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Abstract 

In this thesis, we discuss the dynamic .. <:; and effects of Kalu7.a­
Klein (KK) modes in hraneworld cosmology in the context of 
the second Randall-Sundrum (TIS) model. KK modes are wavE>As 
propagating in the ext.ra-dimension, and may affect cosmology 
and gravity on the brane non-trivially. 

First., we discuss the backreaction of KK graviton modes quali­
tatively. For gravitons which are produced by high energy particle 
interactions on the brane, we assume the KK gravitons as ingo­
ing null dust flux which is emitted from the hrane radially. \Ve 
discuss the hulk geometry, the hrane dynamirB in the bulk and 
show that a strong, visible, naked singularity can he formed in 
the bulk in a paticular situation. Then, for gravitons of a single 
KK mode, which is produced quantum mechanically in the whole 
hulk during hrane inflation, we derive the effective stress-energy 
tensor, adopting the averaging procedure where the existence of 
the brane is taken into account. V./e show that a (massive) KK 
mode behaves effectively as cosmic. dust with negative energy den­
sity on the brane. The negativity of the enc-wgy density can hr. 
explained phyically in terms of the energy consr-rvation law in the 
bulk, which is satisfir-d in the five-dimensional spacetime with a 
maximally symmetric three-space. 

In reality, however, what we observe is the sum of an infinite 
number of KK modes. Thus for KK modes produced quantum 
mechanically, we have to determine its amplitude in terms of 
quantum field theory. As is well-known, however, there is a sig­
nificant pathology in attempting to qnant.ify the quantized KK 
hackreaction. It is the divergence of the sum as one approaches 
the brane from the bulk, even after a conventional ultra-violet 
(UV) regularization. We show that a finite brane thickness can 
regularize this divergence and the size of quantum backreaction 
can be naturally reduced to below that of the background stress­
energy tensor. 

Finally, as a more general extension of the RS model, we dis­
cuss the linearized effective gravity on the ])l'ane in the Einstein 
Gauss-Bonnet (EGD) theory. \Ve show that in the EGD theory 
the effective gravity on a cosmological (de Sitter) hrane is four­
dimensional on all distance scales, from short. distances to large 
distances. We also show that on high energy expanding hranes as 
well as on low energy expanding ones, effective gravity hecomE>~ci 
four-dimensional. 

PACS numbers: 04.50. I h, 98.80.Cq 
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Introduction 

The idea that there are extra-dimensions other than the usual fonr­
dimensions (i.e., three spatial dimensions and one time dimension) has been 
discussed for a long time, since the proposals for unification of fundamental 
interactions by Kaluza fl] and Klein f 2]. Recent progress in string theory 
revives the idea of using extra-dimensions for unification and suggests the 
novel possibility that our universe is, in reality, a four-dimensional subman­
ifold, called a bmne, embedded into a higher-dimensional spacetime, called 
a bulk [3, 4]. This gives new paradigm for cosmology and gravity, whid1 is 
called braneworld. In braneworld, interactions other than gravity are trapped 
on the brane, whereas only gravity can propagate into the bulk. This is a 
quite different. picture from one in the KK theory. Several scenarios which 
realize braneworld have been discussed [5, 6, 7, 8, 9]. Expecially among 
them, the scenarios which were proposed by Randall and Sundrum (RS) 
have been attracted much attention, because it. succeeds in the localization 
of gravity through a new mechanism, the warping oft.he extra-dimension f9]. 
This model has been given phenomenological grounds from various aspects 
of higher-dimensional theories of gravity. 1 

In this Chapter, first we briefly give a historical review of the braneworld 
model proposed by RS, cosmology realized on it and various extensions of 
the RS model. And then, we state the purpose of this thesis and introduce 
the outline. 

1.1 Randall-Sundrum (RS) braneworld 

In this thesis, we assume the five-dimensional hulk (i.e., codimension one). 
We consider the five-dimensional Einstein theory with a negative cosmologi­
cal constant ( A5 < 0) and a brane 

1 J 5 ((
5

) ) J 4 SRS = 2"'~ d xF9 R -2A5 + d XHO', (1.1) 

1 For inore reviews about braneworl<ls, see e.g., rio, 11, 12, 131 
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2 1. Introd11cUon 

where qµv is the induced metric ou the brane. n;~ is the five-dimensional 
gravitational constant. The l1l'ane has a positive tension r:5 > O. \Ve assume 
the Z2 (mirror) symmetry with respect to the brane. This means that we first 
cut a five-dimensional spacetime, then make a copy of the piece of spacetime 
and finally glue them. 

Without any dynamical matter other than the metric, the bulk solution 
becomes Anti- de Sitter(AdS) spacetime, 

(1.2) 

bounded by a brane located at y = 0 where T/µv is the four-dimensional 
Minkowski metric and 

e /6 y--;:;, (1.3) 

is the curvature radius of the AdS spacetime. In order to realize the 
Minkowski spacetime on the brane, the brane tension is tuned, for the effec­
tive four-dimensional cosmological constant to vanish as 

(1.4) 

Though the extra-dimension is infinitely extended, due to the exponential 
warping of it the effective volume is still finite. 2 The effective Planck scale 
on the brane is given by the integration of the gravitational action over the 
extra-dimension; 

lvI;1 = 21\Il 100 

dy e-2y/e = lvI!f., 

where JYii = n:52 is the five-dimensional Planck scale. 

(1.5) 

In the above solution, the brane geometry becomes the four-dimensinal 
Minkowski spacetime. When the tuning condition Eq.( 1.4) is broken as A4 > 
0, the brane becomes a de Sitter ( dS) spacetime. The bulk geometry is also 
AdS and the metric in the Gaussian-normal coordinate is given by 

(1.6) 

where /µv is a four-dimensional dS metric with scalar curvature 

R(r) = 12H2
, H2 = ~A 3 4, (1.7) 

and in this case the lwane locates at y = y0 as H = 1 / ( f. sinh ( H fi.)). One side 
oft.he bulk region is restricted t.o 0 < y < y0 . The dS brane solution is useful 

2The extra-<liinension can be compact.Hied by putt.ting another brane with a negat.ve 
t.en8ion of the sa111e size. This 1nodel has been discussed as a possible resolution of t.he 
hierarr.hy problen1 in particle physics, though in this thesis we mainly focus on single brane 
models 181. 



1.2. Linearized gravity in RS braneworld and Kalima-Klein (KK) modes 3 

in discussing cosmological inflation on the brane. Note that the size of the 
extra-dimension it.self is not. inflating. Inflation is described as a motion of 
the brane in the warped hulk. 

In the case that there is no usual matt.er and only (time-independent) 
tension on the brane, the four-dimensional part of bulk metric in a Gaussian­
normal coordinate can be written in a separable form as Eqs. (1.2) and (1.6). 
However, as discussed later, in the case that there is time dependent matter 
component on the hrane, the bulk metric can not. be written in a separable 
form in general. The brane trajectory in the bulk is determined through the 
junction condition across the brane [141. 

1.2 Linearized gravity in RS braneworld and 
Kaluza-Klein (KK) modes 

Then, in the RS (single) ]wane model, we consider the bulk metric perturba­
tions and the linearized effective gravity realized on the brane. In the bulk, 
the metric Eq.(1.2) is perturbed as 

(1.8) 

where for convenience we take the gauge r,ondition has = 0 and h"" = h" v,µ = 
0, which is called RS gauge f 9, 15], whereas the brane position is fluctuated as 
y = 0 ___, cp(x") in general. The bulk metric perturbations and the fluctuation 
of the brane position can be analyzed by using the bulk Einstein equations 
and the junction conditions. 

For simplicity, we focus on the bulk metric perturbations. The pertur­
bations are separable as h1'::) = fm(Y)h1':J)(x") where m 2 is the eigenvalue 
which correponds to mass of gravitons for a four-dimensional observer, 

(1.9) 

The mass spectrum is determined by 

( 
d2 ) ' ' - dz2 + V(z) fm(z) = m 2 fm(z), 

15 3 
V(z) = 4(lzl + f)2 - £'5(z), (1.10) 

where z = J dycY/e and f m is the rescaled function of fm multiplied by 
powers of the warp factor. V(z) is interpretted as the potential for pertur­
bations. The delta function part generates a bound state m2 = 0, which is 
called the zero mode. This zero mode can realize four-dimensional gravity 
on the brane. On the other hands, there is continuum spectrum m2 > 0 
of excited modes, which are called Kalnza-Klein (KK) modes. They are the 
main subject of this thesis. They correspond to waves propagating in the 
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bulk and are observed as the infinite number of massive modes on the brane. 
The general solution for the metric perturbation is written as; 

_ (0) (m) 1
00 

hµv - hµv + 
0 

dmhµv . (1.11) 

As an example, for putting a static, point-like source of mass i'd on the brane, 
the gravitational potential on the ]wane at large distances r » e becomes 

hoo = 
2
G:Af ( 1 + 0 ( :~)) . (1.12) 

Tims the gravity on the !wane is four-dimensional and the small correction 
comes from the contribution of KK modes r15]. From the experimental tests, 
Newt.on 's law is confirmed up to sub-millimeter scales. So, we obtain the 
bound on the size of the extra-dimension as e < O. lmm. Thus the size of the 
extra-dimension may he much larger than the Planck size. The non-linear 
extension has been done by using the long wavelength (low energy expansion) 
approximation r16]. 

For a dS brane, a potential for perturbations like Eq.(1.10) is obtained. 
The only differenece is the existence of the mass gap between the zero mode 
(m2 = 0) and KK modes (m2 > 9H2/4). This is an import.ant. nature for 
a dS brane. During brane inflation, KK graviton modes may be produced 
but they decay rapidly due to the presence of the mass gap [17]. Non-linear 
realization of zero mode (and KK modes) has been discussed, see, e.g., [18]. 

In hrane cosmology, these KK modes, especially these graviton modes, 
are naturally produced at the early stage of the hrane universe. These modes 
may he excited mainly by the following two mechanisms: The first mecha­
nism is that they are generated by high energy particle interactions on the 
brane. Non-standard particle interact.ions on the brane at the early stage 
may produce gravitons. From the assumptions in braneworld, gravitons can 
escape into the bulk. 3 The second one is that they are produced by quantum 
flutuat.ions in the whole bulk. In the cases that the !wane univserse undergoes 
inflation or an inflationary I.wane universe is created via quantum tunneling 
in five-dimensions, KK gravitational modes may be produced quantum me­
chanically or exist from the beginning [18]. In the former case, the amount of 
KK modes is determined by the initial condition on the brane. In the latter 
case, it is determined by the normalization condition for each KK mode in 
the bulk in terms of quantum field theory. 

In the case that the background bulk metric is not separable in the 
Gaussian normal coordinate, e.g., for general cosmological branes other than 
Minkoswski and dS ones, KK modes are not well-defined in general. The 

3 0ne might worry about. the product.ion of low energy J(J( gravitons in the particle 
interactions in the cont.ext. of the standard model. But, the spectrum of J{J{ modes is 
vanishing for these smaller mass scales as m _, 0. So, J{J{ gravitons are not excited in the 
conventional particle interact.ions on the earth. 



1.3. Brmie Cosmology 5 

bulk geometry around a brane with spatial flatness and cosmic scale factor 
a(t) (and lor,ated at y = 0), is given by the metric [19] 

(1.13) 

where 

Q(t, y) = cosh(y/R) - 7)Sinh(ly[/£) 

N(t, y) = cosh(y/R) - ( 1) + ~) sinh([y[/£), (1.14) 

with 

7J=vH2e2+1= (~)2e2+1. (1.15) 

Although the bulk geometry is still AdS, clearly, this metric is non-separable. 
However, in the low energy limit characteri7.ed by HR« 1 and Hfl2 « 1, we 
have 1) °" 1 and iJ / H « 1 so that the metric can be approximated by 

(1.16) 

which is now separable. In these cases, they are approximately well-defined. 

1.3 Brane Cosmology 

In the r,ase that there is time-dependent matter on the brane, the brane 
geometry deviates from both Minkowski and dS, even in assuming a cosmo­
logical symmetry. Here, we take a slightly different approach. In the previous 
sections, we set a Gaussian normal coordinate with respect to the brane. In 
this sense, it is somewhat brane-based. Now, we set a static coordinate in the 
bulk. In this bulk-based picture, the brane describes a trajectory in the bulk. 

We assume that the bulk geometry is AdS-Schwarnshild spacetime 

2 ( r
2 

lvfo) 2 ( r
2 

lvfo )-
1 2 2 2 ( ds = - K + £2 - r 2 dt + K + £2 - r 2 dr +r dE(K,3), 1.17) 

rather than purely AdS, where JVJ0 is the mass of a black hole sitting in the 
bulk and K = 1,0, -1. The case JJJ0 = 0 is just the AdS solution. The 
line element dEf K,3) correspond to the three-sphere ( K = + 1), the three­
dimensional flat space (K = 0) and the three-hyperboloid (K = -1), respec­
tively. Then, from the junction condition the cosmological evolution of the 
brane (i.e., its trajectory in the bulk) is given by [20, 21] 

(
iJ,)2 K l K~ l (p)2 lvfo - +-=-A4+-p+- - +-, 
a a2 3 3 £2 O' a4 

(l.18) 
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where a( T) is the scale factor of the brane expansion as a function of the 
proper time on the brane T. The brane locates at the coordinate radius 
r = a( T). The four-dimensional cosmological constant is given by 

K
4 3 K

4 1 
A s2 s2 A 4 = -(J - - = -(J + - 5 

12 e2 12 2 . 
(1.19) 

If the condition Eq. (1.4) is satisfied, then the effective cosmological constant 
vanishes. This is just a generalization of Friedmann equation in the standard 
cosmology to braneworld cosmology. 

In the effective Friedmann Eq. (1.18), the JV!0 term is just coming from the 
tidal effect oft.he bulk black hole and behaves as usual radiation on the !wane. 
Thus, this term is called dark radiation [19, 12]. Dark radiation can be seen as 
an additional relativistic degree of freedom other than those in the standard 
model of particle physics. Such additional degrees of freedom increase the 
expansion rate of the Universe and affect the Big Bang nudeosynthesis (BBN) 
significantly, especially the abundance of 4 He, because in the case of a faster 
expansion rate there is less time for neutrinos to dacay between the time 
of the weak interaction freezeout and the onset of BBN, and the ratio of 
neutrons to protons becomes larger f 22, 23]. Thus, in order to realize the 
successful nucleosynthesis, observational constraints on the dark radiation 
have been discussed, see e.g., Ref. [23]. 

The other main difference from the conventional Friedmann equation is 
the presence of the squared density term. When the brane universe is high 
energy, i.e., p » u, this term dominates the cosmological evolution of the 
brane significantly [19, 12]. For radiation dominated universe, p oc a-4 , 

the scale factor increases as a oc T 114, whereas in standard cosmology a oc 
T 112 . The squared density term does not affect BBN and CMB significantly 
because this term dominates at much earlier time than the epoch of BBN 
and recombination. 

1.4 Extensions of the RS brane model 

In previous sections, we have assumed that there is no dynamical degree of 
freedom other than the spacetime metric in the bulk. More realistically, e.g., 
from the stringy point of view, it would be natural that there are dynamical 
degrees of freedom other than the metric. V\fe also have assumed that the 
bulk gravitational theory is the Einstein gravity. But, in higher-dimensions 
we may add curvature corrections in the gravitational theory in the bulk. 
\'Ve may also add an induced gravity term into the boundary action. 

From these considerations, several extensions of the braneworld from the 
original RS model have been proposed. In this thesis, we also discuss KK 
modes in these extended models. 
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1.4.1 Bulk scalar fields and bulk infiaton models 

V./e may add some dynamical degrees of freedom other than the spacet.ime 
metric, e.g., a scalar field, in the bulk theory. These bulk fields appear as a 
result of dimensional reductions of higher-dimensional theories, e.g., moduli 
fields, dilatons and so on. As a simple model, we can consider brane models 
with a bulk scalar field, 

S 2~g J d5xFg (71 +K~ (-(iJ¢)2 
- 2V(¢))) 

+ j d4xv=Q(-rY(</J)). (1.20) 

In the context of the braneworld, the models including a bulk scalar field 
has firstly been discussed from phenomenology, see e.g., [24, 25, 26, 27]. In 
paticnlar sit.nations, this type of scalar field behaves as an inflaton, namely 
the dynamics of the field induces a cosmological inflation on the brane, see 
e.g., [28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. In these cases, this type of scalar 
field is often called bnlk in.fl.a.ton. The effect.ive scalar field potential induced 
on the !wane is given by [26] 

A4 = ~K~ (V(</J) + ~K~ (rY(</J))
2 

- ~ ( d~~)) 
2

) . (1.21) 

The static (time-independent.) bulk fields are also used for supporting 
thick bra.neworlds, i.e., classical domain walls in the bulk, see e.g.,[38, 39, 40, 
41, 42, 43, 44, 45, 46, 47, 48, 49]. \Ve will discuss quantum fluctuations on a 
thick brane model in Chapter 4. 

1.4.2 Einstein Gauss-Bonnet (EGB) braneworld 

We also may add higher-curvature terms into the bulk gravitational theory. 
In the four dimensions, the tensor gravitational theory is uniquely given by 
the Einstein theory, bnt in higher dimensions, higher order curvature correc­
tions may also be added. For instance, the gravitational theory including the 
Ganss-I3onnet (GI3) term; 

SEGB = -
1-f d5xFg 

2Kg 

[ 

(5) ( (5) 2 (5) (5) d (5) (5) d t) ] 
x R +a R - 4 R cd R c + R cdef R c e - 2As 

+ j d4xv=Q (-()' l , (i.22) 

gives the most. natural tensor gravity in five dimensions 4 a is coupling 
parameter of the GB term of dimensions (length) 2 . Note that the GB term 

4Fhr general apect.s of the gravitatinal theory with the GB term, including a boundary 
brane, see e.g., [50, 51, 521 
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is just a topological quantity in four-dimensional spacetime, namely just 
gives a total derivative term for the variation of the gravitational action, 
hut it becomes dynamical in higher-dimensions. This type of correct.ion also 
appears as a low energy correction in the perturhative approach to st.ring 
tlrnory. Braneworld models in the Einstein-Ga.uss-Bonnet (EGE) theory have 
predicted new, interesting phenomena. A part of them will he discussed in 
this thesis. Here we introduce some basic cosmological features of this model. 

The AdS solution whose metric is given by, for instance, Eq. (1.2) or 
Eq. (1.6), has two possible branches, 

1 1 ( J 4aA5 ) t2 = 4a 1 ±l + -3- · (1.23) 

The (-) branch is reduced to the solution in the Einstein gravity for a --> 0, 
whereas the ( +) branch gives the completely new sequence of solution in the 
EGB theory, which is known to he unstable for perturbations. 

The modified Friedmann equation in this model, neglecting the dark ra­
diation term (i.e., without a black hole in the hulk), is given hy 

H
2 = 4~ [ ( 1 + ~aA5) 

112 

cosh ( ~x) - 1] , (1.24) 

[ 2 4 ]V2 

p + u = - 4 (1 + -aAs)3
/
2 sinhx. 

CTK5 3 

For the high energy regime, x > 1, we obtain H 2 ex p2
/

3
. Cosmologies in 

the EGB hraneworld have been studied, see e.g., f 53, 54, 55, 56, 57, 58, 59, 
60, 61, 62, 63, 65, 64, 66, 67, 68]. Also higher-dimensional black holes in the 
EGD theory have been studied, see e.g., f 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]. 

1.4.3 Dvali-Gabadazze-Porrati (DGP) braneworld 

There are other possible extensions of RS model, although we will not, discuss 
them explicitly in this thesis. The most familiar (and interesting) one is 
adding an induced gravity term (i.e., four-dimensional scalar curvature) into 
the boundary action; 

SnGP = 2~g J d5
xFg (ii -2A5) + J d4

x.,f::::q ( 2~~ ~ -u) . (1.25) 

This type of model was originally discussed hy Dvali, Gahadazze and Porrati 
[79] and is called DGP model. The scalar curvature term on the hrane is 
assumed to he induced by quantum effects in the hulk. 

In this model, again neglecting the dark radiation term, the modified 
Friedmann equation on the brane is obtained as f 80] 

2 /{ K~ [ { ( 2rJA4 2T}p) 1/
2
}] 

H + a2 = 3 p + Po 1 + E 1 - '"~Po + Po , (1.26) 
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where E = ±1 denotes the possible branches of the hulk solutions and 

6K~ 
Po:= a+-4 · 

K5 

9 

(1.27) 

A4 is the effective cosmological constant given by Eq. (1.19). Assuming a 
flat hulk (A5 = 0) and zero tension hrane (u = 0), i.e., A4 = 0, if we choose 
E = +1 brand1, at a later time, neglecting p terms, we. obtain 

(1.28) 

(\Ve also choose K = 0). Alt.hough we assume a vanishing hulk cosmological 
constant and a vanishing hrane tension, we obtain an accelerating universe 
with the expansion rate given by re = i<V(2i<D = Jv1;1/(2!Yll) [81]. This 
late-time self-acceleration is an interesting feature in this type of model. As 
we readily see, five dimensional effects dominate at larger distance scales 
r > re- In this sense, the self-acceleration may result from the contrihutions 
of KK modes. The self-accelerating universe has been discussed as one of 
the possihilities for the present acceleration of the expansion of our Universe, 
so-called dark energy, from the theoretical and phenomenological aspects, 
see, e.g., [82, 83, 84, 85, 86] and from the observational aspects, see, e.g., 
[87, 88, 89, 90]. 

1.5 The purpose of this thesis 

In this thesis, we focus on the Kaluza-Klein (KK) modes in braneworld cos­
mology in the context of the second RS model including its extensions. The 
name "KK modes" just comes from Kaluza-Klein theory [1, 2] and their he­
havior in extra-dimensions is quite similar hoth in KK theory and in RS 
hraneworld. As we will see in this thesis, from four-dimensional observers 
in the braneworld context the hehavior of KK modes is quite different from 
those in the original KK theory. 

Braneworlds predict novel, interesting phenomena and hopefully give 
possible resolutions of difficuluties in the standard four-dimensional cosmol­
ogy. For instance, as discussed in the previous section, the solution of self­
accelerating universe in DGP braneworld gives a possibility for the present 
acceleration of the expansion of the Universe, without introducing any ex­
plicit dark energy source. Then, five-dimensional effects, i.e., KK modes, 
play the role of the dark energy effectively. As in this case, KK modes 
in braneworld cosmology may have further, intriguing effects, which should 
be investigated. In the near future, the detection of signals from extra­
dimensions might also he realized in high-energy accelerators and/or cosmo­
logical observations. From this aspect, we need to clarify the signals from 
extra-dimensions in braneworld context. 
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On the other hand, recent observations are highly in agreement with the 
predictions of four-dimensional general relativity. Cosmological observations 
are also consistent with standard model of cosmology. So, in the present 
situation, in order for braneworld cosmology to he viable, it is required that 
predictions of it should be at least consistent with these observations. In this 
sense, the amount of the KK modes on the l1fane which appear as corrections 
to four-dimensional theory should not be so large. In the case that it is 
large, some of the detailed assumptions of the model should be modified, 
from realistic point of views. We need to evaluate the amount of the KK 
modes carefully. Any confliction with observations and experiments may tell 
us more realistic extentions of braneworld. 

Keeping the things stated above in mind, we have planed to investigate 
the behavior of KK modes in RS braneworld cosmology, especially their dy­
namics and effects, from various aspects, in order to clarify their qualitative 
nature on a cosmological 11fane, to cure their pathological nature and to find 
new dynamics of them in more general context of !wane cosmology. In this 
thesis, we report our results of these investigations at the present. 

1.6 Outline of this thesis 

This thesis is organized as follows: In Chapter 2, we first introduce the effec­
tive gravitational equations on the hrane by using the geometrical projection 
method. This formalism gives an useful tool to analyze non-linear aspects of 
the effective theory on the hrane. Furthermore, for a cosmological brane with 
a maximally symmetric three-space, we show that there are local conserva­
tion laws as a natural extension of those in a four-dimensional spherically 
symmetric spacetime. For such a hrane model, we derive a dosed set of 
equations to describe the motion of the hrane in the bulk in terms of these 
locally conserved quantities. 

In Chapter S, we discuss the backreaction of KK gravitons produced in 
the early stage of brane cosmology, in the bulk and on the hrane. For KK 
gravitons which are produced by high energy particle interactions on the 
brane, we assume them as null dust flux emitted radially from the brane. 
We discuss the bulk geometry and brane cosmology. VVe also discuss the 
possibility of forming a naked singularity in the bulk. In terms of the locally 
conserved quantities in the bulk with a maximally symmetric three-space, 
which are derived in the previous Chapter, we also derive a set of equations 
which dominate the cosmological evolution of the brane in the bulk. On the 
other hand, we derive the effective stress energy tensor for gravitons of a 
KK mode, which are produced quantum mechanically in the whole bulk and 
discuss its qualitative nature on the I.wane and in the bulk for a single KK 
mode. 

In connection with the second case in the previous Chapter, what we 
should note is that what we observe on the brane is the sum of an infinite 
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number of KK modes. Also, we need to treat KK modes in terms of quantum 
field theory because they are produced quantum mechanically. As is well­
known, however, the sum suffers divergence as one approaches the brane 
from the bulk, even after a conventional UV regularization. In Chapter 4, 
we propose a new regularization scheme for the sum of all KK modes on 
the brane. vVe consider a thick brane model and show that a finite brane 
thickness can regularize the KK modes on the brane. Then, we demonstrate 
that the size of the quantum backreaction can be reduced below that of the 
background thick brane. From thes discussions, we give a theoretical bound 
on the brane thickness parameter. 

Finally, we extend our attention to braneworld model with the Gauss­
Bonnet curvature correction. In Chapter 5, we discuss the linearized effective 
gravity on a cosmological (de Sitter) !wane in the five-dimensional Einstein 
Gauss-Bonnet theory. vVe show that there are quite novel features in the 
linearized effective theory on the brane, that the effective gravity on the brane 
is four-dimensional on all scales, from short distances to large distances. KK 
modes, to sum up, play the role of a scalar field degree of freedom in the 
effective four-dimensional theory on short distance scales. We also show that 
on high energy expanding branes as well as on low energy ones, effective 
gravity becomes also four-dimensional. 

In Chapter 6, we shall summarize this thesis and mention issues related 
to our work. 





2 

Non-linear effective equations 
the bulk and on the brane 

• 
Ill 

Based on [91] (See also [34] for the case with bulk dynamical degree of freedom 
other than the spacetime metric), we first derive the effective gravitational 
equations on the l1rane by using the geometrical projection method. Then, 
especially for the brane which has cosmological symmetry, i.e., homogeneity 
and isotropy, we derive a set of equations to describe the motion of the l1t'ane 
in the bulk in terms of these locally conserve.cl quantities definP.d in the bulk 
[92]. 

2.1 Effective gravitational theory on the brane 

We set Gaussian normal coordinate around a l1t'ane 

where we define the bulk coordinate dy = nadx". n" and qab are unit vector 
field normal to time-like hypersnrfaces and induced meric on the hypersnr­
face, respectively. \Ve assume that the 11t'ane is located at y = 0. The Latin 
indices {a, b} denote tensors defined in the bulk whereas the Greek indices 
{µ, v} those defined on the brane in this thesis. 

We start from the five-dimensional Einstein theory 

(2.2) 

and the surface stress-tensor is given by the summation of the tension and 
locafo~ed matter 

(2.3) 

where <J denotes the brane tension and Tab does brae localized matter. In 

this thesis, we denote curvature tensors defined in the bulk as 11 ::? 11 whereas 
them defined on the l1rane as simply 11 A 11

• 

13 
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Using the geometrical identities, we obtain 

Gab -~Asqab+ ~K; (redq~qt+ (rednend- ~Tee) qab) 

+ KKab - KaeKeb - ~qab (K2 
- Kedf(ed) - Bab, (2.4) 

where Kab = q~qfv' end is the extrinsic curvature on the hypersurface whose 
metric is given by qab ('Va is the covariant. derivative with respect. t.o t.he bulk 
metric gab)· And 

E 
(S) e e d f 

ab =C edefn n qaqb , (2.5) 

(5) 
where C abed is five-dimensional Wey! tensor. 

