on the brane which is described hy a
set, of integro-differential equations.

Then, we have investigated the behavior of the theory in various limiting
cases. In contrast to the case of braneworld in the five-dimensional Einstein
theory, in which both the short distance and high energy brane limits ex-
hibit five-dimensional behavior, we have found that gravity on the brane is
effectively four-dimensional for all the limiting cases.

For a high energy brane, i.e., in the limit H¢ > 1, the Einstein grav-
ity is recovered, provided that the length scale of fluctuations is of order
H-'. Tt is found that the low energy corrections are suppressed by the factor
O((HO)™).

In the short distance limit r < min{¢, H='}, the scalar field that describes
brane bending becomes dynamical, and we obtain the Brans-Dicke gravity.
This is consistent with the case of the Minkowski brane. A slight complication



is that this brane-bending scalar field is tachyonic, with mass-squared —4H2.
Therefore, if it becomes dynamical, one would naively expect the theory to
become unstable. However, since the energy scale of fluctuations are much
larger than H, the fluctuations actually do not see this tachyonic mass, hence
there is no instability.

In the large distance limit » > max{{, H~'}, the Einstein gravity is
obtained in hoth limits Hf <« 1 and H{¢ > 1, while a Brans-Dicke type
theory is ohtained for Hf = O(1). Although the scalar field of this Brans-
Dicke gravity is tachyonic with mass-squared given by —4H?2, we have shown
that this mode is not excited by the matter source, hence does not lead to
an instahility of the system.

In the limit Hf — 0, the previous results for the Minkowski brane have
been recovered, that is, the Brans-Dicke gravity at short distances and the
Einstein gravity at large distances.

In all the cases, the effective four-dimensional gravitational constant de-
pends non-trivially on the values of H¢ and &, where & is the non-dimensional
coupling constant for the Ganss-Bonnet term. This indicates the time varia-
tion of the gravitational constant in the course of the cosmological evolution
of a brane in the EGB theory. It will be interesting to investigate in more
details the cosmological implications of the braneworld in the EGB theory.
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Summary and discussion

6.1 Summary of this thesis

We have investigated the dynamics and effects of Kalnza-Klein (KIK) modes
in the context of the second Randall-Sundrum (RS) braneworld. The RS
model realizes four-dimensional general relativity on the brane, where we are
living, by warping of the extra-dimension, which is called the bulk, not by the
conventional compactifications as in KK theory. KK modes correspond to
waves in the bulk and are observed as an infinite number of massive mocles on
the brane. These modes usnally give corrections to four-dimensional grav-
ity. In this sense, their contribution should not be so large in order for
the braneworld cosmology to he viable. On the other hand, as the self-
accelerating solution in the DGP moclel, which is briefly introduced in Chap-
ter 1, KIX modes may give new possibilities for difficulties in four-dimensional
cosmology.

For mathematical set-up, we first gave effectve gravitational equations
on the brane hy the covariant geometrical projection method. We also gen-
eralize several local conservation laws, which are well known in the case of
four-dimensional spherically symmetric spacetimes, to the case of higher di-
mensions, in order to discuss the dynamics of the brane with a cosmological
symmetry, i.e., homogeneity and isotropy, in the bulk.

Then, we discussed the backreaction of KI{ graviton modes which are nai-
urally produced at the early stage of the brane universe. They are just the
hulk metric perturbations and their existence is rather generic in braneworld,
independently of the detailed assumptions. KIX graviton modes are consid-
ered to he produced mainly by two different mechanisms: The first, possibility
is that they are produced by high energy particle interactions on the brane.
The second one is that they are produced guantum mechanically in the whole
bulic during brane inflation. First, we consider KK gravitons produced hy
particle interactions on the brane. We treat the emission of KK gravitons
as ingoing null dust flux. Then the metric of the bulk spacetime is given
by an ingoing Vaidya-type solution. We discussed the geometry in the hulk
and obtained a closed set of equations which represent the trajectory of the
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radiating brane in the bulk. We also found that in the case that the convn-
tional three-space is closed (i.e., a three-sphere) and the flux of KK gravitons
increases eventually, then a null, strong and visible naked singularity can be
formed in the bulk.

Next, we discussed the backreaction of gravitons of a KIX mode produced
guantum mechanically in the whole bulk. In order to discuss the backreac-
tion of these KK gravitons on the brane correctly, we derived their effective
stress-energy tensor for gravitons of a KIX modes by computing the curva-
ture tensors up to the second order of perturbations and averaging them,
by taking the existence of the infinitely thin brane into consideration. The
averaging scheme is discussed in Appendix A. 2 in details. Essentially, the
averaging is done only for the derivatives in the direction of the usual four
dimensions (namely parallel to the brane) and for the derivatives in the direc-
tion of the extra-dimension, we used the boundary conditions and equation
of motion in the bulk, in order to eliminate them. Then, by the geometrical
projection, we derived the effective stress tensor of gravitons of a KK mode
on the brane. As a result, we found that a KK graviton mode behaves as
cosmic dust, but the energy density becomes negative. The negativity of the
effective energy density results from the pressure of the KK modes onto the
brane and the energy density in the bulk is still finite.

In reality, however, what we observe is the sum of all KK modes. We
also need to determine the amplitude and the amount of hackreaction of all
KK modes quantum mechanically. As is well-known, however, the sum of
all the KIX modes suffers from divergences as one approaches the brane from
the bulk, even after a conventional UV regularization. Then, we proposed a
new regularization scheme for this type of divergence by taking a finite brane
thickness into account. As a demonstration, we considered a thick de Sitter
brane model which is supported by a bulk scalar field. As a probe, we con-
sider another, quantized, massless scalar field, which is coupled to the bulk
scalar curvature. Especially, for the case of the minimal coupling, the evolu-
tion of the text scalar field in the bulk is the same as that of KK gravitons
and thus we may obtain physical insight about the case of KK gravitons. We
have computed the amplitude of the quantum fluctuations and the amount
backreaction by employing zeta-function regularization. We showed that a
finite brane thickness can regularize these on the brane. Though we have
investigated only one explicit model, the behavior of the quantum fluctua-
tions at the center of the wall should be independent of the choice of the
model hecause the behavior of a supporting scalar field is generic, indepen-
dent. of the global feature of the model. Then, we compared the amount of
the quantum backreaction for the minimally coupled case with that of the
background stress-energy tensor and found that the former can be naturally
reduced to helow the latter. From these discussions, we obtained a theoreti-
cal bound on the brane thickness parameter and showed that this boind is
realized without contradicting the framework of the model. This hound can
be also intepretted as that on the energy scale of the brane expansion.
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In the previous Chapters, we have discussed brane models in the
five-dimensional Einstein (and Einstein-scalar) theory. However, in five-
dimensions the gravitational theory with curvature corrections of quadratic
order is more natural. Especially, among them, the Einstein Gauss-
Bonnet, (EGB) theory uniquely gives second order equations of motion as
in the Einstein theory. In four dimensions, the GB term ig just a topological
quantity, but in higher dimensions it becomes dynamical. In order to find
cosmological implications of braneworld in the EGB theory, we investigated
the linearized effective gravity on a dS brane in an AdS bulk in the five-
dimensional EGB theory. We solved the tensor metric perturbations in the
hulk and then derived the effective theory on the brane which is deseribec
by a closed set of integro-differential equations.

In contrast to the case of the five-dimensional Einstein theory, we have
found that gravity on the brane is effectively four-dimensional for all of dis-
tance scales, from short distances to large distances. In the short distance
limit, the scalar field that describes brane bending becomes non-trivial, and
we obtain the scalar-tensor (Brans-Dicke) type gravity. In the large distance
limit, the Einstein gravity is obtained in both low energy and high energy
limits, while a Brans-Dicke type theory is ohtained for intermediate energy
scales. On high energy expanding branes as well as on low energy ones,
four-dimensional Einstein gravity is obtained.

6.2 Related 1ssues and future works

There are several remaining issues which are related to our work. One of
these issues is the gquantification of the hackreaction of the KK gravitons. As
we discussed, KK gravitons are considered to be produced quantum mechan-
ically and they may affect hrane cosmology non-trivially as discussed in this
thesis. As is mentioned before, because they are corresponding to the bulk
metric perturhations, the existence of them is generic in RS-type braneworld,
independent of the detailed assumptions. To determine the amount of back-
reaction of KK gravitons is important work from the ohservational point of
view. The main problem is the divergence of the sum of all KK modes as
one approach the brane from the bulk. In Chapter 4, we have proposed
a new regularization scheme for such a divergence by taking a finite brane
thickness into account. We expect that this regularization scheme can be
applied also to the case of the KK gravitons because the evolution of the KIC
gravitons are (uite similar as that of a massless, minimally coupled scalar
KK moces, apart from the only difference of the degeneracy on a sphere in
Euclideanized space. Thus, for a more realistic brane model, we can easily
quantify the backreaction of the KI modes. The explicit determination of
the backreaction is left, for future work.

Another issue is about KK modes in a higher-codimensional hraneworld.
In this thesis, we have assumed that there is one non-trivial extra-dimension.
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However, for instance, string theory, which hrane cosmology is based upon,
predicts that there are ten or eleven spacetime dimensions. The other di-
mensions are usually considered to be compactified. But the idea of the
RS braneworld tells us that there may be other infinitely extended extra-
dimensions, as long as they are warped.

In embedding a singular, self-gravitating brane into a higher-
codimensional spacetime, what we should note is that the gravitational field
around a brane becomes more singular in the bulk. This fact is understood
intuitively from the following considerations: Assuming that there are n-
codimensions, the gravitational potential in extra-dimension around a brane
is scaled as »"2, where r is radial distance from the brane. In the case
n == 2, the potential exhibits a logarithmic dependence on r and there is a
conical singularity at the brane position. In this case the junction condition
is marginally tractable and there have been studies about codimension two
brane solutions, see e.g., [141, 142, 143, 144, 145, 146, 147, 148]. In the cases
of codimensions more than three, i.e., n > 3, the gravitational potential is
proportional to inverse powers of the distance r and singular at the brane
position. This fact implies that the brane becomes a hlack hole as long as it
is assumed to he infinitesimally thin. Thus, taking a finite brane thickness
into consideration may be essential to realize hraneworlds where we can live.
Constructing explicit solutions is an intriguing future issue.

Investigations of quantum effects in higher-codimensional braneworld also
are not considered even for the case of codimension two. Divergences of
the sum of the KK modes as one approaches the brane from the bulk are
also expected. It should he checked whether our regularization scheme by
a finite brane thickness works or not. Stability of higher co-dimensional
braneworlds should also he analyzed from classical and quantum mechanical
point, of views. Anyway, a finite brane thickness should hecome an essential
key to extend (self-gravitating) brane models into higher-codimensions and
investigate the behavior of the KK modes in these models.

Other than the brane thickness, in higher dimensinals one may add higher
curvature terms into the bulk gravitational theory, like the Gauss-Bonnet
term discussed in Chapter 5. These higher curvature terms may be also
essential in these higher-codimensional cases.

We hope to report the results of investigations about these issues in our
future publications.






Appendix A

Curvature tensors

In this Appendix, we list components of curvature tensors and gquantities
related to them.

A.1 Curvature tensors and locally conserved
quantities

We give useful formulas in an (n + 2)-dimensional spacetime with constant
curvature n-space, and generalize the expression for the local mass and the
charge associated with Weyl tensor.

We consider the metric in the double-null form,

2 4r Ty

d
s Q

dudv + r(u, v)de]%K’n), (A.1)

where K = 41,0, or —1, corresponding to the sphere, flat space and hyper-
boloid, respectively. We denote the metric tensor of the constant curvature
space as ;. 1he explicit expressions for the geometrical quantities in this
spacetime are as follows.

e Christoffel symbol
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¢ Hiemann tensor
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e Ricci tensor
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e scalar curvature
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e Weyl tensor

(n+2) n—1 (" T Tl
uuu: 1 ‘,u,v) - K -10),
C v - 1 ( Q RITH T TZQ ( )’
(n--2) 1 u
iujv = HTQ'YijOuvu
(n+2) 2 (nt2)
C im = Wm?"4 ('Yik"}’jl - ’Yiz’)fjk) C w - (A7)

From these formulas, we can show the existence of a conserved current, in
the same way as given in the text. Namely, with the timelike vector field £
defined hy Eq. (2.13), the currents $* = £2T3¢ and 5@ = €T} are separately
conserved, and the corresponding local masses are given, respectively, by

M =yt (K - Q) (A.8)
and
M=M 2 Appar® 1 (A.9)
T T h T Dy -
The v and u derivatives of M are given hy the energy-momentum tensor as
2 7
My = Ky (T = Tra ),
2 T
My =#2 +2% (Tvurﬂ, - T”J,“)' (A.10)

Let us now turn to the conserved current associated with the Weyl tensor.
We start from the equation that results from the Bianchi identities [97],

(n+2) .
abcd‘d = Jabe » (A.ll)

where

2(n—1

) 2 1
) h’ﬂ,+2 (TC[a;b] + mgc[bra]) - (A.lg)

Jabc = (n + l)

From this equation, we can show the existence of a locally conserved current,
Q® given by

Q" =rlnJ", Q% =0, (A.13)

where £% and n® are the null vectors defined in Egs. (2.28). The non-zero
components are explicitly written as

Q' =—rJ",, Q" =-rJ",. (A.14)
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We then find the following relations,

(n+2)
(TTH-I C quu) =Tn+1Jva> (A.15)
1

Ll

(n+2)
(Tn+1 O wvu) =Tn+ijuuu_
U

These relations are generalization of Egs. (2.30), and imply that the Weyl

(nt2) . . . .
component, "+ "¢ " is the local charge associated with this conserved

current.

. (n+2) . e
Using the explicit form of ¢ ,,%* in Egs. (A.7) and the Einstein equa-
tions, we can relate the this charge to the local mass. We find

el D n(n—1)M n—1 . ((7752} i _on (né2) ”1,)

r Cowm = 2 _n(n—i—l)T ¢
_ n{n-1)M
B 2
n—1 o +1 (i
— R (T, — onT). A.
D e (Tz nTT,) (A.16)

Finally, we note that this equation implies that the linear combination of the
energy-momenfium tensor,

(T — 2nT", ), (A.17)

plays the role of a local charge as well. Therefore, the behavior of this
quantity is constrained non-locally by the integral of the flux given hy the
corresponding linear comhination of the currents 5% and @Q*.

A.2 Second order curvature tensors of tensor
perturbations

A.2.1 Second order curvature tensors

Here we spell out the components of the curvature tensors up to quadratic
order in the bulk metric perturbation in order to derive effective stress-energy
tensor of KK gravitons. We consider the (d+1)-dimensional perturbed metric
in the form,

ds? = duf + B*(y) (m n hm,) drda | (A.18)

where 7, is the metric of the background d-dimensional spacetime subsec-
tion. In the text, we identify v, with the metric of a de Sitter spacetime.
We impose the following gauge conditions on the perturbation:

Ry =hoP s =0, (A.19)
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where the vertical bar (|) denotes the covariant derivative associated with
the d-dimensional metric +y,,, and the tensor indices of h,, are raised or
lowered by the metric 7, (not hy the five-dimensional metric).

The non-trivial components of the connection are given by
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(dltl) v, = —bliy, — lbzh;w — bt h

where the prime ( /) denotes the y-derivative.
The non-trivial components of the Riemann tensor are given by
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The mixed components of the Ricci tensor are given by
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The Ricci scalar is given by
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Using these results, the components of the Einstein tensor are given hy
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bZ

A.2.2 Computational rules for averaging

Here, we describe the computational rules for averaging the components of
the second order part of the curvature tensors listed previously. As we have
noted in the main text, the notation (A) includes both the averaging along
the ordinary spatial dimensions which are assumed to be homogeneous and
isotropic, and the small-scale time averaging as defined in (B.17). In hoth
cases, the computational rules are similar. However, we do not apply the
same rules for terms with derivatives in the bulk direciion, because we are
dealing with a braneworld and the averaging along the bulk direction is ill-
defined.

First, we note that we are interested in massive KK modes. So, we can
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neglect terms coupled to the background curvature tensor as

< o h%h",,) , (A.25)

which are of order O(h%/1?), where L is the d-dimensional characteristic
background curvature radius, in comparison with terms as

<hm|uhﬂair}> ] <hpahPGIW> )
<hp#fhrpu>, <hﬂﬂh’f’,,,>,-~, (A.26)

which are of order O(m?h?*). TFor instance for a cosmological brane with
expansion rate H, we have L = O(1/H). Thus m > H implies m > L%,
and we can safely neglect corrections of the form (A.25).

As a consequence, when taking the average, we are allowed to freely
interchange the order of the covariant derivatives. For example,

(W o ) 22 (Bl ) (A.27)

where corrections of order Q(h?/L?) are neglected. From now on, as in the
main text we will use “=" instead of “~” by neglecting the corrections.

Another computation rule is that total derivative terms can he neglected.
For example,

<h""|#hmgy> - <(h""hp,,|y)!#> - <h”"hpa;,,u> - —<hﬂf’h,,g|,,ﬂ>. (A.28)

This is because the total derivative term can he cast into the surface integral
which is smaller in magnitude than the volume term by a factor mR (3> 1),
where [ is the length scale of the averaging volume which is taken to satisfy
R>»m™L

As mentioned above, we do not apply the same rules for terms with deriva-
tives with respect to the hulk coordinate y. However, when one considers
projections onto the brane, some simplifications occur. On the brane, we
have the houndary condition Al g|prane = 0, which enables us to neglect all
the first derivative terms, e.g.,

bl
apl ! = — ap ! = apli ! = 1}. A2
<h hpﬁ > brane b <h hpﬁ > brane <h h’pﬁ > brane 0 ( 9)
In addition, using the bulk equation of motion (3.49), we have
po i — _{pre
<h hpo‘ > brauc <h Dd }1'.00'> brane (A'SO)




Appendix B

Backreaction of Kaluza-Klein
modes of a bulk scalar field

In this Appendix, we discuss the backreaction of KKK modes of a homogeneous
scalar field, in order to discuss the backreaction of KK gravitons in Chapter
3. We assume its amplitude ¢ to be small so that its effect can be treated
perturbatively: in particular, the backreaction of the scalar field on the metric
will be of order O(¢?). The equation of motion of KK gravitons is the same
as the case of the scalar field in the separable case and the latter case is more
tracteble than the former case because of no brane contribution.

It is known that the field equations for general cases are not separable and
the notion of a KK mode cannot be well defined. The separability property
is satisfied only for two limiting cases. One is the case of a dS brane with an
expansion rate H and one finds a mass gap Am = 3H/2 between the zero
mode and KK modes. Thus the continuum of KK modes starts above the
mass 3H /2. The other case is a low energy cosmological brane, in which case
the dependence on the extra dimension can be approximated by the profile
obtained for a static brane, i.e. the RS hrane.

We start from the five-dimensional action which consists of the Einstein-
Hilbert term, a cosmological constant As and a bhulk scalar field, comple-
mented by the four-dimensional action for the brane:

5 = 53:‘;; f dsm\/_—g(%) —205) + f dsm\/—_g(—%g“baacb@bqb—v(@)
+ f d4:ﬂ\/—_q(—cr + z:m) , (B.1)

where ¢ is the determinant of the induced metric on the brane, which we
denote by gag, and L,, is the Lagrangian density of the matter confined on
the brane. The Latin indices {a, b, - } and the Greek indices {a, 8,-- -} are
used for tensors defined in the bulk and on the brane, respectively. We will
assume that the brane tension on the brane is tuned to its RS value so that

ka0 = ~B6A5. We also take a constant bulk potential

V(¢)=Vo>0, (B.2)
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so that the scalar field is effectively massless.

We consider backgrounds given by a fixed value of the scalar field which
we choose ¢ = 0. For a non-zero Vp, one has a de Sitter brane background,
which will be discussed in subsection B.1. For V; = 0, one has a low energy
cosmological brane, discussed in subsection B.2.

The field equation for the bulk scalar field is linear and given by

s ¢ = 0. (B.3)

Since we consider a hackground configuration with ¢ = 0, the solution of
the ahove equation can be seen as a perturbation. This perturbation will
induce a bulk energy-momentum tensor, of order O(¢?}, which embodies the
hackreaction of the scalar field on the metric. This is the effect we wish to
calculate explicitly.

The variation of the action (B.1) yields the five-dimensional Einstein
equations

(5)
Gat+ ASgab = Wﬁgvﬂgab + "{'gTab + (_UQab + Tab)é(y - yﬂ) (B4)

where we have implicitly assumed a coordinate system in which the brane
stays at a fixed location ¥ = yp and where

T e (B.5)

represents the energy-momentum tensor of matter confined on the brane.
The stress energy tensor of the bulk scalar field, not including the constant,
potential 14, is given by

1
Tab == qb,a.@b,b - §gabng¢,c¢,d - (Bﬁ)

It is useful to consider the projection of the gravitational equations on the
hrane|91]. Taking into account the bulk energy-momentum tensor, one finds

1
G = “%"%%5“3 +Rs0T g F kT — By, (B.7)
where " 0
b o W o 3 2 9 00

and E,g is the projection on the brane of the bulk Weyl tensor and is traceless
by construction. If, in addition, one assumes the brane geometry to he
homogeneous and isotropic then the components of E,5 { in an appropriate
coordinate system) reduce to EY; and

. 1
Eij = —gdtjEtt. (Bg)
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By using the four-dimensional Bianchi identities, and assuming that the
hrane matter content, is conserved, one is able to express the component EY,

in terms of the values on the brane of the bulk scalar field and its derivatives
[29]:
¢2 (&) {b)
Et, = B f dt'a* (6 T .+ 3—2- T3 Z T 2) . (B.10)

CL4

B.1 KK mode on a de Sitter brane

First, we consider the case of a de Sitter hrane. The bulk metric around a
de Sitter brane can be expressed as

ds® = dy® + b*(y)yudetde” (B.11)

where the warp factor b(y) is given by

by) = Hésinh{y/?), (B.12)

and vy, is the four-dimensional de Sitter metric, which may he expressed hy
using a flat slicing for simplicity:

Ywdatds = —dt® + a*(t)6;;dzida?

1
a(t) =et, H*= gagw. (B.13)

The brane is located at y = yo such that b(y) = 1, that is,

1
HE

In this geometry, the equation of motion for the scalar field is

sinh(yy/€) =

;; (543 ¢) (fM 3H$ - —1— A ¢) = 0. (B.14)

This equations is separable and one can solve it by looking for a solution of
the form ¢ = f(y)e(t, z?), with

1 4 2o
50, (4'9,5) +m*f =0,
1 (3)
¢+3H¢—E§Acp+m2¢=o. (B.15)

The separation constant m? corresponds to the square of the KK mass, as
measured by an observer on the brane.

Since there is no coupling hetween the brane and the bulk scalar field,
the boundary condition for the scalar field at the brane location is simply
dy¢ == 0, and therefore 9, f = 0. The equation along the y-direction implies
that the mass spectrum is characterized by a mass gap 3H/2 [17]. The
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corresponding eigenfunctions f can be wuﬁen in terms of the associated
Legendre functions.

Let us now focus on a single KX mode, which is spatially homogeneous
and sufficiently massive: m > H. One finds from (B.15)

o(t) = I/ cos(mt) . (B.16)

If we take a time average over a time scale much longer than the period of
oscillation m~!, we can ignore the oscillatory behavior and use

(sin®(mt)) = (cos*(mt)) = %, etc. (B.17)

From Eq. (B.8), we thus find

(b} 1 1
Th= —“8*|fm|2m2“§=

© 5 2 a2l g
T'= 'ézlfml m 553;, (B.18)

where f,, is the value of f(y) on the brane for the eigenvalue m?. From
Egs. (B.10) and (B.16), and from the fact that 92¢ = —m®¢ on the brane,
we can evaluate £, as

] 1
“Ett 8"5§|fm|2 2@3 3
3 1y

where we have neglected the terms that depend on the initial data, which
hehave as a~* and thus become negligible at late times.

The above results show that the Weyl term E,, contributes negatively to
the effective energy density and pressure on the brane for a massive mode.
Moreover, if one computes the total effective contribution of the bulk, i.e.,

(0 .
the sum of T oz and of the Weyl term E,4, one finds for the effective energy
density and pressure on the hrane

(5)
"‘ﬁp(ef‘f) = “(ﬁg Tt — Ett) —_fbsffmiz
1 (B, ,
Ripen = 5 (K,;‘; T - E) =0. (B.20)

This represents the backreaction effects of the bulk scalar field, which are of
order O(¢?). Whereas the effective pressure due to the KK mode vanishes,
because the hulk component and the Weyl component exactly cancel each
other, the effective energy, remarkably, is negative.
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B.2 KK mode for a low energy cosmological
brane

We next, calculate the effective energy density and pressure of a KK maode for
a low energy cosmological brane whose metric in the Gaussian normal coor-
dinate is approximately given by Eq. (1.16). If one considers the evolution of
a massless, minimally coupled scalar field in the the low energy cosmological
hackground metric, one finds that the field equation is separable and thus
admits a solution of the form ¢(¢, y) = f(y)w(t) with

4
0 f = 30 f +m?e¥f =0,
¢+ 3Hp+mPp=0, (B.21)

where the function f(y) is assumed to be Zp-symmetric.

The solution for f(y) with the appropriate Neumann boundary condition
on the brane, f/(0) = 0 is given in terms of the Hankel functions. There is a
zero mode corresponding to m = 0 as well as a continuum of KK modes with
m > 0. For a massive KK mode m > H, the four-dimensional part evolves
as

1
$==5 cos(mt) , (B.22)

Similarly to the de Sitter brane case, one can compute the projection of the
bulk energy-momentum tensor on the brane and one finds for its components:

®, _ 2,2 2,
T = - 3(t)|fm| (sin*(mt)) = _8 3(t)5fm|
o),
s 1 S(t)|fm|2 2(31112(mt)> = )|fmtz m2. (B.23)
This gives
1 * o m, ab),
Ky By = — (&T t+3“'T —ETzi)
a t() 44
2,2 a(to)
= - , B.24
el (1- 5 (529
and Et, = —E*, Thus we ohtain
@,
— kIR = I
T t — Fg 9 3(t)|fm‘
(&)
T~ k2B =0, (B.25)

at late times. Therefore, the effective energy density and pressure for a KK
mode hecomes

(b} I
ﬁip(eff) = _(Hg T tt - Ett) = .—2(13&&) ifmlzmza
1 {b) .
K2y = 5( KT - B) =0. (B.26)
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This means that, also for a low energy cosmological brane, a massive KK
mode behaves as cosmic dust with negative energy density.

The analyses given above imply that the result is independent of the ex-
istence of a mass gap and the essential factor is the background expansion of
the brane. A KK mode can be approximately defined only for a cosmological
brane which slightly deviates from the dS geometry and for a low energy
brane, thus we expect that our result can be applied at least for these cases.
However, for intermediate energy scales a KK mode is not well-defined in
general and it is not clear how our result might, be applied.

Finally, we note that the hulk energy density of a KK mode on the brane
remains positive as

1 1
Kapul) = —rETY = gff?lfmfmggg >0, (B.27)
for both de Sitter and low energy branes (with the understanding that the

time average over scales greater than m™! is taken). I shows that there is no
singular effect in the bulk in contrast to the peculiar behavior on the hrane.



Appendix C

Classical stability against tensor
and scalar perturbations

In this Appendix, we analyze the classical stability against the tensor and
scalar perturbations on the thick brane background which is discussed in
Chapter 4.

C.1 Tensor perturbations

We first discuss the tensor perturbations ahout the domain wall hackground.
Here we shall assume a Randall-Sundrum (RS) gauge [9] in which the com-
ponents of the extra-dimension are zero, i.e.,

ds® = b*(2) [d2® + (Y + hyw) doda”] (C.1)

where h,,, satisfies the usual transverse-traceless gauge about the background
dS metric; D#hy, = h#, = 0, where D* is the covariant derivative associated
with 7,

In this case, the perturhation is separable and we obtain the equation of
motion in the bulk direction, which can be written in the standard quantum
mechanical form as

|25 + V(@) 9(2) = mu(2), (C:2)
where ¥(z) o« b(2) "¢ V/2h,, and

d— 1) d—1_, d—1+2
VT(Z) — ( ) H2 _ 2 5 g
4 4 cosh*(Hz/o)
The thin wall limit ¢can be obtained from the limit ¢ — 0, which leads to
a system composed of a thin dS brane embedded in a flat Minkowski bulk.
The potential for the tensor perturbations in the thin wall limit is then

(d—1)*
4

(C.3)

Vin(2) = H? — (d— 1) H§(z), (C.4)
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where we used for ¢ — 0

1
20 cosh®(z /o)

— 8(z). (C.5)

In this limit the solution for the tensor perturbations reduces to the standard
exponential form.

The general solution can be decomposed into a zero mode with mass
m = 0, which may realize four-dimensional gravity on the brane, and a
contimious spectrum of Kaluza-Klein (KK) modes with m > 3/2 (in the five-
dimensional case). Thus, the model is classically stable against the tensor
perturhations.

C.2 Scalar perturbations

Next, we discuss the stability of the model against scalar perturbations. We
consider a scalar metric perturbation of the form

ds® = b(z)? [(1 +24)d2? + 2D, Bz
+ (9 (14 2R) + 2D,D,E )dotde’| (C.6)

and also a perturbation of the field x{z) — x(z)+ dx(z}, which supports the
domain wall.

In the bulk longitudinal gauge, B = E == 0, the perturbed Einstein
equations can he written as follows:
v b2
d(d—1)FR +(d—)OR +d(d - DH*R —d(d~ 1) (})—) A
av
b*—4&
By X
bf
—~(d =)D (R - -EA) — ¢/ D,dx,

= X'0x — Ax* -

(d— DR+ (d ~ 1)2%72’ +(d=2)OR + (d — 2)(d —~ 1) H*R

' 1/
- (d—l)%A’—Z(d—l)%A—FE}A
av
_ 2 e p2YV
= Ax" -~ ¢y baXfSX,
D"D,;((d— DR + A) - 0. (C.7)

The perturbed equation of motion of the scalar field is found to be
" b’ / " b’ !
6"+ (d = 1)20% +08x —24(x' + (d - 17X

2V

+ (—A’ + d’R’) & —~ 525)—(55;( —0. (C.8)



118 C. Classical stability against tensor and scalar perturhations

Next, we derive the evolution equation for the curvature perturbation R.
By defining

v = R(ggﬁ;)‘“g, (C.9)

the equation for the curvature perturbations can he reduced to the form

— U+ Ve =00,7 (C.10)
with potential
d?®+4d — 13 /b'\2 3d—TV b’
o= T (5) - Tyt
& (XN g - 1\
S +2(5) ~Ad-nE. (c11)

For the dS thick brane case, which is considered in this article, we obtain

g 2
Vs = m{g[ﬂ (3d — Yo — (4d — 4)0?]

+ [4 +4(d ~ 3)0 + (& — 10d + 9)0?] sinh?(ﬁz)} . (C12)
Thus, it is simple to see that at least both for the cases of interest, d = 2

and d = 4, Vs > 0 and therefore, the model is always stable against scalar
perturbations. The d = 4 case was originally derived in [48].



Appendix D

Appendices for analyzing
quantum effects on the thick
brane model

In this Appedix, we make mathematical preparations for evaluating quantum
effects of a test scalar field on the thick brane model, which is discussed
in Chapter 4. We first derive the normalized mode functions of Kaluza-
Klein (IKK) modes. We also calculate the amplitude of the bound state
quantum fluctuations.

D.1 Normalized mode functions for Kaluza-
Klein modes

The normalization constants and normalized mode functions for KK modes
on the thick hbrane model which is discussed in Chapter 4 are derived. The
perturbations are not needed to be Z, symmetric with respect to the center
of the brane in general, even if the backgronnd geometry is Z, symmetric.
So, we can have two types of configurations of mode functions: One is the
untwisted configuration with respect to the center of the thick brane f(—z) =
f(2), which corresponds to the Neumann boundary condition and the other
is twisted configuration f(—z) = —f(z), which corresponds to the Dirichlet
boundary condition. ¥ we impose the Nenmann boundary conditions at
the center of the brane, the twisted mode functions are not relavant, for the
amplitude of quantum fluctuations on the brane and only contribute to the
quantum backreactions, whereas the untwisted mode functions are relavant,
both for the amplitude of fluctuations and quantum bhackreactions on the
brane.
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D.1.1 The untwisted case

We consider the case of the untwisted configuration, i.e., f(—=z) = f(2).
We first, derive the normalization constant for each KK mode and then the
normalized mode functions. We start from the following quantity:

L
& - ) / (H d2) (g Pl (2) — By i (1)) (ctgu Pi9 () — gy R ()

L
[ 9)[(0ud P37 (@) = Bu R () (o0, L7 @) = B4 B ()
— (Pl (x) = B (2)) (o, 2P (2) = B, a2 R ()] (D.1)

Using the equations of motion for mode functions Eq. (4.15), Eq.(D.1) be-
comes
L 2 d2
- _ tqa’ igo
e 80)(angpgrsP@) = B @)
X (O{flilpzqna( ) - ﬁan;QnU'(m))
d?

~ (@PE (@) ~ R () (aqn TP ) o s (@) )]

d igo iqo T o il O ) — in G T
= = (v P 0) ~ Bt R (9) ) (0, I (0) = By R ) |

b (0P (z) - 5B (@) (aqnd( TP~ g @) )|
d .
+ (o @) - A P @) ) (00 P (o) = R (@) |,
- (0P (@) = B (@) (o e P (0) = B B ) ) |,
02)

Note, that in the second line, only the boundary terms survive. Further-
more, nsing Eq. (4.38),we can deform Eq. (D.2)

= 2 (1= ) (0Pl (1) — BB (31)) (a0 PI (1) — By, B (1)
1 : . ; :
+ = (e B(0) — ByR7(0)) (g, P (0) = By 7(0)) - (D.3)

Without loss of generality, we can set o, = R2°(0) and 3, = P#(0) and
obtain the following equation from Eq. (D.3)

= 11— 22) (0P () ~ BRI (21)

g
x (RT(0) P () — Py (0) Ry (1))

= _l (aqPﬁqW(mL) - 6qRiqcl(mL)) M (D4)

o RLQnJ!(:CL) ’
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Note, that we have used the Wronskian normalization of Eq.(4.33), which
corresponds to the definition of the second independent solution of equation
of motion Eq. (4.15) RY4°(z):

R (0) Pl () — Piov"(0) R ()

. : Pe(0) oy )
= R0 (P;W — Le L pimo(y
O (P (o2) = gy (o)
i ; A PiQnD"(IL) i )
= R#'(0) | P (zy) — 2 L Rt
t4 ( ) ( I ("’EL) R‘;}qno', (xL) v (:CL)

Rig=/(0)
Ri‘i'ndl (SEL)
Rimoi(0) 1
Rt (@) 1 —af

(Rin () Pl (z) — Poo' (z) R (1))

(D.5)

As a result, we obtain the following relation for our choice of the coefficients

(¢~ ) fn (H dz) (agB7 (z) = B R () (00, P () ~ Bpo B ()

1, . . : . Rimo!(()
= —= (RE(0) P (xp) — PH7 Q)RS (1)) — e D.6
o ( 12 ( ) (:CL) ( ) (:’EL‘)) R':anaf(mL) ( )

Taking the derivative with respect to g and then setting to ¢ = ¢, (namely,
a KK mode), we obtain the following equation

L - -
(- ) [ (#a) (aoPi (o) - R (@)
X (g, P () = fp, 1827 (2))]

4=fn
L

= 2¢, / (H dz) (0, P () — f, B ()
0

Itge'(0) ]
R,i,q”"’(a:L) a=an
(D.7)

1 igcr! iqo ! igo! igof
= Oy | =2 (R (0) P! (2) — PY(0) R (2))

Thus, the normalization constant in our choice of coefficients hecomes
-2
N
L . _ _ . .
= 2 () (R (OP* () = B O)R (o)
0

1 : ; N X RiQnO"'(O)
— '"“"‘_a _ R’an'n’ 0 quo‘f _ quo‘l O R’;qa’f .y )
Tln ¢ l: ( v ( ) i (ﬂ:L) v ( ) v (ﬁL)) RanO'!(:L'L)} q=qn

(D.8)
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Finally, we obtain the desired normalized mode functions

2(2) = N2 (g Pl (z) - B,, R (x))?
an

aq( H91(0) R4 () — .iq“’(O)Pﬁq”’(mL))

(R (0) By () — B! (0) Ry ()
(qunal(x Pm‘na(m) Panﬂf(mL)Riqnﬂ'(x)) . (Dg)

I=dn

X

D.1.2 The case of the twisted configuration

Similarly, we discuss the case of the twisted configuration, i.e., f(—z) =
—f{z). The derivation is essentially the same as the previous case of the
untwisted configuration and thus we omit the detailed derivations. Here, we
introdnce the essential results.