Then, we consider the junction (maching) condition across t.he hrane, 

[qµv] = 0 

[Kµv] = -K; ( Sµv - ~qµvS) (2.6) 

Furthermore, taking the assumption oft.he Z2-symmetry with respect to the 
brane into account., 

Kµvly~o+ = - ~~ (sµv - ~qµvS) (2.7) 

Substituting Eq. (2.7) into Eq. (2.4), we obtain the desired effective grav­
itational equation on the ]wane, 

(2.8) 

where 

y(b) _ ~ (T, e d + (T, e d _ ~ye ) ) 
j.ll/ - 3 cdqµqv cdn n 4 c qµv l 

_l al_ 1 n/ll 2 1rµv - -=rTµaTv + 
12

Tiµv + SqµvTatJT -
24

qµvT (2.9) 

Here we define 

1 
K~ = -K~0"2 

6 
1 1 4 2 

A4 = -As+ -K-O" 
2 12 ° 

(2.10) 

which are read as four-dimensional gravt.at.ional constant. and cosmological 
constant, respectively. If there is only the first term in the right-handed-size 
of Eq. (2.8), the conventional four-dimensional Einstein gravity is recovered. 
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The 1rµv term is quadratic order of stress-energy tensor of brane-locali7.ed 
matter. This term gives the term proportional to p2 in the modified Fried­
mann equation Eq. (1.18) for a cosmological brane. TJ~ term is just. coming 
from t.he project.ion of the stress-energy tensor of t.he bulk degrees of free­
dom. Eµv is the contribution of t.he bulk gravitational field, which is one of 
the most important quantities in hrane cosmology. 

Stricktly speaking, the set of effective equations on the hrane is not closed 
even if the evolutions of the bulk metric and other bulk dynamical degrees of 
freedom are solved in the bulk. In general, we need to derive the equations of 
motion of Eµv f 93, 34]. However, for a cosmological I.wane with a maximally 
symmetric three-space, the form of Eµv can be specified because of the high 
degree of symmetry, apart. from the depencence on the initial hypersnrface. 

2.2 Local conservation laws and brane cosmol­
ogy 

In this section, we discuss the general property of a dynamical bulk spacetime 
with maximally symmetric three-space, and consider cosmology on the !wane. 
First, we derive local conservation laws in the bulk, as generali7.ation of the 
local energy conservation law in a spherically symmetric spacet.ime in four­
dimensions f 94, 95, 96]. 

Next., we introduce the hrane as a boundary of the dynamical spacet.ime. 
The effective Friedmann equation is determined via the junction condition 
and it is shown that the local mass corresponds to the generali7.ed dark 
radiation. Finally, we show that the projected Wey! tensor on the !wane is 
uniquely related to the local mass. 

2.2.1 Local conservation law 

We assume that the bulk allows slicing by a maximally symmetric three­
space. Then, the hulk metric can written in the double-null form 

2 4r,ur,v ( )2 2 ds = -ll-dudv + r u, v dL;(K,3), (2.11) 

where we refer to v and u as the advanced and retarded time coordinates, 
respectively. In Appendix A. 1, the explicit. components of the connect.ion 
and curvature in an ( n+ 2)-dimensional spacetime with ma,'Cimally symmetric 
n-space are listed. 



16 2. Non-linear effective eq11ations in the h11lk and on the hrane 

First, we consider the Einstein equations in the bulk. They are given by 

r,u( lr•"I) 2 r,v( lr,ul) 2 3-:;:- log Q ,u = 1<5Tuu, 3-:;:- log Q ,v = K5Tvv, 

6 r,ur,v (1 - K) 3 r,uv = _2T - 2r,ur,v A 
r2 n + r K5 UV n 5, 

{ 
r

2
\l [(l I r,ur,v I) r,uv] ( ) } _2 2r,ur,v og S'2 ,uv + 4-;:- - K - n /ij = K5'I';j 

(2.12) 

where /ii is the intrinsic metric of the maximally symmetric three-space. 
Now, we derive the local conservation law. We introduce a vector field in 

five-dimensional spacetime as 

(2.13) 

From the form of the metric (2.11), we can readily see that ea is conserved: 

(2.14) 

where I = <let /ij. Note that, for an asymptotically constant curvature space­
time, the vector field ea becomes asymptotically the timelike Killing vector 
field -(8/Bt)a. 

With this vector field ea, we define a new vector field, 

(2.15) 

where 

(2.16) 

Using the Einstein equations, the components of the vector field §a are given 
by 

Then, we have the local conservation law as 

§a."= o. 

(2.17) 

(2.18) 

Since (" is conserved separately, the conservation of §a implies that we have 
another conserved current S" defined by 

S" :=en" ( = S" + :gll.s(") . (2.19) 
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Thus we have the local conservation law for the energy-momentum tensor in 
the bulk. 

From Eqs. (2.17), we readily see the local mass corresponding to S" is 
given by r94] 

(2.20) 

where the factor 3/2 in the original expression for S" is eliminated for later 
convenience. Alternatively, corresponding to S", we have another local mass 
that excludes the contribution of the bulk cosmological constant, 

c 1 4 ( )2 1 4 ]yf := !vl - 5Asr = [( - n T - 5Asr . (2.21) 

In wha~ follows, we focus on the matter part !vl, rather than on t~e whole 
mass !vl. It may be noted, however, that this decomposition of Ai to the 
cosmological constant part and the matter part. is rather arbitrary, as in the 
case of a bulk scalar field. Here we adopt this decomposition just for con­
venience. For example, this decomposition is more useful when we consider 
small perturbations on the static AdS-Schwarzschild bulk. 

vVe note that., in the case of a spherically symmetric asymptotic flat space­
time in four-dimensions (hence [( = + 1 and with no cosmological constant), 
this function !vl agrees with the Arnowit.t.-Deser-Misner (ADM) energy or 
the l3ondi energy in the appropriate limits. 

2.2.2 Local mass and a charge associated with Weyl ten­
sor 

From the five-dimensional Einstein equations (2.12), we can write down the 
local conservation equation for JV[ in terms of the hulk energy-momentum 
tensor explicitly as 

J'.1,v = ~K;r3 (Tu vT,u - T" vT,v), 

fv~u = ~K~T3 
( T" uT,v - T" vr,u), 

or in a bit more concise form, 

d11!f = ~K2r3 (ru r dv + T" r du - T" dr). 3 5 v ,u u ,v v 

(2.22) 

(2.23) 

Using the above, we can immediately write down two integral expressions 
for !vl given in terms of flux crossing the u = constant hypersurfaces from 
v1 to v2, and flux crossing the v = constant hypersurfaces from u1 to u2, 

respectively, as 

!vl( V2, u) - NI( Vi, u) = ~K~ 1"' dv r3 (ruvr,u - T"vr,v) I , 
3 vi u=const. 

2 lu' !vl(v,u2)-j\I(v,u1) = -K; dur3 (T"ur,v-T"vr,u)I (2.24) 
3 u

1 
v=const. 
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Finally, let us consider the Wey! tensor in the bulk. In the present case 
of a five-dimensional spacetime with maximally symmetric three-space, there 

(5) 
exists only one non-trivial component of the \;\/eyl tensor, say C vu vu. The 
explicit expressions for the components of the \;\/eyl tensor are given in Ap­
pendix A. 1, Eqs. (A.7). Using the Bianchi identities and the Einstein equa­
tions, we have f 97] 

(n+2) ·d 
C abcd, = Jabc, 

where 

2(n - 1) 2 ( 1 ) 
labc = n Kn+2 Tc{a;b] + ( n + 1) gc{bI';aJ . 

From this, we can show that there exists a conserved current, 

Qa - rf! n Jbca. - b c 1 Q",a = 0, 

where f!a and na are a set of two hypersurface orthogonal null vectors, 

f!a = ~(-r dv) . ,v a , f!" = -{fi2- (~)a' 
2 r,u au 

na = ~(r,udu)a, n" = ffi 2_ (~)a 
2 r,v av 

The non-zero components are writ.ten explicitly as 

QU = -TJVU QV = -TJVU v 1 u l 

and we have 

( 
(5) ) r4 C vu = r4 1v 

vu vv l 
,v 

( 
4 (

5
) vu) 4 u r G vu = r J uu. 

,u 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(5) 
These are very similar to Eqs. ( 2 .17). It is dear that r 4 C vu vu defines a local 
charge associated with this conserved current. 

Using the Einstein equations, we then find that. this charge can be ex­
pressed in terms of NI and the energy-momentum tensor as 

(5) _ r4 ( (5) (5) . ) K2 ( . ) 
r 4 Cvuvu=3Af+5 6Gvv-G\ =3Nf+ ;r4 6T"v-T\. (2.31) 

This is one oft.he most. important results in this paper. As we shall see below, 
(5) 

the vVeyl component C vu vu is directly related to the projected \Vey! tensor 
Eµv, and hence this relation gives explicitly how the local mass M and the 
local value of the energy-momentum tensor affects the brane dynamics. 
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2.2.3 Apparent horizons 

As in the conventional four-dimensional gravity, the gravitational dynamics 
may lead to the formation of a black hole in the bulk. Rigorously speaking, 
the black hole formation can he discussed only by analyzing the global causal 
structure of a spacetime. Nevertheless, we discuss the black hole formation 
by studying the formation of an apparent horiwn. 

In four-dimensions, an apparent horizon is defined as a dosed two-sphere 
on which the expansion of an outgoing (or ingoing) null geodesic congruence 
vanishes. Here, we extend the definition to our case and define an apparent 
horizon as a three-surface on whid1 the expansion of a radial null geodesic 
congruence vanishes. Note that 'radial' here means simply those congruences 
that have only the ( v, u) components, hence an apparent horizon will not he 
a closed surface if K = 0. 

The expansions of the congruence of null geodesics forming the u 
constant and v = constant hypersurfaces, respectively, are given by f 941 

(2.32) 

Naively, if !1 = 0, one might think that both Pu and Pv vanish. However, 
from the regularity condition of the metric ( 2.11), we have 

- 4 r,~,v > 0. (2.33) 

Hence, it must he that r,u = 0 or r,v = 0, if !1 = O. If !1 = r,v = 0, we have 
Pu = 0 and an apparent horizon for the outgoing null geodesics is formed, 
whereas if !1 = r,u = 0, we have. Pv = 0 and an apparent horizon for the 
ingoing null geodesics is formed. 

2.2.4 Brane cosmology 

We now consider the dynamics of a brane in a dynamical bulk with maximally 
symmetric three-space f211. The brane trajectory is parameterized as (v, u) = 
(v(r), u(r)). Taking r to be the proper time on the hrane, we have 

4r,ur,v . . l 
--ouv = - ' (2.34) 

on the brane, where u = du/ dr and so on. The unit vector tangent to the 
brane (i.e., the five-velocity of the brane) is given by 

_ 2r,ur,v (. . ) 
Va - -

0
-- udv + vdu a, (2.35) 

and the unit normal to the brane is given by 

2r ur v (. d . d ) na=n u v-v u a' (2.36) 
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The components of the induced metric on the Imme are calculated as 

ox" fJxb 
qµv = fJyµ oy" 9ab ' (2.37) 

where µ, v run from 0 to 3 and yµ are the intrinsic coordinates on the 11rane 
with y0 = T and y1 =xi (i = 1, 2, 3). Then the induced metric on the l1rane 
is given by 

(2.38) 

The trajectory of the 11rane is determined by the junction condition under 
the Z2 symmetry with respect to the 11rane. The extrinsic curvature on the 
11rane is determined as 

Kµv = - K; (Sµv - ~Sqµv), (2.39) 

where S µv is assumed to take the form 

S";, = diag.(-p,p,p,p) - m5";,, (2.40) 

with CJ and p being the tension and energy density of the matter on the brane, 
respectively, as introduced previously, and p being the isotropic pressure of 
the matter on the 11rane. Substituting the induced metric (2.38) in Eq. (2.39), 
we obtain 

r,uU= -~[~~(p+CJ)-H], 
r,v v = ~ [ ~~ (P + CJ) + H] , 

(2.41) 

(2.42) 

where H = r/r. Multiplying the above two equations and using the normal­
ization condition (2.34), we then obtain the effective Friedmann equation on 
the brane: 

2 K (Kg 2 1) K€ ( 2) NI H +-= -(J -- +- 2CJp+p +-. 
~ ~ ~ 18 0 

(2.43) 

We see that NI is a natural generalization of the dark radiation in the 
AdS-Schwarzschild case to a dynamical bulk from the comparison with the 
Eq. (1.18). 

For a dynamical bulk, NI varies in time. The evolution of NI is determined 
by Eq. (2.23), and on the brane it gives 

lVf i'.1,v V + i\!I,u U 

= ~n;~r4 [rvv(~KHP +CJ) - H)v2 -Tuu(~i;;~(p +CJ)+ H)u2
] 

2 
-K~r4 HT" v. (2.44) 
3 
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From the Codacci equation Oil the hrane r 91], 

D }(v D Kv _ _ 2T b a 
v µ - µ v - K5 abn q µ ) (2.45) 

where Dµ, is the covariant derivative with respect to qµ,v and Kµ,v is the ex­
trinsic curvature of the brane, we obtain the equation for the energy transfer 
of the matter on the brane to the bulk, 

(2.46) 

Equations (2.43), (2.44) and (2.46) determine the cosmological evolution on 
the brane, once the bulk geometry is solved. 

Now we relate the above result with the geometrical approach developed 
in the previous section, in particular with the projected Wey] tensor Eµ,v on 
t.he !wane, defined in Eq. (2.5). It has only one non-trivial component as 

E (5) a c b d 4 (5) • 2 · 2 (5) vu 
TT =C abcdn n V V = C uvuvU V = - C vu . (2.47) 

Using Eq. (2.31), this can be uniquely decomposed into the part proportional 
to !vf and the part due to the projection of the bulk energy-momentum tensor 
on the hrane. We find 

3111 1 ((5) i (5) v ) 3lvf "~ ( . v ) E =--+- G -6G =--+- T' -6T 
'TT r4 6 i V r4 6 t v• 

(2.48) 

If we eliminate the Jvl/r4 term from Eq. (2.43) by using this equation, we 
recover the effective Friedmann equation on the brane in the geometrical 
approach f91], 

2 K - ("g 2 - ~) n;g ( 2) _2 (b) - ETT 
H + r2 - 36" e2 + 18 2<Tp+p +i;;5TTT 3 ' (2.49) 

where T$~ comes from the projection of the bulk energy-momentum tensor 
on the hrane and is given in the present case by 

T(b) = ~T'· - T" 
TT 6 Z V • (2.50) 
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Backreaction of Kaluza-Klein 
gravitons 

In this Chapter, we discuss the backreaction of KK gravitons, i.e., the bulk 
metric perturbations, in the bulk and on a cosmological brane. As we men­
tioned in the Chapter 1, it is considered that these KK gravitons are natn­

rally produced at an initial high-energy stage of the brane universe. There 
are mainly two possibilities of the productions of KK gravitons, namely, via 
high energy particle interactions on the brane and quantum fluctuations in 
the bulk. Here, we show two different analyses corresponding to these two 
cases. In the first analysis, we are interested in the KK gravitons whkh arn 
produced by non-standard particle interactions on the brane. We assume 
KK gravitons as null dust flux which is emit.ted from the brane radially [ 92]. 
First, we discuss the bulk geometry. \Ve also derive a set of equations which 
describe the cosmological evolution of the brane, i.e., its trajectory into the 
bulk, by using the the locally conserved quanties defined in the previous 
Chapter. Then, we discuss the possibility of formation of a naked singularity 
in the bulk. 

In the second analysis, we discuss the backreaction of KK gravitons which 
are produced quantum mechanically in the whole bulk, during !wane infla­
tion (or exist from the beginning). We derive their effective stress tensor 
by computing the curvature tensors up to the second order of perturbations 
and averaging them, taking the existence of the infinitely thin brane into 
account [98]. Taking out a single graviton KK mode, we derive its effective 
energy density and pressure, in the bulk and on the brane. We show that 
a KK mode, if suf!ir.iently massive, behaves as cosmic dust but the energy 
density becomes negatve. Then, we discuss the physical reason of the neg­
ativity of the energy density in terms of the local conservation laws in the 
bulk, discussed in the previous Chapter. 

23 



24 3. Dadcreaction of KaJwoa-KJein gravitons 

3.1 Emission of radial Kaluza-Klein gravitons 

In this section, by 1rning the local mass derived in the previmrn Chapter, we 
discuss the backreaction of the bulk geometry and brane cosmology in the 
context of an ingoing null dust model [99]. Here, we are interested in KK 
gravitons which are produced by matter exicitations on the brane. 

3.1.1 Set-up 

The energy-momentum tensor of a null dust fluid takes the form, 

(3.1) 

where Ca and na are the ingoing and outgoing null vectors, respectively, intro­
duced in Eqs. (2.28). If we require that the energy-momentum conservation 
law is satisfied for the ingoing and outgoing null dust independently, we have 

l1 f(v) 
µ1 = (r,v)2r3 2 , 

l1 g(u) 
µ2 = (r,u)2r3 2 , (3.2) 

where f(v) and g(u) are arbitrary functions of v and u, respectively, and 
have the dimension (G5 x mass)-1 . We assume the positive energy density, 
i.e., f(v) ::'.'. 0 and g(u) ::'.'. 0. Thus, the non-trivial components of the energy­
momentum tensor are 

T - J(v) 
vv - r3 ' 

T = g(u) 
uu r3 . (3.3) 

To satisfy the local conservation law in an infinitesimal interval ( u, u+ du) 
and (v,v + dv), we find that the intensity functions f(v) and g(u) have to 
satisfy the relation, 

(3.4) 

In general, if both f(v) and g(u) are non-7.ero, it seems almost impossible 
to find an analytic solution that satisfies Eq. (3.4). Hence we choose to set 
either f(v) = 0 or g(u) = 0. In the following discussion, we focus on the case 
that g( u) = 0, that is, the ingoing null dust. 

For g(u) = 0, Eqs. (2.23) give 

1 2 l1 ) NI,v = -
3
K,s-f(v , 

r,v 
A1,u = 0. (3.5) 

The second equation implies NI NI(v). Substituting Eq. (3.3) into the 
Einstein equations (2.12), we find 

£ = eF(v), 

r,v 
(3.6) 
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where the function F( v) describes the freedom in the rescaling off the null 
coordinate v. This equation is consistent with Eq. (3.4). Thus, we obtain 
the solution as 

n - F(v) - K rz - lvl(v) . 
" - r,ve - + ez r2 ' 

1 lv Jvl(v) = 3K; dv eF(v) J(v) + ldo ,(3.7) 
VQ 

where we have assumed that f(v) = 0 for v < v0 , that is, v0 is the epoch 
at which the ingoing flux is turned on. For definiteness, we assume that the 
hulk is pure AdS at v < v0 and set Jv/0 = 0 in what follows. 

Transforming the double-null coordinates (v, u) to the half-null coordi­
nates (v, r) as 

r udu = dr - r vdv, 
' ' 

(3.8) 

the solution is expressed as 

ds2 = -4D(r, v)e-ZF(v)dv2 + 4e-F(v)dv dr + r 2dL:(I<,3 ), (3.9) 

where n is given by the first of Eqs. (3.7). This is an ingoing Vaidya solution 
with a negative cosmological constant r99, 100]. For an arbitrary intensity 
function f(v), this is an exact solution for the bulk geometry. Note that if 
we re-scale v as dv _, dii = e-Fdv, f(v) scales as f(v) _, f(v) = e-2Fj(v), 
which manifestly shows the invariance of the solution under this rescaling. 

An apparent horizon for the outgoing radial null c.ongrnence is located on 
the three-space satisfying 

n = r,v = 0, while r,u =finite. 

This gives 

The direction of the trajectory of the apparent horizon is given by 

dr JV! vf2r 
dv 2(r4 + JvU2 ) 

K~f(v)eF(v)f2 r 

6( r4 + J11f2) . 

(3.10) 

(3.11) 

(3.12) 

Thus, for f(v) > 0, dr/dv is positive, which implies that the trajectory of 
the apparent horizon is spacelike. 

For the case of K = + 1 or K = 0, the apparent horizon originates from 
r = 0, while it originates from r = e for K = -1. A schematic view of the 
null dust collapse is shown in Fig. 3.1. We assume that the the !wane emits 
the ingoing flux during a finite interval (bounded by the dashed lines in the 
figures). For all the cases, the causal structures after the onset of emission 
are very similar. The spacelike singularity is formed at r = 0, but it is hidden 
inside the apparent horizon. 
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r =O 
r=O 

r =O 

r= oo 

r =O 

K= + l K=O 
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r =l r = oo 

r =l 

K=-1 

Figure 3.1: Causal structure of a Sp3;Cetime with ingoing null dust for the 
cases of K = + 1, 0 and -1. In each figure , The (almost vertical) wavy 
curve represents the brane trajectory and the dotted line is the locus of the 
apparent hori'.wn. The thick hori:wntal line at r = 0 represents the spacelike 
curvature singularity formed there. The ingoing flux is assumed to he emitted 
<luring a finite interval bounded by the dashed lines. 
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3.1.2 Brane trajectory in the bulk 

In the null dust model, using Eq. (2.34), the proper time on the brane is 
related to the advanced time in the bulk as 

(3.13) 

To determine the appropriate sign in the above, we require that the brane 
trajectory is timelike, hence v > 0, and examine the signs of V± for all possible 
cases: 

(1) i > 0, 0>0 --; v+ > 0, -v_ < o. 
(2) r > o, 0<0 --; v+ < 0, -v_ < o. 
(3) i < 0, 0>0 --; v+ > 0, -v_ < o. 
(4) r < o, 0<0 --; v+ > 0, -v_ > o. 

From these, we can conclude the following. For an expanding !wane, r > 0, 
the brane exists always outside the horizon, 0 > 0, and v is given by v+. On 
the other hand, a contracting brane, i < 0, can exist either outside or inside 
of the horizon. Thus, if the brane is expanding initially, the trajectory is 
given hy v = v+, and it stays outside the horizon until it starts to recollapse, 
if ever. If the brane universe starts to recollapse, which is possible only in 
the case J( = + 1, by continuity, the trajectory is still given by v = V+, and 
the !wane universe is eventually swallowed into the black hole. 

From the above result, we find 

r-v· 2 +0 . . . r 0 r,uu=r-r,vV= 
2 

< . (3.14) 

Using Eq. (2.41), this gives an upper bound of the Hubble parameter on the 
brane as 

(3.15) 

Let us now turn to the effective Friedmann equation on the brane. For 
simplicity, we tune the brane tension to the Randall-Sundrum value, KEu = 
6/€. The effective Friedmann equation on the Imme is 

(3.16) 

where lvf(r) = J\!I( v(r)) for notational simplicity. From Eq. (2.46), the energy 
equation on the brane is given by 

. 3r( ) 2f(r).2 p+ - p+p = - --v, r r3 
(3. 17) 
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where J(r) = f(v(r)). From Eq. (2.44), the time derivat.ive of ll1 is given by 

(3.18) 

Thus, from Eq. (3.15), i'vf continues to increase on the 11rane. 
The advanced time in the bulk is related to the proper time on the 11rane 

by ii+ in Eq. (3.13). Specifically, using the equality, 

2 111· ( 4 ) r '2K5 2 2 Sl=K+---=r -(p+a) -H . 
e2,2 36 . (3.19) 

on the brane, we have 

eF(v) (K2 )-! v=- 2(p+a)-H 
2r 6 

(3.20) 

Note that the product f v2 is invariant under the rescaling of v. Once J( r) 
is given, we can solve the system of equations (3.16), (3.17) and (3.18) self­
consistently for a given initial condition, and determine the bulk geometry 
and the brane dynamics at the same time 1 . 

3.1.3 Formation of a naked singularity 

In the previous subsections, we assumed that there is no naked singularity 
in the bulk. However, it has been shown that a naked singularity can be 
formed in the null dust collapse 2

. For instance, a naked singularity exists 
in a Vaidya spacetime when the flux of radiation rises from zero sufficiently 
slowly. We expect the same is true in the present case. 

Without loss of generality, we set eF(v) = 2. We consider the following 
situation. For v < 0, the bulk geometry is purely AdS. The radiative emission 
from the brane begins at v = 0. We choose the intensity function as 

(3.21) 

where A is a positive constant. This corresponds to the self-similar Vaidya 
spacetime if the cosmological constant were absent [ 1051. The brane ceases 
to emit radiation at v = v0 and the bulk becomes a static AdS-Schwarzschild 
for v > v0 • Thus the local mass is given by 

l\!I(v) = 

0 (v < 0) 

~Av2 (0 :S v :S vo) 

~>.v5 (v0 <v). 

'Similar studies have been done, see e.g.,[100, 101, 102, 103, 104] 

(3.22) 

2Naked singularity forn1ation in the Vaidya solution in four-dimensions has been dis­
cu8Sed, see, e.g.,[105, 106, 107, 108, 109, 110] 
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The singularity is formed at (r,v) = (0,0), and it is naked ifthere exists 
a future-directed radial null geodesic emanating from it. The null geodesics 
then form a Cauchy horizon. The trajectory of a radial null geodesic is 
determined by the equation, 

dr = ~ (K + r
2
(v) _ Jvl(v)) . 

dv 2 C2 r2 (v) 
(3.23) 

Let us analyze the above equation in the vicinity of v = O. A future-directed 
radial null geodesic exists if x := Jim dr / dv is positive. Using L'Hopital's 

v~o 

theorem, we obtain 

x =Jim r(v) =Jim dr = ~ (K - 2,\) 
v~O V v-•O dv 2 3x2 

(3.24) 

It is clear that the above equation has no solution when J{ = 0 or J{ = -1. 
Hence no naked singularity is formed for J{ = 0 or J{ = -1. Therefore, we 
consider the case J{ = 1. \Ve introduce a function, 

(3.25) 

Then, the condition for the naked singularity format.ion is that Q(x) = 0 
has a solution for a positive x. The function Q(x) has a minimal point at 
x = 1/3. Therefore, the singularity is naked if 

1 
Q(l/3) = -18 + ,\ :S 0' (3.26) 

that is, 

(3.27) 

Tims, the bulk has a naked singularity for small values of,\, i.e., for the flux 
of radiation which rises slowly enough. 

Our next interest is whether the naked singularity is local or global. If 
it is globally naked, it may be visible on the brane. To examine this, we 
integrate Eq. (3.23). In the vicinity of v = 0, we find 

r null ( v) = Xo v ( 1 + b ~: + · · ·) 

where x0 is the largest positive root of Q(x) = O; 

Xo = ~ ( 1 + ( 1 - 36 A+ i 6 yf2,\(1 - 18 ,\) r/3 

+ ( 1 - 36 ,\ - i 6 yf 2,\(1 - 18 ,\) )113
) 

(3.28) 

(3.29) 
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and 

x2 
b= 0 

2(5x0 - 1) · 
(3.30) 

From the form of Q(x), we readily see that x0 monotonically decreases from 
1/2 to 1/3 as .A increases from 0 to 1/18, and hence b is positive definite. 
\Ve compare this trajectory with the trajectory of the apparent horizon. It 
is given by Eq. (3.11) with]{= +l In the vicinity of v = 0, it gives 

(3.31) 

Since x0 > V2>J3 for all the values of .A in the range 0 < .A ~ 1/18, 
and drapp/dv is a decreasing function of v while drnuu/dv is an increasing 
function of v, it follows that the null geodesic lies in the exterior of the 
apparent horizon and the difference in the radius at the same v increases as 
v increases, at least when v is small. This suggests that the singularity is 
globally naked. 

In Fig. 3.2, we plot the loci of the null geodesic and the apparent horizon. 
The result is clear. The null geodesic always stays outside of the apparent 
horizon, thus outside of the final event horizon at v = v0• Mathematically, 
this is due to the cosmological constant term in Eq. (3.23), which strongly 
drives the null geodesic trajectory to larger values of r. Thus, we conclude 
that the naked singularity is global and visible on the brane. The causal 
structure in this case is illustrated in Fig. 3.3. Investigations on the effect of 
the visible singularity on the brane are necessary, but they are left for future 
work. 

Finally, let ns mention the strength of the naked singularity as we ap­
proach it along a radial null geodesic. Let w be an affine parameter of the 
geodesic, w = 0 be the singularity, and the tangent vector be denoted by 

(5) (5) 
k" = dx"/dw. \Ve examine R abkakb and G vu"". From Eq. (3.3) and the 
Einstein equations, we have 

ii.ab k"kb = Kgf(v) (dv)2 = 2.Av (dv)2---> 2.A w-2. (3.32) 
r3 dw r3 dw w-o x 0 (1 - x0)2 

Also, from Eq. (2.31), we have 

(s} "" 31VI 2.A v2 2.A _2 -~ Cvu = - = -- ---> -V CX: W l-xo . 
14 r4 w->O x6 (3.33) 

~ 
Thus the Ricci tensor and the Wey! tensor diverge as w-2 and w-'-xo, re-
spectively, These facts means that this singularity is a strong curvature sin­
gularity. 
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Figure 3.2: The loci of the null geodesic (the solid curve) and the apparent 
horimn (the dotted curve) on the (v, r)-plane, scaled in units of the AdS 
radius R, in the critical case .X = 1/ 18. Their behaviors are qualitatively the 
same for all the other values of .X in the range 0 < .X < 1/ 18. 