Because of the Dirichlet boundary condition, instead of Eq. (4.38), we
have the relation between coeflicients as

ag. _ R7(0) _ Ry (x1)

: . D.10
:Bqn, Piqnﬁ(o) P;qurf(mL) ( )

Without of generality, we may set
= R47(0), B,=F%(0). (D.11)

Along the lines in the case of the untwisted configuration, we obtain the
following relation:

(¢~ ¢) /0 (H dz) (0 P, () — BB (%)) (00g, o7 (2) = B B ()

R (0)

1 , . , .
—Z (R P9 (¢, ) — Pl9(0)) Ria0 —_r
o ( t24 ( ) Hd (TL) 124 ( ) 124 ("TL)) R'Lyqng(mL)

(D.12)

Taking the derivative with respect to g and setting to ¢ = ¢, {ie., a KK
mode}, we obtain

aq[(q2 - q?l) f (Hdz) (aqpiqa(m) - BqRJi/qg(m)) (aqnpiqnd(fc) - ﬁaniq"a(m))]
/ (Hdz) C“Qanqna(m) - ﬁQnRiq"g(x))z

O ["; (Rt (0) P (1) — Pio(0) R (1)) e )

R () ] e

The normalization constant in our choice of the coefficients hecomes

-2
N,

L .
- 2/ (H d2) (g, P (2) = Bo R ()
0
()
R () a=an
(D.14)

- glzaq [‘ (Ri#7(0) P (z1) — P (0)RY (z1))

4=@n

(D.13)
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Finally, we obtain the desired normalized mode functions

7 (2)
- jqun (a@npiqnﬂ(x) o ﬂaniQnO' (x))2
Tlin
8, (P (0 R (az) — B (0) P (a7))

q=Qn

< (B (0) P (z) — Pl (0) R (x)
X (R (x) B (x) — Py°(z) Rf° () -

(D.15)

D.2 Bound state amplitude

Next, we evaluate the amplitude of the bound state zero mode. The integra-
tion here is doing along the closed contour with the dotted line as depicted
in Fig. 4.3. In order to obtain the KIK amplitude, we need to subtract the
bound state amplitudes which are evaluated here from the total amplitude
derived in Chapter 4.

D.2.1 On the two-sphere (two-dimensional de Sitter
brane)

First, we note that the bound state for the minimally coupled case is given
by

qo = — N (D.].G)
a
where the bound state zeta funetion is defined as
2(s~1) 2 N T8
x — Az . : a_ (VY
Guls) = 40) 3 i /2 (G+122- (2))
ME(SMI) _
= 4f§(0)‘7{'§;—§bs(5) - (D.17)

Here, fo(2) is the normalized mode function of the bound state. Quite clearly
we have a zero mode (by zero mode we mean that the lowest eigenvalue Mg
is a null eigenvalue, i.e., Ay = 0) and in such a case we have to project out
this mode to evaluate the bound state contribution. However, in general the
bound state varies from the top of the mass gap at (v/c)® = 1/4 down to
v/a = (0, which is for the massless conformally coupled case. In the following
we shall focus on a general bound state mass v/o taking care when dealing
with the bound state zero mode.

It is straightforward to evaluate the above (-function hy employing the
hinomial expansion method which follows identically to that of Allen [149),
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see [121] for the case when null eigenvalues are present. Thus, subtracting
out the null eigenvalue we obtain the following:

2 T(s+J 27 1\
Cl}s(s) — J!S]_—‘(s)) [ (_) Cc(s + J) — 55!0 (E) ] s (D].S)
with {.(s) for 5% defined by
C(s) = 20y (23— 1, %) , (D.19)

which is the zeta function for the bound state mode in the conformally cou-
pled case, evaluated explicitly in [117] in the case of d + 1 = 3. Essentially
the minimally coupled case requires summing from J = 1 instead of J =0
n (D.18), i.e. we have to subtract out the null eigenvalue.

Similar to the case discussed in [121] (subsection 11.3, Eq. (11.73), pp
80) there is a pole in the above Hurwitz zeta function at s = 1, which can be
simply inferred from the relation Eq. (4.61). As discussed in [117] a suitable
way to deal with the the pole at s = 1 is to apply the improved zeta function
method, described in [150, 151}, which leads to a expression for the amplitude

.od
(@*(@)es = lim 75 (5= D Gs(9)()] - (D.20)
Note, the above expression agrees with the usual definition when there is no

poleat s = 1.
Applying the above equation to our case we obtain

-2

H2(q§2(0))bs = 2f0(0)(2111( )—219(1/2) dg 0 (%)
+ i[ (_) Cu(2] +1, %) e 0 (%)ﬂ)

B (D.21)

Next, we determine fo(0). The normalized bound state solution is

fa(z) = L cosh™ () (fooo dy cosh‘z"(y))ﬂ1 . (D.22)

Thus,

RO) = 5 ( I dycosh‘z“(y))_l | (D.23)

Note that for the conformally coupled case € = £, ¥ = 0 and therefore, the
amplitude of the bound state vanishes. This agrees with the result found in
[117], for the thin brane case. In fact numerical plots of the amplitude for
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the bound state mode versus the brane thickness show that the hound state
mode is independent of the brane thickness.

Finally, for the hound state mode, we obtain the normalized amplitude
as

HUFON = H(om (&) 2002 -50(})
+ i [2 (_Z__)?JCH(ZJ—I— 1, %) ey (“12-)“2])

(]OW dy 00511”2”(3/)) B ) (D.24)

This can now be compared with the result for that of the KK modes.

X

D.2.2 On the four-sphere (four-dimensional de Sitter
brane)

The zeta function for the hound state can be written as

Guls) = 275 (£)" RO, (D.25)
where

34 [(7+3/2)? - (v/o)?)e

is the zeta function for a massive scalar field on $*. For the S geometry,
the zeta function for a massless, conformally coupled scalar field is given by

G2) = 5[5 = 3,5) ~ (25 = 1,5)] (D27

L=

Thus, the dS zeta function for a general mass can be written as a summa-
tion over the massless conformal zeta functions (by employing the binomial
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expansion)

) = 3D () o -5 (2) ]

R O e )

(™

= l[CH(ES g)—l-s( ) Cu{2s — 2)
- -gH(25—1 %)— is( ) Cal(2s + 1, 3)
+ Z }f;(:;) "E‘) Ca(2s — 3+ 27, %)
J:2
_ I}f{‘f‘] (;) Y a2 — 1427 %)]
_ Zrﬁr—wéﬁ") (g)_zs. (D.28)

Now, we can evaluate the squared amplitude of the bound state from
Eq. (D.20). The normalization of the bulk mode is the same as the d = 2
case and at z = 0 we obtain Eq. (D.23) with v for d = 4,

= % (\/1 + (3 — 16€)(30 + 207) — 1) : (D.29)

The resultant bound state amplitude is

HEO = 5 ([ veosn™w)

A3 )m(f) 51 oo
(-3 +7e6m+ g D)
() ” (CH(2J -1, %) - %gH(zJ +1, %))

- 2%5&0 (g) _2}‘ (D.30)



Appendix E

Appendices for analyzing
linearized gravity in the Einstein
(Gauss-Bonnet braneworld

In this Appendix, we give harmonic functions to analyze the linearized gravity
on a dS brane in the EGB theory. We also show that there is a tachyonie (un-
stable) bound state in a dS two-brane system in the EGB theory.

E.1 Harmonic Functions on a de Sitter geome-
try

Here, we consider the harmonics on the de Sitter spacetime with curvature
radins H~1. They are obtained hy the Lorentzian generalization of the tensor
harmonics on an n~dimensional constant curvature Riemannian space [152].
We focus on the tensor-type and scalar-type harmonics.

E.1.1 Tensor-type harmonics
The tensor-type tensor harmonics satisfy

(Oi- *+ 17/4) H*) Y2 (5#) = 0, (E.1)
which corresponds to the four-dimensional massive gravitons with mass-
squared m*H? = (p? + 9/4)H?. They satisfy the transverse-traceless con-
dition,

y(p,Z)## - y(p,ﬁ)vfu = 0. (E.2)

In reality, the tensor harmonics have three more indices for the spatial
eigenvalues. If we adopt the flat slicing,

ds? = —di® + H- 25, daide | (E.3)
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we can use the standard Fourier modes e*®, and the spatial indices will
be continuous. In addition, we also have discrete indices o that describe
the polarization degrees of freedom (five in four-dimensions). However, for
notational simplicity, we omit these indices.

We ortho-normalize the tensor harmonics as

/ dry/—y YD YD = §(p — )63k — K)Sg0r (E.4)

Although we have no explicit proof for the completeness, due to our poor
2 .

knowledge, we assume that Y,ff’ ) for —oo < p < oo constitute a complete

sef, for the space of transverse-traceless tensors.

E.1.2 Scalar-type harmonics

The scalar-type harmonics Y (P9 (x#) satisfy the equation for a scalar field
with mass-squared m?>H? = (p* + 9/4)H?,
9
(O (2 + E)Hz)y(p-ﬁ) () = 0. (B.5)

We assume they satisfy the ortho-normality condition,
f dia/—y Y POy — 505 — N ke — K). (E.6)

From Y ®%, the ortho-normalized scalar-type vector harmonics are con-
structed as

Yo L pywo E.7
# Hy\/p?+9/4 # (E.7)

which satisfy
f d'zy/=y YOy 08 o 5(p — p)83(k — k). (E.8)

The trace-free and divergence-free scalar-type tensor harmonics are con-
structed, respectively, as

i 1
7eO = N, [DuDyY{p’O) -3 (0" + %)mﬂzyw]
(9 = N, [ D,D,Y®9 _ (pz n _2_43) - sz{p,m]
] 3 25
= Y‘E,‘?’O) — ZNP (p2 + Z) HQ’}’”UY(]}’O), (Eg)

where

1
3(p? + 21/4) (p* + 25/4) HY’

|Np|2 =




B.2. Tachyonic bound state in de Sitier two-brane system 129

Without. loss of generality, we assume that N, is real and positive. The scalar-

type divergence-free tensor harmonics Y;,’f’ﬂ) satisfy the ortho-normality con-
dition,

f Ao/ =y YOy 0 = §(p — )8k — K). (E.11)

E.2 Tachyonic bound state in de Sitter two-
brane system

In [139], Charmousis and Dufaux showed that for the Minkowski two-brane
system there exists a tachyonic bound state on the negative tension brane.
This fact implies that the Minkowski two-brane system is unstable under the
linear perturbation. Following [139|, we show that there exits a tachyonic
bound state also for the de Sitter two-brane system.

E.2.1 Possibility of a negative norm state

We consider a de Sitter two-brane system. One of the branes located at a
smaller radius of the AdS space has a negative tension. We discuss only the
bulk gravitational perturbations. The matter perturbations on each brane
are not taken into account.

The bulk component of the perturbed Einstein Gauss-Bonnet equation
including the boundary branes are written in the Sturm-Liouville form as

{(b4 — a (b - bszz))wp,y}’y
- p(1-al?) (5 )y, (£12)

Using Eq. (E.12), the houndary condition on each hrane is derived. For
H = 0 and bly) = e /¢ Eq. (E.12) naturally reduces to the Minkowski
version, Eq. (8) in [139].

1} On positive tension brane

Imposing the Z, symmetry, the warp factor around the positive tension
brane is expressed as

bly) = HE sinh(w). (E.13)
¢
Integrating Eq. (E.12) around y = y, and using the Z,-symmetry,
n (p* +9/4) cosh(y../¢)
E) -0 ==
ywp(y-i- ) ¢ Sillhs(y+/-g) w?(y+):

(E.14)

where

(E.15)
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2) On negative tension brane

Similarly, the Zs symmetry gives the warp factor around the negative
tension brane as

w) (E.16)

bly) = HE sinh( 7

Integrating Eq. (E.12) around y = y.. and using the Z,-symmetry,

(p? + 9/4) cosh(y_ /£)
sinh®(y_ /£)

Byyly- +0) = 7 ly-)- (E17)

For both hranes, the boundary conditions are of a mixed (Robin) type.
This renders us impossible to prove the positivity of the norm. Namely, we
have

y+
/ dy (b‘* —al® (b’ - b2H2)) (8y1,)?
Y

a

= (B0 (07 + 3) | 25 (siub (294 /0)3(y-) — sinh(2y_ /3 (5-) )

=9 [*" gy sink? (y/) 2 B.18
b [ dy sink (u/2)050) | (E.18)
Thus the norm is no longer positive definite for p? +9/4 > 0.

E.2.2 Condition for the existence of tachyonic bound
state

In order to determine whether a tachyonic hound state exists, we need to
analyze the mass spectrum. The tachyonic eigenmode, if it exists, is written
by

1

Wy(y) = Sinh? (y /“““g) [Aq

Pyj3(cosh(y/£)) + ByPyy(cosh(y/0)) |, (E.19)

where m? = —u?, g := +/p2 + 9/4, and ¢ = —p®. The y-derivative of it is

1 3 Y 3 \
Aythg = _W [(§ - q)AqP1/2 (COSh("J/E)) + (5 + Q)qul/z (cosh(y/é’))].

(5.20)

Using the houndary condition on each brane, Egs. (E.14) and (I£.17), we
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obtain

Ao(3 —0) (2 = DP3e) 05 + )2 Py
3

3 + Q) ((zj‘); — 1)P1"’/2(z+) + n(% - q)z+P:f/2(z+)) =0,
Aq(% - Q‘) ((33 - 1) ;/2(2 )+ 77(3 + q)z P3/2(z ))
+Bq(g" +q) ((23 — 1) Fp(z-) + n(% —q)z- 3/2(‘,_)) = 0(E.21)

where z = cosh(y+/0).

For a non-trivial solution for A, and B, to exist, the determinant must
vanish. Thus

+B,(

(2= 0P + 0 + @) Pyi(=)

(2 = 1)Phy(0) + 03— @)z P

~((22 = 0Pz + 0 + ) Pyi(an))

((zi — )P]p(z) + n(;—).w— q)z+P§/2(z+)) = (. (E.22)
The pole at ¢ = 3/2, which corresponds to the zero mode, is divided out in

deriving Eq. (E.22). If there exists a solution of Eq. (E.22) at ¢ > 3/2, it
implies the existence of a tachyonic bound state.

E.2.3 Existence of a tachyonic bound state
From Eq. (E.22),

(22 I)Pf/z(z— )+ (3 - q) z(z—
(22 ~1) Pz )+ (3 + )z Pyja(z

_ (24 —1) 1/2(3+ ) +0(3 —q)z- 3/2(;3_ D
(zi 1) 1/2(z+ +77(%+q) 3/2(3+). (:28)

Using the definition of the Legendre functions [137],

P(z) = 1 (z-i—l

rl—w\z—-1

we see that the left-hand-side of Eq. (E.23) is generally much larger than the
right-hand-side for ¢ > 1 for fixed 2y and z.. Therefore, in order for this
equation to be satisfied, we must have

3 (zE—I)Pf/z( -} 21

g— = — for ¢ — co. (E.25)
2 2 Py (2-) nz_

/2 71—
)“ zFl[—y,u+1;1—u; 2’"], (E.24)
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This is a consistent solution for n < 1. Thus a tachyonic bound state exists
in the de Sitter brane case as well. :
The tachyon mass is given hy

pH = \/q2—9/4Hz(—‘3§Xm%ﬂf. (F.26)

Nz

In the low energy limit, we have 2z, > z_ > 1 and H¢ ~ 1/z, <« 1. Hence,
the above reduces to

£
H~— .
I e (E.27)
where
b(z-) 2 (g —
Qrm ——f o T~ gm0V E.28
Wzy) = ( )

This agrees with the result for the Minkowski brane [139].
On the other hand, in the high energy limit, H¢ > 1, we have
O2H H
p o ——— < — (E.29)
n(HE? — n
Thus the high background expansion rate of the brane suppresses the tachy-
onic mass, giving a tendency to stabilize the two-brane system.
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In the context of the Randall-Sundrum (RS) single-branc scenario, we discuss the bulk geometry and
dynamics of a cosmological brane in terms of the local energy conservation law which exists for the bulk that
allows slicing with a maximatly symmetric three-space. This conservation law enables us to define a local mass
in the bulk. We show that there is a unique generalization of the dark radiation on the brane, which is given by
the focal mass. We find there also exists a conserved current associated with the Weyl tensor, and the corre-
sponding local charge, which we call the Weyl charge, is given by the sum of the local mass and a certain lincar
combination of the components of the bulk energy-momentum tensor. This expression of the Weyl charge
relates the local mass to the projected Weyl tensor, £,,, which plays a central role in the geometrical
formalism of the RS braneworld. On the brane, in particular, this gives a decomposition of the projected Weyl
tensor into the local mass and the bulk energy-momentum tensor, Then, as an application of these results, we
consider a null dust model for the bulk energy-momentum tensor and discuss the black hole formnation in the
bulk. We investigate the causal structure by identifying the locus of the apparent horizon and clarify possible
brane trajectories in the bulk. We find that the brane stays always outside the black hole as long as it is
expanding. We also find an upper bound on the value of the Hubble parameter in terms of the matter encrgy

density on the brane, irrespective of the energy flux emitted from the brane.

DOI: 10.1103/PhysRevD.70.044021

L INTRODUCTION

The braneworld scenario has attracted much attention in
recent years [ 1], In this scenario, our Universe is assumed to
be on a (mem)brane embedded in a higher-dimensional
spacetime. There are many models of the braneworld sce-
nario and corresponding cosmologies. One of them that has
been extensively studied is the braneworld cosmology based
on a model proposed by Randall and Sundrum (RS) [2], in
which a single positive tension brane exists in a five-
dimensional spacetime (called the bulk) with negative cos-
mological constant, the so-called RS2 model. In this paper,
we focus our discussion on this single-brane model.

In many cases, the five-dimensional bulk geometry is as-
sumed to be anti-de Sitter (AdS) or AdS-Schwarzschild
[3-5]

2
[

M ”M !
ds2=—(K+€T—TD)d12+(K+E:W"~E) dr?
272 2

(L1

where £:=—6/A5 is the AdS curvature radius, My is the
black hole mass, and dﬂ%m) is the maximally symmetric
{constant curvature) three-space with K=—1, 0, or +1. The
brane trajectory in the bulk, (¢,7)=(H{7),r(+)), is deter
mined by the junction condition [6]. As usual, we impose the
reflection symmetry with respect to the brane. Then, we ob-
tain the effective Friedmann equation on the brane as [4,5]

4

MTOK (&5, 1) K L My
(}—] +F§—(3—6"U —71')+—E"§(20'p+p )'I‘F,

(1.2)
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where o and p are the brane tension and energy density of

the matter on the brane, respectively, and r=dr/d7 with
being the proper time on the brane. The final term is propor-
tional to the mass of the bulk black hole and is often called
the “dark radiation™ since it behaves as the ordinary radia-
tion, Geometrically, it comes from the projected Weyl tensor
in the bulk, denoted commonly by £, [7]. If we apply Eq.
{1.2) to the real Universe, the values of o, €, and M, are
constrained by observations of the cosmological parameters
[8].

When the bulk ceases to be pure AdS-Schwarzschild, or
when there exists a dynamical degree of freedom other than
the metric, the parameter M, is no longer constant in gen-
eral, but becomes dynamical. For instance, this is the case of
the so-called bulk inflaton model [9—13], or when the brane
radiates gravitons into the bulk [15]. In particular, in Ref,
[10], the dynamics of a bulk scalar field is investigated in the
context of the bulk inflaton model under the assumption that
the backreaction of the scalar field on the geometry is small,
and it is found that there exists an interesting integral expres-
sion for the projected Weyl tensor in terms of the energy-
momentum tensor of the scalar field. This suggests the exis-
tence of a local conservation law in the bulk that directly
relates the dark radiation on the brane to the dynamics in the
bulk.

In this paper, we investigate the case when there is non-
trivial dynamics in the bulk, and clarify the relation between
the bulk geometry and the dynamics of the brane, We focus
on the case of isotropic and homogeneous branes and hence
assume the existence of slicing by the maximally symmetric
three-space as in Eq. (1.1). In this case, we can derive a local
energy conservation law in the bulk, in analogy with spheri-
cal symmetric spacetimes in four dimensions [ 161, Then, this

©2004 The American Physical Society
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conservation law can be used to relate the brane dynamics to
the geometrical properties of the bulk, especially with the
projected Wey! tensor in the bulk.

The paper is organized as follows. In Sec. II, we derive
the local energy conservation law in the bulk and discuss the
general property of the bulk geometry and cosmology on the
brane. We show that there exists a unique generalization of
the dark radiation that is directly related to the local mass in
the bulk. We also find that there exists another conserved
current associated with the Weyl tensor, as a nonlinear ver-
sion of what was found in Ref. [10]. In a vacuum (Ricci fiat)
spacetime, the local charge for this current is found to be
equivalent to the local mass. Let us call this the Weyl charge.
The difference between the local mass and Weyl charge is
given by the linear combination of certain components of the
bulk energy-momentum tensor, and the projected Wey! ten-
sor that appears in the effective Friedmann equation on the
brane is indeed given by this Weyl charge. Thus we have a
unique decomposition of the projected Weyl tensor term into
the part due to the bulk mass that generalizes the dark radia-
tion term and the part due to the bulk energy-momentum
tensor. Tn Sec. 11, as an application of the conservation law
derived in Sec. II, we consider a simple null dust model and
discuss the black hole formation in the bulk. We identify the
location of an apparent horizon and analyze possible trajec-
tories of the brane in the bulk. We show that the brane stays
always outside of the apparent horizon of the black hole as
long as the brane is expanding. In Sec. IV, we summarize our
work and mention future issues,

11. LOCAL CONSERVATION LAW IN A SPACETIME
WITH MAXIMALLY SYMMETRIC THREE-SPACE

In this section, we discuss the general property of a dy-
namical bulk spacetime with a maximally symmetric three-
space, and consider cosmology on the brane. First, we derive
a local conservation law in the bulk, as a generalization of
the local energy conservation law in a spherically symmetric
spacetime in four dimensions [16]. Namely, we show that a
focally conserved energy flux vector exists in spite of the
absence of a timelike Killing vector field. This enables us to
define a local mass In the bulk spacetime, We also show that
there exists a conserved current associated with the Weyl
tensor. This gives rise to a locally defined Weyl charge. Tt is
shown that the Weyl charge and the local mass are closely
related to each other,

Next, we introduce the brane as a boundary of the dy-
namical spacetime. The effective Friedmann equation, is de-
termined via the junction condition, and it is shown that the
local mass corresponds to the generalized dark radiation. Fi-
nally, we show that the projected Weyl tensor on the brane is
uniquely refated to the local mass.

A. Local conservation law

We assume that the bulk allows slicing by a maximally
symmetric three-space. Then, the bulk metric can written in
the double-null form

PHYSICAL REVIEW D 70, 044021 (2004)

41..”’.,0

¢4

ds*= dudv~+r(u,v )zdﬂ(lxm , [ B))

where we refer to v and u as the advanced and retarded time
coordinates, respectively. In Appendix A, the explicit com-
ponents of the connection and curvafre in  an
{r#+2)-dimensional spacetime with maximally symmetric
n-space are listed.
The five-dimensional Einstein equations are given by
Gyt As8as™ K5 Tap Sas By —y0), (2.2)
where the indices {a,b} run from 0 to 3, and 5, and A and
«2 are the five-dimensional cosmological constant and gravi-
tational constant, respectively. The brane is introduced as a
singular hypersurface located at y=y,, where y denotes a
Gaussian normal coordinate in the direction of the extra di-
mension in the vicinity of the brane, and §,; denotes the
energy-momenium tensor on the brane. The spacetime is as-
sumed to be reflection symmetric with respect to the brane.
First, we consider the Einstein equations in the bulk. They

are given by
¥ r
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r,

i
i)

2
) - KSTUI'J B

W

s n
3—)‘_“ logi

(2.3}
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Py -
w1,

where ;; is the intrinsic metric of the maximally symmetric
three-space.

Now, we derive the local conservation law. We introduce
a vector fleld in five-dimensional spacetime as

amlq) 1 4 1 4y
5_2 ro du

v, ov 24)

From the form of the metric (2.1}, we can readily see that £
is conserved:

\/--_g ”;az ( \[:‘gga).a= 2 \/;I[(I‘:’l"")‘vm ("3".0),u}=?’ )
2.5

where y=det y;;. Note that, for an asymptotically constant
curvature spacetime, the vector field £ becomes asymptoti-
cally the timelike Killing vector field — (d/81)".

With this vector field &9, we define a new vector field,

So= 070 (2.6)

where
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- 1
Top= Tab_ —Q_Asgah .
s

(2.7

Using the Einstein equations, the components of the vector
field 57 are given by

2 3,
iV -g & = (K= @) .7,

S 3
5= g8 = ST (K=P)] 7. 2.8)

Then, we have the local conservation law as

§7.,=0. (2.9)
Since &7 is conserved separately, the conservation of $¢ im-
plies that we have another conserved current 87 defined by

|
§%= 8Ty (=S"+ ‘“5!\5-_‘3"). (2.10)

s

Thus we have the local conservation law for the energy-
momentum tensor in the bulk.
From ILgs. (2.8), we readily see the local mass corre-

sponding to 5% is given by [16]

Mi=(K—D)r2, (2.11)
where the factor 3/2 in the original expression for 57 is
eliminated for later convenience. Altematively, correspond-
ing to S, we have another local mass that excludes the con-
tribution of the bulk cosmological constant,

L1 1
M= 31— gAsr“:(K«-cb)rZ— gAsr“. (2.12)

In what follows, we focus on the matter part M, rather than
on the whole mass A, It may be noted, however, that this
decomposition of A7 to the cosmological constant part and
the matter part is rather arbitrary, as in the case of a bulk
scalar field. Here we adopt this decomposition just for con-
venience. For example, this decomposition is more useful
when we consider small perturbations on the static AdS-
Schwarzschild bulk. We note that, in the case of a spherically
symmetric asymptotic flat spacetime in four dimensions
(hence K=+1 and with no cosmological constant), this
function A agrees with the Arnowitt-Deser-Misner (ADM)
energy or the Bondi energy in the appropriate limits.

B. Local mass and Weyl charge

From the five-dimensional Einstein equations (2.3), we
can write down the local conservation equation for M in
terms of the bulk energy-momentum tensor explicitly as

PHYSICAL REVIEW D 70, 044021 (2004)

M W%K:"IJ(T" ro—TY 5 )
BH 3 5 v vl

2
— 1.3 P -
M.u_ _'KS;' (Tu.ujl ] Tvu’ .rr)a

3 {2.13)

or in a bit more concise form,

2
dM= -:;-fcgp'3{T"v:",,dv + TV du— T dr). (2.14)
Using the above, we can immediately write down two inte~
gral expressions for M given in terms of flux crossing the
#=const hypersurfaces from v, to v,, and flux crossing the
v=const hypersurfaces from u| to u,, respectively, as

M{vs,u0)— M(v,,u)
2 2 [ 02 It
=§K§ , dor (Tpr,u_Tzr,u) 3
1

#=<onst.

M{v,us)— M{v,u,)

2, m P
- 3..’(3 dur(Tyr p=Tyr )
Hy -
U =Const.

@.15)

Finally, let us consider the Weyl tensor in the bulk. In the
present case of a five-dimensional spacetime with maximally
symmetric three-space, there exists only one nontrivial com-
ponent of the Weyl tensor, say C,,"". The explicit expres-
sions for the components of the Weyl tensor are given in
Appendix A, Egs. (A7). Using the Bianchi identities and the
Einstein equations, we have [26]

Cﬂbcd;d=‘]abc‘ ’ (2 1 6)

where

2{n—1) , 1
abc':“T"“Kn-l—Z Tc[a;b]+ mgv[br;n] .

{2.17)
From this, we can show that there exists a conserved current,
0%.=0,

where €, and »n, are a set of two hypersurface orthogonal
null vectors,

eh\/f y fae /1(1) 1(&)“
NG =N )

_\/?d o /lq)](a“
n,= (D{J_,, u),, n'= 7 » )

The nonzero components are written explicitly as

e=pfyn S0, {2.18)

(2.19)

Q'=—rJo ,  QV=—pJot, (2.20)
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and we have
(}.“4Cim.‘uu‘)'um ’AJvuu ,
("4Cuuv").ﬂ="4']'“1”; . (2.21)

These are very similar to Egs. (2.8). It is clear that r*C,,,"*
defines a local charge associated with this conserved current,
that is, the Weyl charge.

Using the Einstein equations, we then find that the Weyl
charge can be expressed in terms of A and the energy-

momentum tensor as

4 o

e, = 3M+—(6G” —-G')= 3M+—;“(6Tv -7,
(2.22)

This is one of the most important results in this paper. As we
shall see helow, the Weyl component C,,°" is directly re-
lated to the projected Weyl tensor E .., and hence this rela-
tion gives explicitly how the local mass M and the local
value of the energy-momentum tensor affects the brane dy-
namics.

C. Apparent horizons

As in the conventional fowr-dimensional gravity, the
gravitational dynamics may lead to the formation of a black
hole in the bulk. Rigorously speaking, the black hole forma-
tion can be discussed only by analyzing the global causal
structure of a spacetime. Nevertheless, we discuss the black
hole formation by studying the formation of an apparent ho-
rizon,

In four dimensions, an apparent horizon is defined as a
closed two-sphere on which the expansion of an outgoing (or
ingoing) null geodesic congruence vanishes. Here, we extend
the definition to our case and define an apparent horizon as a
three-surface on which the expansion of a radial null geode-
sic congruence vanishes. Note that “radial” here means sim-
ply those congruences that have only the (v,#) components;
hence an apparent horizon will not be a clesed surface if
=0.

The expansions of the congruence of null geodesics form-
ing the w=const and v=const hypersurfaces, respectively,
are given by [16]

1 . 1 & i i ®
Pu=" E‘H‘";a= = .

(2.23)

Naively, if @=0, one might think that both p, and p, van-
ish. However, from the regularity condition of the metric
{2.1), we have

Pl

=>(. (2.24)

Hence, it must be that »
=0, we have p,=

w=0orr,=0if &=0. I b=r,
0 and an apparent horizon for the outgo-
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ing null geodesics is formed, whereas if & =r =0, we have
p, =0 and an apparent horizon for the ingofng null geodesics
is formed,

D. Brane cosmology

We now consider the dynamics of a brane in a dynamical
bulk with maximally symmetric three-space [3]. The brane
trajectory is parametrized as (v,u)=(v(7),u{7)). Taking 7
to be the proper time on the brane, we have

r.flr,U -
Gl = — |

) (2.25)

on the brane, where #=du/d= and so on. The unit vector
tangent to the brane (ie., the five-velocity of the brane) is
given by

a a\e Iro ., . .
vo=| p— 1] , UG=T(ZldU+vdll)”,

v du
(2.26}

and the unit normal to the brane is given by

. . d b a\" 2r 1y
ni=| —oostuo L =—g

{ndv— l)du)a .
(2.27)

The components of the induced metric on the brane are cal-
culated as

r?x" axt

Q#l' r?y"ﬁ ,gab’

(2.28)
where ., v run from © to 3 and y# are the intrinsic coordi-
nates on the brane with ¥°=7 and y'=x' (i=1,2,3). Then
the induced metric on the brane is given by
2
ds{y=—dT+r{7Vd 5. {2.29)
The trajectory of the brane is determined by the junction
condition under the Z, symmetry with respect to the brane.
The extringic curvature on the brane is determined as

2

K 1
Kw,= Y S‘,_“_.— ESQ#I. . {(2.30)
where §,,,, is assumed to take the form
S§=diag(-p.p.p.p)— 08}, @31

with o and p being the tension and energy density of the
matter on the brane, respectively, as introduced previously,
and p being the isotropic pressure of the matter on the brane.
Substituting the induced metric (2.29) in Eq. {2.30), we ob-
tam

- r
Foa=— '5

(2.32)

<
Z(p+o)—H|,
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(2.33)

.F x§
TS5 ?(p+a')+H ,

where A= r/r. Multiplying the above two equations and us-
ing the normalization condition (2.25), we then obtain the

effective Friedmann equation on the brane:
i K (K4 S 1
T30 R

i 2, M
+ ']—8-(20'[)-{— py+ =

(2.34)

We see that A is a natural generalization of the dark radia-
tion in the AdS-Schwarzschild case to a dynamical bulk,

For a dynamical bulk, M varies in time. The evolution of
M is determined by Eq. (2.14), and on the brane it gives

M=M,o+M u
2 54 I -
= T oo "g:cg(p-}-cr)mH v?

-T l—h‘z( + o)+ H | at —%kzr“HT”
uirl @ she ) 3 5 [E

{2.35)

This result is consistent with Refs. [12,15]. From the Co-
dacci equation on the brane [7],

D,K",~D,K"\= kiT g, (2.36)
where D, is the covariant derivative with respect to ¢, and
K, is the extrinsic curvature of the brane, we obtain the
equation for the energy transfer of the matter on the brane to
the bulk,

p+3H(p+p)y=2(~T, 02+ T,ui®). (2.37)
Equations (2.34), (2.35), and {2.37) determine the cosmo-
logical evolution on the brane, once the bulk geometry is
solved. These equations will be applied to a null dust model
in the next section. The case of the Einstein-scalar theory in
the bulk is briefly discussed in Appendix B.
Now we relate the above result to the geometrical ap-
proach developed in Ref. [7], in particular with the E,,,, term
on the brane. The projected Weyl tensor

E, = Ca#;,,,n"nb (2.38)
has only one nontrivial component as
E2r=Capeqnt“nvvi=4C, . 00?= = C, " (2.39)

Using Eq. (2.22), this can be uniquely decomposed into the
part proportional to Af and the part due to the projection of
the bulk energy-momentum tensor on the brane. We find

L PR L . T
T ? 6( i v)_ }_4 6 ( i u)‘
{2.40)
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If we eliminate the M/r* term from Eq. (2.34) by using this
equation, we recover the effective Friedmann equation on the
brane in the geometrical approach [7],

4 4

i 1 Ks

H>+ == ....iar?__,,. (20‘p+p }+ fcsT”’)
136 -

(2.41)

where T comes from the projection of the bulk energy-

momentum tensor on the brane and is given in the present
case by

{5} : i
o =ET =T, (2.42)
Finally, from the brane point of view, it may be worth-

while to give the expressions for the effective total energy
density and pressure on the brane. They are given by

plion = pebrane) . (bulk) ttot) o y(brane) 4. Cbulk)
(2.43)
where
e
2 tbmne) ! 2 )
Kap =3 gks(P‘*"O')
1
Kgp(bmnc1=akg(p+ o) p—o+2p),
ZP(huH\) _..3 M
Y ) o
pti = K| — —TU T*’+27" ,
A3 u ” ’
(2.44)

where M is given by Eq. (2.11) and 79, is defined by Eq.
(2.7}, and both contain the contribution from the bulk cos-
mological constant. It may be noted that, unlike the effective
energy density, the effective pressure contains a part coming
from the bulk that cannot be described by the local mass
alone. The contracted Bianchi identity implies the conserva-
tion law for the total effective energy-momentum on the
brane:

é(bu]k)_l_ 3H( p(bu]k) _;_p{bu]kl)

= —f:'(bm"':)—3H(p(bm"°)+p{bmm’). (2.45)
This is mathematically equivalent to Eq. (2.35). However,
these two equations have different interpretations. From the
bulk point of view, Eq. (2.35) is more relevant, which de-
scribes the energy exchange between the brane and the bulk,
whereas a natural interpretation of Eq. (2.45) is that it de-
scribes the energy exchange between two different matters
on the brane: the intrinsic matter on the brane and the bulk
matter induced on the brane. The important point is, as men-
tioned above, that the pressure of the bulk matter has contri-
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butions not only from the local mass but also from a projec-
tion of the bulk energy-momentum tensor, which makes the
equation of state different from ptP@K= p®ikl3 i e that of
a simple dark radiation.