3.2 Backreaction of KK gravitons in the bulk 
and on the brane 

For KK modes which are produced in the whole bulk quantum mechanically, 
we take a different approach. We derive the effective stress energy tensor for 
KK gravitons by computing the curvature tensors up to the second order of 
perturbations. In this way, we can discuss the backreact.ion of non-radially 
emitted KK gravitons in a correct way. There is a problem about how to 
average the second order curvature tensors. \Ve take an averaging procedure 
where the presence of the brane as an infinitely thin object is taken into 
consideration. The procedure is discussed in Appendix A. 2. 

A similar analysis for KK modes of t he massless, minimally coupled scalar 
field is discussed in Appendix 13. Our discussion in this sect.ion is basically 
along this line, apart from the existence of the hrane intrinsic contributions. 
We adopt a more general perspective hy considering a (d - 1)-brane embed­
ded in a ( d + 1 )-dimensional hulk spacetime, although we remain primarily 
interested hy the case d = 4. 
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Figure 3.3: Causal structure of a spacetime with ingoing null dust when a 
naked singularity is formed. The wavy and almost vertical curve represents 
the hrane trajectory and the dotted line is the locus of t he apparent hori'wn. 
A naked singularity is formed at r = 0 along the v = 0 null line. A radial, 
future directed null geodesic originating from the naked singularity (the right.­
pointed thick line) stays outside of the apparent hori'.wn and reaches the 
brane. 



3.2. IJad<rear.tion of](]( gravitons in Urn b11lk and on the brane 33 

3.2.1 Effective theory in the bulk 

We now consider only pure gravity in the bulk. The act.ion of the system is 
given by 

[ 1 J d+I f-;:.((d+I) ) J d f-;:. Sg]= 2K~+I d Xy-g R -2Ad+l - dxy-qu, (3.34) 

where Ad+! is the bulk cosmological constant. and u is the brane tension. \Ve 
mainly consider a dS brane background in this subsection and assume that. 
its tension is larger than that of the corresponding R.S value 2(d- l)/(1<~+1f), 
where e = (-d(d - l)/(2Ad+i)) 112 is the bulk AdS curvature radius. 

We st.art. from an unperturbed metric ~1 , which is a solution of Einstein's 
equations and thus satisfies 

(3.35) 

where and in what follows the notation, Q (a+ g JI 
1

, means that a functional 

Q[a + g] of g is evaluated for a function f, i.e., 

(3.36) 

We then consider (small) linear perturbations of this metric, which we 
. [I] I h h . . 1 . wnte E g am sue t. at its average vams ies 1.e., 

[!] 
(g) = 0. (3.37) 

Here we should speci~y our definition of averaging. We assume that. the 

perturbation 
1~1 

has a typical wavelength ,\ which is much smaller than the 

characteristic curvature radius L of the background ~1 , ,\ « L. Then we 
take the average over a length scale much larger than ,\ but. much smaller 
than L. In our case, we can take this average in the spacet.ime dimensions 
parallel to the brane. However, the situation is dramatically different. in the 
direction of the extra spatial dimension because the !wane is infinitesimally 
thin, which implies that. the curvature radius along the extra dimension is 
infinitely small. Therefore one cannot. take an average in that. direct.ion at. or 
around the brane. Thus our averaging will include only the average over the 
1 + ( d- 1) spacet.ime dimensions. (For spatially homogeneous perturbations, 
we take only the time average.) 

What. we are interested in is the correct.ion to the original metric due to 
the backreaction of the metric perturbations. The total metric we consider 
can thus be writ.ten as 

[OJ [!] 2 [2] 
gtot = g +E g +E g , (3.38) 
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[2] 
where the quantity 9 represents the backreaction due to the metric per-
turbations, so that the effective background (homogeneous) metric, after 
averaging, is given by 

[OJ 2 [2] 
fj =9 +E 9. (3.39) 

For convenience, the parameter E is introduced as an expansion parameter, 
which is to be set to unity at the end of the calculation. 

[I] 
If we expand the act.ion with respect to 9 , we have 

Hence the variation of the above expression with respect to ~ yields 

E~8 [9+ 9JI 1,1 = E~8 [9JI. + o(E2) = E~8 [9Jl 1, 1 + O(E2) O(E2), (3.41) 
u9 ,g u9 g u9 g 

where we have used Eq. (3.35) in the final equality. This implies that, up to 

O(E), the equation of motion for the perturbation ~I is given by 

ss roi I -:c-[9 +9] [1[ = o. 
u9 ,g 

(3A2) 

On the other hand, the variation of the act.ion with respect to 9tot gives 

ss [ JI 0-- 9 -
- 09 g,o, -

where, to get the last expression, the argument of the coefficient of the 

third term, g, has been replaced by ~' which is justified within the accu­
racy of 0( E2). If one averages the above expression, the second term on 
the right-hand side vanishes and we obtain the equation that determines the 
backreaction-corrected background metric g, in the form 

as [ JI 1 21 r11 a3
S I 111) 

o9 9 iJ = -2E \ 9 a93 [9] i31 9 . (3.44) 

Substituting the explicit form for the braneworld action, we find that 
Eq. (3.44) yields 

(d+l) 

G \ + Ad+J0°b = K~+IT"b + f(brnnc)
0

b + Of(branc)
0
b, (3.45) 
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(d+l) 

where G is the background bulk Einstein tensor including the backreac­
tion effects, i.e., for the metric g. And the stress-energy tensor due to the 
backreaction in the hulk is given by 

~2 Ta - _/(d+1)1G2Ja J 
'"d+l b - \ b 1 

(3.46) 

where (d+l) ~ab is the bulk Einstein tensor at quadratic order. Here it may be 
worth noting that averaging is necessary for this effective stress-energy ten­
sor to be physically meaningful, since there exists no locally covariant grav­
itational energy-momentum tensor due to the equivalence principle. The 
tensor t(brnnc) ab corresponds to the brane energy-momentum tensor in the 
background configuration defined by the metric g and thus comes from the 
variation of the brane action in the left-hand side of (3.44). Finally, Jt(brnne)"b, 

which comes from the brane-dependent part in the right-hand side of ( 3.44), 
denotes the backreaction due to the brane fluctuations and will he discussed 
later. The existence of this term is the most important difference when com­
pared to the case of the scalar field, in which case the backreaction originates 
purely from the bulk. 

(d-±:1) (d+l) 
Hereafter, we write G ab as G ab for simplicity. For the moment, we 

concentrate on the effective theory in the bulk, 

Our first task is to evaluate the effective bulk energy-momentum tensor Tab, 

which is quadratic in the metric perturbations. Then we will take the limit 
to the brane. 

We now identi~y the background metric gl0J with the separable metric of 
AdSd+1 bulk-dS ]wane spacetime and gl1J as the linear perturbation of this 
system. Namely, 

(3.48) 

where b(y) is the warp factor defined in Eq. (B.12) and 'Yµv is the metric of a 
d-dimensional dS spacetime which is an extension of Eq. (B.13). Note that 
we have adopted the so-called RS gauge for the perturbations r9, 111]. The 
equation of motion for the perturbations in the bulk reads 

(3.49) 

This equation is separable and one considers solutions of the form h,,13 = 
f(y)<p,,13(x'"), where f(y) is the generalization of the solution of Eq. (B.15) 
to the case of ad-dimensional brane with boundary condition oyf(y) = 0 at 
y = y0 because oyha/3 = 0 on the hrane. Similarly to the scalar case, the 
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separation constant m represents the effective mass of a KK graviton mode 
and satisfies m > ( d - 1) H /2. The d-dimensional part tp" 13 satisfies 

(3.50) 

vVe focus on a KK mode with m 2 ~ H 2 • Furthermore, for simplicity, we 
focus on perturbations of the tensor-type with respect to the spatial ( d - 1 )­
geometry, namely on those with h', = h'; = hi, = 0. Taking the slicing of 
the de Sitter space with the flat spatial ( d - 1 )-geometry, they will have the 
form, 

· fm · 
h'j = a(d-l)/2 cos( mt) Q'i, (3.51) 

where fm is the amplitude of the KK mode and Q'j is the polari7,ation tensor 
on the flat. (d-1)-space. The amplitude fm can be determined, for instance, 
by the normali,,ation condition if one considers a quanti7,ed perturbation 
theory. 

As mentioned earlier, in order to obtain the stress-energy tensor that 
embodies the hackreaction due to the metric perturhations, one needs to 
"average" the Einstein tensor at quadratic order, according to Eq. ( 3.46). 
The components of the bulk curvature tensors, up to quadratic order in the 
perturbations are listed in Appendix A. 2. As explained after Eq. (3.37), 
we take the spacetime average in the 1 + ( d - 1) dimensions parallel to 
the brane, hut not along the extra dimension. In particular, hecause of the 
cosmological symmetry, we can take the average in the (d-1) dimensions over 
the complete space. The derivatives along the extra dimension are replaced 
by using the field equation (3.49) and the boundary conditions on the lirane. 
Our procedure is detailed in Appendix A. 2. 

Using Eq. (A.24) of Appendix A. 2 and the computational rules detailed 
in Appendix A. 2, we obtain in the limit y __, +0 the expressions 

((d+l)~Y y) 
((d+l) ~ "13) 

(3.52) 

A priori, the effective energy-momentum tensor includes an anisotropic stress, 
to which each mode will contribute with a factor O(m2). However, if the per­
turbations are described by a random field which is statistically homogeneous 
and isotropic, the average over all modes of the anisotropic part must cancel. 
What remains is thus to justi~y the randomness of the perturbations. In this 
respect, the quantum fluctuations are indeed expected to have this property. 

[2] 
Also, (Cd+l)G"") vanishes on the brane hy using the houndary conditions 
Oyhaf3 = 0 on it. 
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3.2.2 Backreaction on the brane 

Let us now discuss the effed of the backreact.ion onto the brane. The pro­
jected gravitational equation on the brane reads 

d-2 d-2 
Acff = -d-Ad+l + S(d _ l) K~+10"2 , 

is the effective cosmological constant on the brane, and 

(b) 
K

2 T "!3 d+l 
d-2 _2 [r" rn (ry lya )] d - 1 Kd+l /J + u /J y - d a 

(3.53) 

(3.54) 

_ ~ = ~ [ ( (d+l) ~ a /J) + J" /J ( ( (d+l) ~ Y y) _ ~ ( (d+l) ~ a a))] 
= d - 2 /1 '-'PO h ) (d- 2)(d - 3) rn /hP"O h ) 

2(d-1) \ 1 
d p/J + 8d(d-l) u !3\ d pa 

d - 2 j hpalah ) 
+ 4( d - 1) \ pal/3 ' (3.55) 

is the projection of the effective energy-momentum tensor of the bulk gravi­
tons. The tensor r"/J, corresponding to Jt(branc)"b of the previous subsection, 
describes the brane perturbation induced by the bulk perturbation. We will 
show in the next subsection that., for our purposes, this term can be ne­
glected. We now concentrate on the effect of the effective energy-momentum 

(b) 
of the bulk gravitons projected on the brane, i.e., the terms T "!3 and E"/J· 

(b) 
Let. us first. consider T "/J· Because of the assumed symmetries, i.e., 

the spatial homogeneity and isotropy, this gives in the brane an effective 
perfect fluid with some energy density and pressure. Decomposing the metric 
perturbations into KK modes, one finds that the contribution of a sufficiently 
massive mode to the energy density and pressure is given by 

K2 (b)t (d+3)(d-2) 1 2 2/ kf *) 
d+l T t = - 16d(d- l) ad-lm lfml \Q Qkf , 

K2 (b)i (rJ2+3)(d-2) 1 2 2/ kf *) i 
d+l T J = l6d(d- l)2 ad-1 m lfml \ Q QkE J J · (3.56) 

We must also take into account the projection of the Wey! tensor on 
the brane, E" /3· Although this term is not included in the "bulk energy­
monemtum" tensor because it is a part. of the bulk Wey! tensor, it. con­
tributes nevertheless to the projected gravitational equations as an "energy­
momentum" tensor. Although its direct evaluation is rat.her delicate, this 
term can be computed by resorting once more to the cosmological symmetry. 
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From Eq. (3.53), the contracted Bianchi identities Da(d)Ga~ = 0, together 
with the conservation of r°'~, give 

(3.57) 

Because of the cosmological symmetry, the only non-trivial component of the 
above equation is the time component, which reads 

, a , 2 ( (bJ , a (b) , a (bl . ) 
8,E t + d-E t = "°d+i 8, T t + (d- 1)- T t - - T '; , 

a a a 
(3.58) 

where, on the left-hand side, we have used the property that Eµv is traceless 
and thus E1i = -E',. The integration then yields 

, "°~+1 1' , d ( (bJ, a (bl , a (bl i ) Et= -d- dt a 8, T , + (d - 1)- T , - - T , . 
a ~ a a 

(3.59) 

As before, we neglect the contribution from the initial condition, which is 
valid at late times. 

Substituting a KK graviton mode given by Eq. (3.51) into the integrand 
on the right-hand side of Eq. (3.59), and taking the time average, one finds 

2 ( (bl' a (b)' a (b) . ) 
"°d+ I 8, T t + ( d - 1);;: T t - ;;: T Ii 

(d2 + 3)(d- 2) _!!_If 12 2/QkeQ*) 
16d(d - 1) ad-I m m \ kt . (3.60) 

This gives, at late times, 

E', = (d2 + 3)(d- 2) _l_ 211 12/QktQ*) 
16d(d - 1) ad-Im m \ kt . (3.61) 

Because of the traceless nature of this tensor, we then obtain E 1
; = -(l/(d-

1) )E',8~. 
The total contribution of the two tensors is therefore 

2 (bl , , d - 2 1 2 2 I kt * ) 
"°d+I T t - Et= 15 ad-Im lfml \ Q Qkt · (3.62) 

for the temporal part and 

(3.63) 

for the spatial part. This means that the contributions of a KK mode to the 
total effective energy density and pressure are respectively given by 

2 d- 2 1 21 2/ kt *) 
"°dP(cff) = -15 ad-Im fml \ Q Qkt ' 

K~(cff) = 0 · (3.64) 
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For instance, for d = 4, we obtain 

2 1 211 12/QkfQ* ) 1<4P(cff) = - S a3 m m \ kl , 

"'~P(cff) = 0 · (3.65) 

The effective isotropic pressure vanishes and the effective energy density is 
negative. This is the same as in the case of the scalar field discussed in the 
previous subsection. 

We note that the bulk energy density of a KK mode on the brane remains 
positive 

2 2 t d + 3 1 211 12/Qkl * ) 
l<d+JP(bulk) := -K,d+IT t = lSd ad-l m m \ Qkl > 0, (3.66) 

as in the scalar case, Eq. (B.27). It shows again that there is no singular 
effect in the bulk. The negativity of the effective energy density on the brane 
originates from the projected Wey! tensor Eµv· 

3.2.3 Brane intrinsic contributions 

We now consider the brane intrinsic contributions. In order to discuss the 
gravitational perturbations in the brane world, it is not sufficient to consider 
the contribution from the bulk. The l1fane perturbations must be taken into 
account as well. \Ve take an approach in which we derive the second order 
boundary action and regard it as the action for an effective matter on the 
brane. 

The brane is treated as a thin wall. In the thin wall approximation, 
the second order action on the boundary has been derived in the Appendix 
of [111 ]. \Vhen there is no ordinary matter on the brane and thus no brane 
bending mode, the second order boundary action is given by [ 111] 

s23 - 1 l dd t=[ Akpah- cm~+! h-pah- J u - 22 xy -q -L..> pa+ 2(d - 1) pa , 
l<d+l 8M 

(3.67) 

where hµv = b2 hµv, kpa = 8yftpa/2 and 6Q =QC+) - QC-). For an AdS-bulk 
configuration and with the assumption of Z2 symmetry about the brane, this 
reduces to 

(3.68) 

The second order action can be regarded as an action for some effective 
matter induced on the brane 

r ·- 3 h hpa 
Lm .- 2(d-1)<7 pa . (3.69) 
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Its variation with respect to the background metric ijµv yields the induced 
matter energy-momentum tensor on the brane 

Taf3 = ~ r5:a/3 ( H Lm) = d: l er( haphP (3 - ~ija13h'"'hpa )(.3.70) 

Note that, strictly speaking, ijµv does not include the backreaction. However, 
as discussed previously, for perturbations with small amplitude, the linear 
perturbation equations are identical to those for the background metric in 
which the backreaction is taken into account. Thus we can add this term as 
a part of the (effective) matter contribution in the effective equation on the 
brane. 

\,Ye can readily calculate the effective energy density and pressure of this 
contribution. One finds 

2 3( d - 2) 4 2 2 1 / ke , ) 
KdP(brnne) = l 6(d- l)2"d+icr lfml ad-1 \ Q Qkl ' 

2 3( d - 2) (-d + 5) 4 2 2 1 ; ke * ) 
Kd]J(brnne) = 16(d-1)3 Kd+l<T lfml ad-1 \ Q Qkl · (3.71) 

However, its contribution to Ga fl is of order 

K~+1<TTafJ ~ : 2 ( 1 + (Hf.)
2
)hP"hpa, (3.72) 

where we use [ ll 11 
er= 2(~ - 1) (1+(Hf.)2)1;2 (3.73) 

Kd+lf. 

For the cases Hf. « 1 and Hf. » 1, the right-hand side of Eq. (3.72) is 
O(f.-2 h2) and O(H2h2

), respectively. Thus as long as we consider sufficiently 
massive KK modes, with m » max{ e-1 , H}, the hrane perturbations can he 
safely neglected and only the projected bulk contributions are relevant for 
the effective theory on the brane. 

3.3 Brane dynamics in the bulk and the evolu­
tion of dark radiation 

Intuitively, the "negative energy density" of a KK mode is rather puzzling. 
However, we can understand its cause by regarding the KK modes as a part 
of the dark component, such as the dark radiation. The energy density of 
the dark component evolves as 

(3.74) 

where u" and n" are the tangent and normal vectors to the brane, respectively. 
P(D) is related to the hulk local mass defined in the preceding Chapter as 

K2 
NI= 3~a

4P(D)· (3.75) 
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Since there is no matter on the brane and no Imme-bulk energy exchange, the 
first term on the right-hand side of Eq. (3.74) vanishes and only the second 
one, related to the pressure transverse to the brane, survives. In terms of the 
energy conservation law in the bulk discussed in previous Chapter, this has 
the simple interpretation that the work done by the pressure on the brane 
to move it outward in the direct.ion of the AdS infinity reduces the energy 
in the bulk. As a result,, the dark energy density decreases, since the dark 
energy density on the hrane is proportional to the total mass (energy) NI. 

We consider the case of a massless scalar field discussed in Appendix B, 
but the case of KK gravitons is essent.ially very similar. For a massless scalar 
field, 

T n"nb - ~,i,2 > 0 ab -
2

<p • 

Thus, the dark component. decays fast.er than ordinary radiation. 
KK modes, aft.er time averaging, we have 

T " b i If 12 2 abn n = 4 a3 m m . 

The formal solution of Eq. (3.74) is 

21' 4( ) a b C P(D) = - 4 dta HE Tabn n + 4 , 
a to a 

where C denotes the initial mass in the bulk. For t.he KK modes, 

Hence 

e 
1

2 2 c 
P(D) = --2 3 lfm m + 4' a a 

(3.76) 

For the 

(3.77) 

(3.78) 

(3.80) 

where we have redefined the mass parameter C by absorbing into it the initial 
data dependent term of the integral (3.79). 

Anyway, in the case of a dS brane (or a cosmological brane which slightly 
deviates from the dS geometry), the effective cosmological constant. domi­
nates the cosmological evolution and the KK effect, does not have a signifi­
cant. impact on the brane. For a low energy brane, especially for a radiat.ion­
dominated brane, naively one might worry that this result would imply the 
appearance of a negative energy density within a finite time. However from 
Eq. (3.74), the bulk pressure term is proportional to H. Hence if if< Oat 
H = 0, the energy density will remain positive at the expense of rendering 
the universe to rer.ollapse. 

For simplicity, we consider the case where the cosmological evolution of 
the brane is determined solely by the dark component. Note that this dis­
cussion can be generali7-ed when one considers ordinary dust or radiation 
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in addition to the dark component. The Hubble parameter on the brane is 
obtained from 

n,2 n,2 1 n,2 c 2n,2 n,2 c 
H2 = 3;P(D) = - 65 a3 lfml2m2 + 3 ~ a4 = --:/-Tabnanb + 3 ~ a4. (3.81) 

Taking the time derivat,ive of this equation, we obtain 

H - n,~ _.:'.._IJ 12 2 - 2n,~ C - _2 T a b - 2n,~ C 
- 4 a3 m m 3 R a4 - "5 a&n n 3 R a4 . (3.82) 

Therefore, at H = 0, we have 

· 1 a b H = --Tbn n < 0 3 a ' 
(3.83) 

and the universe begins to collapse. Thus, the backreact.ion of the KK modes 
leads to a collapsing universe. 

The situation is the same for the case of KK gravitons as long as the 
brane fluctuations are negligible, because we have 

-\ C(J"Y) = ~m2 \hpahw) 
ll6lfml2m2 a~\QklQ~1) > 0. (3.84) 

Thus, provided that the brane fluctuations can be neglected, the brane uni­
verse will start to collapse within a finite time. For more realistic situations 
in cosmology, our result suggests that for a low energy brane the brane uni­
verse will eventually collapse unless the contrilmtion of the true (normal) 
dust matter is larger than that of KK modes. 

3.4 Summary and issues 

In the latter half of this Chapter, we investigated the effect of a Kaluza-Klein 
(KK) graviton mode on brane cosmology by deriving the effective stress­
energy tensor in the bulk and on the brane. 

The KK gravitons, which are just the metric perturbations in the bulk, 
are produced during a de Sitter ( dS) brane inflation phase via vacuum fluc­
tuations. From the four-dimensional point of view they are effectively equiv­
alent to massive gravitons with masses m > 3H /2, where H represents the 
dS expansion rate of the brane. The theory of linear perturbations reveals 
that the squared amplitude of a KK mode decays as a-3 and its contribution 
rapidly becomes negligible during the brane inflation. However, after !wane 
inflation in the radiation-dominated Friedmann-Lemaitre-Robertson-Walker 
(FLHW) era the background radiation energy density decays as a-4 , which 
implies that the contribution of KK gravitons may have a significant impact 
on brane cosmology at late times. 
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We first derived the effective energy-monemtum tensor of a KK mode in 
the bulk, and investigated the effect of the KK mode on the lJrane cosmology 
by projecting the effective energy-monemtum tensor on the brane. We have 
found that a massive KK mode behaves as negative energy density dust. In 
this Chapter, we discussed only the case of a dS brane background. However, 
in Appendix 13, we confirmed that a KK mode of a bulk scalar field also 
gives a negative energy density on the brane for a low energy cosmological 
brane. Thus, the feature is rather generic for any separable background. 

The negative energy density of a KK mode may sound rather puzzling. 
But, from the bulk point of view, we have shown that this result can be 
regarded as a natural consequence of the energy conservation law in the bulk. 
Here the essence is to recall that the dark radiation term, which behaves like 
radiation on the lJrane, describes the total mass in the hulk. Then, a very 
massive KK mode corresponds to a particle with a high momentum in the 
direction of the extra dimension, which exerts a pressure on the lJrane and 
pushes it outward in the direction of the AdS infinity. As a result, the energy 
in the bulk decreases, leading to the decrease of the dark energy term. Thus, 
a massive KK mode gives a negative contribution to the dark radiation term. 
This is why a KK mode behaves like negative energy density dust. 

Note that the negative energy of a KK mode emerges only from the ef­
fective four-dimensional point of view on the brane. The bulk energy density 
for a KK mode still remains positive and thus there is no singular effect in 
the hulk. 

However, for a general cosmological brane, one cannot define a KK mode 
since its very definition depends on the separability of the equations in the 
bulk. Nevertheless, considering the discussion from the bulk point of view 
given in the previous paragraph, it seems reasonable to expect that this back­
reaction effect of the bulk metric perturbations persists for a general cosmo­
logical brane. Thus we conclude that the effect of very massive KK modes is 
to reduce the energy density on the hrane and hence the expansion rate, and 
for a low energy brane the universe will recollapse unless the contribution of 
normal (true) dust matter is larger than that of the KK modes. 

To quantj£y this effect in realistic cosmological models, there are some 
additional issues that remain to he resolved. We have considered only a 
single KK mode and calculated the effective energy density and pressure. 
In reality, one should integrate over all the KK modes that contribute to 
the cosmology of the brane. This requires first the knowledge of the whole 
spectrum of the KK modes, which will presumably be determined by vacuum 
fluctuations in the bulk. However, knowing the whole spectrum may not be 
enough, because a naive integral of the KK spectrum is expected to diverge. 
One would then need an appropriate regularization scheme. In connection 
with this, it may he important to take into account the thickness of a lJrane. 
In the next Chapter, we discuss the effect of a finite brane thickness on the 
KK spectrum. 
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A new regularizaton scheme for 
Kaluza-Klein modes on the brane 

In this Chapter, we give a quantitatve study about the amplitude and back­
reaction of the Kaluza-Klein (KK) modes of a massless scalar field, produced 
in the whole bulk quantum mechanically. In the previous Chapter, we have 
treated the KK gravitons classically, though they are considered to he pro­
duced quantumly mechanically. 

As is well-known, the sum of the KK modes suffers from divergence as 
one approaches the brane from the bulk. It. prevents us from evaluating fluc­
tuations and backreactions exactly on the !wane. This implies that one ma:y 
take "structures" of the hrane into account., to obtain successfully regularized 
KK contribution. In this Chapter, we propose a new regularization scheme 
for this type of divergence by a finite brane thickness. 

As a demonstration of this scheme, we show that a finite brane thickness 
can regularize the quantum fluctuation on the brane in an explicit thick 
brane model. V.fe mnsider KK modes of a massless scalar field evolving on 
the thick !wane background. The reason we choose a massless scalar field 
is that especially for the minimally coupled case, the equation of mot.ion of 
the scalar field is the same as that of the gravitons and also for technical 
simplicity. First, we consider the quantum fluctuations. Vve show that a 
finite brane thickness can regularize the quantum fluctuations on the hrane 
[112]. We also calculate the amount of the scalar field backreacition for the 
minimally coupled case and show that the the amount of the backreaction 
can be reduced to bPlow that of the had<ground stress-energy r 113]. We 
finally mention thP case of KK gravitons. 

4.1 A thick de Sitter brane model 

\Ale consider the Einstein theory coupled to a bulk scalar field, 

1 J ((d+l) 2 ) s = 2 dd+lxFg R -(ox) - 2V(x) , (4.1) 

45 
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where the potential of the scalar field is given by the axion like form [ 48, 49], 

( [ 
x l )2(1-~) 

V(x) =Vo cos Xo . (4.2) 

Note t,hat we once shall set K~+I = 1 in this Chapter and will back them if 
needed. 

We shall assume a static configuration, namely x depends on only the 
bulk coordinate and make the following metric ansatz 

(4.3) 

where /µv denotes the metric of d-dimensional de Sitter (dS) spacetime. Fol­
lowing the above ansatz, we obtain the Einstein equations 

1 12 
= --x 

2 

and the field equation for the scalar field is 

" ( ) b' , 2 av 
x + d 1 bx - b ox = o, ( 4.5) 

where the prime ' denotes the derivative with respect to z. Note that only 
two of these three equations are independent. For this potential, we find the 
solutions 

x(z) = xosin- 1 (tanh ( ~z)) , (4.6) 

where 

2 2o-Vo ~-~-~-~ 
H = (d- l)[l + (d- l)u], Xo = v(d- l)o-(1- o-) . (4.7) 

This solution represents a dS domain wall whose energy is localized at z = 
0, i.e., the center of the wall. The parameter o- has the meaning of the 
thickness of the wall (brane) from the physical point of view. In order to 
keep the positivity in the square root, we should restrict the range to [ 48] 

O<o-<l. (4.8) 

The classical stabilities of the thick brane model against the tensor and scalar 
perturbations are discussed in Appendix C. l and C.2, respectively. 
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4.2 Quantized scalar field perturbations 

Our purpose is to discuss the quantized scalar field perturbations on a thick, 
inflating brane model. \Ve achieve this by introducing another scalar field 
¢, which is coupled to the domain wall configuration and its fluctuations. 
Hence, we add the action of the scalar field ¢ to the original action Eq. 
(4.1), i.e., 

S = ~ J dd+lx,,j=gCdRI) -(8¢) 2 
- 2V(¢)) 

+ ~jdd+1x,,j=g(-(a¢)2-E,CdR1)¢2), 

where E, is the scalar curvature coupling. 

(4.9) 

As disr.ussed in r114, 115] the coupling of the field ¢to ¢can be ignored 
because its backreaction to the domain wall geometry is only important at 
higher order, 0( ¢ 2) .1 This assumption allows us to treat the ¢-field contribu­
tion perturbatively. The minimally coupled case, E, = 0, will be of particular 
interest, because the perturbation equations are very similar to those for 
tensor perturbations of the metric (see Appendix C.l). 

4.2.1 Dimensional reduction approach 

We shall evaluate the amplitude of the quantum field ¢, based on a dimen­
sional reduction of the higher dimensional canonically quantized field. This 
method has been already discussed in rn 7] and we refer the readf'r to this 
reference for more details. 

In this method, the action of ¢ is rewritten as 

1 J d+l ,-;:. ( (d+l)) Sq,=2 d Xy-gcp Dd+l-E, R ¢, (4.10) 

where we set a regulator boundary at z = L in order to obtain a well-posed 
quantum field theory on the dimensionally reduced spacetime. Then, the 
bulk modes become discrete and the solution is written as 

(4.11) 
n 

where 'Pn has the dimension of a scalar field in the d-dimensional dS space­
time. Due to the maximal symmetry of dS spacetime, we can integrate out 
the dependence on the transverse directions, xµ, assuming that the vacuum 
respects the dS invariance. Hence, we shall drop it in the amplitude. 

Integrating the action with respect. to z, it is reduced to the summation 
of theories of a d-dimensional massive scalar field with mass mn: 

Sq,=~ L J ddxF/'Pn(xµ)(od- m;)'Pn(xµ), 
n 

( 4.12) 

1 These works use t.he met.hods developed in f 116]. 
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Figure 4.1: The potential for a minimally coupled bulk scalar field pert.nrha­
tion is shown as a function of Hz for a four-dimensional dS wall. The thick, 
thick-dashed and dashed curves correspond to the cases of u = 0.01, 0.05, 0.1, 
respectively. 

where we employed the normalization condition 

(4.13) 

Note that the multiplying factor of two is due t.o the Z2-symmetry. The 
mass-squared m; is given by 

(d 1)2 
m2 = q2 Hz + - H2 

n n 4 · (4.14) 

vVe introduce a new function fq.(z) := b(d-I)f2(z)Fq.(z), which obeys the 
Schrodinger like equation 

(4.15) 

where 

1)+2d} 1 . 
u cosh2 (H z/ u) 

(4.16) 

For the minimally coupled case, ~ = 0, this potential reduces to the one for 
the tensor perturbations, Eq. (C.3). In Fig. 4.1, we plot. the potential for 
the d = 4 case explicitly for ~ = 0. It is evident that the potential becomes 
deeper for smaller values of u. 
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Figure 4.2: v / u is plotted as a function of thickness, u. The thick, thick­
dashed and dashed curves correspond to the cases for i; = 0, 3/32, 3/20, 
respectively. 

The solution of the KK modes is 

J.Jz) = C1Pia•"(x) + C2 Pv-iaq"(x), 

where P{:(xj denotes the Legendre functions of the first kind, 
tanh(Hz/u) and 

The coupling 

Jl + 4(1;c - t;)(d(d - l)u2 + 2du) - 1 
v·=-'--~~'-'--~~-'-~~~~~--'-~ . 2 . 

d-1 
i;c= 4d 

( 4.17) 

X ·-.-

(4.18) 

(4.19) 

denotes the conformal coupling strength, e.g., for the d = 2 case t;c = 1/8 
and for the d = 4 case t;c = 3/16. In this article, we restrict. the coupling to 
the range 0 :S t; :S t;c. 

The mass of the bound st.ate mode is given hy 

iv 
qo= -, 

IJ 
(4.20) 

which has a maximal value of (d-1)/2 at i; = 0. For i; < 0, the bound st.ate 
becomes tachyonic and non-normalizable. For t; = 0, it is the zero mode and 
for i; = i;c it becomes the lowest mass KK mode, irrespective of the choice 
of u. In Fig. 4.2, we plot v/u as a function of u for several choice oft;. We 
find that this ratio is almost independent. of u. Note that the i; = 0 case is 
equivalent to the bulk tensor perturbations. 
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4.2.2 The zeta function method 

Given the functions f~.(z), the vacuum expectation value is defined by 

2 ) 2H '°""' 2 2 (¢ (z) = bd-l(z) L f"Jz)(ipqJx))' 
n 

( 4.21) 

where the factor of two is due to the Z2-symmetry. F\·om now on, we shall 
discuss the quantized field theory in Euclidean space, i.e., the metric is 

(4.22) 

where dEd is the line element of Sd with unit radius, whose volume is given 
by 

(4.23) 

Thus, in order to consider the quantum fluctuations of a d-dimensional field, 
we assume that the vacuum is given by the Euclidean vacuum, which corre­
sponds to the dS invariant, Bunch-Davis vacuum in the original Lorentzian 
spacetime. 

For the d-sphere, Sd, any local quantities are related to global ones by 
simply dividing by the volume of the sphere (a property of maximally sym­
metric spaces; see [1171). Thus, we are particularly interested in the local 
vacuum expectation value as only a function of z (one non-trivial dimension), 
implying 

(4.24) 

where Kn is the dS heat kernel for each mode n, see [1171. Thus, due to the 
maximal symmetry of dS space, the global heat kernel is simply related to 
the local one by 

(4.25) 

At this stage it is convenient to rescale the amplitude as 

(4.26) 

where overall factors qm he restored at the end of the calculation. Now we 
may sum up all the KK modes in Eq. (4.21); however, as is well known, a 
naive summation over all the KK modes gives rise to unwanted divergences. 

To deal with such a problem, we construct the loml zeta function, ((z, s), 
along the lines of reference [ 1171, where the parameter s is initially assumed 
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to be Re(s) > (d + 1)/2 in (d + 1)-dimensions. Once we obtain such a zeta 
function, after analytic continuation to s ---> 1, we end up with 

(;/?(z)) = lim ((z, s), 
,~1 

(4.27) 

where 

- b(z)d-1Vsd 1 ('"' B-1 
((z, s) := Hd+l ((z, s) = f(s) Jo dt t K(z, t). (4.28) 

K(z, t) is tlrn local heat kernel defined as 

00 

K(z, t) = 2 L J;,,(z)Kn(t), (4.29) 
n=l 

and 
00 

Kn(t) = L dj e-[q~+(j+I/2)']H't' (4.30) 
j=O 

where di is the degeneracy for each mode j given by 

. (j+d-2)! 
dj = (2J + d- 1) j!(d - l)! ' ( 4.31) 

is the global heat kernel for each KK mode. Note that the dimension of ( 
is slightly different to the case discussed in [117], because of a difference in 
dimension of t.he warp fact.or. 

4.2.3 Contour integral representation of the local zeta 
function 

First, as a resolution to the subtle nature of the continuous modes, we intro­
duce another boundary at z = L. This then enables us to evaluate the zeta 
function using the residue theorem, based on certain assumptions relating 
to the zeros of the function in the contour. Then, after constructing such a 
zeta function we show that we can take the one brane limit L ---> oo in a well 
defined manner. 2 

The solution for the scalar field perturbations in general dimensions is 
given by 

( 4.32) 

where for convenience, we choose the second solution R~q"(x) to satisfy 

JJ/,""(x)R~""'(x) - R~q"(x)Piq"'(x) = 1 ~ x2, (4.33) 

2The same approach cannot be used for the one-loop effective act.ion because it. is a 
global quant.it.y, e.g., see t.he discussion in rns]. 
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where x = tanh(Hz/o-). There are several candidates for R~q"(x) such as 

r(-iqcr + v + 1) Qiq"(x)' 
f(iqcr+v+l) v 

7f p-iq"(x). 
2i sinh( rrqcr) v · 

(4.34) 

and so on. For now we do not need to specify the explicit form of the second 
solution R~q"(x), but only use the property of the ·wronskian in Eq. ( 11.33). 

To be specific, let us consider the case of Neumann boundary conditions. 
The boundary conditions at the center of the thick brane and the second 
boundary are respectively 

f~(z)lz=O = 0, f~(z)lz=L = 0 · (4.35) 

Note, the thick brane is not a boundary, we just fix the z derivative of the field 
at a point to obtain a well-posed eigenvalue equation. From these boundary 
conditions, we get an equation which determines the KK mass spectrum as 

(4.36) 

\Ve denote the solutions for the eigen-equation as qn ( n = 1, 2, 3, · · ·) whose 
eigenfunctions are 

(4.37) 

where 

~q""'(O) R~q""'(xL) 

Piq""'(O) Piq""'(xL) 
(4.38) 

'vVe assume q1 < q2 < q3 < · · · , respectively. Note that the final equality 
is satisfied only for q = qn. Without loss of generality, we can choose °'q = 
R~q"'(O) and (3q = Piq"'(O). Vve shall also require the normalization constant 
for n-th mode which is found to be 

See, Appendix D.l. 
Now we have all the necessary tools to calculate the zeta function hy 

applying the residue theorem as follows: from the equations given above, the 
normalized mode functions can be written as 

J;Jz) 

'vhere, 

crqnG(qn, z) 
&qF(q)lq=qn ' 

( 4.40) 

( 4.41) 
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and 

G(q, z) = ( R~qa'(O)P:qa(x)P:qal(O)R~qa(x)) ( R~qa'(xL)P:"a(x)-Piqal (xL)R~qa(x)) . 
( 4.42) 

This form is essential in order to apply the residue theorem. Whence, the 
zeta function can be written as a contour integral in the complex u plane 

((z, s) 2 2(s-1) ~ ~ d; J;Jz) 
µ L L [ 2 + (. + d-1)2] 8 H2s 

n=l 1=0 qn J 2 

= 2 Z(s-l) ~ ~ crqnG(qn, z) d; 
µ LLfJF(q)I= [q2+(J·+d-1)2]sH2s 

n=l J=O q q q,, n 2 

2 z(s-l)i du cruG(u,z) f d; (443) 
µ C 27ri F(u)lu=qn j=O [u2 + (j + d;l )2Js H2s ' · 

where the poles at u = qn are on the positive side of real axis and therefore, 
the closed c:ont.our C has to be taken around the positive real axis in general. 
Note that we have introduced a mass scale µ to keep the dimension. This 
term is in fact the renormalization scale and groups with any divergent terms 
in the expression for the amplitude. Then, given the fact that there are no 
poles in the complex u-plane, besides those on the real &"'<is, we can naturally 
deform the contour C into C' (see Fig. 4.3) 

- z _ 2 Z(s-l) i du cruG(u, z) ~ d; ( ) 
(( 's) - µ C' 27ri F(u)lu=qn ~ [u2 + (j + d;l )2]s H2s ' 

4
.4

4 

which is composed of a line parallel to the imaginary axis with a small real 
part and a large semi drcle on the positive real half of the complex plane, 
which is depicted in Fig. 4.3. As we mentioned previously, initially keeping 
s larger than ( d + 1) /2, the contribution from the larger semi-circle becomes 
negligible. 

A similar approach has been used e.g., in f 119] for infinitely thin 
Minkowski branes in a bulk AdS space; however, in our case the contour 
we have to construct is complicated by the presence of the poles which come 
from the bound state; and as we shall see, it will he convenient to evaluate 
the bound state contribution separately. Therefore, as it turns out, we shall 
only focus on the total amplitude from now on. 

In particular, we are primarily interested in calculating the mode func-
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Figure 4.3: The cont.our C, used to evaluate the KK amplitude. The poles 
on the real axis qi (i = 1, 2, · · ·) correspond to the KK modes, while those 
on the imaginary axis correspond to the bo11nd state. We can deform C into 
C' because there are no poles in the complex plane besides those on the real 
and imaginary axes. The closed contour depicted by the dotted line is used 
to evaluate the bound state amplitude. 
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Figure 4.4: The contour C, 11sed to evaluate the total amplitude. 



4.2. Quantized scalar field pe.rt11rbations 55 

tions on the l)fane at z = 0 ( x = 0), i.e., 

= 

= 

= 

G(u, z) I 
F(u) z=O 

(R~ua'(O)P;,ua(O) - p;,ua'(O)R~ua(o)) (R~ua'(xL)P;,ua(O) - p;,ua'(xL)R~ua(O)) 

-(R~ual(O)Piuat(xL) _ Piual(O)~uat(xL)) 

P/,"a'(xL)R~ua(O) - R~ua(xL)' p;,ua(O) 
(R~ua'(O)Piuat(xL) _ Piuat(O)R~uat(xL)) 

P/,"a'(xL)Pv-iua(O) _ pv-iua'(xL)P/,ua(O) 
(Pv-iuat(O)Pi"a'(xL) - Piua'(O)Pv-iuat(xL)) ' 

( 4.45) 

where in the first step we used the \"lronskian relation Eq. ( 4.33) and in the 
final step we specified the second mode function as 

R~•0 (x) = 7r p-iqa(x). 
2i sinh( 7rqer) " 

Two types of decomposition are possible: 

= 

p;,uat(xL)Pv-iua(O) _ pv-iua'(xL)P/,ua(O) 
P;;iuat(O)Pf"a'(xL) _ Pf"a'(O)P;;iuat(xL) 
p;,ua ( 0) P/,"01 (XL) 2i sinh( 7rUer) 1 

(4.46) 

Piua'(O) Pi"a'(O) 7r Pf"a'(O)P;;iuai(xL) _ Piua'(xL)P;;iua'(O) 

P;;'"0 (0) 
P;;iuat (0) 
pv-iuat (x L) 2i sinh( 7rUer) 1 

+ P;;iuat(O) 7r pv-iua'(O)Piuat(xL) _ P;;iuat(xL)P/,uat(O) · (4.4?) 

It is important to note that the second term on the second line is negligible 
in the XL -.. 1 limit on the upper half of the complex u-plane, while the 
second term on the third line is negligible in the same limit on the lower-half 
of complex u-plane. Thus, in the single brane limit we use the first term on 
the second and third lines as the single brane propagator on the upper and 
lower half of the complex plane, respectively. 

In the single hrane propagator given above, P/,"0 (0)/P/,ua'(O) has poles 
that are situated on the negative imaginary axis, corresponding to purely 
decaying modes, plus the hound state contribution at u =iv/er. However, 
as we mentioned above, P/,u0 (0)/ P/,"0 '(0) is used for the npper half of the 
complex plane and we need not worry about the purely decaying modes. 
Thus, we only need to deal with the hound state mode at u = iv/ er in the 
calcnlation of the KK amplitude. Similarly, the exact opposite occurs for 
P;iua(O)/Pv-'"0 '(0) and we only need to deal with the pole at u =-iv/er. 

The remaining problem then concerns the avoidance of the hound state 
poles at u = ±iv/ er. We avoid the hound state poles by deforming the 
contour to C', as depicted in Fig. 4.3, when we evaluate the KK amplitude. 



56 4. A new reg111ari7.aton scheme for Kal11za-Klein modes on the brane 

However, this contour gives a non-zero contribution (from the bound state 
poles) when taking the Cauchy principal value on the imaginary axis. This 
contribution simply corresponds to the subtraction of the bound state from 
the total amplitude; we can calculate the bound state amplitude separately, 
see the next sect.ion. Thus, it will be rather convenient for us to shift the 
contour over the upper pole to C, as depicted in Fig. 4.4. This is equivalent 
to adding the bound state contribution with a counter-clockwise contour (the 
closed dotted line in Fig. 4.3) to C'. Then, hy integrating along the contour C 
and subtracting the bound state contribution, we can obtain the desired KK 
amplitude. This is the approach we shall take to evaluate the KK amplitude 
in this article. 

4.3 Kaluza-Klein amplitude: d = 2 case 

To demonstrate the method discussed in the previous subsection as simply as 
possible, we first evaluate the amplitude of the quantum fluctuations on the 
hrane for d = 2. That is, we construct the zeta function for the case of the 
two-sphere in the transverse dimensions with one non-trivial hulk dimension. 

Amplitude of the KK modes 

The zeta function for total amplitude at the center of the wall is 

((0, s) = 4 2(s-l) J du CTuG(u, 0) ~ (j + 1/2) 
µ Jc 2ni F(u) f;;i, [u2 + (j + l/2)2Js fi2s 

4µ2(s-1) 

nH2, sin[n(s - l)] 

{2v/a CTG(eif2U 0) oo (j + 1/2) 
x p Jo dUU F(eni/2J) ~ [u2 - (j + 1/2)2]' ' (4.48) 

where U = e-nif2u and we use the property 

G(eni/2u, 0) 
F( e~if2U) 

G( e-ni/2u, 0) 
F(cni/2U) 

P;ua(o) 
2Pv-Ua1(0) . (4.49) 

Here, Roman "P" (not to he confused with the Legendre function of the first 
kind) means taking the Cauchy principal value in order to deal with the pole 
at U = v/CT. In Fig. 4.3, the contribution from the anti-clockwise semi-circle 
around u = iv/ CT cancels with that from the clockwise semi-circle around 
u =-iv/CT. 

In the following, we shall divide the integral into two; i.e., for U > 2v /CT 
which we denote as the "UV piece" and that for 0 < U < 2v /CT which we 
denote as the "In. piece." vVe emphasize that the reason for this splitting is 
solely for technical reasons and that the choice of division has no physical 
significance. vVe can set the split at any value of 0( 1). 
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To begin with, for the UV piece we will use the following asymptotic 
expansion formula, e.g., see Ref. [1201, for large U, i.e., 

f (j + 1/2) - -~u-2s+2 [-1- - _1_ 
j=o [U2 - (j + 1/2)2J8 - 2 s - 1 r(s) 

+ frU+_~-llu-2iEJa(H(-2j,a)I ]. 
. J. a=l/2 
J=l 

(4.50) 

Then, for the IR piece we employ the standard binomial expansions: 

~ j+l/2 ~r(s+J) 2J 1 
~ [U + 1;2)2 - u2r = ~ J!r(s) u (H(2s + 21 - 1, 2), (4.51) 

whid1 is valid for the range 0 < U < 1/2; while for the range 1/2 < U < 
2v/a < 1 we must use [120, 1211 

00 

j + 1/2 1 ( 1 
~ [U + 1/2)2 _ u2r = 2 (~ _ u2)s 

00 

r(s+J) 2.J ( 1 (1)-2s-2J)) + {; J!f(s) U 2(H(2s+2J-1, 2)- 2 .(4.52) 

Then, the total amplitude on the center at the wall is given by the summation 
of both pieces 

((0, s) = Cuv(O, s) + Cm(O, s). ( 4.53) 

First, let us consider the analytic continuation of the UV pie.c:e 

(uv(O, s) 
2µ 2(s-l) sin[7r(s - 1)] 

1rH2s 

foo dUaG(eni/2u, 0) u-2s+3 
X J2v/u F( eni/2U) 

x [-1 ___ 1_~r(J+_s-l)u-2iEJa(H(-2j,a)j ] 
S - 1 f(s) L_; J! a=l/2 

J=l 

( 4.54) 

Given the following relation f 122] 

P;uu(o) 1 r(-¥ + ~)r(¥ + ~ + ~) 
pv-Uu'(O) -2 f(¥ + ~u + l)f(-¥ + ~u + D ( 4.55) 

and by employing the asymptotic: expansion for large U of the Gamma func­
tions [1221 we find the following asymptotic series, which in d-dimensions 
is 

p-uu(o) oo 
v "'"" ( c)u-1-21 

P;Uu1(0) = 8 We a,~ ' (4.56) 
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where v is given by Eq. ( 4.18) and 

wo(CT, E) 
1 

CT 
= (2+CT(d-l))(l+d(-1+4E)) _...!:_-() (4_57) 

8CT2 - 2CT V 0 ' 

-{ (2 + CT(d - 1) )(1+d(-1+4E)) ( 8 + 6CT (1 + d (-1 + 4E)) 

+3CT2 (-1 + d) (1+d(-1+4E))) }/(128CT4
) (4.58) 

The subtraction of the w0 term just corresponds to that of the trivial back­
ground, whereas the w1 term corresponds to the tadpole graph, see f 114, 115]. 
Here, we require only the term w0 , in order to regularize the d = 2 case. For 
the d = 4 case, terms up to w 1 are required. 3 

Thus, after analytic continuation to s ---+ 1, we obtain the UV amplitude 

H2 lim (uv(O, s) = -2{1
00 

dUU CT [ p"-Ua(O) _ wo(CT, E)] 
s~l 2v/a P,;-Ua'(O) U 

wo(CT, E) (~)}. (4.59) 

As for the IR piece it is already finite in the limit s -> 1; however, because 
of the poles on the imaginary IL"\'.is we make the principle value prescription, 
i.e., 

4µ2(s-1} . 
Cm(O, s) 7rH2'(-l)' sm[7r(s - 1)] 

p11/2 dUCTUG(e"i/2U,O) ~ r(s+ J)u2J( (2 2J-1 ~) 
x o F(e"i/2U) f;;(, J!f(s) H s + '2 

2µ2(s-l} . j2v/a CTG(e"i/2U, 0) 
+ H 2 ( l) sm[7r(s -1)] P dU ( 12U) 

7r s - s 1/2 F eni 

( 
1 ~ r(s + J) 21 

X (l - U2)s + L, J!f(s) U . 
4 J=O 

( 1 (1)-2s-2J)) 
X 2(H(2s + 2J - 1, 2) - 2 , (4.60) 

where if 2v /CT < 1/2 the second term is to be dropped. Then, given the 
Laurent expansion of the Hurwitz zeta function 