1, APPLICATION TO THE NULL DUST MODEL

In this section, by using the local mass derived in the
preceding section, we discuss the bulk geometry and brane
cosmology in the context of a null dust model. Especially, we
pay attention to the gravitational collapse due to the emission
of energy from the brane. Namely, we consider an ingoing
null dust fluid emitted from the brane [15,17,18].

A, Sctup

The energy-momentum tensor of a null dust fluid takes
the form [24],

Tﬂb=lu‘l€a€b+)u’2"ﬂnb: (31)
where £, and #, are the ingoing and outgoing null vectors,
respectively, introduced in Egs. (2.19). If we require that the
energy-momentum conservation law is satisfied for the ingo-
ing and outgoing null dust independently, we have

® sy @
(].‘0)21,3 2 M (1_‘")21.3

where f{v) and g(u) are arbitrary functions of v and u,
respectively, and have the dimension {GsX mass)~'. We as-
sume the positive energy density, i.e., f{v)=0 and g(u)
=0, Thus, the nontriviai components of the energy-
momentum tensor are

Slw) g(u)
Tuuz_}:-ima HH=’__3'

, (32)

Hi1= 3

(3.3)

To satisfy the local conservation law in an infinitesimal
interval (u,4+ du) and (v,v+ dv), we find that the intensity
functions f{v) and g(w) have to satisfy the relation

o D
f(v)(_—) 28(”)(‘:‘“‘) . (3.4)
’.D M .’Jl’ o

In general, if both f(v) and g(#) are nonzero, it seems al-
most impossible to find an analytic solution that satisfies Eq.
{3.4). Hence we choose to set either f{v)=0 or g(#)=0. In
the following discussion, we focus on the case that g(#)
= (}, that is, the ingoing nuH dust.

B. Bulk geometry of the null dust collapse
For g(#)=0, Egs. (2.14) give

;
M =

2(1)
v g!{sr—f(v), M, =0 (3.5)

The second equation implies M= A(v). Substituting Eq.
{3.3) into the Einstein equations (2.3), we find
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= EF{U)’

o
— (3.6)
I'!u

where the function F(v) describes the freedom in the rescal-
ing off the null coordinate v. This equation is consistent with
Eq. (3.4). Thus, we obtain the solution as

,
= Mp
P=r e V=K+—— —(-;~)~
. €2 I

1 v
M(v)= 5"# dve™ O f(u)+ My, (3.7
Vo

where we have assumed that f{v)=0 for v <vg, that is, v,
is the epoch at which the ingoing flux is turned on. For
definiteness, we assume that the bulk is pure AdS at v<uvg
and set My=0 in what follows.

Transforming the double-null coordinates (v,u) to the
half-null coordinates (v,r) as

rdu=dr—r ,dv, (3.8)

the solution is expressed as
dst=—4®(r,p)e” gyt 4e_F("’dvdr+f'7'dQ%K.3) R
(3.9)

where @ is given by the first of Eqs. (3.7). This Is an ingping
Vaidya solution with a negative cosmological constant
[15,17). For an arbitrary intensity function f(v), this is an
exact solution for the bulk geometry. Note that if we rescale
v as dv—dv=e Tdv, flv) scales as flv)—f(v)
= e_”: f(v), which manifestly shows the invariance of the
solution under this rescaling.

An apparent horizon for the outgoing radial nuil congru-
ence is located on the three-space, satisfying

$b=r, =0, while r,=finite. (3.10)
This gives
2 M{v)
12=—... 2 —_
¥ 2( K*+4 pE K. (3.11)

The direction of the trajectory of the apparent horizon is
given by

dr M‘u{’zr _fc?if(u)em”)fzr
dv 20+ MEY 6070+ ME?)

(3.12}

Thus, for f(v)>0, dr/dv is positive, which implies that the
trajectory of the apparent horizon is spacelike.

For the case of K=+1 or K=0, the apparent horizon
originates from »=0, while it originates from r={ for K
=—1, A schematic view of the null dust collapse is shown
in Fig. 1. We assume that the brane emits the ingoing flux
during a finite interval {bounded by the dashed lines in the

figures) and no naked singularity is formed. For all the cases,
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FIG. 1. (Color online) Causal structure of a spacetime with ingoing null dust for the cases of K=+1, 0 and — 1. In each figure, The

(almost vertical) wavy curve represents the brane trajectory and the dotted line is the locus of the apparent horizon. The thick horizontal line
at r=0 represents the spacelike curvature singularity formed there. The ingoing flux is assumed to be emitted during a finite interval

bounded by the dashed lines.

the causal structures after the onset of emission are very
similar. The spacelike singularity is formed at =0, but it is
hidden inside the apparent horizon.

C. Brane trajectory in the bulk

In the null dust model, using Eq. (2.25), the proper time
on the brane is related to the advanced time in the bulk as

[18]

FE \/1:2+‘I>
2@ v

b, =ef®

(3.13)

To determine the appropriate sign in the above, we require
that the brane trajectory is timelike, hence v >0, and exam-
ine the signs of v. for all possible cases:

(1) r>0, P>0—0v,>0, v_<O0.

(2) r>0, ®<0—v,<0, v_<O0.

(3) <0, P=>0—v,.>0, v_<0.

(4) r<0, d<0—v,>0, v_>0.

From these, we can conclude the following. For an expand-
ing brane, >0, the brane exists always outside the horizon,
®>0, and v is given by v, . On the other hand, a contract-

ing brane, r<<0, can exist either outside or inside of the
horizon. Thus, if the brane is expanding initially, the trajec-

tory is given by v=v , , and it stays outside the horizon until
it starts to recollapse, if ever. If the brane universe starts to
recollapse, which is possible only in the case K=+1, by

continuity, the trajectory is still given by v=wv,, and the
brane universe is eventually swallowed into the black hole.
From the above result, we find

. r=\rP+d®
e et

3 (3.14)

r.M!‘ ==
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Using Eq. (2.32), this gives an upper bound of the Hubble
parameter on the brane as

1
H<EK§(p+ ). (3.15)
Let us now turn to the effective Friedmann equation on
the brane. For simplicity, we fune the brane tension to the
Randall-Sundrum value, «3o=6/€. The effective Friedmann
equation on the brane is

H3+K—— 4 +l—:<“ 24 Mi7) (3.16)
AR TR TAE S ‘
where M{ )= M(v()) for notational simplicity. From Eq.
{2.37), the energy equation on the brane is given by

A .,

B ’:
p+3;(p+p)=“'2‘TU', (3.17
v

where f(7)=f(v{7)). From Eq. (2.35}, the time derivative
of M is given by

.2
M==red

3 (3.18)

b, 12
-é-rcs(p-i-cr)—H FiCal’as

Thus, from Eq. (3.15), M continues to increase on the brane.
The advanced time in the bulk is related to the proper
time on the brane by v, in Eq. (3.13). Specifically, using the
equality,
=K+ = %=r2 i(E( +0')2—H2) (3.19)
£2 36F ’

2
e

on the brane, we have

S H) K (320

T ?(P ) ’ 20)
Note that the product fv? is invariant under the rescaling of
v. Once f(7) is given, we can solve the system of equations
(3.16)—(3.18) self-consistently for a given initial condition,
and determine the bulk geometry and the brane dynamics at
the same time [15]. A quantitative analysis of the brane cos-
mology is left for future work,

D. Formation of a naked singularity

In the previous subsections, we assumed that there is no
naked singularity in the bulk. However, it has been shown
that a naked singularity can be formed in the null dust col-
lapse [19-25]. For instance, a naked singularity exists in a
Vaidya spacetime when the flux of radiation rises from zero
sufficiently slowly. We expect the same is true in the present
case.

Without loss of generality, we set e™"}=2, We consider
the following situation. For v<<0, the bulk geometry is
purely AdS. The radiative emission from the brane begins at
v={0. We choose the intensity function as
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2)
flw)=—v,

3

(3.2

where A is a positive constant. This corresponds to the self-
similar Vaidya spacetime if the cosmological constant were
absent [19). The brane ceases to emit radiation at v=1v, and
the bulk becomes static AdS-Schwarzschild for v>v,. Thus
the local mass is given by

0 (v=<0}
2 el
M(y=] 30 O=v=V) (3.22)
2 3
§~)\v5 (vg<v).

The singularity is formed at (r,0)=(0,0), and it is naked
if there exists a future-directed radial null geodesic emanat-
ing from it. The null geodesics then form a Cauchy horizon,
The trajectory of a radial null geodesic is determined by the
equation

.Ci_I_ © )‘2(0)_M(U)
dU~2 +—€§"’" ;“Q(T) . (3.23)

Let us analyze the above equation in the vicinity of v=0, A
future-directed  radial null  geodesic exists if x
=1im,_4dr/dv is positive. Using L'Hopital’s theorem, we
obtain

i 1'(1))_1_ dr 1 © 2A
x=lim——=lim—=> —;;5- . (3.24)

u-0 v v—0

It is clear that the above equation has no solution when K
=0 or K=~1. Hence no naked singularity is formed for
K=0 or K=—1. Therefore, we consider the case K=1. We
introduce a function,

3
O(x)=3x3~ 5x2+x. (3.25)

Then, the condition for the naked singularity formation is
that O(x)=0 has a solution for a positive x. The function
©(x) has a minimal point at x= 1/3. Therefore, the singular-
ity is naked if

1
Q(13)=— —+a=0,

T (3.26)

that is,
0<Mx : 327
=, .
T (3.27)

Thus, the bulk has a naked singularity for small values of A,
Le., for the flux of radiation which rises slowly enough.
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FIG. 2. (Color online) The loci of the null geodesic (the solid
curve) and the apparent horizon (the dotted curve) on the (v.r)
plane, scaled in units of the AdS radius €, in the critical case A
=1/18. Their behaviors are qualitatively the same for all the other
values of A in the range 0<<A<1/18.

Our next interest is whether the naked singularity is local
or global. If it is globally naked, it may be visible on the
brane. To examine this, we integrate Eq. (3.23). In the vicin-
ity of =0, we find

2
v
rnu]l(v)=xov(]+b'€—2+"'), (3.28)
where x is the largest positive root of Q(x)=0;
1
x0=g{l +[1=36A+i6V2A(1—18))]'3
+[1—=36N—i6y2N(1—18\)]"3} (3.29)
and
b= —xg 3.30
C2(5xp—1)" =t

From the form of Q(x), we readily see that x, monotonically
decreases from 1/2 to 1/3 as A increases from 0 to 1/18, and
hence b is positive definite. We compare this trajectory with
the trajectory of the apparent horizon. It is given by Eq.
(3.11) with K=+ 1. In the vicinity of v=0, it gives

2\ A v’
Fapp(V) = 3V 1—§?+-“ .

Since x> +2A/3 for all the values of A in the range 0<A
<1/18, and dry,,/dv is a decreasing function of v while
dryn/duv is an increasing function of v, it follows that the
null geodesic lies in the exterior of the apparent horizon and
the difference in the radius at the same v increases as v
increases, at least when v is small. This suggests that the
singularity is globally naked.

In Fig. 2, we plot the loci of the null geodesic and the
apparent horizon. The result is clear. The null geodesic al-
ways stays outside of the apparent horizon, thus outside of

(3.31)

PHYSICAL REVIEW D 70, 044021 (2004)
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FIG. 3. (Color online) Causal structure of a spacetime with in-
going null dust when a naked singularity is formed. The wavy and
almost vertical curve represents the brane trajectory and the dotted
line is the locus of the apparent horizon. A naked singularity is
formed at r=0 along the v=0 null line. A radial, future-directed
null geodesic originating from the naked singularity (the right-
pointed thick line) stays outside of the apparent horizon and reaches
the brane.

the final event horizon at v =v,. Mathematically, this is due
to the cosmological constant term in Eq. (3.23), which
strongly drives the null geodesic trajectory to larger values of
r. Thus, we conclude that the naked singularity is global and
visible on the brane. The causal structure in this case is il-
lustrated in Fig. 3. Investigations on the effect of the visible
singularity on the brane are necessary, but they are left for
future work.

Finally, let us mention the strength of the naked singular-
ity as we approach it along a radial null geodesic. Let w be
an affine parameter of the geodesic, w=0 be the singularity,
and the tangent vector be denoted by k“=dx“/dw. We ex-
amine R,,k°k? and C,,”". From Eq. (3.3) and the Einstein
equations, we have

RoER= i

2 \dw| = 3 \aw

xif(u)(d_u)z_zzw(du)l

2A
T (3.32)

gz 71 =i
u‘—'Ox()(] _IU)-
Also, from Eq. (2.22), we have

S LU 2_)\0*2““,*2:(0/(]‘.70).

(3.33)
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Thus the Ricei tensor and the Weyl tensor diverge as w™>
and w20/ "% respectively, which is a sign of a strong
curvature singularity.

I'V. CONCLUSION

In this paper, in the context of the RS2 type braneworld,
we discussed the dynamics of the bulk and the effective cos-
mology on the brane in terms of the local conservation law
that exists in the bulk spacetime with a maximally symmetric
three-space. First, we formulated the local conservation law
in the dynamical bulk. We found that the bulk geometry is
completely described by the local mass M and it is directly
refated to the generalized dark radiation term in the effective
Friedmann equation. We also found that there exists a con-
served current associated with the Wey! tensor and the pro-
jected Weyl tensor that appears in the geometrical approach
is just the local charge for this cwrrent, and it can be ex-
pressed in terms of M and a certain linear combination of the
components of the bulk energy-momentum tensor.

Next, as an application of our formalism, we adopted a
simple null dust model, in which the energy emitted by the
brane is approximated by an ingoing null dust fluid, and
investigated the general properties of the bulk geometry and
the brane trajectory in the bulk. Usually, the ingoing null dust
forms a black hole in the bulk. However, in the case of X
=+1, a naked singularity can be formed in the bulk when
the flux rises from zero slower than a critical rate. We show
that the naked singularity is global and thus it can be visible
1o an observer on the brane. Studies on the implications of a
visible naked singularity on the brane is left for future work.

Also, we found that the brane can never enter the black
hole horizon as long as it is expanding, In addition, we found
an upper bound on the Hubble expansion rate, given by the
energy density of the matter on the brane, for arbitrary but
non-negative energy flux emitted by the brane. We alseo pre-
sented a set of equations that completely determine the brane
dynamics as well as the bulk geometry.

Finally, let us briefly comment on some future issues. In
this paper, we only discussed the case of null dust. However,
this is too simplified to be realistic. As a realistic situation, it
will be interesting to consider a bulk scalar field such as a
dilaton or a moduli field. In this case, it will be necessary to
solve the bulk and brane dynamics numerically in general.
Another interesting issue will be the evaporation of a bulk
black hole by the Hawking radiation and its effect on the
brane dynamics. We plan to come back to these issues in
future publications.
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APPENDIX A: GEOMETRICAL QUANTITIES AND
LOCAL CONSERVATION LAWS IN (N2} DIMENSIONS

In this appendix, we give useful formulas in an
(1 +2)-dimensional spacetime with constant curvature
n-space, and generalize the expression for the local mass and
Weyl charge.

We congsider the metric in the double-null form,

. Arur, 2072
ds* === dudv+r(u,v)?d 0y 1 » (A1)

where K=+1, 0, or — 1, corresponding to the sphere, flat
space, and hyperboloid, respectively, We denote the metric
tensor of the constant curvature space as ;. The explicit
expressions for the geometrical quantities in this spacetime
are as follows.

The Christoffel symbol is

Pl FouF
::u:(logigf"&)'" ) > F§u=(log ‘q)‘” ) ,
W W
W r& v ro
Ty== 2, Vi SuT T gy Y (A2)
i P i Mo i nyi
I""jm T(S,-j, Fuj=“;‘6jj, ij= h
The Riemann tensor is
T
R“rmu=sz.em (Eogl ‘(I) : ) +
W
i 1 ( <I)] rd ot
o i o Bk e L o R
R _' I ((I) rd (1 ruy )
wj=| Tt "l 2, 0g ) , Yii»
P — r.lfll r,!l "',Nr,u {
Rlyju= “,—.***7(108—;1;—) }ﬁj (A3)
L W
P [ A L .
Rtujv_ T + T(log & ) }5},
- W
R; _R" —_ r,lfb' 5{
vin ™ N T T - Uit

Roy=(K— G)){Bi,yﬂ— 5';ij}-

The Ricei tensor is

r ¥ o
q/vl) , RUU"—“}T%(IOg :
R

P

.

R

r 1’y
R,=n «;—-—( logi

(Ad)
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JHU

Rij ——"—(D+2(n—l)(K @) Yij -
The scalar curvature is
R_ (I) I r,h’r,ﬂ 2 ¢)J‘,HU
- NTURY K wo " Fr oy
n n—]
+ ( )(K ®). (A5)
The Einstein tensor is
GHH RHH ’G H
K HU
G,m—n(n—l) = +n (AB)
&
"‘2(1) IJ l) ND
GU {2",ﬂ v[(log X I 2 ])
(n—2)(n—1)
— (K= D) Ly,

The Weyl tensor is

C "=”_] lo
U p+d 6]

F o' u Fup Tt o
g —e T (K=,
fanli 2

mi

1
C‘r'r.'jz,uz _’.?. ’Y."quun"s (A7)

i

= e A — oy vn
Cijki_ H(h‘—] )’ (7:.’.’7}.’ }"H'y,’k)cuu
From these formulas, we can show the existence of a
conserved current in the same way as given in the text.

Namely, with the timelike vector field &7 defined by Eag.
(2.4), the currents §9=¢*T,% and §%=£°T,? are separately
conserved, and the corresponding local masses are given,
respectively, by

M=r""YK—d) (AS)

and

~ 2
M=M= e Ay "

1
{(n—1)n—-2) . (A9)

The v and o derivatives of M are given by the energy-
momentum tensor as

{(A10)
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Let us now turn to the conserved current associated with
the Weyl tensor. We start from the equation that results from
the Bianchi identities {26],

Cal)t‘d:¢[=‘]a11c ] (Al l)
where
_2n—1) 1
abc_T_ Kyt Tc[a;b]+ mgc[hT:u] .
(A12)

From this equation, we can show the existence of a locally
congerved current ¢ given by

Qazrebnc‘jbc{l! Qa:axov

where £ and r” are the null vectors defined in Eqgs. (2.19).
The nonzero components are explicitly written as

(A13)

QU= —rJv,, QV=—rJv,, (A14)
We then find the following relations,

( n'i'ICu"vu) o= n+1JUUu?