1 1 
1, '2) = 2(s _ l) -1/;(1/2) + O(s - 1), ( 4.61) 

~~~~~~~~~~~-

3 In practice, for better numerical convergence we subtract off 1nore terms than are 
required to regularize the theory; th11s1 we include w 1 for d = 2 and w2 for d = 41 

rf'..spectively. 
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we find that there is only a contribution from J = 0 in both terms. Thus, in 
the limit s ---+ 1, we obtain 

2 - 12v/a 2a-G(e"i/2U, 0) 
H ~~l(m(O,s) = -P o dU F(e"i/2U) U 

2
12v/a dU (uf(-v /2 + Ua-/2 + l)f(v /2 + Ua-/2 + 1/2) 

0 U - v/a- f(v/2 + Ua-/2 + l)f(-v/2 + Ua-/2 + 1/2) 
_l_vr(v+ 1/2)). 
fta- r(v+ 1) ' 

where in the final step, we used the fact that 

12xo j(x) 
P dx = 

0 X- Xo 1

2xo J(x) 12xo j(xo) 
P dx - P dx-"-'-...::.:_ 

0 x - x0 0 x - x0 

1

2xo J(x) 12xo J(xo) 
= dx - dx , 

0 x - xo 0 x - xo 
(4.63) 

where f(x) is an arbitrary regular function. The second term, which is equal 
to zero, eliminates the singularity at x = x0 in the first term. This technique 
will also be used for the d = 4 case. 

Finally, we obtain the regularized total amplitude 

(ef?(O))tot = Jim ((uv(O, s) + (m(O, s)) 
s-1 

(4.64) 

As discussed in the preceding subsection the KK amplitude is obtained by 
subtracting the bound state amplitude, which is evaluated in Appendix D.2, 

( 4.65) 

Interestingly, the total amplitude (¢2 (0)),0 , does not depend on the renor­
malization scaleµ, whereas as shown in Appendix D.2 the bound state con­
tribution (¢2 (0))t, does depend on it. Thus, the KK amplitude (¢2 (0))1m 
will also depend onµ as can be readily seen from Eq. ( 4.65). In other words, 
the dependence on µ in the bound state and KK contribution cancels when 
they are summed up. 

4.3.1 Results of numerical calculations 

The total amplitude (¢2 (0)),0 , is shown in Fig. 4.5. For small thicknesses, 
the UV piece dominates the total amplitude. The leading order divergent 
behavior can be estimated as follows: by changing variables from U to x = 
U a-, the UV piece can be writ.ten as 

- (1100 

(p-x(o) 1) 2v) 
H

2 ~~ (uv(O, s) = -2 -; 
2

v dx x p~x'(O) +;: +-;; (4.66) 

(4.62) 
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As shown previously (see Fig. 4.2), v/a is almost independent of a and 
v = O(a) for a « l. Then by Taylor expanding the Gamma functions in 
Eq. ( 4.55) about v we find that 

P;x(o) 1 v ( x x + 1 x ) 2 
pv-x'(O) = -; + 2x 1/;(2)- 21/;(-2-) +1/;(2+ l) + O(a) · (4.67) 

Therefore, 

H 2 lim(uv(O,s) _':'._ t"' dx (.,µ(~)-21/;(x+ 1) +1/;(~ + 1)) 
s~l (]" } 2v 2 2 2 

+ 0( a0
). ( 4.68) 

In the case of d = 2 the divergence arises only from the leading order. Fur­
thermore, for x » 1 the integrand behaves as x-2 and thus, the contribution 
from the upper bound vanishes. However, in the opposite limit, x « 1, 

x x+l x 2 
1/;(2) - 21/;(-

2
-) + 7/J(2 + 1) = -; + (-21 - 27/J(l/2)) + O(x), (4.69) 

where 1' = 0.57721 · · · is Euler's constant, and therefore 

- 2v 
H 2 lim(uv(O, s) = -- In (2v) + O(a0

). 
s-tl er 

(4.70) 

Tims, we find a positive logarithmic divergence in the thin wall limit. 
The amplitude of the bound state is derived separately in Appendix D. 2. 

Here, we recapitulate the final result, 

H 2 (ef}(O)hs = ~(21n(;) 27/J(l/2)-aco(~)-
2 

00 

2J 1 (1)-2 

+ §;[2(~) (H(21+1, 2 )-aco 2 ]) 

x (f dycosh-2"(y))-l. (4.71) 

In Fig. 4.6, the amplitude of the bound state is plotted as a function of the 
brane thickness for each coupling, with µ = H. Interestingly, the resulting 
amplitude is almost independent of the braue thickness u and still finite in 
the thin wall limit. 

Thus, as expected, the divergence of the total amplitude in the thin wall 
limit arises solely from the KK contribution. Regardless, for finite values of 
u ~ 0.1 the total amplitude settles down to finite positive values. The result 
shows that the surface divergence for t.he KK modes can he regularized by 
introducing a finite hrane thickness. This is one of the main result.s of this 
article. 

The hound state amplitude depends on the choice of renormalization 
scale, µ. In Fig. 4. 7, the running of the scale is shown as a function of µ. It is 
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Figure 4.5: The total amplitude is shown as a function of the brane thickness, 
!J, in the case of d = 2. The thick, thick-dashed and dashed curves correspond 
to the cases of~= 0, 1/32, 1/16, respectively. 
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Figure 4.6: The amplitude of the bound state is shown as a function of the 
brane thickness, !J, in the case of d = 2, withµ= H. The thick, thick-dashed 
and dashed curves correspond to the cases of~= 0, 1/32, 1/16, respectively. 
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Figure 4. 7: The running of the hound state is shown as a function of the 
renormali7.ation scale In µ in the case of d = 2, with O' = 0.01. The vertical 
and hori7.ontal axes show the hound state amplitude and log10(µ/ H), respec­
tively. The thick, thick-dashed and dashed curves correspond to the cases of 
~ = 0, 1/32, 1/16, respectively. 
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Figure 4.8: The relative amplitude of the KK modes to the hound state mode 
is shown as a function of the brane thickness, O", for minimal coupling, ~ = 0, 
for d = 2, with µ = H. 



4.4. Kaluza-KJein mnplit11de: d = 4 case 63 

essentially proportional to In µ. The tilt. becomes steeper for smaller coupling 
parameter i;. There are several possible choices for the renormalization scale, 
for example, one could choose the expansion rate of the brane µ = H or 
another choice is the brane thickness µ = H/u. We still have no signature 
about braneworlds today and therefore no quantity that. we can renormalize 
into. The renormalzat.ion scale µ should be determined by future observations 
and/or experiments. In this article we just plot the running of the scale and 
take the optimal choice µ = H for cases where one has to make a choice. 
Note that. from Eq. ( 4.65) the KK amplitude is also proportional to In(µ) 
with negat.ive tilts. In this article we just plot the running of the scale and 
take the optimal choice µ = H for cases where one has to make a choice. 
Note that from Eq. ( 4.65) the KK amplitude is also proportional to In(µ) 
with negative tilts. 

It is also interesting to compare the relative amplitude of the KK modes 
to the hound state mode. The relative amplitude is given by 

r ·= (¢2(0))rm = (¢2 (0))1<1< = (¢2 (0))tot _ 1 
. (¢2 (0))hs (¢2 (0))bs (¢2(0))bs ' 

(4.72) 

where in the final step we used Eq. ( 4.65). The result depends on the choice 
of the renormalization scale µ and 111'ane thickness, u. It is meaningful to 
show the plot for physically reasonable cases. As an example, in Fig. 4.8, we 
have plotted r as a fund.ion of u for the minimally coupled case, i; = 0, i.e., 
for tensor perturbations, with µ = H. 

4.4 Kaluza-Klein amplitude: d = 4 case 

In this subsection, we perform the calculation for the more realistic case of 
d = 4. The calculation follows in an identical manner to the d = 2 case, if 
only for more tedium. 

Amplitude of the KK modes 

In this case the degeneracy fact.or for the four-sphere ( d = 4) is 

dj = ~ (j + ~) (j + 1) (j + 2) ( 4. 73) 

and hence, the zeta funcJ,ion for the total amplitude can be reduced to 

((0, s) = 
~ 2(s-I} i du uuG(u,O) ~ (j + 3/2)(j + l)(j + 2) 
3 µ 6 27Ti F( u) ~ [u2 + (j + 1/2)2Js H2s 

2µ2(s-1) 
H 2 sin[7r(s - 1)] 37T s 

p ( 00 dUuUG(e"if2U, 0) ~ (j + l)(j + 2)(j + ~) 
x Jo F(e"i/2U) ~ [U2 - (j + ~)2]5 , 

(4.74) 
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where we used the properties of bulk propagator Eq. ( 4.49). Again, Roman 
"P" represents taking the Cauchy principal value to deal with the pole at 
U = v /CY. As for the d = 2 case, we divide the tot.al 7,eta fun ct.ion into a UV 
piece, i.e., for u > 2v/CY; and an m. piece, i.e., for 0 < u < 2v/CY. Similarly, 
the choice of the division is just for lat.er convenience. 

To begin with, for the UV piece we shall use the asymptotic formula [ 120] 

~ f (j + 3/2)(j + l)(j + 2) 
3 j=O [U2 - (j + 3/2)2]' 

2 
00 

(j + 3/2)3 1 
00 

(j + 3/2) 
3 ~ [u2 - (j + 3/2)2]' - 6 ~ [u2 - (J + 3/2)2]' 

( s( 1 3 2 ) 1 2 
= -1) -12(s-l)(s-2)(s-3)8"e(-U ,a,s-2+12(s-l)a"e(-U ,a,s) 

2(s _ l~(s _ 2) 8ae(-U
2

, a, s - 1)) 
a=3/2 

- 1 [u-2(s-1)~f(j+_s-l)u-2j8a(H(-2j,a)i 
12f(s) L ]! a=3/2 

J=O 

u-2(s-3) Loo f(j + s - 3) u-2j 33;- (-2 . ) I 
·1 a":.H J,a 

. J · a=3/2 J=O 

+ 6u-2(s-2) ~ ru + s 2) 2· ( I l L.. .
1 

u- 10a(H -2j, a) , 
j=D J · a=3/2 

where 

00 1 
e(q2,a,s) := 2=-[(-. -)-2 -2J_s_-,-1. 

j=O J +a + q 
(4.76) 

Then, for the IR. piece, we use the following binomial expansions [120, 
121]: 

~ ~ (j + l)(j+ 2)(j +3/2) = ~ ~ r(s+ J)u2J 

3 f:o' [U + 3/2)2 - u2r 3 i:o J!r(s) 

( 
3 1 3 ) x (H(2s + 2J - 3, 2J - 4(H(2s + 2J - 1, 2) , (4.77) 

which is valid for the range 0 < U < 3/2; while fort.he range 3/2 < U < 5/2 

(4.75) 
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we must use 

l~(j+l)(j+2)(j+3/2) 1 
3 kn [(j + 3/2)2 - u2r = (~ - u2r 

+ ~ r(s + J) u2J [~ (cH(2s + 2J - 3 ~) - ~(H(2s + 2J - 1 ~)) 
L J!f(s) 3 '2 4 '2 
J=O 

- (~)-2s-2J] ' (4.78) 

and finally, for the range 5/2 < U < 2
; we have 

l~(j+l)(j+2)(j+3/2) 1 5 
3 kn [(j + 3/2)2 - u2r = (~ - U2)' + (2: - U2)' 

+ f r(s + J) U2J [~ ((H(2s + 2J - 3 ~) - ~(H(2s + 2J - 1 ~)) 
J=O J!f( S) 3 ' 2 4 ' 2 

_ (~)-2s-2J _ 5 (~)-2s-2J]. (4.79) 

The total zeta function is obtained from Eq. ( 4.53). 
First, let us focus on the analytic continuation of the UV piece. Some 

simple manipulations lead to the following expression 

(uv(O, s) 
1 µ2Cs-1) loo dUuG(e"i/2u, 0) 

12 H2s 2v/u F(ei/2U) 

x {u-2•+3 sin[7r(s - 2)] [-
1
-oa(H(O, a)j 

S - 1 a=3/2 

+ ~r(j_+s-l)u-21aa(H(-2j,a)j ] 
L J!f(s) a=3/2 
J=l 

- u-2s+7 sin[7r(s - 4)] [(s - l)(s ~ 2)(s - 3) EJ~(H(O, a)la=3/2 

u-2 u-4 
+ (s- l)(s-2)EJ~(H(-2,a)ia=3/2 + 2(s- l)EJ~(H(-4,a)la=3/2 
+ f f(j.+s-3)u-2jEJ3(H(-2j,a)i ] 

j=J ]!f( S) a a=3/2 

- 6u-2s+5 sin[7r( s - 3)] [ ( )l( 
2
) Oa(H(O, a) I 

S - 1 S - a=3/2 

u-2 I + --
1
oa(H(-2,a) 

S - a=3/2 

+ ~ r(j + s - 2) u-21" ( ( 2 . ) I ] } (4.so) L ·ir( ) ua H - J, a _ . . J. S a-3/2 
1=2 



66 4. A new reg11la.rizaton scheme for Kalwm-KJein modeB on the brane 

Like for the d = 2 case, after analytic continuation to s --> 1, this leads to 

1 (loo d u3(P;ua(o) ~ ( ) -1-2e) -3u U p-Ua'(O) - L_; We u, E U 
2v/a v l'=O 

~ 23-2ewe(u,E) (::_)3-U) 
+ L.; 2C-3 u 

e~o 

1 (loo p-ua(o) 
+ 12u dUU(p~ua'(O) -wo(u,E)u-') 

2v/a v 

- 2wo(u, E) (;)) , (4.81) 

where w1( E, u) are the coefficients of the asymptotic expansion in Eq. ( 4.56) 
given hy Eq. (4.57), ford= 4. 

The IR. piece is already finite for s --> 1, and some calculation shows that 

2µ2(s-1) . 1a;2 uUG(eif2u, 0) 
Crn(O, s) 3KH2s(-l)s sm[K(s - l)] P o dU F(e-rri/2U) 

~ f(s + J) 2J ( 3 1 3 ) 
x Bi J!r(s) U (H(2s + 2J - 3, 2) - 4(H(2s + 2J - 1, 2) 

2µ2(s-1) . (5/2 uUG(e"i/2u, 0) ( 1 
+ KH2s(-1)ssm[K(s-l)]P }3;2 dU F(e"if2U) (~-u2r 

~r(s+J) 2J[1 ( 3 1 3) + Bi J!f(s) U 3 (H(2s + 2J - 3, 2) - 4(H(2s + 2J 1, 2) 

(~)-2s-2J]) 

2µ2(s-1) . 12v/a uUG(e"if2U, 0) 
+ H2 ( ) sm[K(s - l)] P dU F( 12U) 

7r s -1 s 5/2 eni 

x ( (~ _1u2)s + ('!- ~ u2r 

~r(s+J) 2J[1 ( 3 1 3) + Bi J!f(s) U 3 (H(2s + 2J - 3, 2) - 4(H(2s + 2J - 1, 2) 

(
3)-2s-2J 5 ] ) 
2 - (5/2)2s+2J . 

(4.82) 

Note that the nnmher of terms depends on the range of U. For 3/2 < 2v / u < 
5/2 the third term should he dropped; while both the second and third terms 
should he dropped if 2v / u < 3/2. 
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In the s---> 1 limit, as before, just terms with leading order 

3 1 
(H(2s -1, 2J = 

2
(s _ l) - 7/;(3/2) + O(s - 1), ( 4.83) 

contribute to the resulting IR amplitude. Tims, taking the limit s ---> 1, we 
obtain the IR amplitude as 

2 - 1 12v/a U3G(eni/2U 0) 1 12v/a UG(eni/2U 0) 
H lim(m(O,s) = --crP dU ' + -crP dU ' 

,_1 3 0 F(eni/2U) 12 0 F(e'i2U) 

112v/a 1 ( I'(-!'.:+ Ua + l)I'(!'.: + Ua + !) = _ dU-- ua 2 2 2 2 2 

3 0 U - !!. I'(!!.+ Ua + l)I'(-!!. + Ua + !) 
a 2 2 2 2 2 

_1 (1::_)3 I'(v + ~)) 
fa CT I'(v + 1) 

_ dU-- U 2 2 2 2 2 
1 12v/a 1 ( I'(-!'.:+ Ua + l)I'(!'.: + Ua + !) 

12 o U-~ I'(~+~a+l)I'(-~+~a+!) 

1 (v) I'(v+ !J) (4.84) 
fa ; I'(v+ 1) ' 

where in the final step Eq. ( 4.63) was used. 
Finally, we obtain the total regularized amplitude from Eq. ( 4.64). Fur­

thermore, the KK amplitude is obtained by subtracting the bound state 
amplitude (evaluated in Appendix D. 2) obtained from Eq. ( 4.65). Note 
that the KK amplitude again has a dependence on the renormalization scale 
f.t. 

4.4.1 Results of numerical calculations 

In Fig. 4.9, a numerical plot of (¢2(0)),0 , is shown. Again, the divergence for 
the thin wall limit can be seen. The power of the divergence can be estimated 
as follows: the dominant contribution in the thin wall limit comes from the 
first term on the right hand side of Eq. ( 4.81 ). By changing variables to 
x = U er and following the same steps as for d = 2, we obtain 

In this case, the contribution from the lower bound of the integration does 
not contribute to any power of er. Thus, in the thin wall limit the regularized 
amplitude diverges as cr-2 . This is more divergent than the case of d = 2 

( 4.85) 
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Figure 4.9: The total amplitude is shown as a function of the !wane thick­
ness, a, in the case of d = 4. The vertical axis shows log10(-H2 (¢2(0))r<K)· 
The thick, thick-dashed and dashed curves correspond to the cases of 
~ = 0, 3/32, 3/20, respectively. 

and is related to the fact that in higher dimensions we need higher powers of 
UV subtraction. 

The amplitude of the hound state is calculated in Appendix D. 2 and is 

1 (!00 )-1 H 2 (Jl(O))h, = 2a Jo dycosh-2"(y) 

X { (-~ + ~ (;)2) ln (~) + ~(H(-1, ~) + ~1f(3/2) 

(;) 

2 

(-~ + ~1f(3/2) + ~(H(3, ~)) 

+ ~ ~ (;)2J ((H(2J 1, ~)- ~(H(2J + 1, ~)) 

2 ~ 8e,o (~)-
2

}. (4.86) 

This is plotted in Fig. 4.10 and we see that the hound state is almost inde­
pendent of the brane thickness and still finite in the thin wall limit. Thus, 
like for d = 2, the divergence in the total amplitude arises solely from the 
KK modes. 

Again, the amplitude depends on the choice of the renormali7.ation scale 
µ. In certain cases the amplitude of the hound state can hecome negative. 
In Fig. 4.11, the running of the bound state amplitude is shown as a function 
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Figure 4.10: The amplitude of the bound state mode is shown as a function 
of the hrane thickness, a, in the case of d = 4, with µ = H. The thick, 
thick-dashed and <lashed curves correspond to the cases of~= 0, 3/64, 3/32, 
respectively. 

ofµ. It is basically the same as the case of d = 2; however, a new feature is 
that. negative tilts of the running are realized for larger values of coupling ~ 
which satisfy 

2a+ 1 
E > 4(3a + 2)' 

( 4.87) 

as can be seen from Eq. (4.86). The critical coupling parameter in Eq. (4.87) 
is smaller than conformal coupling, ~c = 3/16, for any choice of IJfane thick­
ness, a. This fact means that there always exist coupling parameters which 
realize negative tilts of the running. 

The relative amplitude of the KK to bound state ratio, defined by Eq. 
( 4. 72), depends on the choice of renormalization scale µ. As we stated in the 
previous section, we have no observational singnatnre about braneworl<ls and 
no way to determine the renormalization scale. Again as one of the possible 
physical choices, in Fig. 4.12, we plot the relative amplitude in the case of 
µ = H for minimal coupling, ~ = 0. 

In this sect.ion, we discussed the quantum fluctuations in a thick brane 
model in order to show that a finite lJfane thickness can act as a natural 
cut-off of for the Kaluza-Klein (KK) mode spectrum. The thick brane model 
we examined was supported by a scalar field with an axion-type potential. 
The thin brane limit of this model is smoothly matched to the system of a 
de Sitter ( dS) brane in a Minkowski hulk. 

Here, we investigated the quantum fluctuations in a particular model of 
thick hraneworld. However, the qualitative behavior of the quantum flue-
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Figure 4.11: The running of the amplitude of the hound state is shown as a 
function of the hrane thickness, u, in the case of d = 4, with u = 0.01. The 
vertical and horizontal a.,'Ces show the hound st.ate amplitude and log10 (µ/ H), 
respectively. The thick, thick-dashed and dashed curves correspond to the 
cases oft;= 0, 3/32, 3/20, respectively. 
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Figure 4.12: The relative amplitude of the KK modes to the bound state 
mode is shown as a function of the brane thickness, u, for the minimal cou­
pling, t; = 0, for d = 4, with µ = H. The vertical axis shows log10 lr(µ)I 
given by Eq. (4.72). 
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tuations should be independent of the choice of the model. This can be 
understood as follows. For a thick brane model, for which t.he spacetime 
is smooth everywhere, there will be no divergence. Now if we look at the 
behavior of the background solution, Eq. ( 4.6), when u is sufficiently small, 
we find ¢ ~ ¢0 (H z/u) for Hz« u. This is a very general behavior that one 
finds at the center of any domain wall solut.ion, independent of the global 
features of the bulk potential. Thus the divergence in the thin wall limit is 
due to the spacetime singularity caused by the divergence of d¢/dz = O at 
z = 0, which is mmmon to any thick brane model supported by a bulk scalar 
field. 

4.5 Quantum backreaction and the self-
consistency on the brane 

In this section, we shall demonstrate that., similarly, a finite thidmess also 
regularizes the quantum backreaction. Vve give a theoretica.l bound on the 
thickness in terms of bmne self-consistency 4 -' and comment on the realistic 
case of a four-dimensional brane. 

In this subser.tion, we shall discuss the quantum backreaction of the scalar 
field ¢ on such a thick-brane background, specifically at z = 0. 13y varying 
the ¢-field part of the action, in Eq. (13.1), with respect to the bulk metric 
we obtain the stress-energy tensor for the ¢-field; 

(4.88) 

Furthermore, for simplicity we shall consider the three-dimensional ( d = 
2) case. The method is then based on a dimensional red net.ion of the higher 
dimensional canonically quantized fields, see f 117]. For a given vacuum, 
we can calculate the vacuum expectation value of the stress-energy ten­
sor. Hereafter, we work in the Euclideanized space 'Y~vdx"'dxv = H- 2 (dB2 + 
sin2 Bd<p2 ), where the substitution B-> 7r/2 - iHt \Vick rotates back to the 
Lorentzian frame. Choosing the Euclidean vacuum corresponds to a dS in­
variant vacuum in the original Lorentzian frame. The Hamiltonian density for 
the field ¢ in this frame is classically defined by p(z, x') := -b2(z)T9 o(z, x'). 

In general, for one non-trivial extra dimension we can have untwisted, 
j+(-z) = J+(z), and twisted field configurations, J-(-z) = -J-(z), r114, 
115]. Note that the untwisted and twisted solutions are equivalent to the 

4 Self-consistency in the RS (two-bra.ne) model has been investigated in [123] and r124] 
in terms of how quantum r.orrer:tions cont,ribut.e to the gravitational theory in the bulk. 
St.ability of brane solutions including quant.u1n backreact.ion has also been discussed, see 
e.g.1 rr2s1. Vilhat. we do here is rat,her to compare the sir,e of the quantum backreact.ion 
with that of the background stress-energy on the brane, i.e. 1 brane self-consistency. 

5Boun<ls on the brane thickness have also been <liscusse<l in t.er1ns of phenomenological 
experiments, see e.g., r126]. 
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mode degeneracy (for one non-trivial dimension). As we shall see, the total 
Hamiltonian density is given by a combination of nut.wisted and twisted fields, 
i.e., p = pl+)+ p(-). This quantity diverges when all the modes are naively 
summed np and we need to employ some kind of regularization scheme. To 
this end, aft.er a dimensional reduction, we shall employ the point-split.ting 
method in conjunct.ion with zeta function regularization r 112, 117], both for 
untwisted and twisted modes: 

( ±( i I ii. ) ·- 2µ2(s-1) H ~ j±( )j±( ') 
z, X 'Z 'X 'S .- bl/2(z)bl/2(z')H2(s-1) L_, n Z n Z 

n 

~ Y;m(xi)Y;-:n(xi') 
x L_, [ 2 + c + l )2)' , ( 4.89) 

1,m qn J 2 

where J;t(z) and J;;(z) correspond to normalized untwisted and twisted field 
configurations respectively. The solutions J;-(z) are written iu terms of as­
sociated Legendre functions and Y;m (xi) are the usual spherical harmonics 
defined on the two-sphere, 8 2 • 

Given that we are interested only in the dependence of the hackreaction 
on the hulk coordinate z we integrate out over the trivial dimensions, in this 
case over 8 2 : 

where drl2 is the volume element of 82 • Note that because of the spherical 
symmetry transverse to the brane we may focus on the the equatorial plane 
() = 7r /2 and remove the dependence on () f 127] Hence, we obtain the angle­
integrated Hamiltonian density 

We are primarily interested in the backreaction on the hrane at z = 0, 
given that this is supposed to he where our world is localized. In this case the 
contribution from the untwisted and twisted parts can he expressed simply 
as 

( 4.91) 

respectively. The tot.al backreact.ion is given by the snm of each: 

(4.92) 
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\Ve can also derive similar expressions for the pressures normal and par­
allel to the brane; yz z(z, xi) and T'P 'P(z, xi), respectively. Like for the Hamil­
tonian density they are given by a combination of untwisted and twisted 
fields. In tbe Euclidean frame these pressures are defined by Pz(z, xi) := 

b2(z)Tzz(z,xi) andp'P(z,xi) := b2(z)T'P'P(z,xi). Then, as for the case of the 
Hamiltonian density, the angle-integrated total pressure normal to the ]wane 
Pz(z) = J dD2Pz(z, xi) becomes 

Pz(O) = -p+(o) + p-(o) (4.93) 

on the brane. The angle-integrated pressure parallel to the brane (p"'(z) = 
J dD2p'P(z, xi)) has the same amplitude with opposite sign, i.e., p'P(z) = 
-pz(z). Thus, and hereafter, we may concentrate only on pz(O). It is also 
worth mentioning that the angle-integrated trace of the stress-energy tensor 
in the Euclidean frame has the same amplitude of the Hamiltonian density 
with the opposite sign; b2(z)Taa(z) = J dD2b2 (z)T"a(z,xi) = -p(z). 

The regularization scheme we shall employ is basically the same as the one 
developed in the prevous sections. Essentially, we convert the mode sums over 
{ n} into an integral along the contour as depicted in Fig. 4.4 including the 
bound state by employing the residue theorem. For the twisted configuration 
there is no bound state and hence, we need not worry about how the contour 
approaches the imaginary axis. 

Hence, for untwisted configurations we obtain 

_1JH3 [loo dUU3 (P;;;~"(O) - ~w1(Cl)) 
2 p-Ua'(O) L u1+21 

1 a/2 1=0 

p1Jy(O) = 

_ ~ we(Cl) _ _!:.100 

dUU ( P;;;~"(O) _ wo(Cl))- w (Cl)] 
L 3 - 2£ 4 p-Ua'(O) U o ' 
1=0 1 a/2 

PiR.(O) = H
3 

(' dUU (u + .!:.) f(-J + ~ + l)f(J + ~ + ~) (4.94) 
2 } 0 2 f(J+~"+l)f(-J+~"+~)' 

where we have split the untwisted contribution into two pieces, i.e., an ultra­
violet (UV) and an infrared (IR.) piece. Here we used the following asymptotic 
expansion 

p-u"(O) oo 1 2 +Cf 

a/~ ( = ~ we(Cl)u-1
-

21 ; wo(Cl) = --. w1(1J) = --
8 2 , · (4.95) 

p- "' 0) L (f. (f 
a/2 f=O 

to regularize the UV piece. The regularized untwisted Hamiltonian density 
. . I + + + rs given )y p = Puv + Pm · 

Similarly, for twisted configurations we find 

H3 [Jooduu(P;;;~"'(O) - ~ ( )u1-21)-~ qe(Cl)] 
p()y(O) - Cl p-ua(O) L qi Cl L 3 - 2£ ' 

I a/2 f=O f=O 

2H311 f(£ + Ua + l)f(-£ + Ua + l) 
P- (0) -- dUU 4 2 4 2 2 (4.96) 

IR Cf 0 · f(-J+~")f(J+~"+~) ' 
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where this time we used the slightly different asymptotic expansion 

00 p-Ua'(O) 
a/2 

p-Ua(o) 
a/2 

= L qc(u)u1-u; 
e~o 

2 + (J 
qo(u) = -u, q1(u) = -

8
-, · · · (4.97) 

The twisted Hamiltonian density is also given by p- = Pw + Pra. 
Before considering the total hackreaction, we also wish to briefly discuss 

the hackreaction for the bound state mode, which for the untwisted case is 
given by 

H3µ2(s-l}Jfi2(z) j(j + l)(j + D 
Po(z, s) = H2(s-l) L [(j + ~)2 _ (!)2js 

J 

(4.98) 

where 

1 cosh-a(Hz) 
J;i2(z) = 2 Jioo d I a a( ) . 

(J 0 y cos 1 y 
(4.99) 

As c.an easily he verified the twist<0d solution has no localized bound state. 
Note that p0 (z, s) = -pz,o(z, s). As a result of employing the renormalization 
discussed in [128], the backreaction for the bound state is given by 

In the case above (of massless, minimal coupling) the backreaction of the 
bound state mode is found to be independent of the renormalization scale. 
This happens only for the case of minimal coupling. Also, contrary to the 
backreaction, the squared amplitude itself does depend on the renormaliza­
tion scale even for minimal coupling, ~ = 0, [112]. If required, the contribu­
tion from the KK modes can easily be obtained by employing the relations 
[112] 

Prm(z) = p(z) - Po(z), Prm(z) = p(z) - po(z). (4.100) 

Note that, like for the amplitude [112], p0 is also insensitive to the brane 
thickness, u. Particularly in comparison to the KK contribution. 

Similar to the calculation for the amplitude [ 112] in the thin wall limit, 
u ---t 0, the leading order behavior for p±(O) can easily be obtained 

H3 H3 
p+(o) ---t --

2 2
1, p-(o) ---t --

2 
I; 

(J (J 

I:=~ 100 

dx[x
2 

( 1/;(~) - 21/;(x; 
1

) + 1/;(~ + 1)) + 1] 

"' 0.213139. ( 4.101) 
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Thus, from Eq. ( 4.92) and Eq. ( 4.93), the thin wall behavior for the Hamil­
tonian density and pressure are 

3H3 

p(O) _, - 2u2 I, 
H3 

Pz(O)-> -
2

u 2 I, (4.102) 

respectively. Thus, in the thin wall limit both the tot.al Hamiltonian density 
and pressure exhibit. quadratic divergences. 

We now come to discuss the brane self-consistency of the quantum cor­
rected Einstein equations: The stress-energy of the backreaction should not 
become larger than the background stress-energy on the ))fane. In Figs. 4.13 
and 4.14 the Hamiltonian density, p(O), and bulk pressure, Pz(O), are com­
pared with respect to their (angle-integrated) classical counterparts: 

for the special case H = 1 = lVh Note, that in Fig. 4.13 the Hamiltonian 
density is multiplied by a power of u, in order to easily distinguish bet.ween 
the two, and the three-dimensional Planck mass lvh := 1<;32 is set to unity. 

The quantum backreaction scales as H3 / u2 , whereas the background 
stress-energy scales as H2 Jl.13 / u. Thus, the ratio of the backreaction to the 
background energy density scales as O(H/lvhu). From Figs. 'l.13 and 4. 14, 
for the special case H = lvh we can infer that for brane thicknesses with 
u 2:, 0.3 the quantum backreact.ion is at least an order of magnitude smaller 
than the classical value. Thus, taking these facts into consideration, we ob­
tain a plausible theoretical bound on the brane thickness, u 2:, 0.3 (H/lvh). 
Of course, this bound is only valid on the brane not in the whole bulk. In 
this sense it might not be a sufficient. condition, but just a necessary one. 
However, we are mainly interested in the behavior of the quantum backreac­
tion at z = 0, where the backreact.ion is expected to be largest. and onr world 
exists by assumption. Thus, it may be considered as a stringent. bound on the 
brane thickness. We note that the backreaction vanishes in the limit H -> 0, 
because the brane tension (in the sense of the thin wall limit) vanishes in onr 
model. This is in contrast. to R.S models, where the presence of a negative 
cosmological constant. in t.he bulk allows for a flat brane with finite tension. 

Now let us consider the more realistic case of d = 4. Following steps simi­
lar to that in ( 4.101), it is not hard to convince ourselves that in the thin wall 
limit, u -> 0, the quantum backreaction exhibits a quartic divergence pro­
portional to H 5 /u4 ford= 4 (times a numerical factor, like I in Eq. (4.101) 
ford= 2), whereas the background stress-energy scales as H 2Jd5

3 /u. Thus, 
the ratio of t.he quantum backreaction to the background stress-energy will 
be of order O(H3 /(ulvf5 ) 3). Therefore, the brane should satisfy u 2:, H/lvI5 

in order to have brane self-consistency. Actually, this bound depends on the 
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Figure 4.13: The hackreaction of the Hamiltonian density (thick curve) and 
the background energy density (dashed curve), multiplied by a power of the 
brane thickness, u, are shown as a function of u for the case of H = 1 ( = ]1.13 ). 

Note, the scale of the vertical axis is set to log10 . 
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Fignre 4.14: The backreaction of the pressure (thick curve) and the back­
ground pressure (dashed curve) are shown as a function of the !wane thick­
ness, u, for the case of H = l(= J\J3). Note, the scale of the vertical axis is 
set to log10. 
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ratio between the energy scale for lwane inflation, H, and J\!£5 . Hence, in 
order for the hound to he consistent with the assumption 0 < u < 1 we 
should require H ;S J\!fo. This condition can also he regarded as a bound on 
the energy scale for brane inflation. 

We might ask whether or not this bound on the brane thidrness is consis­
tent within the framework of the background model. The thick brane model 
we have investigated in this letter has an asymptotically flat bulk, which can 
he regarded as the high-energy limit, (He-> oo) of an asymptotically Anti de 
Sitter (AdS) bulk, where. e is curvature radius of AdS spacetime. Quite clearly 
u « H £ and thus, combining this inequality with the previous theoretical 
bound, u ;:: H/A15 , we find that H/.M5 « He for brane self-consistency. 
Note that in the R.S II set-up the four-dimensional Planck scale on the brane 
effectively becomes Afp1

2 = A15
3e (""' 1019 GeV), which is determined at low 

energies (H£ « 1) [9, 18]. Then, brane sel!~consistency, H/f'.15 « He, is 
equivalent to the condition A1p1 » f'.15 , which seems to be quite a natural 
one. Indeed, it is not difficult to construct a model with Ji.15 « J\!Ip1; just as 
long as the scale is larger than 109 Ge V, derived from constraints on the si7,e 
of any extra-dimensions, e ;S O.lmrn, which is determined from experimental 
tests of Newton's law on short. distance scales. Thus, we conclude that. thick 
braneworlds, even if they are extremely thin, can be brane self-consistent. 

4.6 Outlook for the case of KK gravitons 

Finally, we shall comment on the quantum backreact.ion of the KK modes 
of gravitons on the brane. As we mentioned previously, they are just metric 
perturbations in the bulk and their existence is rather common in braneworld 
cosmology, independently of the details of the models. The quantification of 
the graviton backreact.ion has been a longstanding issue in brane cosmology. 
Part of the motivation is that the KK gravitons satisfy the same equation 
of motion as a massless, minimally coupled scalar field and therefore suffer 
from a similar pathology on the Jwane, surface divergence,~. Hence, we expect 
that the graviton hackreaction behaves in a similarly manner to the scalar 
case, namely the backreaction exhibits quadratic and quartic divergences for 
d = 2 and d = 4, respectively. 6 Furthermore, any discussion on tbe self­
consistency of the scalar backreadion should also carry over to the graviton 
hackreaction similarly, though any explicit demonstration of this fact is left. 
for future work. 

6 0ne point. that we should note is that the degeneracy for gravitons (i.e., a spin 2 field) 
on the d-sphere is different. from that. for a scalar field (i.e., a spin 0 field) 4.31, see, e.g., 
[129]. 
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Linearized gravity in the Einstein 
Gauss-Bonnet braneworld 

In the previous Chapters, we discussed the Kahma-Klein (KK) modes in 
hraneworld cosmology in t,he context of the five-dimensional Einstein (or 
Einstein-scalar) theory, I3ut in reality, in five-dimensions the Einstein theory 
is not the most general tensor gravitational theory and one may add curvature 
corrections of quadratic order. In general, these curvature correct.ions give 
higher order derivatives in the bulk gravitational equations of motion and 
may induce instabilities. It is well-known that the Gauss-Bonnet term, which 
is the special combination of second order curvature corrections, uniquely 
gives the second order equations of motion in the bulk. In this Chapter, we 
discuss the linearized effective gravity on a de Sitter brane in the Einstein 
Gauss-Bonnet (EGB) theory, in order to obtain the implications of the GB 
term to brane cosmologyf 130]. The GB term becomes nontrivial in higher­
dimensions, whereas in four dimensions it is a toplogical quantity. 

First, we derive a dS brane solution in the EGB theory. Then, we 
solve the tensor metric perturbations in the bulk and derive a dosed set 
of integro-differential equations which describe the effective gravitatioal the­
ory on the brane. We investigate its various limiting cases. Interestingly, 
the linearized effective gravity on the brane becomes four-dimensional on all 
distance scales, from short distances to large distances. Also for high energy 
expanding branes as well as low energy ones, gravity on the brane becomes 
four-dimensional. 

5.1 Braneworlds in the Einstein Gauss-Bonnet 
theory 

We consider a braneworld in the EGB theory with a cosmological constant. 
As usual, we assume the Z2 symmetry with respect to the brane. Then we 
may focus on one of the two identical copies of the spacetime NI with the 

79 



80 5. LinellJ"ized gravity in the Einstein Ga11ss-Bonnet hrmieworld 

brane as the boundary Bi'd. The action is given by r5o, 521; 

S = ( d5xFg ~2 [ii_ -2A5 JM 2K5 

(
(5) 2 (5) (5) b (5) (5) bed) l 

+a R -4RabR"+Ra&cdR" (5.1) 

+ laM d4xj=q[-u + Lm + :g (K + 2a(J - 2GµJ(" µ))], 
where a is the coupling constant for the Gauss-Bonnet term which has di­
mensions (length)2 , A5 is the negative cosmological constant, 9ab and qµv are 
the bulk and brane metrics, respectively. [,m is the Lagrangian density of 
the matt.er on the brane, and u is the brane tension. The second term in the 
second line in Eq. (5.1) denotes the generalized Gibbons-Hawking term f 1311 
which is added to the boundary action in order to obtain the well-defined 
boundary value problem. I<µv is extrinsic curvature of the !wane and 

Ext.remizing the action S with respect to the bulk metric, the vacuum 
bulk Einstein Gauss-Bonnet. equation is obtained as 

(5) 

Gab+ A59ab 

[ (

(5) d (5) (5) d (5) (5) (5) (5)(5) ) 
+a 2 Race R bcde - 2 R c R acbd - 2 R ac R cb+ RR ab (5.3) 

1 ((5) 2 (5) (5) cd (5) (5) cdef) l -
-29ab R - 4 R cd R + R cdef R - 0. 

The brane trajectory is determined by the junction condition which is ob­
tained by varying the action S with respect to the brane metric f 132, 1331: 

where 

Pµpva := R,,pva + ( Rµaqpv - Rpaqµv + Rpvqµa - Rµvqpa) (5.5) 

-~R( qµaqpv - qµvqpa)' 

and Tµv is the energy moment.um tensor of the matter on the brane, defined 
as 

(5.6) 

Note that the extrinsic curvature here is the one for the vector normal to 
a Jy[ pointing outward from the side of Jv[. 
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5.2 de Sitter brane 
Bonnet theory 

. 
Ill the Einstein 
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Gauss-

Let us consider a de Sitter brane in the AdS bulk in the EGB theory, and 
investigate the linearized gravity on the de Sitter brane. 

5.2.1 de Sitter brane in the Einstein Gauss-Bonnet the­
ory 

We take the Gaussian normal coordinate with respect to the brane, and 
asm1me the bulk metric in the form f 18], 

(5.7) 

where /µv is the metric of the four-dimensional de Sitter spacetime with 
R(1) = 12H2

. 

The background Einstein Gauss-Bonnet equation is 

b" 
- 3H2 + 3b"b + 3b'2 

- 12ab (b'2 
- H 2

) = -A5b2
. (5.8) 

This has a solution, 

b(y) = Hfsinh(y/£), (5.9) 

where e is given by 

1 1( J 4aA5 ) -=- l±l+--
£24c; 3' 

(5.10) 

This agrees with the Minkowski brane case f 134, 135]. Without loss of gen­
erality, we choose the location of the de Sitter brane at 

b(yo) = l. (5.11) 

Thus H is the expansion rate of the de Sitter 11fane. 

5.2.2 Bulk gravitational perturbations 

First we consider gravitational perturbations in the bulk. We take the RS 
gauge f 9, 15, 136], 

hss = hsµ = 0, h" µ = Dvfiv µ = 0, (5.12) 

where D,, denotes the covariant derivative with respect to /µv, and the per­
turbed metric is given by 

(5.13) 
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The (µ,v)-components of the linearized Einstein Ganss-I3onnet equation 
are given by 

(1- a) [ 1 av (sinh4 (y/f)a") + 1 
(04 - 2H2

)] hµv 
sinh4 (y/£) (Hf)2 sinh2 (y/f) 

= 0' (5.14) 

where 

(5.15) 

and 0 4 = DµDµ is the d'Alemhertian with respect to /µv· Throughout this 
paper, we assume a =/= l. 

Equation (5.14) is separable. Setting hµv = ,Pp(y)YJe·2l(x"), we obtain 

[sinh}(y/f)a"(sinh4(y/f)a") + e2sin~:(y/f)]1/ip(y) = o, (5.16) 

[o4 - (m2 + 2)H2 ]Yj~·2 l 0, (5.17) 

where p2 = m 2 - 9/4 and YJe·2l are the tensor-type tensor harmonics on the 
de Sitter spacetime which satisfy the gauge condition [lll], 

Y (p,2)µ D y(p,2)v _ o 
µ v µ - • (5.18) 

The properties of these harmonics are discussed in Appendix E. 
The equation (5.16) is the same as that for a massless scalar field in the 

bulk [28]. There exists a mass gap for the eigenvalue 0 < m < 3/2 [18]. 
There is a unique hound state at m = 0, which gives ,Pp(y) =constant., and 
it is called the zero mode. For m > 3 /2, the mass spectrum is continuous 
and they correspond to the Kaluza-Klein modes. The general solution is 

where P/)(z) and Q~(z) are the associated Legendre functions of the 1st and 
2nd kinds, respectively. 

For p2 > O (m > 3/2), we choose those harmonic functions Y)e·2
) that 

behave as e-ipt in the limit t --> oo. Then, assuming that there is no incoming 
wave from the past infinity y = 0, we find we should take Bp = O. In fact, 
the asymptotic behavior of Pi/2 for y--> 0 is [137] 

. 31~ P~/2 ( cosh(y / £)) 
smh (y/R.) 

2iP ( sinh(y / £) )-ip-3/2 

;:;; f(l - ip) cosh(y/R.) 

2ip (y)-3/2 
"" - e-ipln(y/£) , (5.20) 

r(1- ip) e 
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which guarantees the no incoming wave (i.e., retarded) boundary condition. 
Thus the bulk metric perturbations are constructed by 

(5.21) 

where the contour of integration D is chosen on the complex p-plane such 
that it runs from p = -oo to p = oo and covers the bound state pole at 
p = 3i/2 below the contour [31]. 

5.2.3 Linearized effective gravity on the brane 

We now investigate the effective gravity on the brane. The position of the 
brane in the coordinate system is displaced in general as 

(5.22) 

where the second term in the right-hand-side describes the brane bend­
ing [134, 111]. The induced metric on the brane is given by 

The extrinsic curvature on the brane is given by 

(5.24) 

Vve consider the junction condition (5.4). The background part gives the 
relation between the brane tension and the location of the brane, 

6 ( - 2- ) 
n:;<J = e coth(yo/ £) 1 - ~ + 3 sinh2~Yo/ £) , (5.25) 

where 

coth(y0/£) = ,/1 + (H£)2 , 
. 1 

smh(y0/£) = Hf!. (5.26) 

In the limit Hf!« 1, Eq. (5.25) reduces to the Minkowski tension, 

n:2<J ~ ~(1- ~a) 5 - £ 3 . (5.27) 

The pertnrbative part of the junction condition gives 

(5.28) 
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where 

as 

(3 := cosh
2

(;o/C) + 
1 a= (2coth2 (y0 /C) - 1) a= (2(HR.) 2 + 1) a. (5.29) 

smh (Yo/ J!) 

The trace of Eq. (5.28) gives t,lrn equation to determine the brane bending 

(5.30) 

where S = S",,.. Note that. the field <p seems to be tachyonic, with mass­
squared given by -4H2

. However, in the case of a de Sitter brane in the 
Einstein gravity, there was a similar equation for the hrane bending, but. it. 
was found to be non-dynamical [111]. We shall see below that. the situation 
is quite similar in the present. case of the EGB theory. 

To find the effective gravitational equation on the brane, we manipulate as 
follows. Using the expression for the induced metric on the \)fane, Eq. ( 5.23), 
the perturbation of the brane Einstein tensor is given by 

oG,,.v[h] -~04hµ.v - 2H2 hµv + 2 coth(y0/J!) [ D,,.Dv - 04 /'µ.v] 'P 

- -3H2 
( hµv - 2coth(yo/Rh,,.v'P) 

~(04 - 2H
2)hw 

+ 2coth(yo/R)[D,,.Dv-04/'µ.v -3H2/'µv]'P· (5.31) 

Using the perturbed junction condition ( 5.28) we can eliminate the term 
involving 'P from the above equation to obtain 

- 2-
JG,,.v[h] + 3H hµ.v = -t- a) (04 - 2H

2
)hµv - t- ~) coth(yo/C)hµ.vy 21+(3 £1+ ' 

+ 1<g coth(y0/£) S (5.32) 
e (1 + f3) µ.v· 

Eliminating the term proportional to (04 - 2H2 )hµv from Eqs. (5.31) and 
(5.32) we obtain 

1<g tanh(y0 / £) S 
- 2ea µv 

1 ~a tanh(y0/J!) ( Dµ.Dv - /'µv04 - 3H2/'µv) 'P 

1-a 
2

Ca tanh(yo/ C)hµv,y . (5.33) 

Together with Eq. (5.30), this may be regarded as an effective gravitational 
equation on the brane. The effect of the bulk gravitational field is contained 
in the last term proportional to hµv,y· Note that the limit a __, 0 is singular in 
the above equation. Thus an Einstein Gauss-Bonnet brane exhibits entirely 
different effective gravity from an Einstein !wane even if a « l. 
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5.2.4 Harmonic decomposition 

Using the harmonic functions defined in Appendix E. 1, we may ohtain a 
dosed (int.egro-difforential) system on the hrane. \Ve decompose the pert.ur­
hat.ions on the !wane as 

Sµv = s~~ + s~~; s~~ = 1: dp ( s(p,o)YJ~·0l) , s~~ = 1: dp ( S(p,2)Yµ~·2l), 

<p = 1: dp 'P(p)y(p,Ol, 

hµv = 1: dph(p)Yµ~·2l, (5.34) 

where y(p,o) are the scalar harmonics and YJC· 0
) are the scalar-type ten­

sor harmonics given in terms of y(v,o), as defined in Appe.ndix E. 1. Note 
that, hecause of tlrn energy-momentum conservation, Dµ Sµv = 0, there is no 
cont.rihution from the vector-type tensor harmonics which do not satisfy the 
divergence free condition. If a bound st.ate exists, we have to deform the con­
t.our of integration so that the corresponding pole is covered, as mentioned 
at the end of the subsection 5.2.2. 

With the above decomposition, the metric perturbation on the brane hµv 

given hy Eq. ( 5.23) consists of the isotropic scalar-type part and tensor-type 
part. The scalar-type part is determined by Eq. ( 5.30), which gives 

(5.35) 

where Np is the normali7.ation factor for the harmonics defined in Appendix 
E. 1. We see that the propagator part of the above (i.e., the coefficient of 
S(p,o)) do not contain the pole at p = (5/2)i which would corresponds to 
the tachyonic mode with mass-squared -4H2 . Instead, it becomes a branch 
point and a branch cut appears between the points p = ( J2I/2)i and p = 
(5/2)i. Thus we find the tachyonic mode is ahsent and there is no instability 
aBSociated with the brane bending due to the matter source on the brane. 

Before we proceed, it is useful to note the equation, 

2 

(D D - 0 - 3H2 ) - 1'5 s<0J 
µ v "(µv 4 "!µv 'P - 2(l + (3)€ µv ' (5.36) 

which directly follows from Eq. (5.35) and the definition of the scalar-type 
t . I . . y;(p,O) .ensm mrmomcs µv . 

There is a free propagating t.achyonic mode corresponding to the homo­
geneous solution of Eq. (5.30), which does not couple to either the scalar 
or tensor-type matter pertnrhations on the brane. However, we shall argue 
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in the next subsection that the mode that corresponds to the exponential 
growth of the perturbation is unphysical, namely, the only physical mode 
associated with this t.achyonic mode is exponentially decaying with time. 

The traceless part of Eq. (5.28) gives 

1 £2 sinh(yo/£) P~/2 (zo) 
(ip + 3/2) (1 - a )P:/2(z0 ) +a (-ip + 3/2) (Hi1) 2 cosh(y0/£)P~/2 (z0 ) 

where z0 = cosh(y0 / e). This shows that the harmonic component of the 
tensor-type metric perturbations on the brane has a simple pole at p = (3/2)i 
on the complex p-plane, which corresponds to the zero mode. 

For convenience, we also write down the y-derivative of h(p), 

(5.38) 

Then, Eqs (5.30), (5.33) and (5.38) constitute the effective gravitational equa­
tions on the brane that form a dosed set of integro-differential equations. 

5.2.5 Source-free tachyonic mode 

Now, we discuss the source-free tachyonic mode on the brane [136]. This 
mode corresponds to the homogeneous solution of Eq. (5.30), so does not 
couple to the matter perturbations on the hrane. 

On the complex p-plane, the solution corresponds to the pole at p = 
(5/2)i. Thus, the solution is given by 

'P = 'P(5i/2) y(5i/2,0). (5.39) 

For this mode, the junction condition ( 5.28) tells us that it is associated with 
a non-vanishing hµv· The solution in the bulk is given by [136] 

hµv rj;(y)Lµv<(J, Lµv = DµDv + H 2"(µv· (5.40) 

This satisfies the transverse-traceless condition and 

(04 - 4H2 )hµv = 0. (5.41) 

Thus, this mode falls within the mass gap between m = 0 and 3/2, with the 
mass mH = ,/2H. 

Let us first analyze the behavior of the function rj;(y). It should satisfy 
Eq. (5.14), which becomes 

[sinh4~y/£) oy(sinh4(y/£)8y) + £2 sinl~2(y/e)l ¢(y) = 0. (5.42) 

(5.37) 



5.2. de Sitter brane in the Einstein Ga11ss-Bonnet theory 87 

The general solution is given by 

cf>(y) = c1¢1(Y) + c2¢2(y); 

¢1(Y) = coth(y/t'), ¢2(y) = 1 + coth2(y/t'), (5.43) 

where the coefficients c1 and c2 are related through the junction condi­
tion (5.28) as 

1 1H2 H 2 I( /")l+acoth
2
(y0 /t') _ 0 - - c1 - cot 1 Yo < c2 - . 

2 1 + ,6 
(5.44) 

As readily seen, this mode diverges badly as y -> O. Therefore, the regularity 
condition at y = 0 will eliminate this mode. Nevertheless, since its effect. on 
the brane seems non-trivial, it is interesting to see the physical meaning of 
it. 

We note that ¢1 is a gauge mode. This can be checked by calculating the 
projected Wey! tensor Eµv := (5lCnµnv [91, 59] which is gauge-invariant. vVe 
find that only the coefficient c2 survives: 

(5.45) 

This means that the junction condition ( 5.44) does not. fix the physical am­
plitude c2. It. just fixes the gauge amplitude c1. 

To understand the physical meaning of this mode, it is useful to ana­
lyze the temporal behavior the projected Wey! tensor. For simplicity, let 
us consider a spatially homogeneous solution for rp. Choosing the spatially 
dosed chart for the de Sitter hrane, for which the scale factor is given by 
a(t) = H-1 cosh(Ht), we find 

P{j;(tanh(Ht)) P1/;
12 (tanh(Ht)) _ _ _ H 

'P =Cr 3; 2 + C2 
312 

~ C1 em + C2 e 4 ',(5A6) 
cash (Ht) cosh (Ht) hoo 

where C1 and C2 differ from C1 and C2 , respectively, by unimportant nu­
merical factors. We see that the solution associated with C1 is the one that. 
shows instability. If we insert this solution to Eq. ( 5.45), however, this un­
stable solution disappears. In fact., we obtain 

E',"' 15H
2
C2 c2 "' 15(Ht')

2
C2c2 • 

£2 sinh4 (y/t')e4H 1 16(Ht')4 sinh4 (y/C)a4(t) 
(5.47) 

We note that E', on the !wane decays as l/a4 (t). This is exactly what one 
expects for the behavior of the. so-called dark radiation. Vve also note that, 
although Eµv does not vanish for spatially inhomogeneous modes, they decay 
as l/a3 (t) [136], giving no instability to the brane. 

In the Einstein case, the dark radiation term appears if there exists a 
black hole in the bulk. This is also true in the EGl3 case. There also exists a 
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spherically symmetric black hole solution in the EGB theory [ 69, 70, 71, 72, 
73, 74]. The metric is given by 

R2 ( f(R) = 1 + - l-
4a 

16aµ 4 ) 
1 + 

3
R4 + 3aA5 ij.48) 

where µ = 1<El'l1 / (27r2
) and t.1 is the mass of the black hole. For this solution, 

the projected Wey! tensor is given by 

, µ ( 4 16aµ)-3/2 ( 4 16aµ) µ ( 4 )-1/2_ E , = - 1 + -aAs + -- 1 + -aA5 + -- °" - 1 + -aA- (~ 49) 
R4 3 3R4 3 9R4 R4 3 ° ~· 

for R » (aµ)~ [59]. Comparing Eq. (5.47) with Eq. (5.49), with the 
identification R = £sinh(y/£) cosh(Ht), we find 

- 16µ ( 4 )-1/2 
c2 02 °" 15(Hi') 2 1 + 3aA5 . (5.50) 

Thus the solution that decays exponentially in time corresponds to adding a 
small black hole in the hulk [138]. 

In the two-brane system, the mode discussed here corresponds to the 
radion, which describes the relative displacement of the branes [111, 136]. As 
the case of the Einstein gravity, the radion mode is truly tachyonic. However, 
for the EGB theory, there is a tachyonic bound state mode other than the 
radionic instability, as in the limit of the Minkowski brane [ 139], as discussed 
explicitly in Appendix E. 2. This renders the two-brane system physically 
unrealistic in the EGB theory without any prescriptions. 

5.3 Linearized gravity on a Minkowski brane 
and its limiting cases 

Before investigating limiting cases for a dS brane, we review the results for a 
Minkowski brane [134, 140]. In the next subsection, we compare these results 
with those for a dS brane. 

5.3.1 Effective equations on the brane 

As the same manner in the case of a dS brane, in the RS gauge as before, 
the perturbed bulk metric in the bulk is written 

ds2 = dy2 + b2 (y) (7/µv + hµv )dx"dx", b(y) = e-lul/I, (5.51) 

where 7/µv is the Minkowski metric. The hrane locates at y = 0 in the back­
ground. The background part of the Einstein Gauss-Bonnet equation ( 5.3) 
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gives the relation of the AdS radius to the hulk cosmological constant., 
Eq. (5.10). The pert.urbat.ive part of Eq. (5.3) gives 

( 1 - °') (a; - 4~8y + e2"/ eo4) hµv = 0 . (5.52) 

Again, we consider the case a # l. The location of the l)l'ane is perturbed 
to be at y = -E<p. Induced metric on the brane is given by 

ds2 I (
4

) = ( T/µv + hµv) dxµdxv, hµv = hµv - 2<pT/µv. (5.53) 

The solution for hµv on the brane which satisfies the junction condition 
is given by 

I 
K2 J d4p . £2 Jil)(q£) Ii - _ _§_ --eip·x----~--'2'--=-'---~~-

µv v=o - e (27r) 4 (1- a)qeH/1l(q€) + aq2e2Hi1l(q£) 

X [ Sµv(P) - ~ ( T/µv - p;z:v) S(p)] , (5.54) 

where HP) is the Hankel function of the first. kind and q2 = -p2 . The 
equation that determines the brane bending is 

K2 1 
04 'P = - 6~ 1 + °'s. (5.55) 

As for t.be dS hrane case, the brane bending mode is not dynamical. 
The perturbed fonr-dimensional Einstein tensor is expressed as 

(5.56) 

Inserting Eq. (5.54) into Eq. (5.56), we obtain the effective equation on the 
brane, which reads 

5.3.2 Short distance limit 

In the short distance limit qf ~ 1, Eq. (5.57) becomes 

(5.58) 
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Comparing Eqs. (5.55) and (5.58) with the linearized Drans-Dicke gravity, 

D o<ll = SrrG 4 S (5.59) 4 
3+2w ' 

we find the correspondences, 

"'2 5 

2ad!' 
o<ll 1-a 
<llo = --;;-cp, (5.60) 

The brane bending scalar cp(xµ.) turns to be dynamical. The reason is ex­
plained as follows: In neglecting the KK contribution to the effective grav­
itational equation, the pole at p = 0 in Eq. (5.57) seems to dissapear in 
the theory. This pole contribution just plays the role of the scalar degree of 
freedom in the effective gravitational theory on the brane. Thus, the scalar 
degree of freedom is higher-dimensional and comes from KK modes. 

The corrections are rewritten as 

5.3.3 Large distance limit 

In the large distance limit q/!, « 1, Eq. (5.57) becomes 

(5.62) 

Thus we obtain the Einstein gravity with 

(5.63) 

For a -+ 0, this reduces to the result in the Einstein theory. 

5.4 Linearized gravity on a de Sitter brane 
limiting cases 

. 
Ill 

In this subsection, we discuss the effective gravity on the brane in various lim­
iting cases. We find the effective gravity reduces to four-dimensional theories 
in all the limiting cases. 
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5.4.1 High energy brane: Hf!.>> 1 

For a high energy !wane, i.e., Hf » 1 limit, we have tanh(y0/f) '.::: l/(Hf) 
and f3 '.::: 2(Hf)2 . We assume that matt.er perturbations on the brane are 
dominated by the modes p ~ 0(1). Namely, we consider the case Hf» p. 
Then, from Eq. (5.36) and Eq. (5.38), we find that the second and the third 
terms in the right-hand-side of Eq. (5.33) are suppressed by the small factor 
l/(Hf)2 relative to the first term, 

Thus, we obtain Einstein gravity with the. cosmological constant 3H2 , with 
the gravitational constant G 4 given by 

(5.65) 

The terms we have neglected give the low energy non-local corrections: 

( oGµv[hJ) = 
corr,Hf 

5.4.2 Short and large distance limits 

In order to discuss short and large distance limits, it is convenient t.o start 
from the expression (5.31) for the perturbed Einstein tensor, and Eq. (5.36) 
which relates the brane bending scalar 'P to the scalar part of the energy 
momentum tensor s11!J. Let us recapitulate these expressions: 

oGµv[h] + 3H2 iiµv = 2 coth(yo/f') ( DµDv - /'µvD4 - 3H2/'µv) 'P 

-~(D4 -2H2)hµv, (5.67) 
2 

( D D - D - 3H2 ) - ,,,5 5(o) µ v /'µv 4 /'µv 'P - 2(l + (3)f µv · (5.68) 
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1. Short distance limit: r << min{ .e, H-1 } 

For the short distance limit p ---> oo, using Eq. (5.37), we find 

K,2 100 
---> 

2
e5

_ tanh(Yo/ £) dp Yjf·2
) S(p,2) . 

p-'>oo 0: -oo 

Also, using Eq. (5.68), we manipulate as 

(5.70) 

where we have used an identity, 

2 coth(yo/ e) 2 coth(yo/ e) -
1 ~ f3 tanh(yo/ e) + 

1 ~ f3 tanh(yo/ e) 
°' °' 1-a l+/3 

--_-tanh(y0/I?) + -_-tanh(yo/I?), (5.71) 

°' °' 
which follows from the definition of the parameter (3, Eq. (5.29). 

Substituting Eqs. (5.69) and (5.70) in Eq. (5.67), the linearized gravity 
on the brane at short distances becomes 

- 2- K~ 
c5Gµv[h] + 3H hµv = 

2
ea tanh(yo/I?) Sµv 

(1 - a) ( 2 ) a tanh(yo/I?) DµDv - 0 4 /'µv - 3H /'µv <p, (5.72) 

with 

(5.73) 

This is a scalar-tensor type theory. 
As in the case of a Minkowski brane, the scalar field <p which describes the 

brane bending degree of freedom turns to be dynamical. As we have seen in 
the previous subsection, there is no intrinsically dynamical mode associated 
with the brane bending. Therefore, this emergence of a dynamical degree of 
freedom is due to an accumulative effect of the whole Kaluza-Klein modes, 
like a collective mode. Furthermore, because of the tachyonic mass, the 
system appears to be unstable. However, this is not the case. Since we have 

(5.69) 
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taken the limit p --> oo, all the perturbations have energy much larger than 
H, and the tachyonic mass-squared -4H2 is completely negligible. In other 
words, the spacetime appears to be flat at sufficiently short distance scales. 

We can rewrite Eq. (5.72) in the form, 

- - = 1 ( 2 ) 87rG4 
oGµv[hJ + A4hµv <I>o DµDv - D41µv - 3H /µv o<I> + ~Sµv, 

(04+4H2)a<I> = 3