(r"t I, =t (A15)

These relations are generalization of Egs. {2.21), and imply
that the Weyl component r**!C, ¥ is the local charge asso-
ciated with this conserved current.

Using the explicit form of C,” in Eqs. {A7) and the
Einstein equations, we can relate the Weyl charge to the local
mass. We find

n+ 1 C

Uh’

_nla=1)M w1
h 2 n(n+1)

G - 220G,

n—1

’I('I_])M 2 n+1 i
- 2 (1) e (T—2nT¥,).

(Al6)

Finally, we note that this equation implies that the linear
combination of the energy-momentum tensor,
’.n+1 (TI-—"'
I

21TV, (A17)

plays the role of a local charge as well. Therefore, the be-
havior of this quantity is constrained nonlocally by the inte-
gral of the flux given by the corresponding finear cotnbina-
tion of the currents §7 and Q°. Although we do not explore
it here, this fact may be useful in an analysis of the behavior
of the buik matter.

APPENDIX B: EINSTEIN-SCALAR THEORY
IN THE BULK

In this appendix, we apply the local conservation law to
the five-dimensional Einstein-scalar theory, We assume that
there is no matter on the brane, but we take account of a
coupling of the bulk scalar field to the brane tension. In this

044021-11
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case, the energy exchange between the brane and the bulk,
hence the time evolution of M, oceurs through the coupling.
We first consider a general bulk scalar field. Then, as a
special case, we analyze the local mass on the brane for the
exact dilatonic solution discussed by Koyama and Takahashi
[13]. Finally, we clarify the relation between the local mass
and the term that is identified as the dark radiation term in
the effective four-dimensional approach in which the contri-
bution of the scalar field energy-momentum to the brane is
required to take the standard four-dimensional form [11].

1. Setup
We consider a theory described by the action

i
=fd5x\4_g B
2k3

1
R~ 50,45 $= V()

(B1)

- J d*xJ—qo(d).

For the bulk with the metric given by Eq. (2.1), the energy-
momentum tensor in the bulk is given by

2

2 — .2
Tuum ¢',u + TH"_ ‘f),u ]

)y

7

2 (I)
Tf_.l'= - 2 . e ¢,u¢.u+ V( ¢)) 7!_,' - (Bz)
ol v

On the brane, the first derivatives of the scalar field tan-
gent and normal to the brane are expressed, respectively, as

qﬁ’ = qb‘ana: - (b,vu + qb,u”e

d=¢ = v+, u. (B3)
The Codacei equation (2.36) gives, via the coupling to the

brane tension, the boundary condition at the brane,

I d

= 5%0(05}- (B4)

In the present case, the effective Friedmann equation induced
on the brane, Eq. (2.34}, becomes

2 K 1 2 2
3IH ‘I‘;“_"ﬁ‘ —Kio - (B3)

The time evolution of the local mass M on the brane is given
by
1 1

M=— —il*H| =2V + 1( d )2 4¢
T3 do 36 365" dcp
(B6)
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From the brane point of view, as given by Eqs. (2.43) in
the text, the effective energy density and pressure are com-
posed of the brane tension and the bulk matter induced on
the brane as

{to!)_p(T)_l_p(B), P(tot}_p(T)+p(B) (B7)
where
(T} 4 2 24D E 2
K4p =—§"K o, K4p :—1_2‘»‘(50'“,
M
ZP(B)_“;T,
M 1 1 ad \?
12 (B
Ksp -4-+ fcj.[q‘; 2V~I~~(dq5 ) } (B8)

where Eq. {B4) is used. From the Bianchi identity on the
brane, the conservation law for the total effective energy-
momentum on the brane is obtained as
(B)+3H(p(3)+pﬂ3))—_ 5(T) {(B9)
The above relation is mathematically equivalent to Eq. (B6).
As discussed after Eq. (2.45} in the text, Eq. {B9) gives
the point of view from the brane, and it is naturally inter-
preted as the equation describing the energy exchange be-
tween the brane tension and the bulk matter induced on the
brane. On the other hand, the time variation of the local mass
along the brane, Eq. (B6), gives the point of view from the
bulk, and it contains not only the energy transfer from the
brane tension to the bulk (the last term)} but also the energy
flow of the bulk scalar field at the location of the brane,

which is nonvanishing in general even if the scalar field has
no coupling to the brane tension,

2. Dilatonic exact solutien

In the case K=0, and for special forms of V{¢) and
(), an exact cosmological solution is known, as a realiza-
tion of the bulk inflaton model [13]. The forms of the poten-
tial and brane tension are

27 bks

A
KgV(¢)=(~é»+ 5}hge' (B10)

KGo(B)=2hge ™ o5, (B11)
where &, b, and )\, are constant and are all assumed to be
non-negative, and

8
A=dp’- 7. (B12)
If 6=0, there exists a static, Minkowski brane solution [14].
In order to avoid the presence of a naked singularity, the
dilatonic coupling b” is assumed to be smaller than 1/6 [13].
This implies that A is negative and is in the range
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L oo

2<(—A)=s (B13)

The exact solution takes the form
ds? =" (— a7+ 24D 5, dxidd + 2 TR g2,
¢=d(1)+E(z),

with the brane located at z=z, and it is assumed that
E(zg) =0 without loss of generality, The scale factor of the
brane and the scalar field on the brane are given by

(B14)

r(7)=e® M= (H, ) o TrsHI= [ (B15)

8 7] N d
Hy= A'i'g g '~_~E=4b"7\0 e (B186)

As seen from the first of Eqs. (B15), the power-law inflation
is realized on the brane for *<<1/6.

Let us consider the time evolution of the energy content in
this model, From the brane point of view, the time derivative
of the brane tension p™ is always negative:

where

A

D= — 0,
48pt 87°

P (B17)

Thus, from Eq. (B9}, for an observer on the brane, there is
one-way energy transfer from the brane tension to the buik
matter induced on the brane. From the buik point of view,
however, the situation is slightly more complicated. The time
derivative of the local mass (or the generalized dark radia-
tion} on the brane, Eq. (B6), is evaluated as

M 1 ( I 52 A 5) 5
A4 185%67\3 grel (BI8)
The sign of M is determined by the sign of A/8+ 8. Note
that the sign of A/8+ & determines the gign of the bulk po-
tential as well, as seen from Eq. (B10). If A/8+ 48>0, i.e,
5>~ AY8=(5%/2)—1/3, we have M>0. Since M is the
total bulk mass integrated up to the location of the brane, the
increase in A implies an energy flow from the brane to the
bulk, Therefore, in this case, the energy in the brane tension
is transferred to the bulk scalar field and it flows out into the
bulk. In contrast, if §<(~ A}/8, we have A<0. In this case,
although there is still energy transfer from the brane tension
to the bulk scalar field, the bulk energy flows onto the brane.
In other words, there is a localization process of the bulk

energy onto the brane that overwhelms the energy released
from the brane tension.

3. Local mass and the effective four-dimensional description

In the bulk inflaton model with a quadratic potential
[9-12], it has been shown that the bulk scalar field projected
on the brane behaves exactly like a four-dimensional field in

PHYSICAL REVIEW D 70, 044021 (2004)

the low energy limit, H>€><€ 1, where H is the Hubble pa-
rametfer of the brane, and the feading order correction gives
the gradual energy loss from the scalar field to the bulk,
giving rise to the dark radiation term [9,11]. Here, we discuss
the relation between the dark radiation term appearing in this
effective four-dimensional description and the generalized
dark radiation term given by the local mass in the bulk.

From the geometrical description [7], the induced Einstein
equation on the brane is written as

1 ~
WG =— -ﬁx;‘o—’-g#ﬁ KT —E,,, (B19)
where
7{b) 2| a b 7 o, I ab
T(M,,=‘:3" Tr:b@,u,q v | T — 4_Tabg Tpr|s
(B20)

is the projected tensor of the bulk energy-momentum onto
the brane that includes the contribution of the cosmological
constant; see Eq. (2.7). For a homogeneous and isotropic
brane, the nonvanishing components are

~ = T,
ﬂi)ﬂﬁTuu_'-gTh

..(mjml...j = t}~,r -
T ,.——6—T,.— =1, —=T",+7T,. (B21)
v H
Let us decompose £, as
E,=EN+ED, (B22)

wlere E‘,f,) is to be expressed in terms of the bulk energy-

momentum tensor in such a way that the effective four-
dimensional description is recovered, and £ f,f,) is the part that
should be identified as the dark radiation term in this effec-
tive four-dimensional approach. To be in accordance with

Ref. [11], we choose the components of Ejf’,’, as

(b 1ot L;'w U o s s
~Ey “_"85""5 =77, + =T, +1_2K5(Ti‘“37'"u)
v u
=—EWi (B23)

and identify the remaining part with the dark radiation
term, X,
e v i
- Eg.' )__X_ - E(tﬂ ;- (824)

In the effective four-dimensional description, the Einstein
equation on the brane takes the form,

)
(4)G#,,2 KE_T{;T—ELC?, ,

(B323)

where ’ﬂ,ffn is the effective energy-momentum tensor on the
brane,
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1
b b
T(:]fﬂ ~ 1245 a’qm,+ s T{m), fm),,

(B26)
and « is the four-dimensional gravitational constant that
should be appropriately defined to agree with the conven-
tional four-dimensional Einstein gravity in the low energy
limit. In the present case of homogeneous and isotropic cos-
mology, the only nontrivial components are the effective en-
ergy density and pressure, which are given explicitly by

1 5 .. |
p(emz—k’ ﬂ‘m’7——1—2-K:U°w—K§T” e %T
! 2 l}"' T
’“"gK TTU"'F—TU N
v u
2 (cm__l 2 Befhi I ow a1 s T
Kp —§-K4T( == 13 K507+ g T+ 1zircsT
3 (0 Vs
—§K5 -+ =T, (B27)
u '

The effective Friedmann equation on the brane is written as

3| B+ 53| = o= £
;
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Applym% this to a bulk scalar field with the action (B1), we
find p*™ and p*™ are given by those of a four-dimensional
scalar field ¢ with the potential,

.,

VD ()= k3 V(d»)+ o (qb)——

),
(B29)

where o= ficy/ qub. From the contracted Bianchi identity,
we obtain

. 11
DATD = p 0 3H(p P+ p M) = = — —(rX).
Kg r
(B30)

Unfortunately, as we can see from Egs. (B27), there is no
simplification in the energy equation in terms of the five-
dimensional energy-momentum tensor.

From the effective four-dimensional point of view, what
happens is the conversion of the scalar field energy on the
brane to the dark radiation via the coupling to the brane
tension. From the bulk point of view, a natural interpretation
is to regard the local mass Af on the brane as the generalized
dark radiation. These two different identifications of the dark
radiation term on the brane coincide only when the bulk is in
vacuum and M is constant. Comparison of the above decom-
position of F_ with Eq. (2.40), we find the difference be-
tween the dark radiation in the four-dimensional description
and the generalized dark radiation in terms of the local mass
M as

IM 1 e U oo, v
— =1K§(TE-5T";,)—§:<§(-.~T::+—.T;;)+X.
r U u
(B31)
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We investigate linearized gravity on a single de Sitter brane in the anti-de Sitter (AdS)
bulk in the Einstein Gauss-Bonnet {EGB) theory. We find that Einstein gravity is recovered
for a high energy brane, Le., in the limit of a large expansion rate, i.e., for H{ 3» 1, where
H is the de Sitter expansion rate and ¢ is the curvature radius of the AdS bulk. We also
show that, in the short distance limit, » < min{{, H~1}, Brans-Dicke gravity is obtained,
whereas in the large distance limit, 7 > max{£, H '}, a Brans-Dicke-type theory is obtained
for HE = 0(1), and Einstein gravity is recovered both for H¢ 3 1 and H{ < 1. In the limit
H{¢ — 0, these results smoothly match the results known for the Minkowski brane.

§1. Introduction

Recent progress in string theory suggests that our universe is not a 4-dimensional
spacetime in reality, but is a 4-dimensional submanifold “brane” embedded in a
higher-dimensional spacetime called “bulk”™. As a simple realization of this braneworld,
the model proposed by Randall and Sundrum (RS)Y has attracted much attention
because of its interesting feature that gravity is localized on the brane not through
compactification but through warping of the extra dimension. This model is a solu-
tion of the 5-dimensional Einstein equations with a negative cosmological constant,
where a Minkowski brane is embedded in the 5-dimensional anti-de Sitter {AdS) bulk.
The linear perturbation theory in the RS model reveals that Einstein gravity is re-
alized on the brane in the large distance limit. However, in the short distance limit,
gravity on the brane becomes essentially 5-dimensional, which can be attributed to
the large contribution of the Kaluza-Klein corrections.?) The cosmological extension
of this model, the inclusion of black holes, and so on, have been discussed by various
authors.3)

From the stringy point of view, it is plausible that there exist many fields and
higher-order curvature corrections in addition to the bulk cosmological constant.
In this paper, we consider the gravitational action with the Gauss-Bonnet term
added to the usual Binstein-Hilbert term. This type of correction appears as low
energy corrections in the perturbative approach to string theory, and it is a natural
extension of the Einstein-Hilbert action from 4 dimensions to higher dimensions.*) ©

*) E-mail: masato@vega.ess.sci.osaka-u.ac.jp
**) E-mail: misao@yulkawa.kyoto-w.ac.jp
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Cosmological braneworld models in the Einstein Gauss-Bonnet {(EGB) theory are
treated in Refs. 7)~13), and black holes in the EGB theory are studied in Refs. 14)-
19).

Recently, Deruelle and Sasaki showed that in the EGB theory, the linearized
gravitational force on the Minkowski brane behaves like a 4-dimensional one even
in the short distance limit.2® Then, Davis showed that Brans-Dicke gravity?D) is
realized on the Minkowski brane in the short distance limit.22 Although the effective
gravitational theory in the nonlinear regime is completely unknown, these results
imply that the experimental constraint on the maximum size (curvature radius) of
the extra dimension is drastically weaker than in the RS model, in which the size of
the extra dimension must be less than ~ 0.1 mm. Thus, the EGB theory deserves
more detailed investigation from various points of view.

In this paper, as a step toward the understanding cosmological implications
of the EGB theory, we investigate linear perturbations of a single de Sitter brane
embedded in the AdS bulk. This paper is organized as follows. In §2, we describe
our formulation in the EGD theory. We consider an AdS bulk with a single de Sitter
brane as the background spacetime. In §3, we analyze the linear perturbation theory
in the bulk and on the de Sitter brane. In §4, we consider the effective gravity theory
on the brane in various limits. In the case Hf > 1, where H is the expansion rate of
the de Sitter brane and £ is the AdS curvature radius, we find that Einstein gravity
with a cosmological constant is recovered on the de Sitter brane. We also show
that Brans-Dicke gravity is obtained in the short distance limit, whereas in the large
distance limit a Brans-Dicke type theory is obtained for H¢ = O(1) and Einstein
gravity both for ¢ » 1 and Hf « 1. Furthermore, it is shown that the results
for the Minkowski brane are recovered in the limit H¢ — 0, namely, Brans-Dicke
gravity in the short distance limit and Einstein gravity in the large distance limit.22
In §5, we briefly summarize our results. In Appendix A, we review the results for
the Minkowski brane.?2) In Appendix B, we define harmonic functions on the de
Sitter spacetime that correspond to the Fourier modes in the Minkowski spacetime.
In Appendix C, we consider the case of two de Sitter branes and show that there
exists a tachyonic bound state mode that makes the system unstable, just as in the
Minkowski case discussed in Ref. 23).

§2. Einstein Gauss-Bonnet braneworld
We consider a braneworld in the EGB theory with a cosmological constant. As
usual, we assume mirror symmetry with respect to the brane. Then, we can focus on

one of the two identical copies of the spacetime A with the brane as the boundary
M. The action is given by 1:6)

S = f dSm\/——g--—]:a- [(S)R - 2A5 + C}:({5) R?— 4(5}305(5} Reb 4 () Rabed(ﬁ) Rade)]
M 255

R N )



Linearized Gravity on the de Sitter Brane 453

where ¢ is the coupling constant for the Gauss-Bonnet term, which has dimensions
of (length)?, A; is the negative cosmological constant, g, and g, are the bulk and
brane metrics, respectively. Here, £,, is the Lagrangian density of the matter on the
brane, and ¢ is the brane tension. The second term on the second line of Eq. (2-1)
is the generalized Gibbons-Hawking term,?¥) which is added to the boundary action
in order to obtain a well-defined boundary value problem. Further, K, is extrinsic
curvature of the brane, and

2 2 1
iy = =2 KKK+ SK KK + gK“,,(K""KN - 1(2)_ (2:2)

The Latin indices {a,b,---} and the Greek indices {y,¥,---} are used for tensors
defined in the bulk and on the brane, respectively.

Extremizing the action S with respect to the bulk metric, the vacuum bulk
Einstein Gauss-Bonnet equation is obtained as

@) Gap + A5 Gab
+ a[g((so RO R, . — 9B ped® g . _ 9B g (5) ge, 4 () g(5) Rab)
1
~ 50an( OB ~ 4O RO R 4 O R O R ] < 0. (2:3)

The brane trajectory is determined by the junction condition, which is obtained by
varying the action § with respect to the brane metric,2%)-26)

3 1 1
BH, = K¥, — K&, + 4a(§J“,, - =I5, - P“,DWKW) = SRETh,,  (24)
where
Pppve = Rypue -+ (R,Lw'Q'pu — Rpotuw + Bpvluo — R,ul/Qpa)
1

_“é“R(QpaQ’pv - Q;WQ,M); (2'5)

and T}, is the energy momentum tensor of the matter on the brane, defined as

1

5(\/mq£m) = “—5\/_Q'T#y§q#y. (2-6)

Note that the extrinsic curvature here is that for the vector normal to M pointing
outward from the side of 3.

§3. de Sitter brane in the Einstein Gauss-Bonnet theory

We next consider a de Sitter brane in the AdS bulk in the EGB theory and
investigate the linearized gravity on the de Sitter brane.

3.1. de Sitter brane in the Einstein Gauss-Bonnet theory

We employ the Gaussian normal coordinates with respect to the brane and
assume that the bulk metric takes the form?2"

ds? = dy2 -+ B (y) ’vadﬁf“dmu ) (31)



454 M. Minamitsufi and M. Sasaki

where 7, is the metric of the 4-dimensional de Sitter spacetime with R(vy) = 12H2.
The background Einstein Gauss-Bonnet equation is

1
~3H* + 3b"b + 30" — 12@%- (% — H?) = — 450" (3-2)
This has the solution

b{y) = Hlsinh(y/f), {(3-3)

1 N 1 40[/15
3—2_40(1i1/1+ 5 ) (3-4)

This is identical to the Minkowski brane case.??)-28) Without loss of generality, we
choose the location of the de Sitter brane to be

where £ is given by

b(yo) = 1. (3:5)
Thus H is the expansion rate of the de Sitter brane.

3.2. Bulk gravitetional perturbations

First, we consider gravitational perturbations in the bulk. We take the RS
gauge,1)2:29)

hss = ]?,5“ =0, h,‘“# = Duh.y‘u =0, (3-6)

where D, denotes the covariant derivative with respect to 7,u, and the perturbed
metric is given by

ds® = dy? + () (3 + g ) dada” (37)

The (p,v)-components of the linearized Einstein Gauss-Bonnet equation are
given by

(1-3) [may (sinh (4/0)3,

1
Oy — 2H)) |hyy =0, 3-8
T HD? s (/D) (B )] kK (38)
where
_ 4oy

and [y = D#D,, is the d’Alembertian with respect to . Throughout this paper,
we assume & # 1.
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Equation (3-8) is separable. Setting l,, == ¥p(y) Y0 @ 2) (%), we obtain

2

1 . m
[51nh4(y/ﬁ By(smhé(y/f)ay) + W} ?z{)p('y) =0, (310)
[B: - o+ 212 =0, (3-11)
(p.2)
7]

where p? = m?—9/4 and Y5/ are the tensor-type tensor harmonics on the de Sitter
spacetime, which satisfy the gauge condition3?)

y®2e, = D,y =, (312)

The properties of these harmonics are discussed in Appendix B.

Equation (3-10) is the same as that for a massless scalar field in the bulk.3V
There exists a mass gap for eigenvalues in the range 0 < m < 3/2.27 There is
a unique bound state at m = 0, which gives v,(y) =constant and is called the
zero mode. For m > 3/2, the mass spectrum is continuous and they are called the
Kaluza-Klein modes. The general solution is

Uply) = ApPi2,(cosh(y/0)) + By@,(cosh(y/e)|,  (313)

1
sinh3/2(y/0)
where P{'(z) and Q!(z) are the associated Legendre functions of the first and second
kinds, respectively.

For p* > 0 {m > 3/2), we choose those harmonic functions Y, 2 that behave
as €7 in the limit { — oco. Then, assuming that there is no incoming wave from
the past infinity ¥ = 0, we find that we should set B, = 0. In fact, the asymptotic

behavior of Ps?z for y — 0 is3?)

1 ip 2tp sinh(y/£) \—ir~3/2
ginh®/2 (y /g) P o(cosh(y/ g)) —0 (1 — ip) (cosh(y/l?))
o 2P N iy .
' (1—1ip) ({,’) ’ (3-14)

which guarantees the boundary conditions with no incoming wave (i.e., retarded).
Thus the bulk metric perturbations are constructed by

s = § do ()Y 5 o), (315
C
where the contour of integration ' is chosen on the complex p-plane such that it
runs from p = —oc to p = 0o and covers the bound state pole at p = 3i/2 below the
contour.33)

3.3. Linearized effective gravity on the brane

We now investigate effective gravity on the brane. The position of the brane in
the coordinate system is displaced in general as

y = yo — Lp(zh), (3-16)
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where the second term on the right-hand side describes the brane bending.29):30)
The induced metric on the brane is given by

dsg’ = ('7#1, + f?.jw) datdx frw = fy — 2coth{yo/6) oy - (3-17)

(4}

The extrinsic curvature on the brane is given by

K*, = %coth(yg/f)éﬁ,, + %hﬂ,,,y +o(DRD, + B4, ). (3-18)

We consider the junction condition (2-4). The background part gives the relation
between the brane tension and the location of the brane,

6 o 26
2
%0 = —coth(ye/f) {1~ = + , 319
50 = 70 (vo/£) ( 3 35inh2(yg/3)) (3:19)
where
1
coth(yo/€) = v/ 1+ (HE)?2, sinh(yy/f) = T {3:20)
In the limit Hf — 0, Eq. (3-19) reduces to the Minkowski tension,
6 1_
KEq o Z(l - é—ry) (3-21)
The perturbative part of the junction condition gives
1 ~
(1 + ﬁ) (DMDU — Oy — 31—127“,,)¢ o (1 - aa) .
1 2 _ A
— & coth(yo/?) (D4 _oH )h,w = 22 S, (3-22)
where S, is the perturbation of T),,, namely
TH, = —obd*, + S¥,, (3-23)

and

= O L (oconn?(un/t) - 1) o = (207 + D (329

The trace of Eq. (3-:22) gives the equation determining the brane bending as

2

0 +4H2) =% g 3.95
(o4 T GR)Y: (3:25)
where S = S*,. Note that the field ¢ seems to be tachyonic, with mass-squared
given by —4H?2. However, in the case of a de Sitter brane in Einstein gravity, there
is a similar equation for the brane bending, but it was found to be non-dynamical 3
We see below that the situation is quite similar in the present case of the EGB theory.
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To find the effective gravitational equation on the brane, we proceed as follows,
Using the expression for the induced metric on the brane, Eq. (3-17), the perturbation
of the brane Einstein {ensor is given by

. 1
8GR} = =5 Cahya = 2 hysy + 2 coth(yo/ ) [DuDy ) W] 0
1
= 312 (I — 2coth(yo/£)yas) - 5 (0u - 22 )

+2 coth(yy/£) [DHD;, = Dy — 352’7;4 ©. (3-26)

Using the perturbed junction condition (3-22), we can eliminate the term involving
© from the above equation to obtain

- . 1—&
5G (R + 3Hhy, = MQTE%)' (O - 28y
I-a K2 coth(yp /L)
e g+ BERNZ) ¢ (3.9
) coth(yo/€) vy + T 1+ S (3:27)

Eliminating the term proportional to ({4 — 22}, from Eqs. (3-26) and (3-27), we
obtain
.2
i 27, s tanh(yo/¢)
5G,uy [h] + 3H h,lﬂ/ - '—“‘TEG{“—'—‘" Sﬂ,y

1—-&
5 tanh(’yo/!,’) (D“Dy - 7;11/84 - SHQJY,UV) P

1-0

20

Together with Eq. (3-25), this can be regarded as an effective gravitational equation
on the brane. The effect of the bulk gravitational field is contained in the last term,
proportional to fu,y,. Note that the limit & — 0 is singular in the above equation.
Thus an Einstein Gauss-Bonnet brane exhibits entirely different effective gravity
from an Einstein brane even if & < 1.

tanh(yo/8) vy - (3-28)

3.4. Harmomnic decomposition

Using the harmonic functions defined in Appendix B, we can obtain a closed
(integro-differential)} system on the brane. We decompose the perturbations on the
brane as

oo o0
Su=50 458 SO= [ dp(Seuve?). SB[ do(Seavis?),
—C0 —co
e o)
(p:/ dp{‘o(p)y(p,ﬂ),
—co
=]
Rys = / dp by Y82 (3-29)
—o0

where Y (P9 are the scalar harmonics and Yﬁfﬁ’o) are the scalar-type tensor harmonics
given in terms of Y9, as defined in Appendix B. Note that, because of energy-
momentum conservation, D#S,, = 0, there is no contribution from the vector-type
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tensor harmonics that do not satisfy the divergence-free condition. If a bound state
exists, we have to deform the contour of integration so that the corresponding pole
is covered, as mentioned at the end of §3.2.

With the above decomposition, the metric perturbation on the brane fzw given
by Eq. (3-17) consists of the isotropic scalar-type part and tensor-type part. The
scalar-type part is determined by Eq. (3-25), which gives

2
- _ "5
0 T 501+ By

K2 1

2(1+ At f\/ L2 4 B2

NpS (p.0)

S(pm . (3-30)

where N is the normalization factor for the harmonics defined in Appendix B. We
see that the propagator part of the above (ie., the coeflicient of S(,q)) does not
contain a pole at p = (5/2)4, which would correspond to the tachyonic mode with
mass-squared —4H?. Instead, it becomes a branch point, and a branch cut appears
between the points p = (v/21/2)i and p = (5/2)i. Thus we find that the tachyonic
mode is absent and there is no instability associated with the brane bending due to
the matter source on the brane.
Before we proceed, it is useful to note the equation

2
- . 3H2A " g .
(D#Dy ’}’ny4 3H ,{#V)QD 2(1 T ﬁ)g Syy 3 (3 31)

which directly follows from Eq. (3:30) and the definition of the scalar-type tensor
harmonics Y#(E‘U).

There is a free propagating tachyonic mode corresponding to the homogeneous
solution of Eq. (3-25), which couples to neither the scalar nor tensor-type matter
perturbations on the brane. However, we argue in the next subsection that the
mode that corresponds to the exponential growth of the perturbation is unphysical;
that is, the only physical mode associated with this tachyonic mode is exponentially
decaying in time.

The traceless part of Eq. (3-22) gives

1

") = G
y £2 sinh(yo/4) Pzp 2(,00)
(1-a)P /Q(bg ) + & (—ip + 3/2)(HE)? cosh(yo/L) Py 3/2

K3
bt —E' S(p,?,} s (332)

where zy = cosh(yo/£). This shows that the harmonic component of the tensor-type
metric perturbations on the brane has a simple pole at p = (3/2)i in the complex
p-plane, which corresponds to the zero mode.
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For convenience, we also present the y-derivative of h,y:

1 PP, (20)
SOl (v0) = Ry, - i
14 (1 - @) P5,(20) + a—ip + 3/2}(HL)? cosh(yo/£) Py}, (20)
(2
X —£5~ S(p'g) - (333)

Then, Eqs. (3-25), (3-28) and (3-33) constitute the effective gravitational equations
on the brane, which form a closed set of integro-differential equations.
3.5. Source-free tachyonic mode

Now, we consider the source-free tachyonic mode on the brane.?® This mode
corresponds to the homogeneous solution of Eq. (3-25), and therefore it does not
couple to the matter perturbations on the brane.

On the complex p-plane, the solution corresponds to a pole at p = (5/2)i. Thus,
the solution is given by

0 = iy Y20, (3-34)

For this mode, the junction condition (3-22) reveals that it is associated with a
non-vanishing f,,. The solution in the bulk is given by29)

h,uy = ﬁb(y)ﬁuuﬁo; JC,uV = D,’.L'DV -+ Hz’mb" (3-35)
This satisfies the transverse-traceless condition and the relation
(D4 - 4H2)h,ﬂ, = 0. (3-36)

Thus, this mode falls within the mass gap between m = 0 and 3/2, with mass
mH = V2H.

Let us first analyze the behavior of the function ¢(y}. It should satisfy Eq. {3-8),
which becomes

[mé’y (sinh4 (y/ f)ay) +

2

T E)] $(y) = 0. (3:37)

The general solution of this equation is given by

o) = c1d1(y) + cadba(y)

$1(y) = coth(y/0), ¢a(y) = 1+ coth®(y/0), (3-38)
where the coefficients ¢; and ¢z are related through the junction condition (3-22) as

1+ acoth?(yo/£)
o= L 3-3
1 ‘?‘,6 ¢z =10 ( 9)

As is readily seen, this mode diverges badly as y — 0. Therefore, the regularity
condition at ¥ = 0 eliminates this mode. Nevertheless, because its effect on the
brane seems to be non-trivial, it is interesting to investigate its physical meaning.

1
1-— §H2 ¢ — H? coth(yo/€)
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We note that ¢; is a gauge mode. This can be checked by calculating the
projected Weyl tensor B, = (5) Cn#ny13)'34) which is gauge invariant. We find that
only the coefficient ¢z survives:

Cg

oy, e®) = -
By (y, ) = 2 sinh? (/)

L4, o(a®). (3-40)

This means that the junction condition (3-39) does not fix the physical amplitude
¢o. It just fixes the gauge amplitude ¢;.

To understand the physical meaning of this mode, it is useful to analyze the
temporal behavior of the projected Weyl tensor. For simplicity, let us consider a
spatially homogeneous solution for ¢. Choosing a spatially closed chart for the de
Sitter brane, for which the scale factor is given by a(t) = H ! cosh(H1), we find

5/2 . —5/2
_ Pl/z(tanh(ﬂ"l;)) 2P1/2 (tanh(Ht)) ~ Crett 4 Gyt (3.41)
cosh®2(Ht) cosh™2(Ht) t—oo ’

where ¢ and Cy differ from C; and Cy, respectively, only by unimportant numerical
factors. We see that the solution associated with C is that which exhibits instability.
If we insert this solution into Eq. (3-40), however, this unstable solution disappears.
In fact, we obtain

. 18HChey 15(H£)2Cs ¢
P P sinhi (y/0etHt T 16(HE)A sinh X y/D)a(f)

(3-42)

We note that £% on the brane decays as 1/a%(£). This is exactly what one expects
for the behavior of so-called dark radiation. We also note that, although E,, does
not vanish for spatially inhomogeneous modes, they decay as 1 /a3(f;),29) giving no
instability to the brane.

In the Einstein case, the dark radiation term appears if there exists a black
hole in the bulk. This is also true in the EGB case. There also exists a spherically
symmetric black hole solution in the EGB theory.m)’lg} The metric is given by

ds® = — f(R)dT? + e + REd2;
f(R) @
2 4

J(Ry=1+ f—a (1 - \/1 + ok ga'As) , (343)

where p = kEM/(27%) and M is the mass of the black hole. For this solution, the
projected Weyl tensor is given by

4 16cpey—3/2 4 1
Ett = -E-(l + —051'15 -+ 6&#)) (1 + —ads + S(X,U-)

RV T3 3R? 3 R
g A N
~ 4 (1+3a115) , (3-44)
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for R » (a,u)al.m) Comparing Eq. (3:42) with Eq. (3-44), with the identification
R = {sinh(y/¢) cosh(Ht), we find

- 164 4 1/2
ey Cly o 15(H£)2(1 a/ls) . (3-45)

Thus the solution that decays exponentially in time corresponds to adding a small
black hole in the bulk.%)

In the two-brane system, the mode discussed here corresponds to the radion,
which describes the relative displacement of the branes??-%®) As in the case of
Einstein gravity, the radion mode is truly tachyonic. However, for the EGB theory,
there is a tachyonic bound state mode other than the radionic instability, as in the
limit of the Minkowski brane,?® as discussed explicitly in Appendix C. This renders
the two-brane system physically unrealistic in the EGB theory.

§4. Linearized gravity in limiting cases

In this section, we discuss the effective gravity on the brane in various limiting
cases. We find that the effective gravity reduces to 4-dimensional theories in all the
limiting cases.

4.1. High energy brane: HE > 1

For a high energy brane, i.e., in the H£ > 1 case, we have tanh(yy/£) ~ 1/(H{)
and  ~ 2(H{)?. We assume that matter perturbations on the brane are dominated
by modes for which p ~ O(1). Specifically, we consider the case HZ 3> p. Then, from
Egs. (3-31) and (3-33), we find that the second and third terms on the right-hand
side of Eq. (3:28) are suppressed by a factor of 1/(H¢)? relative to the first term,

2
. = P h
Gl + 3Hh,, = MW (5, o((110)2)) (4-1)
Thus, we obtain Einstein gravity with the cosmological constant 3H2, with the
gravitational constant G4 given by

2
ﬁs5 .
Gy = 2€ 5 tanh(yg/f) =~ SHOa (4-2)
The terms we have ignored give the low energy non-local corrections:
z _ K3 $(1~a)
(0Culh) = === tanb(y0/0)

oo
X/ dp Y(p }S(pg)
—oo

x [ 1/2("‘0)
(1- )Pl/g( ) + a(—ip + 3/2) (HE)? cosh(yo/) 3/z(zg)

) (4.3)

+Y, 295, 0,
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4.2, Short and large distance limits

In order to study short and large distance limits, it is convenient to start from
the expression (3:26) for the perturbed Einstein tensor and Eq. (3:31), which relates

the brane bending scalar ¢ to the scalar part of the energy momentum tensor S( )
Let us recapitulate these expressions:

8G ] + 3H%R,, = 2coth(yo/f) (D#Dy — Yrlg — 3H2"mu)90

1 2
- (54 —9H )hm, , (4-4)
2
_ o B2 — % {0 .
(DuDy Yoy ~ 3H "fw)go S0+ B St - (4:5)

1. Short distance limit: » <« min{f, H™1}

For the short distance limit, p — oo, using Eq. (3-32), we find
L (134 - zf-ﬂ)hm,
(HE) (—ip + 3/2) Pih,(20)/ P{hy(z0)

A
/ D Sip2) (1— @) + a(He)?2 cosh(yo/£) (~ip + 3/2) P, ’;2(&0)/1’52( o)

L’ tanh Jg/E)/ de{p’ Sip2) - (4.6}

p—}
Also, using Eq. (4-5), we manipulate as
2 coth(yo/£) (D#Dy = Yy — 3H2’Y}W)‘P

2 {s)
= 2 tanh(yo/£) / dp S(poy Y, 2"
20 —oo

_1Z 8 nh(y/0) (D#DV — s 3}12%)@, (47)
where we have used the identity
2 coth(yo/f) = 2c0th('yg /8) — Jfﬁ tanh(yo/0) + 2 tanh(yo/)
= 1 anh(go/6) + “3 tanh(y0/0), (4.8)

which follows from the definition of the parameter 3, given in Eq. (3-24).
Substituting Eqs. (4-6) and (4-7) into Eq. (4-4), the linearized gravity on the
brane at short distances becomes

~ — 2
8G 7] + 3H Ry = ﬁ;’- tanh(yo/£) S,
(1-a&)
o

tanh(yo/ﬁ)(D Dy — Uy — 3H ')Guu)‘P (4:9)
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with

(D + 42 )0 = - i

m S - (4'10)

This is a scalar-tensor type theory.