8:~:s, (5.74) 

with the identifications, 

S7rG4 11:~ o<I> 1 - a 
~ = 2€0' tanh(yo/ e) ' <I>o = -~ tanh(yo/ i?)<p, 

30' 
w = --_ coth2(y0/€), A4 = 3H2. (5.75) 

1- °' 
Neglecting the tachyonic mass of o<I>, as justified above, this is the linearized 
l3rans-Dirl<e gravity with a cosmological constant. For He « 1, we have 
tanh(y0 / €) "" coth(y0/ €) c,; l. Then 

S7rG4 11:~ a<I> 1 - a 
~"" 2a£' <I>o ""-~<p, 

30' 
w"" --. 

1- a (5.76) 

This is in agreement with the Minkowski brane case investigated re­
cently r140]. 

The corrections are written as 

( oGµv[h)) corr,p»1 

n;2 100 
= -

2
/- tanh(yo/ €) dp Yje·2) S(p,2) °' -oo 

[ 
(1 - a)P{f2(z0 ) ] 

x (1 - a)P{/2 (z0 ) + a(H€) 2(-ip + 3/2) cosh(yo/€)Pi/2 (zo) . 

(5.77) 

2. Large distance limit: r >> max{ R., H-1
} 

For the limit p--> 0, using Eq. (5.37), we have 

-~(04 - 2H2 )hµv 

_ ~100 
(p,2) 11:~€sinh(yo/i?)H2 (-ip+3/2)Pi/2 (z0)/P;/2 (z0 ) 

- dpYµv Scpz) . . 
2 -oo ' 1- a+ a(H€)2 cosh(yo/i?) (-ip + 3/2)P;/2(zo)/ P;j2 (zo) 

311:~ (Hi?)P3;2(zo)/ P1;2(zo) 
~ - .,.--~~_,-.c_-,--.,-'----'--'-'----c-"-'----'-~~-~~ 

- 4€ (1- a)+ (3/2)(H£) coth(y0/i?)aP3;2(zo)/P112(zo) 

x 1: dpS(p,z)Yje·2l. (5.78) 
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As for the term involving <p, we pull out the part that takes the same form 
as the above equation. Using Eq. (5.35), we find 

2 coth(yo/e) ( DµDv - /µvD4 - 3H2/µv) 'P 

= 
3n:g (He) P3;2 ( zo) / Pi;2 ( zo) 
4£ (1 - &) + (3/2)(He) coth(yo/fl.)&P3;2(zo)/ P1;2(zo) 

x 1: dp s(p,o) YJe·
0
l 

(He)(l - &)P-1;2(zo) 
2(1 + f3)Pi;2(zo) - (HR) coth(y0 /e)&P-1;2(zo) 

x ( DµDv - /µvD4 - 3H2/µv) 'P' 

where we have used the recursion relation, 

Thus, the effective gravitational equation is expressed as 

(5.79) 

(5.80) 

oGµv[h] + 3H2hµv 

(04 + 4H2)ip 

2 

";Fr Sµv - Fs ( DµDv - /µvD4 - 3H2/µv) ip, 

K2 

- --[ s' (5.81) 

where we have rescaled <p to ip = 6(1 + (3)<p, and Fr and Fs are constants 
that represent the tensor and scalar coupling strengths, respectively, given 
by 

(He) ( 4cosh(yo/l!)P1;2(zo) - P-1;2(zo)) 

Fs 

In the intermediate range of He, i.e., when He= 0(1), then Fr and Fs are 
comparable and we obtain a 13rans-Dicke type theory given by Eq. ( 5.74) 
with the identifications, 

8rrG4 - n:gF oil? A 3H2 ( ) 
il?o - e r' <l?o = -Fs<P' ''4 ' 5.83 

Fr_ 3Fs 6(1 + (3) cosh(yo/C)P1;2(zo) - 3( 1 + (He)2& )P-1;2(z0) 
w- -

- 2Fs - (1 - &)P-1;2(zo) · 

A potential problem in this case is that the tachyonic mass of the scalar field 
seems to make the system unstable. However, as discussed in sn bsection 
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5.2.4, the tachyonic pole is not excited by the matter source. Further, as 
discussed in subsection 5.2.5, the source-free tachyonic mode do not cause an 
instability either. 

For He« 1, w » 1 and the scalar field decouples to yield 

'G [h-) 3H2h- - K~ coth(yo/ e) s 
u µv + µv - e 1 + fJ µv· (5.84) 

Thus we obtain the Einstein gravity with 

8 G = K~ coth(y0/e) 
11" 

4 e l+fJ · (5.85) 

In the limit He___, O, 

(5.86) 

This is the result for the Minkowski brane. 
In the limit He » 1, w » 1 and we recover the four-dimensional Einstein 

gravity on the brane with 

(5.87) 

Note that this is just a special case of the high energy brane case. 
Thus we conclude that despite the presence of the tachyonic mass, the 

system is stable and well-behaved for all ranges of HR. 

5.5 Summary of this Chapter 

We have investigated the linear perturbations of a de Sitter brane in an Ant.­
de Sitter bulk in the five-dimensional Einstein Gauss-Bonnet (EG B) theory. 
We have derived the effective theory on the brane which is described by a 
set of integro-differential equations. 

Then, we have investigated the behavior of the theory in various limiting 
cases. In contrast to the case of braneworld in the five-dimensional Einstf'fo 
theory, in which both the short distance and high energy ])l"ane limits ex­
hibit five-dimensional behavior, we have found that gravity on the brane is 
effectively four-dimensional for all the limiting cases. 

For a high energy brane, i.e., in the limit He » 1, the Einstein grav­
ity is recovered, provided that the length scale of fluctuations is of order 
H- 1

. It is found that the low energy corrections are suppressed by the factor 
O((HeJ-2

). 

In the short distance limit T «min{ e, H- 1 }, the scalar field that describes 
brane bending becomes dynamical, and we obtain the Brans-Dicke gravity. 
This is consistent with the case of the Minkowski brane. A slight complication 



is that this brane-bending scalar field is tachyonic, with mass-squared -4H2 . 

Therefore, if it becomes dynamical, one would naively expect the theory to 
become unstable. However, since the energy scale of fluctuations are much 
larger than H, the flnct.uations actually do not see this tachyonic mass, hence 
there is no instability. 

In the large distance limit r » max{£, H- 1 }, the Einstein gravity is 
obtained in both limits HR « 1 and HR » 1, while a Brans-Dicke type 
theory is obtained for HR= 0(1). Although the scalar field of this Brans­
Dicke gravity is tachyonic with mass-squared given by -4H2 , we have shown 
that this mode is not excited by the matter source, hence does not lead to 
an instability of the system. 

In the limit HR --t 0, the previous results for the Minkowski !wane have 
been recovered, that is, the Brans-Dicke gravity at short distances and the 
Einstein gravity at large distances. 

In all the cases, the effective four-dimensional gravitational constant de­
pends non-trivially on the values of HR and&, where & is the non-dimensional 
coupling constant for the Gauss-Bonnet term. This indicates the time varia­
tion of the gravitational constant. in the course of the cosmological evolution 
of a brane in the EGB theory. It will be interesting to investigate in more 
details the cosmological implications of the braneworld in the EGB theory. 



6 

Summary and discussion 

6.1 Summary of this thesis 

We have investigated the dynamics and effects of Kalu7.a-Klein (KK) modes 
in the context of the second Randall-Sundrum (RS) braneworld. The TIS 
model reali7.es four-dimensional general relativity on the brane, where we are 
living, by warping of the extra-dimension, which is called the hulk, not by the 
conventional compactifkations as in KK theory. KK modes correspond to 
waves in the bulk and are observed as an infinite number of massive modes on 
the brane. These modes usually give corrections to four-dimensional grav­
ity. In this sense, their contribution should not be so large in order for 
the braneworld cosmology to be viable. On the other hand, as the self­
accelerating solution in the DGP model, which is briefly introduced in Chap­
ter 1, KK modes may give new possibilities for difficulties in four-dimensional 
cosmology. 

For mathematical set-up, we first gave effectve gravitational equations 
on the brane by the covariant geometrical projection method. \Ve also gen­
erali7.e several local conservation laws, which are well known in the case of 
four-dimensional spherically symmetric spacetimes, to the case of higher di­
mensions, in order to discuss the dynamics of the brane with a cosmological 
symmetry, i.e., homogeneity and isotropy, in the bulk. 

Then, we discussed the backreaction of KK graviton modes which are nat­
urally produced at the early stage of the brane universe. They are just the 
bulk metric perturbations and their existence is rather generic in hraneworld, 
independently of the detailed assumptions. KK graviton modes are consid­
ered to be produced mainly by two different mechanisms: The first possibility 
is that they are produced by high energy particle interactions on the hrane. 
The second one is that they are produced quantum mechanically in the whole 
bulk during brane inflation. First, we consider KK gravitons produced by 
particle interactions on the hrane. We treat the emission of KK gravitons 
as ingoing null dust flux. Then the metric of the hulk spacetime is given 
by an ingoing Vaidya-type solution. \Ve discussed the geometry in the bulk 
and obtained a closed set of equations which represent the trajectory of the 
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radiating brane in the bulk. We also found that in the case that the convn­
tional three-space is closed (i.e., a three-sphere) and the flux of KK gravitons 
increases eventually, then a null, strong and visible naked singularity can be 
formed in the hulk. 

Next, we discussed the hackreaction of gravitons of a KK mode produced 
quantum mechanically in the whole bulk. In order to discuss the hackreac­
tion of these KK gravitons on the brane correctly, we derived their effective 
stress-energy tensor for gravitons of a KK modes by computing the curva­
ture tensors up to the second order of perturbations and averaging them, 
by taking the existence of the infinitely thin brane into consideration. The 
averaging scheme is discussed in Appendix A. 2 in details. Essentially, the 
averaging is done only for the derivatives in the direction of the usual four 
dimensions (namely parallel to the brane) and for the derivatives in the direc­
tion of the extra-dimension, we used the boundary conditions and equation 
of motion in the bulk, in order to eliminate them. Then, by the geometrical 
projection, we derived the effective stress tensor of gravitons of a KK mode 
on the I.wane. As a result, we found that a KK graviton mode behaves as 
cosmic dust, but the energy density becomes negative. The negativity of the 
effective energy density results from the pressure of the KK modes onto the 
brane and the energy density in the hulk is still finite. 

In reality, however, what we observe is the sum of all KK modes. \Ve 
also need to determine the amplitude and the amount of hackreaction of all 
KK modes quantum mechanically. As is well-known, however, the sum of 
all the KK modes suffers from divergences as one approaches the brane from 
the bulk, even after a conventional UV regulari7.ation. Then, we proposed a 
new regulari7.ation scheme for this type of divergence by taking a finite brane 
thickness into account. As a demonstration, we considered a thick de Sitter 
brane model which is supported by a hulk scalar field. As a probe, we con­
sider another, quanti7.ed, massless scalar field, which is coupled to the bulk 
scalar curvature. Especially, for the case of the minimal coupling, the evolu­
tion of the text scalar field in the bulk is the same as that of KK gravitons 
and thus we may obtain physical insight about the case of KK gravitons. We 
have computed the amplitude of the quantum fluctuations and the amount 
backreaction by employing 7.eta-function regulari7.ation. \Ve showed that a 
finite hrane thickness can regulari7.e these on the brane. Though we have 
investigated only one explicit model, the behavior of the quantum fluctua­
tions at the center of the wall should be independent of the d10ice of the 
model because the behavior of a supporting scalar field is generic, indepen­
dent of the global feature of the model. Then, we compared the amount of 
the quantum hackreaction for the minimally coupled case with that of the 
background stress-energy tensor and found that the former can be naturally 
reduced to below the latter. From these discussions, we obtained a theoreti­
cal bound on the brane thickness parameter and showed that this bound is 
reali7.ed without contradicting the framework of the model. This bound can 
be also intepretted as that on the energy scale of the brane expansion. 
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In the previous Chapters, we have discussed brane models in the 
five-dimensional Einstein (and Einstein-scalar) theory. However, in five­
dimensions the gravitational theory with curvature correct.ions of quadratic 
order is more natural. Especially, among them, the Einstein Gauss­
Bonnet (EGB) theory uniquely gives second order equations of motion as 
in the Einstein theory. In four dimensions, the GB term is just a topological 
quantity, hut in higher dimensions it becomes dynamical. In order to find 
cosmological implications of braneworld in the EGB theory, we investigated 
the linearized effective gravity on a dS hrane in an AdS hulk in the five­
dimensional EGB theory. \Ve solved the tensor metric perturbations in the 
hulk and tlwn derived the effective theory on the hrane which is described 
by a closed set of integro-differential equations. 

In contrast to the case of the five-dimensional Einstein theory, we have 
found that. gravity on the hrane is effectively four-dimensional for all of dis­
tance scales, from short distances to large distances. In the short distance 
limit., the scalar field that describes hrane bending becomes non-trivial, and 
we obtain the scalar-tensor (Brans-Dicke) type gravity. In the large distance 
limit, the Einstein gravity is obtained in both low energy and high energy 
limits, while a Brans-Dicke type theory is obtained for intermediate energy 
scales. On high energy expanding hranes as well as on low energy ones, 
four-dimensional Einstein gravity is obtained. 

6.2 Related issues and future works 

There are several remaining issues which are related to our work. One of 
these issues is the quantification of the backreaction of the KK gravitons. As 
we discussed, KK gravitons are considered to be produced quantum mechan­
ically and they may affect lwane cosmology non-trivially as discussed in this 
thesis. As is mentioned before, because they are corresponding to the bulk 
metric perturbations, the existence of them is generic in RS-type braneworld, 
independent of the detailed assumptions. To determine the amount of hack­
react.ion of KK gravitons is important. work from the observational point of 
view. The main problem is the divergence of the sum of all KK modes as 
one approach the !wane from the bulk. In Chapter 4, we have proposed 
a new regularization scheme for such a divergence by taking a finite brane 
thickness into account. \Ve expect that. this regularization scheme can be 
applied also to the case of the KK gravitons because the evolution of the KK 
gravitons are quite similar as that of a massle.ss, minimally r,oupled scalar 
KK modes, apart. from the only difference of the degeneracy on a sphere in 
Eudideanized space. Thus, for a more realistic brane model, we can easily 
quant.i(y the backreaction of the KK modes. The explicit determination of 
the hackreaction is left for future work. 

Another issue is about KK modes in a higher-codimensional hraneworld. 
In t,!1is thesis, we have assumed that there is one non-trivial extra-dimension. 
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However, for instance, string theory, which brane cosmology is based upon, 
predicts that there are ten or eleven spacetime dimensions. The other di­
mensions are usually considered to be compactified. But the idea of the 
RS braneworld tells us that there may be other infinitely extended extra­
dimensions, as long as they are warped. 

In embedding a singular, self-gravitating lwane into a higher­
codimensional spacetime, what we should note is that the gravitational field 
around a brane becomes more singular in the bulk. This fact is understood 
intuitively from the following considerations: Assuming that there are n­
codimensions, the gravitational potential in extra-dimension around a brane 
is scaled as rn- 2 , where r is radial distance from the !wane. In the case 
n 2, the potential exhibits a logarithmic dependence on r and there is a 
conical singularity at the brane position. In this case the junction condition 
is marginally tractable and there have been studies about codimension two 
brane solutions, see e.g., [141, 142, 143, 144, 145, 146, 147, 148]. In the cases 
of codimensions more than three, i.e., n 2: 3, the gravitational potential is 
proportional to inverse powers of the distance r and singular at the brane 
position. This fact implies that the !wane becomes a black hole as long as it 
is assumed to be infinitesimally thin. Thus, taking a finite brane thickness 
into consideration may be essential to realize braneworlds where we can live. 
Constructing explicit solutions is an intriguing future issue. 

Investigations of quantum effects in higher-codimensional braneworld also 
are not considered even for the case of codimension two. Divergences of 
the sum of the KK modes as one approaches the brane from the bulk are 
also expected. It should be checked whether our regularization scheme by 
a finite brane thickness works or not. Stability of higher co-dimensional 
braneworlds should also be analyzed from classical and quantum mechanical 
point of views. Anyway, a finite !wane thickness should become an essential 
key to extend (self-gravitating) brane models into higher-codimensions and 
investigate the behavior of the KK modes in these models. 

Other than the brane thickness, in higher dimensinals one may add higher 
curvature terms into the bulk gravitational theory, like the Gauss-Bonnet 
term discussed in Chapter 5. These higher curvature terms may be also 
essential in these higher-codimensional cases. 

We hope to report the results of investigations about these issues in our 
future publications. 





Appendix A 

Curvature tensors 

In this Appendix, we list components of curvature tensors and quantities 
related to them. 

A.1 Curvature tensors and locally conserved 
quantities 

We give useful formulas in an ( n + 2)-dimensional spacetime with constant 
curvature n-space, and generalize the expression for the local mass and the 
charge associated with \'Vey! tensor. 

vVe consider the metric in the double-null form, 

d 2 4r,ur,v ( )2 2 
s = -

0
-dudv + r u, v dL;(I<,n)> (A.l) 

where J( = +l, 0, or -1, corresponding to the sphere, flat space and hyper­
boloid, respectively. We denote the metric tensor of the constant curvature 
space as /ij. The explicit expressions for the geometrical quantities in this 
spacetime are as follows. 

• Christoffel symbol 

(n+2) ( Ir ur v I) r ~u = log 0 ,u' 
(n+2) ( Ir r I) r ~v = log ·~ ,v ,v ' 

(n+2) r 0 (n+2) r 0 
r ~ = --

2 
,,, , r Y; = --

2 
/ij, 

r,u r,v 

• Riemann tensor 

(n+2) . r 
r ~1 = 2 8ij , 

r 
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(n+2) . (E) . 

r Jk = r Jk. (A.2) 
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(n+2) ( Ir r I) 
R u uuv = Rvvvu = - log ,~,v ,uv 1 

(n+2) u [ 1 ( !1 ) r !1 ( I r.u r,v I) ] R iuj = - -r - - - log -- /ij , 2 r u ,u 2r u !1 ,u , , 

(n+2) v [ 1 ( !1) r !1 ( I r,u r,v I) ] R ivj = - -r - - - log -- /ij , 2 r v ,v 2r v !1 ,v , , 

(nR.2) iuju = [- r,uu + r.u (log I r.~.v I) Jo;, 
r r ~{, ,u 

(nR.2) i vjv = [- r ;" + r;" (log I r.~.v I) Jo; , 
(n-1-2) . (n+2) r,uv n 

R zvju = R zu;v = --u
1

, 
r 

(nR2
) i;k1 = ( K - !1) (01f;1 - oh;k). 

• Ricci tensor 
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(A.3) 

(n+2) r ( Ir I) R uu = n ;u log [;' ,u , 
(n+2) r ( Ir I) R vv = n ;" log f; ,v , 

(n+2) _ (l I r,ur,v I) r,uv R uv - - og -- - n-, 
S1 ,uv r 

(n+2) [ rr ( )] 
R ii= -ru;:o+2(n-l) K-0 Iii· 

, , 
(A.4) 

• scalar curvature 

• Einstein tensor 

(n+2) (n+2) (n+2) (n+2) 

G uu= R uu i G vv= R vv, 

(n+2) ( ) r ur v ( K) r uv 
G UV = n n - 1 ~ 1 - n + n-';:- ' 

(n+2) { r2
!1 [( Ir ur v I) r ""] G ii= -- log -'-' + 2(n- l)-'-

2r,ur,v n ,uv r 

(n - 2)2(n - 1) ( K - 0) }Iii. (A.6) 
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• Wey! tensor 

(n+2) u = n - 1 (l I r,ur,v I) _ r,uv _ r,ur,v (K _ !1) 
C uvu + 1 og ,. 2n , n ilt. ,uv r r ilt. 

(n+2} 1 2 u 
C iujv = -r fijCuvu 

n 
(n+2) 2 4 ( ) 
C ijkl = - n( n _ 1) r 'Yik"/jl - 'Yil'Yik 

(n+2} 
C vu 

UV (A.7) 

From these formulas, we can show the existence of a conserved current in 
the same way as given in the text. Namely, with the timelike vector field E" 
defined by Eq. (2.13), the currents S" = Eb'h" and S" = Ebna are separately 
conserved, and the corresponding local masses are given, respectively, by 

(A.8) 

and 

(A.9) 

The v and u derivatives of NI are given by the energy-momentum tensor as 

(A.10) 

Let us now turn to the conserved current associated with the \il/eyl tensor. 
·we start from the equation that results from the Bianchi identities [ 971, 

(n+2) ·d 

C abai' = J abc ' (A.11) 

where 

(A.12) 

From this equation, we can show the existence of a locally conserved current 
Q" given by 

(A.13) 

where fl" and n" are the null vectors defined in Eqs. (2.28). The non-7.ero 
components are explicitly written as 

(A.14) 
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We then find the following relations, 

( 
(n+2) ) 

rn+l c VU _ rn+l TV 
vu - Vvvi 

,v 
(A.15) 

( 
(n+2) ) 

rn+I C vu vu = rn+I I' uu. 
,u 

These relations are generalization of Eqs. ( 2.30), and imply that the \Ney! 
(n+2) 

mmponent. rn+l C vu vu is the local charge associated with this conserved 
current. 

(n+2) 
Using the explicit form of C vu vu in Eqs. (A.7) and the Einstein equa-

tions, we can relate the this charge to the local mass. We find 

(n+2) 
rn+I C vu 

vu 
n(n - l)Nf n - 1 n+l ((n+2) i (n+2) v ) 

2 - n(n + l{ G i - 2n G v 

n(n - l)i\1 
2 

n - 1 _2 n+1 (r' 2 T" ) n( n + 1) "n+2 r i - n v . (A.16) 

Finally, we note that. this equation implies that. the linear combination of the 
energy-momentum tensor, 

rn+t (r' · - 2nT" ) 
' v ' 

(A.17) 

plays the role of a local charge as well. Therefore, the behavior of this 
quantity is constrained non-locally by the integral of the flux given by the 
corresponding linear combination of the currents S" and Q". 

A.2 Second order curvature tensors of tensor 
perturbations 

A.2.1 Second order curvature tensors 

Here we spell out the components of the curvature tensors up to quadratic 
order in the bulk metric perturbation in order to derive effective stress-energy 
tensor ofKK gravitons. We consider the (d+l)-dimensional perturbed metric 
in the form, 

(A.18) 

where /µv is the metric of the background d-dimensional spacet.ime subser:­
tion. In the text, we identi~y /µv with the metric of a de Sitter spacetime. 
We impose the following gauge conditions on the perturbation: 

(A.19) 
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where the vertical bar ( I ) denotes the covariant derivative associated with 
the d-dimensional metric /µv, and the tensor indices of hµv are raised or 
lowered by the metric I µv (not. hy the five-dimensional metric). 

The non-trivial components of the connection are given by 

(d+l) µ = '!._15µ + ~hµ I - ~hµahl r yv b v 2 v 2 a:v ' 

(A.20) 

where the prime ( ') denotes the y-derivative. 
The non-trivial components of the Riemann tensor are given hy 

(dR+l) µ - - b" 15µ - ~hµ 11 - '!._hµ 1 + ~hW"'h' + '!._hµPh' + ~hµahll 
yvy - b v 2 v b 1.1 4 o:L' b pv 2 av 1 

(d+l) y - blf' bb11h - ~b2 h11 - bb1h1 + ~b2 h' /J" I R µyv - - fµv - µv 2 µv µv 4 a:v µ ' 

(d+l) a = (~ha I - ~ha{Jhl ) - (~ha I - ~h"13 h' ) 
R yµv 2 v 2 f3v Iµ 2 µ 2 (3µ Iv 

+~hP v' ( h" plµ+ h"' µIp - hµpla) - ~hp µ1 
( h" plv + h" vlp - hv)") , 

(dR') y e>µv = - ~b2 
( havlµ - haµlv) 

1 

- ~ h~µ ( hP <>Iv + hp via - ha)P) 

+ ~ h~v ( hP alµ + hP µla - ha)P) , 

(d+l) (d) 2 ( ) 
R µ avf3 = R µ e>v/3 - b' 15µ v/af3 - 15µ f3'Ycw 

+~ ( haµlf3v + h13µl<>v - ha{3lµlv - haµlvf3 - hv"la/3 + ha)µlf3) 

- ~b b' ( 15" vh',,(3 + /af3hµ v' - 15µ 13h~v 'Yavhµ 131
) - b'2 

( 15" vh,,13 - 15µ 13hav) 

- ~ [ hµp ( haplf3 + hf3pla - haf31P)] Iv + ~ [ hµp (haplv + hvpla - havlp)] 1
13 

_b
2

(1iµlh' -hµll') 4 v a/3 j3 1av 

- ~b If ( h" v' ha{3 - hµ l hw) + ~b If ( 'Ya13hµp h~v - 'Yavhµp h~/3) 

+~ ( hµ plvhp alf3 + hµ plvhp f31a - hµ plvh,,13IP + h" vlphp <>lf3 + hµ vlphP f31a - hµ vlpha/31P 

-hp)µ hp alf3 - hp)µ hp 13la + hp)µha/31P - hµ Pl13hP alv - hµ PlflhP via+ h" Plf3ha)P 

-hµ f31PhP <>Iv - hµ 131PhP via + hµ 13lpha)P 

+h lµhp + h II'/ P - h lµh IP) p/3 o:Jv pf3 1 v!a p{3 av · (A.21) 



A.2. Second order curvature tn1sors of tensor perturbations 107 

The mixed components of the Ricci tensor are given by 

The Ricci scalar is given by 

1 µ hpa 1 (d) hp µa 
-b2h Piaµ + b2 R pa µh . (A.23) 
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Using these results, the components of the Einstein tensor are given by 

(A.24) 

A.2.2 Computational rules for averaging 

Here, we describe the computational rules for averaging the components of 
the second order part of the curvature tensors listed previously. As we have 
noted in the main text, the notation (A) includes both the averaging along 
the ordinary spatial dimensions which are assumed to be homogeneous and 
isotropic, and the small-scale time averaging as defined in (B.17). In both 
cases, the computational rules are similar. However, we do not apply the 
same rules for terms with derivatives in the bulk direction, because we are 
dealing with a braneworld and the averaging along the bulk direction is ill­
defined. 

First, we note that we are interested in massive KK modes. So, we can 
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neglect terms coupled to the background curvature tensor as 

(A.25) 

which are of order O(h2 
/ £ 2 ), where L is the d-dimensional characteristic 

background curvature radius, in comparison with terms as 

\ hpa jµ,hpajv J , \ hpa hpajµ,v J , 
\hp,,_' /!pv J , \ hP µ,h~v J , .. · , (A.26) 

which am of order O(m2h2). For instance for a cosmological brane with 
expansion rate H, we have L = 0(1/H). Tims m » H implies m » L-1 , 

and we can safely neglect corrections of the form (A.25). 
As a consequence, when taking the average, we are allowed to freely 

interchange the order of the covariant derivatives. For example, 

(A.27) 

where corrections of order O( h2 / L2 ) are neglected. From now on, as in the 
main text we will use "=" instead of" c:e" by neglecting the corrections. 

Another computation rule is that total derivative terms can be neglected. 
For example, 

(A.28) 

This is because the total derivative term can be cast into the surface integral 
wbirb is smaller in magnitude than the volume term by a factor mR (» 1), 
where R is the length scale of the averaging volume which is taken to satisfy 
R » m-1. 

As mentioned above, we do not apply the same mies for terms with deriva­
tives with respect to the hulk coordinate y. However, when one considers 
project.ions onto the hrane, some simplifications occur. On the hrane, we 
have the boundary condition h~plbrnnc = 0, which enables us to neglect all 
the first derivative terms, e.g., 

(A.29) 

In addition, using t.he bulk equation of motion (3.49), we have 

(A.30) 



Appendix B 

Backreaction of Kaluza-Klein 
modes of a bulk scalar field 

In this Appendix, we discuss the hackreaction ofKK modes of a homogeneous 
scalar field, in order to discuss the backreact.ion of KK gravitons in Chapter 
3. \Ve assume its amplitude ¢ to be small so that its effect can be treated 
pertnrbatively: in particular, the backreaction oft.he scalar field on the metric 
will be of order CJ( ¢2

). The equation of motion of KK gravitons is the same 
as the case of the scalar field in the separable case and the latter case is more 
tracteble than the former case because of no brane contribution. 

It. is known that the field equations for general cases are not separable and 
the notion of a KK mode cannot be well defined. The separability property 
is satisfied only for two limiting cases. One is the case of a dS brane with an 
expansion rate H and one finds a mass gap D.m = 3H /2 between the 7.ero 