Interestingly, the scalar field  that describes the brane bending degree of free-
dom turns to be dynamical. As we have seen in the previous subsection, there is
no intrinsically dynamical mode associated with the brane bending. Therefore, this
emergence of a dynamical degree of freedom is due to the accumulative effect of
all of the Kaliza-Klein modes, like a collective mode. Furthermore, because of the
tachyonic mass, the system appears to be unstable. However, this is not the case.
Because we have taken the limit p — oo, all the perturbations have energies much
larger than H, and the tachyonic mass-squared —4H? is completely negligible. In
other words, the spacetime appears to be flat at sufficiently short distance scales.

We can rewrite Eq. {4-9) in the form

< = 1 8
6G'uy[ho} + Aéh’lﬂ" = "‘——(D#Dy - D4'Y,uy - 3H27#y)(s(p ‘§‘ T 48'(_“;,
@y i
8nG. :
2 — 4 .
(D4+4H )5¢_3+2w5, (4-11)
with the identifications
87y fig &P l—&
——— = —2 tanh(yy/f —_ = tanh{y/£
T = S tanh(o/d), G- = ——— tanh(y0/2)¢,
w = 13_“& coth?(yo/€), As=3H?, (4-12)

Ignoring the tachyonic mass of 89, which is justified for the reason stated above, this
is the linearized Brans-Dicke gravity with a cosmological constant.?!) For Hf < 1,
we have tanh(yo/€) ~ coth(yy/€) =~ 1. Thus we obtain

87Gy  wE 6D 1-a 3a
o e 4.
Fo  2af By a v YT1a (+13)

This is in agreement with the Minkowski brane case investigated recently.??)
The corrections are written

(50'“” [h])corl‘,p»l
K2 = (p.2)
=~ tanh(/8) [ dpY{ES(0

« [ (1 - @)sz/)z(zﬂ)
(1- &)P;‘%(zo) + a(HO)2(~ip+ 3/2) cosh(yg/E)P;%(z(y) '

(4-14)
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2. Large distance limit: » > max{{, H~1}

For the limit p — 0, using Eq. (3-32), we have

_ %(54 _ 2H2)h.,w

ng ’ T tp P
- 1/00 dp YIS0 st sinh(yo/£) H*(~ip + 3/2) P35, (20)/ P{5o(z0)
5 ] # PTG+ a(HO)? cosh(yp/€) (—ip -+ 3/2)P§T/’2(zo)/p%p2(m)

U 3kE (HE)Pspa{z0)/ P1ja(20)
o 4E (1 — 3/2)(If£) COth(yg/f)ﬁ‘ngg(Z())/PI/Q(Z())

For the term involving , we pull out the part that takes the same form as the above
equation. Using Eq. (3-30), we find

2 coth(yo/£) (DpDu = YU — 3H27,uu)90

3k (HL) Py a(z0}/ P1ya(20) (p,0)
= U T + B/2) () coublyo /03Pyl [Pyaleo) j [ i Sonr”
B (HE)(1 = &) P_y2(20)
2(1 - ﬁ)Pl/g(z[)) - (Hf) COth(yg/f)@Pmlfz(Zo)

X (D,UD,, — Yl — BHZ'YW)QO, (4:16)

where we have used the recursion relation

3 1
5 Pa2(%0) = 220P1j2(20) — 5 Poypal20) - (4-17)

Thus, the effective gravitational equation is expressed as

E

(D4+4Hg)q5: ~%S, (4-18)

where we have rescaled ¢ to ¢ = 6(1 + B)p, and [r and Fg are constants that
represent the tensor and scalar coupling strengths, respectively, given by

(#16) (4 cosh(yo/€) Pr 2 z0) — P-1a{70)
2 (2(1 + B)Pya(20) — (HE)? cosh(yo/£)EP_1/2(z0) )
(HE)(1 — a)P_1/2(20)
6(1-+ 8)(2(1+ B) Py a(20) — (HO? cosh(yo/DFP_1/a(z0) )

Fp =

H

Fy = (419)
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In the intermediate range of HY, i.e., when H{ = O(1), Ip and Fs are comparable
and we obtain a Brans-Dicke-type theory given by Eq. (4-11) with the identifications

8rGy sl 50 . \
@0 7 T @0 S, 4
w = Fr — 3Fg
T 2Fg

_ 6(1+ ) cosh(yo/€) Pyya(s0) — 3(1+ (HO®) P o(20)
B (1 — &) P_1/5(20) '

A potential problem in this case is that the tachyonic mass of the scalar field seems
to make the system unstable. However, as discussed in §3.4, the tachyonic pole is not
excited by the matter source. Further, as discussed in §3.5, the source-free tachyonic
mode does not cause an instability either.
For Hf « 1, we have w > 1, and the scalar field decouples to yield
_ 3 coth(yo/2)

5G#V[i?,] + SHQBHU = —EWSW. (421)

(4-20)

Thus we obtain Einstein gravity with

2
ri coth(yo/0)
= D5 AT 29
8w Gy 2 1+5 (4:22)

In the limit Hf — 0, we have

1
1+

Do

R

8y ~ (4-23)

|

]

This is the result for the Minkowski brane.

In the case Hf > 1, we have w > 1, and we recover 4-dimensional Einstein
gravity on the brane with

87TG4 = W

(4-24)
Note that this is just a special case of the high energy brane case discussed in §4.1.

Thus we conclude that despite the presence of the tachyonic mass, the system
is stable and well-behaved for all ranges of HZ.

§85. Summary and discussion

We have investigated the linear perturbation of a de Sitter brane in an anti-de
Sitter bulk in the 5-dimensional Einstein Gauss-Bonnet (EGB) theory. We have
derived the effective theory on the brane which is described by a set of integro-
differential equations.

To understand the nature of this theory in more detail, we have investigated
its behavior in various limiting cases. In contrast to the case of a braneworld in
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5-dimensional Einstein gravity, in which both the short distance and high energy
brane limits exhibit 5-dimensional behavior, we have found that the gravity on the
brane is effectively 4-dimensional for all the limiting cases.

For a high energy brane, i.e., in the case Hf > 1, Einstein gravity is recovered,
provided that the length scale of the fluctuations is of order H~'. It is found that
the low energy corrections are suppressed by an O((H£)™?) factor.

In the short distance case, r < min{{, H _1}, the scalar field that describes brane
bending becomes dynamical, and we obtain Brans-Dicke gravity. This is consistent
with the case of the Minkowski brane. A slight complication is that this brane-
bending scalar field is tachyonic, with mass-squared —4H2. Therefore, if it becomes
dynamical, one would naively expect the theory to become unstable. However, be-
cause the energy scale of fluctuations is much larger than 77, the fluctuations actually
do not see this tachyonic mass, and hence there is no instability.

In the large distance case, r > max{¢, H~'}, Einstein gravity is obtained in
both cases H{ <« 1 and H{f > 1, while a Brans-Dicke type theory is obtained for
H{ = O(1). Although the scalar field of this Brans-Dicke gravity is tachyonic with
mass-squared given by —4/%, we have shown that this mode is not excited by the
matter source, and hence it does not lead to an instability of the system.

In the limit H{ — 0, the previous results for the Minkowski brane have been
recovered, that is, Brans-Dicke gravity at short distances and Einstein gravity at
large distances.

In all the cases, the effective 4-dimensional gravitational constant depends non-
trivially on the values of Hf and &, where & is the non-dimensional coupling constant
for the Gauss-Bonnet term. This indicates a variation in time of the gravitational
constant in the course of the cosmological evolution of a brane in the EGB theory.
It will be interesting to investigate in more detail the cosmological implications of
the braneworld in the EGB theory.
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Appendix A
—— The Results for the Minkowski Brane

Here, we summarize the results for the Minkowski brane.??)

A.l. Effective equations on the brane
In the RS gauge, the perturbed metric in the bulk is written

ds® = dy® -+ B2 (y) (v + by ) dzida”,  bly) = e"WVE, (A1)
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where 7, is the Minkowski metric. The brane is located at ¢ = 0 in the background.
The background part of the Einstein Gauss-Bonnet equation {2-3) gives the relation
of the AdS radius to the bulk cosmological constant, Eq. (3-4). The perturbative
part of BEq. (2:3) gives

1
(1—a) (8~ 458, + /T ) b = 0. (A-2)
Again, we consider the case & % 1. The location of the brane is perturbed to be at
y = —{. The induced metric on the brane is given by
dszjm = (o + Py ) A2 2", By = By — 2070 (A3)

The solution for i, on the brane which satisfies the junction condition is given
by

h _ _"_ig d4p ez’p-m £2H2(1) ((]E)
ly=o £ ] @MY (1 - a)ygerY (g0) + a2 HY (gf)
1 b
X }:Suy(p) - é‘ (??_LLV - %) S(p):‘ 3 (A'4)

where H, ,(,1) is the Hankel function of the first kind and ¢? = ~p?. The equation that
determines the brane bending is

K21
D = ——--é N A.‘5
YT TS a (A:5)
The perturbed 4-dimensional Einstein tensor is expressed as
- 1

Inserting Eq. {(A-4) into Eq. {A-6), we obtain the effective equation on the brane,
which reads

a2 1" (¢)
(1 — a)gerrM (gt) + ag2e2 HY (g)

<[5 - 3 (- 22 ) 509 |
+2 {00y — mulds ) . (A7)

7 H‘g d4p ipT

A.2. Short distance Limit
In the short distance case, ¢f > 1, Eq. (A-7) becomes

- 1— @&
5G] = 525 ~ (%) (848 — 10y ) . (A-8)
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Comparing Egs. (A-5) and (A-8) with linearized Brans-Dicke gravity

- 8r(Fy i 8nGy
5G#y[h] = TUS;W + Ei). (Buap - T}'uy[:]‘i ) &P, Cly d = T %W S, (AQ)
we find the correspondences
&Gy h:% 1] 1—a 3o
— —_— I — 0, = — A.'l
$o 28l B a 7 YTi-a (#-10)

The corrections can be rewritten as

) P B I 21 ()
# corr 2af | (2n) (1-— t":“r)qEH%l) (g0) + @qzﬁzﬂf(zl) (gf)
1 v
X [Sp,t/ - 5‘ (n;w - p;z) ) S] . (All)

A3. Large distance limit

In the large distance case, ¢f < 1, Eq. (A-7) becomes

~ H% 1

3G wlh] = 71T &SW. (A-12)
Thus we obtain Einstein gravity with
2
K 1
= L — Al
8wy {1ra (A-13)
Appendix B

—— Harmonic Functions on de Sitter Geometry

In this appendix, we consider the harmonics on the de Sitter spacetime with
curvature radius H~!. They are obtained by the Lorentzian generalization of the
tensor harmonics on an n-dimensional constant curvature Riemannian space.’® We
focus on the tensor-type and scalar-type harmonics.

B.1. Tensor-type harmonics

The tensor-type tensor harmonics satisfy the relation
(04— (P + 17/4) H?) Y2 (@) = 0, (B-1)

which corresponds to 4-dimensional massive gravitons with mass-squared m2H? =
(p? 4+ 9/4)H?. They satisfy the transverse-traceless condition,
yP2de — y(pﬁ)vly =0 (B-2)

In reality, the tensor harmonics have 3 more indices for the spatial eigenvalues.
If we adopt fiat slicing,

ds? = —d.tz + ngegHt(Sijdmidmj s (B'3)
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we can use the standard Fourier modes e*®  and the spatial indices will be con-
timuous. In addition, we also have discrete indices o that describe the polarization
degrees of freedom (5 in 4-dimensions). However, for notational simplicity, we omit
these indices.

We ortho-normalize the tensor harmonics as

/ A /=7 YD YD = 5 — )5k — k)G (B-4)

Although we have no explicit proof of completeness, due to our poor knowledge,

we assume that Y,Lfﬁ’z) for —co < p < oo constitute a complete set for the space of

transverse-traceless tensors.

B.2. Scalar-type harmonics

The scalar-type harmonics ¥ 0 (2#) satisfy the equation for a scalar field with
mass-squared m2H? = (p? + 9/4)H?,

(m -+ %)Hz) y 0 g4y = 0. (B-5)
We assume that they satisfy the ortho-normality condition,
] /=5 YY) = 5~ )63k — k). (B-6)
From ¥V (1”'0), the ortho-normalized scalar-type vector harmonics are constructed
as
vipr0) - ————?;——-——D y (0 B-7
# Hypr+9/4 " (B7)

which satisfy the relation
f dhey =y YOy 00 = 5(p — )83k — &). (B-8)

The trace-free and divergence-free scalar-type tensor harmonics are constructed,
respectively, as

_ 1 9
0y .0 72 2 0
720 = N, [DuDuY(p - Z(p + Z)VMDH v )},

1
Y0 = N,|D, D,y #) - (;;2 + %m)%,,ffzy(rﬁﬂ)]

=70 f’—le (p2 + %)H%WY(P’O), (B-9)
where
[N = ! : (B-10)
P 3(p? o+ 21/4) (o2 + 25 /4)H4

Without loss of generality, we assume that Ny is real and positive. The scalar-type
divergence-free tensor harmonics Yég’o) satisfy the ortho-normality condition

/ By =y Y ROy 0m = (- )63 (K — k). (B-11)
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Appendix C
—— Tachyonic Bound State in de Sitter Two-Brane System

In Ref. 23), Charmousis and Dufaux showed that for a Minkowski two-brane
system, there exists a tachyonic bound state on the negative tension brane. This
fact implies that the Minkowski two-brane system is unstable with respect to linear
perturbations. Following Ref. 23), we show that there exists a tachyonic bound state
also for the de Sitter two-brane system.

C.1. Possibility of a negative norm state

We consider a de Sitter two-brane system. The brane located at smaller ra-
dius in the AdS space has negative tension. We discuss only the bulk gravitational
perturbations. The matter perturbations on each brane are not taken into account.

The bulk component of the perturbed Einstein Gauss-Bonnet equation including
the boundary branes is written in Sturm-Liouville form as

U
{(b4 — a2 (B - b?HZ))wp,y} = 5 (1- af%) (v + %)H%. (C1)
Using Eq. (C-1), the boundary condition on each brane is derived. For H = 0 and
by) = e”W/f, Eq. (C-1) naturally reduces to the Minkowski version, Eq. (8) in
Ref. 23).
1. On the positive tension brane
Imposing Z» symmetry, the warp factor around the positive tension brane can
be expressed as

by) = HE sanh('y-ﬁ%&y—*'), (C-2)
Integrating Eq. (C-1) around y = gy, and using the Zy-symmetry,

2 o ,
s - 0) = LTGRO ), ©3)

where

C = 1 _ CY - (C‘Al)
2. On the negative tension brane

Similarly, the Zo symmetry gives the warp factor around the negative tension
brane as

b(y) = HE sinh(ugﬁk). (C-5)

Integrating Eq. (C-1) around y = y— and using the Zz-symmetry, we have

2
Aty +0) = G ), ©)
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For both branes, the boundary conditions are of a mixed (Robin) type. This
makes it impossible for us to prove the positivity of the norm. Explicitly, we have

Y
|7y (o - a2 - 1)) o)

= (HO)' (7 + ){%(smh(zwf WAy ~ sinh(2y- /O¥A(y-))

(1-&)

+g2

Y-

" dy sinh? (y/£)%3 (y)} : €

Thus the norm is no longer positive definite for p® 4 9/4 > 0.

C.2. Condition for the existence of a tachyonic bound state

In order to determine whether a tachyonic bound state exists, we need to analyze
the mass spectrum. The tachyonic eigenmode, if it exists, is given by

() = P54 {cosh(9/£)) + By Py (cosh(y/e)) ]|, (C:9)

T
sinh®/2 (y/¢)

where m? = —p2, g = /12 +9/4, and ¢ = —p®. The y-derivative of the quantity
is

Oythy = m [( —q) qul/g (cosh(y/£))
(5 + ) ByPY(eosh(y/2)) . (C9)

Using the boundary conditions on the two branes, Egs. (C-3) and (C-6), we
obtain

4G - o(2 -0, ,2(4) e q)z+P3/2( )
1By 4 0) (2 - P + ¢ - )2 Pge) =0,
A~ (2 -1 + <G+ ) P)
+Bq(% +4q) ((Zm = D Pp(z-) + 4(5 - q)z_Pg',z(zm)) =0, (C10)
where 24 = cosh(yz /0).

In order for a non-trivial solution for A, and B, to exist, the determinant must
vanish. Imposing this condition explicitly, we have

(2~ 0P8 + (5 + ) Pites)
X(( ~1)P /2(3 )+C( )prg/g( ))
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—((zg - l)Pl_/g(zm_) + C(% + Q)zMPa,_/g(z_))
x (& = VPEa(s) (5 = 0)as PYulz) ) =0, (G11)

The pole at g == 3/2, which corresponds to the zero mode, is divided out in deriving
Eq. (C-11). If there exists a solution of Eq. (C-11) for ¢ > 3/2, its existence implies
the existence of a tachyonic bound state.

C.3. FExistence of o tachyonic bound state
From Eq. (C-11), we have

(22 - I)Pf/z(z_) + C(% - fl)z—Pg,:g(zw)
(z2 = )P () + {(5 + @)= Py (=)
_ (e - 1)Pf/2(z+) + C(% - Q’)zwpg/g(z—)

= o . ) (C-12)
(3?5 - 1)P1/§(Z+) + C(% -+ q)2+P3/§(Z+)
Using the definition of the Legendre functions,??
1 z+ 1\#/2 1—z
5 (z) = Fyl— o T ] :
B f‘(l—,u)(z~1) 2 1{ S e (G13)

we see that the left-hand side of Eq. (C-12) is generally much larger than the right-
hand side for ¢ » 1 for fixed z; and z_. Therefore, in order for this equation to be
satisfied, we must have

3 (2-D)Plyz) 2

25—
g— -

2 Cz_.PSQ/Z(z,_) - ¢z

This is a consistent solution for ( <« 1. Thus a tachyonic bound state exists in the
de Sitter brane case as well.

The tachyon mass is given by

2 _
pH = /> - 9/4 H ~ % . (C-15)

In the low energy case, we have 2z, > z— > 1 and Hf ~ 1/z, < 1. Hence, the above
reduces to

for g — oo. (C-14)

£
where
. bz-) ~ 2 —(y4-y- )/
{2 = o) o e . (C-17)

This is consistent with the result for the Minkowski brane.23)
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In the high energy case, H{ > 1, we have
N ?H < H
CCHDE T O

Thus the high background expansion rate of the brane suppresses the tachyonic mass,
resulting in a tendency to stabilize the two-brane system.

1354 (C-18)
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