mode and KK modes. Thus the continuum of KK modes starts above the 
mass 3H /2. The other case is a low energy cosmological brane, in which case 
the dependence on the extra dimension can be approximated by the profile 
obtained for a static brane, i.e. the RS brane. 

We start from the five-dimensional action which consists of the Einstein­
Hilbert term, a cosmological constant A5 and a hulk scalar field, comple­
mented by the four-dimensional action for the !wane: 

1 J 5 ~((5) ) j 5 ~( 1 ab ) S = 211:~ d xy-g R -2A5 + d xv -g - 2g 8a¢8b</J - V(<P) 

+ j d4xFQ(-u + lm), (B.l) 

where q is the determinant of the induced metric on the !wane, which we 
denote by q,,f3, and lm is the Lagrangian density of the matter confined on 
the brane. The Latin indices {a, b, · · ·} and the Greek indices {a, (3, · · ·} are 
used for tensors defined in the bulk and on the hrane, respectively. We will 
assume that the !wane tension on the brane is tuned to its RS value so that 
11:~u2 = -6A5 . We also take a constant bulk potential 

V(¢) Vo>O, (I3.2) 
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so that the scalar field is effectively massless. 
We consider backgrounds given by a fixed value of the scalar field which 

we choose ¢ = 0. For a non-zero Vo, one has a de Sitter brane hackground, 
which will be discussed in subsection !3.1. For Vo= 0, one has a low energy 
cosmological brane, discussed in subsection B.2. 

The field equation for the bulk scalar field is linear and given by 

(B.3) 

Since we consider a background configuration with ¢ = 0, the solution of 
the above equation can be seen as a pertnrhation. This perturbation will 
induce a hulk energy-moment nm tensor, of order 0( ¢2 ), which embodies the 
hackreaction of the scalar field on the metric. This is the effect we wish to 
calculate explicitly. 

The variation of the action (B.l) yields the five-dimensional Einstein 
equations 

(
5

) 2 2 ( ) ( G ab+ As9ab = -K5 Vo9ab + K5Tab + -aqab +Tab O Y - Yo) (!3.4) 

where we have implicitly asm1med a coordinate. system in which the l)fane 
stays at a fixed location y = y0 and where 

(B.5) 

represents the energy-momentum tensor of matter confined on the brane. 
The stress energy tensor of the bulk scalar field, not induding the constant 
potential V0 , is given by 

T. _ ,1, _ ~ cd,1, ,1, 
ab - 'f',ac/J,b 

2
9ab9 'f',c'f',d · (!3.6) 

It is useful to consider the projection of the gravitational equations on the 
hranef91]. Taking into account the bulk energy-momentum tensor, one finds 

(B.7) 

where 
(b)a _2[,a,1, oa(3"'2 5pa,1, )] 
T f3 - 3 ¢ 'f',/3 + /3 g'f',y - Sq 'f',pc/J,a , (B.8) 

and Ea/3 is the projection on the brane of the bulk 'Ney! tensor and is traceless 
by construction. If, in addition, one assumes the brane geometry to he 
homogeneous and isotropic then the components of Eaf3 ( in an appropriate 
coordinate system) reduce to E', and 

(B.9) 
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13y using the four-dimensional 13ianchi identities, and assuming that the 
brane matter content is conserved, one is able to express the component E' 1 

in terms of the values on the brane of the bulk scalar field and its derivatives 
[29]: 

, n:g j' , 4 ( (bJ , a (bJ, a (bJ i ) 
E 1 = 4 dt a 8, T t + 3- T 1 - - T i , 

a to a a 
(B.10) 

B.1 KK mode on a de Sitter brane 

First, we consider the case of a de Sitter hrane. The hulk metric around a 
de Sitter brane can be expressed as 

(B.11) 

where the warp factor b(y) is given by 

b(y) = Hfsinh(y/£), (B.12) 

and /µv is the four-dimensional de Sitter metric, which may be expressed by 
using a flat slicing for simplicity: 

/µvdxµdx" = -dt2 + a2(t)o,idx'dxi, 
1 

a(t) = eHt, H 2 = -n:;Vo 6 . (13.13) 

The brane is located at y = y0 such that b(y0) = 1, that is, 

sinh(y0/£) = ~/l,. 
In this geometry, the equation of motion for the scalar field is 

1 ( 4 ) 1 ( .. . 1 (3) ) 
b4 a" b Oy</> - b2 </> + 3H </> - a2 6. </> = 0 . (B.14) 

This equations is separable and one can solve it by looking for a solution of 
the form </> = f(y)ip(t, x'), with 

(13.15) 

The separation constant m2 corresponds to the square of the KK mass, as 
measured by an observer on the brane. 

Since there is no coupling between the brane and the bulk scalar field, 
the boundary condition for the scalar field at the brane location is simply 
Oy</> 0, and therefore Oyf = 0. The equation along the y-direction implies 
that the mass spectrum is characteri?-ed by a mass gap 3H /2 [17]. The 
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corresponding eigenfunctions f can be written in terms of the associated 
Legendre fund.ions. 

Let us now focus on a single KK mode, which is spatially homogeneous 
and sufficiently massive: m ~ H. One finds from (13.15) 

1 
<p(t) = a

312 
cos( mt). (13.16) 

If we take a time average over a time scale much longer than the period of 
oscillation m-1, we can ignore the oscillatory behavior and use 

(sin2 (mt)/ = (cos2 (mt)/ = ~, ete. (B .17) 

From Eq. (13.8), we thus find 

(B.18) 

where fm is the value of f(y) on the brane for the eigenvalue m2 . From 
Eqs. (13.10) and (13.16), and from the faet. that a;¢= -m2¢ on the brane, 
we can evaluate Eµv as 

(B.19) 

where we have neglected the terms that depend on the initial data, which 
behave as a-4 and thus become negligible at late times. 

The above results show that the Wey! term Eµv contributes negatively to 
the effective energy density and pressure on the brane for a massive mode. 
Moreover, if one computes the total effective contribution of the bulk, i.e., 

(b) 
the sum of T c<fJ and of the vVeyl term Ec.13 , one finds for the effective energy 
density and pressure on the hrane 

(13.20) 

This represents the backreaction effects of the bulk scalar field, which are of 
order 0( ¢2). \il/hereas tbe effective pressure due to the KK mode vanishes, 
because the bulk component and the Wey! component exactly cancel each 
other, the effoetive energy, remarkably, is negative. 
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B.2 KK mode for a low energy cosn1ological 
brane 

Vie next calculate the effective energy density and pressure of a KK mode for 
a low energy cosmological I.wane whose metric in the Gaussian normal coor­
dinate is approximately given by Eq. (1.16). If one considers the evolution of 
a massless, minimally con pied scalar field in the the low energy cosmological 
background metric, one finds that, the field equation is separable and thus 
admits a solution of the form ef;(t, y) = f(y)rp(t) with 

EPJ - ±a f + m2e2"11j = o y e y , 

<p + 3H <{; + m 2 rp = 0, (B.21) 

where the function J(y) is assumed to be :Z2-symmetric.. 
The solution for f(y) with the appropriate Neumann boundary condition 

on the brane, f'(O) = 0 is given in terms of the Hankel functions. There is a 
>1ero mode corresponding tom= 0 as well as a continuum of KK modes with 
m > 0. For a massive KK mode m ~ H, the four-dimensional part evolves 
as 

1 
rp = a312 cos(mt) , (B.22) 

Similarly to the de Sitter brane case, one can compute the projection of the 
bulk energy-momentum tensor on the brane and one finds for its components: 

(b), 1 I 
1
2 2( . 2 , 1 I 

1
2 2 

T t = - 4a 3(t) fm m 8111 (mt)/= - Sa3(t) fm m , 

(b) i 5 I 12 2( . 2 ' 5 12 2 
T i = 4a3 (t) fm m 8111 (mt) I= Sa3 (t) lfm m . (B.23) 

This gives 

1 l,' , 4 ( (bl, a (b), a (b) . ) 
4 dt a 8, T t + 3- T t - - T 'i 
a to a a 

-2E' "s t 

5 I 12 2 ( a(to)) 
- Sa3(t) fm m 1 - a(t) (B.24) 

and E', = -E';. Thus we obtain 

(b), -2 , 1 I 
1
2 2 

T t - "s Et= 2a3 (t) fm m , 

(b) . 2 . 
r·\-K5 E\=O, (B.25) 

at late times. Therefore, the effective energy density and pressure for a KK 
mode becomes 

2 ( 2 (b) t t ) K,~ 12 2 
r;,4P(cff) = - "s T t - Et = -

2
a3(t) lfm m , 

2 - 1 (-2 (b) i i ) -
"4P(cff) - 3 "s T i - E i - 0 . (B.26) 
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This means that, also for a low energy cosmological brane, a massive KK 
mode behaves as cosmic dust with negative energy density. 

The analyses given above imply that the result is independent of the ex­
istence of a mass gap and the essential factor is the background expansion of 
the hrane. A KK mode can he approximately defined only for a cosmological 
hrane which slightly deviates from the dS geometry and for a low energy 
hrane, thus we expect that our result can he applied at least for these cases. 
However, for intermediate energy scales a KK mode is not well-defined in 
general and it is not dear how our result might be applied. 

Finally, we note that the hulk energy density of a KK mode on the brane 
remains positive as 

2 2 t 1 21 2 2 1 
K5P(bulk) := -K5T t = 4Ks fml m a3 > 0, (I3.27) 

for both de Sitt.er and low energy branes (with the understanding that the 
time average over scales greater than m-1 is taken). It shows that there is no 
singular effect in the bulk in contrast to the peculiar behavior on the brane. 



Appendix C 

Classical stability against tensor 
and scalar perturbations 

In this Appendix, we analyze the dassical stability against the tensor and 
scalar perturbations on the thick brane background which is discussed in 
Chapter 4. 

C.1 Tensor perturbations 

We first discuss the tensor perturbations about the domain wall background. 
Here we shall assume a R.andall-Sundrnm (R.S) gauge [ 9] in which the com­
ponents of the extra-dimension are zero, i.e., 

ds2 = b2 (z) [dz2 + (iµv + hµv) dx"dxv] , (C.1) 

where hµv satisfies the usual transverse-traceless gauge about. the background 
dS metric; D"hµv = hµ µ = 0, where Dµ is the covariant. derivative associated 
with "(µv· 

In this case, the perturbation is separable and we obtain the equation of 
motion in the bulk direction, which can be writ.ten in the standard quantum 
mechanical form as 

[- ::2 + Vr(z)] 1/J(z) = m21/J(z), (C.2) 

where 1/J(z) ex b(z)-(d-l)f2hµv and 

Vr(z) = (d - 1)2 H2 - d - 1 H2 d - 1 + ~ . 
4 4 cosh2 (Hz/a) 

(C.3) 

The thin wall limit. can be obtained from the limit. a --+ 0, which leads to 
a system composed of a thin dS hrane embedded in a flat. Minkowski hulk. 
The potential for the tensor perturbations in the thin wall limit is then 

Vr(z) = (d ~ l)
2 

H2 - (d- l)Ho(z), (C.4) 
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where we used for O' --> 0 

1 
20'cosh2(x/O') --> o(x)' (C.5) 

In this limit the solution for the tensor pertmbations reduces to the standard 
exponential form. 

The general solution can be decomposed into a zero mode with mass 
m = 0, which may realize fom-dimensional gravity on the brane, and a 
continuous spectrum of Kaluza-Klein (KK) modes with m > 3/2 (in the five­
dimensional case). Thus, the model is classically stable against the t.P-nsor 
perturbations. 

C.2 Scalar perturbations 

Next, we discuss the stability of the model against scalar perturbations. We 
consider a scalar metric perturbation of the form 

ds 2 = b(z) 2 
[ ( 1+2A )dz2 + 2D,,Bdx"dz 

+(rw(l+2'R.) +2Dµ.DvE)dx"dx"], (C.6) 

and also a perturbation of the field x(z)--> x(z) + ox(x), which supports the 
domain wall. 

In the bulk longitudinal gauge, B = E = 0, the perturbed Einstein 
equations can be written as follows: 

b' b' 2 
d(d - I)bR! + (d - l)D'R. + d(d - l)H2'R. - d(d - 1) ( b) A 

av 
x'ox' - Ax'2 

- b2 ax ox, 

-(d - l)D,,( 'R.1 
- ~A) = ¢' Dµox, 

(d- l)R" + (d - 1) 2 ~'R.' + (d - 2)D'R. + (d - 2)(d - l)H2'R. 

b' b" 
(d- I)bA' - 2(d - l)bA +DA 

- Ax'2 
- <f/ox' - b2 av ax 

ax ' 

D0 D13((d- 2)'R.+A) = 0. (C.7) 

The perturbed equation of motion of the scalar field is found to be 

ij ij 
ox"+ (d - I)box' +Dax - 2A( x" + (d - I)bx') 

+ (-A'+d'R.')¢'-b2 ~~ox=O. (C.8) 
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Next, we derive the evolution equation for the curvature perturbation R. 
By defining 

- (£_)-1/2 
\II - R bd-1 , (C.9) 

the equation for the curvature perturbations can be reduced to the form 

(C.10) 

with potential 

Vs 
rf2 + 4d - 13 (b')2 3d - 1 b" b' x' - - +(d-3)--

4 b 2 b bx' 
¢i" x" 2 
-+2(-) -2(d- l)H2

. 
x' x' 

(C.11) 

For the dS thick !wane case, which is considered in this article, we obtain 

Vs /3:( ) {2[2 + (3d- 7)cr - (4d- 4)cr2J 
4cosh /]z 

+ [4 + 4(d- 3)cr + (d2 
- lOd + 9)cr2

] sinh2 (/]z)}. (C.12) 

Thus, it is simple to see that at least both for the cases of interest, d = 2 
and d = 4, Vs > 0 and therefore, the model is always stable against scalar 
perturbations. The d = 4 case was originally derived in f 48j. 



Appendix D 

A pp en dices for analyzing 
quantum effects on the thick 

brane model 

In this Appedix, we make mathematical preparations for evaluating quantum 
effects of a test scalar field on the thid< brane model, which is discussed 
in Chapter 4. \Ve first derive the normali7,ed mode functions of Kal117,a­
Klein (KK) modes. We also calculate the amplitude of the bound state 
quantum fluctuations. 

D.1 Normalized mode functions for Kaluza­
Klein modes 

The normali7,ation constants and normali7,ed mode functions for KK modes 
on the thick hrane model which is discussed in Chapter 4 are derived. The 
perturbations are not needed to be Z2 symmetric with respect to the center 
of the brane in general, even if the hackground geometry is Z2 symmetric. 
So, we can have two types of configurations of mode functions: One is the 
untwisted configuration with respect to the center of the thick brane f (-z) = 
f(z), which corresponds to the Neumann boundary condition and the other 
is twisted configuration f(-z) = - j(z), which corresponds to the Dirichlet 
boundary condition. If we impose the Neumann boundary conditions at 
the center of the brane, the twisted mode functions are not relavant for the 
amplitude of quantum fluctuations on the brane and only contribute to the 
quantum backreactions, whereas the untwisted mode functions are relavant 
both for the amplitude of fluctuations and quantum hackreactions on the 
brane. 
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D.1.1 The untwisted case 

We consider the case of the untwisted configuration, i.e., f(-z) = f(z). 
'Ne first derive the normalization constant. for each KK mode and then the 
normalized mode functions. We start. from the following quantity: 

(q2 
- q;) 1L (H dz) (aqPiqa(x) - /)qR~qa(x)) (aq"Pi""0 (x) - /)q"R~q"a(x)) 

1L (H dz) [ (aqq2 Pi•0 (x) - /)qq2 R~"0 (x)) (aqnPi"" 0 (x) - /)q"~q" 0 (x)) 
(aqPiqa(x)-/)qR~qa(x)) (aqnq?,P~q"0 (x)-/3q"q?,R~q"0 (x))]. (D.1) 

Using the equations of mot.ion for mode functions Eq. ( 4.15), Eq.(D.1) be­
comes 

Note, that in the second line, only the boundary terms survive. Further­
more, using Eq. ( 4.38),we can deform Eq. (D.2) 

_.!_ (1- xi) (aqPiqa'(xL) - /)qR~qa'(xL)) (aq"Piq" 0 (xL) - /)qnR~q"a(xL)) 
(]" 

+ .!_ (a.Pi•0 '(0) - /)qR~qa'(O)) (aq"Piq"0 (0) - /3q"R~q"0 (0)) . (D.3) 
(]" 

Without loss of generality, we can set aq = R~qa'(O) and /)q = piqa'(O) and 
obtain the following equation from Eq. (D.3) 

-~ (1- x1,) (aqPi•01 (xL) /)q~qa'(xL)) 
X (R~qna'(O)Piqna(xL) piqna'(O)R~q"a(XL)) 

_.!_(a piqa'(x ) - /) Riqa'(x )) ~q"a'(O) (D.4) 
a q v L q v L R~QnO"'(xL) 
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Note, that we have used the \,Yronskian normalization of Eq.( 4.33), which 
corresponds to the definition of the second independent solution of equation 
of motion Eq. (4.15) R~q"(x): 

(D.5) 

As a result, we obtain the following relation for our choice of the coefficients 

- -~ (Riqa'(O)Piqa'(x ) - piqa'(O)Riqal(x )) R~"""'(O) . 
v V L /.I V L RiqnOf( ) 

U v XL 
(D.6) 

Taking the derivative with respect to q and then setting to q = qn (namely, 
a KK mode), we obtain the following equation 

8q [ (q2 
- q;) 1L (H dz) (aqPiq"(x) - /3q~q"(x)) 

X (aqnpiq""(x) - /3qn~q""(x)) L=qn 

- 2qn 1L (H dz) (aq"Piq""(x) - /3qnR~q""(x)) 2 

a [-~ (Ri""'(O)P""'(x ) _ pi""'(O)Ri""'(x )) R~q""'(O) ] . 
q v v L v V L RlQnOt( ) _ 

a • ~ ~• 

(D.7) 

Thus, the normafomtion constant in our choke of coefficients becomes 

N-2 
Qn 

21£ (H dz) (R~""'(O)Piq""(x) - Pi""'(O)R~q""(x)) 2 

_l 8 [- (Ri""'(O)Pi""'(x ) - piqa'(O)Riqa'(x )) R~"""'(O) l . 
~q q V V L V V L RlQnO'f( ) _ 
v n v XL q-qn 

(D.8) 
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Finally, we obtain the desired normalized mode functions 

J;Jz) N;,, (aq,,P~q""(x) - (:iq"R~q""(x)) 2 

aqn 
= 

a.(Piq" 1 (0)R~•"1 (xL) - R~""'(O)Piqu,(xL)) q~q" 

x (R~"""'(O)Pi"""(x) - Pi"""'(O)R~qnu(x)) 

x (R~q""'(xL)Piq""(x) - Pi"""'(xL)R~"""(x)) (D.9) 

D.1.2 The case of the twisted configuration 

Similarly, we discuss the case of the twisted configuration, i.e., J(-z) = 
- f(z). The derivation is essentially the same as the previous case of the 
untwisted configuration and thus we omit the detailed derivations. Here, we 
introdnce the essential results. 

Because of the Dirichlet boundary condition, instead of Eq. ( 4.38), we 
have the relation bet.ween coefficients as 

°'q" R~q""(O) R~q""(xL) (D.10) 

\'Vithout of generality, we may set 

°'" = R~q"(O), (:iq = piq"(O). (D.11) 

Along the lines in the case of the untwisted configuration, we obtain the 
following relation: 

(q2 -q;';)1L(Hdz) (aqPiq"(x) (:iqR~q"(x)) (aq"piq""(x)-(:lq,,R~q,,u(x)) 

-~ (Riq"(O)Pi""(x ) _ piq"(O)Ri""(x )) R~"""(O) . v v L V V L RtqnO( ) 
U v XL 

(D.12) 

Taking the derivative with respect to q and setting to q = qn (i.e., a KK 
mode), we obtain 

Oq [ ( q2 
- q;';) 1L ( H dz) ( O'.qpiqu ( x) - (:iqR~qu (x)) ( O'.qn Pi""" (x) - (:iqn R:f"" (x)) L~q" 

2qn i\H dz) (aqnpiq,,u(x) - (:iqn~q,,u(x)) 2 

8 [-~ (Riq"(O)Pi""(x ) - piq"(O)Riqu(x )) R~•""(O) ] . (D.13) 
q v v L v v L Riqna( ) a v ~ F% 

The normalization constant. in our choice of the coefficients becomes 

N;;_2 = 21L (H dz) (aq"Pi"""(x) - (:iq,,R~"""(x)) 2 

_1 8 [- (Riq"(O)Piqu(x ) - pi""(O)Ri""(x )) R~"""(O) l . 
~q q v v L V V L RZQnC1( ) _ 
u n v XL q-qn 

(D.14) 
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Finally, we obtain the desired normalized mode functions 

J;Jz) 
JV2 (a piq,.a(x) _ /3 Riq,.a(x))2 

qn Qnl/ Qnv 

uqn 

8q (Piq0 (0)R~q0 (xL) - Rtq0 (0)Piq0 (xL)) _ 
q-qn 

X (R~q" 0 (0)Piq"a(x) - Piq"0 (0)~q,.a(x)) 

X (R~""0(xL)Piq"0 (x) - Piq"0 (XL)R~q"a(x)) . 
(D.15) 

D.2 Bound state amplitude 

Next, we evaluate the amplit.ude of the bound state zero mode. The integra­
tion here is doing along the dosed contour with the dotted line as depicted 
in Fig. 4.3. In order to obtain the KK amplitude, we need to subtract the 
bound state amplitudes which are evaluated hem from the total amplitude 
derived in Chapter 4. 

D.2.1 On the two-sphere (two-dimensional de Sitter 
brane) 

First,, we note that the bound state for the minimally coupled case is given 
by 

zv 
qo=-' 

(]" 

where the bound state zeta function is defined as 

(b,(s) = 4J5(o)µ~~'l ~(j + 1/2) (u + 1/2)2 - (~)2)-s 

(D.16) 

µ2(s-l) 

= 4J5(0) H 2s (bs(s) . (D.17) 

Here, f 0 (z) is the normalized mode function of the bound state. Quite clearly 
we have a zero mode (by zero mode we mean that the lowest eigenvalue Ao 
is a null eigenvalue, i.e., Ao = 0) and in such a case we have to project out 
this mode to evaluate the bound state contribution. However, in general the 
hound state varies from the top of the mass gap at (v/u) 2 = 1/4 down to 
v / u = 0, which is for the massless conformally coupled case. In the following 
we shall focus on a general bound state mass v / u taking care when dealing 
with the bound state zero modco. 

It is straightforward to evaluate the above (-function by employing the 
binomial expansion method which follows identically to that of Allen r 149 L 
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see [121] for t,he case when null eigenvalues are present. Thus, subtracting 
out the null eigenvalue we obtain the following: 

- 1 co r(s+J) I/ 2J (1)-2s 
(bs(s) = 2 B J! f(s) [ (;;:) (c(s + J) -Oco 2 ] , (D.18) 

with (c( s) for 8 2 defined by 

(D.19) 

which is the 7,eta function for the bound state mode in the conformally cou­
pled case, evaluated explicitly in [117] in the case of d + 1 = 3. Essentially 
the minimally coupled case requires summing from J = 1 instead of J = 0 
in (D.18), i.e. we have to subtract out the null eigenvalue. 

Similar to the case discussed in [121] (subsection 11.3, Eq. (11.73), pp. 
80) there is a pole in the above Hurwit7, 7,eta function at s = 1, which can be 
simply inferred from the relation Eq. ( 4.61). As discussed in [117] a suitable 
way to deal with the the pole at s = 1 is to apply the improved 7,eta function 
method, described in [150, 151], which leads to a expression for the amplitude 

Jim dd [(s - 1) (bs(s)(x)] . 
S--J.1 8 

(D.20) 

Note, the above expression agrees with the usual definition when there is no 
pole at s = 1. 

Applying the above equation to our case we obtain 

Next, we determine fo(O). The normali7,ed bound state solution is 

1 ( {"° )-1 JJ(z) = 
2

u cosh-2"(x) lo dycosh-2"(y) (D.22) 

Thus, 

1 ( {"° )-1 JJ(O) = 2u lo dycosh-
2
"(y) (D.23) 

Note that for the conformally coupled case ~ = ~c' v = 0 and therefore, the 
amplitude of the bound state vanishes. This agrees with the result found in 
[117], for the thin brane case. In fact numerical plots of the amplitude for 
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the bound state mode versus the lwane thickness show that the hound state 
mode is independent of the brane thickness. 

Finally, for the bound state mode, we obtain the normali7-ed amplitude 
as 

(D.24) 

This can now be compared with the result for that of the KK modes. 

D.2.2 On the four-sphere (four-dimensional de Sitter 
brane) 

The 7-eta function for the bound state can be written as 

_ 1 (µ)2(s-l) 2 _ 
(bs(s) = 2 H2 H fo (O)(bs(s), (D.25) 

where 

( (s) := .1:. ~ (j + 3/2)(j + l)(j + 2) 
bs 3 f;:O' [(j + 3/2)2 - (v/o-)2Js 

(D.26) 

is the 7-eta function for a massive scalar field on S 4 . For the S4 geometry, 
the 7-eta function for a massless, conformally coupled scalar field is given by 

(D.27) 

Thus, the dS 7-eta function for a general mass can he written as a summa­
tion over the massless conformal 7-eta functions (by employing the binomial 
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expansion) 

oo f(s + J) 1/ 2J (3)-2s 
(bs(s) = §; J! f(s) [ (;;:) (c(s + J) - O<,o 2 ] 

~ f(s + J) [~ (1::.) 2
J {(H(2s - 3 + 2J ~) - ~(H(2s - 1 + 2J ~)} 

L., J! r(s) 3 (J '2 4 '2 
.1=0 

(3)-2s 
8.;,o 2 ] 

l[ 3 (1/)2 3 
3 (H(2s - 3, 2) + s ;;: (H(2s -1, 2) 
1 3 1 (1/)2 3 
4(JJ(2s - 1, 2) - 4s ;;: (H(2s + 1, 2) 

~ r(s + J) (v)2J 3 
+ :8 J! f(s) ;;: (H(2s - 3 + 2J, 2) 

1 
00 

r(s + J) (v)2J 3 ] 
4 ~ J! f(s) ;;: (H(2s - 1 + 2J, 2) 
00 

r(s+J) (3)-
2

' §; J!f(s) Seo 2 (D.28) 

Now, we can evaluate the squared amplitude of the bound state from 
Eq. (D.20). The normalization of the bulk mode is the same as the d = 2 
case and at. z = 0 we obtain Eq. (D.23) with v for d = 4, 

1/ = ~ ( J1 + (3 - 16~)(30" + 20"2
) - 1) . (D.29) 

The resultant bound state amplitude is 

1 ( roo )-1 H 2 (Ji(O))b, 
2

0" Jo dycosh-2"(y) 

x { (-~ + ~ (~) 
2

) In(~) + ~(H(-1, ~) + ~,P(3/2) 

( '::_)
2 (-~ + ~1f(3/2) + ~(H(3 ~)) 

(J 3 3 6 '2 

+ ~ ~ (1::.) 2

J ((H(2J - 1 ~) - ~(H(2J + 1 ~)) 
3L., (J '2 4 '2 J=2 

00 (3)-2 
2 I:se.o 2 } . 

J=O 

(D.30) 



Appendix E 

A pp en dices for analyzing 
linearized gravity in the Einstein 

Gauss-Bonnet braneworld 

In this Appendix, we give harmonic functions to analyze the linearized gravity 
on a dS brane in the EGB theory. vVe also show that there is a tachyonic (un­
stable) bound state in a dS two-brane system in the EGB theory. 

E.1 Harmonic Functions on a de Sitter geome­
try 

Here, we consider the harmonics on the de Sitter spacetime with curvature 
radius H-1 • They are obtained by the Lorentzian generalization of the tensor 
harmonics on an n-dimensional constant curvature Riemannian space ri52]. 
\li/e focus on the tensor-type and scalar-type harmonics. 

E.1.1 Tensor-type harmonics 

The tensor-type tensor harmonics sat.is(y 

(E.1) 

whid1 corresponds to the four-dimensional massive gravitons with mass­
squared m2 H 2 = (p2 + 9/4)H2 • They satis(y the transverse-traceless con­
dition, 

Y (p,2)µ _ y(p,2)v _ O 
µ - µ Jv - . (E.2) 

In reality, the t.ensor harmonics have three more indices for the spatial 
eigenvalues. If we adopt the flat slicing, 

(E.3) 
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we can use the standard Fourier modes eik-'", and the spatial indices will 
be continuous. In addition, we also have discrete indices u that describe 
the polarization degrees of freedom (five in four-dimensions). However, for 
notational simplicity, we omit these indices. 

VVe ortho-normalize the tensor harmonics as 

Although we have no explicit proof for the completeness, due to our poor 
knowledge, we assume that YJe·2

) for -oo < p < oo constitute a complete 
set for the space of transverse-traceless tensors. 

E.1.2 Scalar-type harmonics 

The scalar-type harmonics y(p,o)(xµ) satisfy the equation for a scalar field 
with mass-squared m2 H 2 = (p2 + 9 / 4) H 2

, 

(E.5) 

\Ve assume they satisfy the ortho-normality condition, 

(E.6) 

From y(p,O), the ortho-normalized scalar-type vector harmonics are con­
structed as 

y(p,O) = i D y(p,O) 

µ H)p2 +9/4 µ ' 
(E.7) 

which satisfy 

(E.8) 

The trace-free and divergence-free scalar-type tensor harmonics are con­
structed, respectively, as 

y(p,O) = N [D D y(p,O) - ~ (P2 + !!.) 'V H2y(p,O)l 
µv p µ v 4 4 1µv 

y(p,O) = N [D D y(p,O) - (P2 + 21),.,, H2y(p,O)l 
µv p µ v 4 1µv 

= y(p,O) - ~N (P2 + 25)H2,.,, y(p,o). (E.9) 
µv 4 p 4 iµv · 

where 

(E.10) 
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Without loss of generality, we assume that Np is real and positive. The scalar­
type divergence-free tensor harmonics YJ~·o) satis~y the ortho-normality con­
dition, 

(E.11) 

E.2 Tachyonic bound state in de Sitter two­
brane system 

In 11391, Charmonsis and Dnfanx showed that for the Minkowski two-brane 
system there exists a tachyonic bound state on the negative tension brane. 
This fact implies that the Minkowski two-brane system is unstable under the 
linear perturbation. Following 1139], we show that there exits a tachyonic 
bound state also for the de Sitter two-brane system. 

E.2.1 Possibility of a negative norm state 

\Ne consider a de Sitter two-brane system. One of the branes located at a 
smaller radius of the AdS space has a negative tension. We discuss only the 
bulk gravitational perturbations. The matter perturbations on each brane 
are not taken into account. 

The bulk component of the perturbed Einstein Gauss-Bonnet equation 
including the boundary branes are written in the Sturm-Liouville form as 

{ (b4 _ od2(b2b'2 _ b2 H2) )\bp,v} 
,y 

= -b2 (1-od2 b:) (p2 + ~)H2 1,bp· (E.12) 

Using Eq. (E.12), the boundary condition on each brane is derived. For 
H = 0 and b(y) = e-IYl/1, Eq. (E.12) naturally reduces to the Minkowski 
version, Eq. (8) in 1139]. 

1) On positive tension brane 
Imposing the Z2 symmetry, the warp factor around the positive tension 
brane is expressed as 

(E.13) 

Integrating Eq. (E.12) around y = Y+ and using the Zrsymmet.ry, 

where 

[)of, ( - 0) - ~ (p2 + 9/4) cosh(y+/e) of. ( ) 

y"Pp Y+ - e sinh3 (y+/f) 'Pp Y+ ' 

& 
1/ := --. 

1-& 

(E.14) 

(E.15) 
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2) On negative tension brane 

Similarly, the Z2 symmetry gives the warp factor around the negative 
tension brane as 

(E.16) 

Integrating Eq. (E.12) around y = y_ and using the Z2-symmetry, 

a"'' ( ) - T/ (p
2 

+ 9/4) cosh(y_/f.) "'' ( ) 
y'!'p Y- + 0 - f. sinh3(y_/f.) '!'p Y- . (E.17) 

For both hranes, the boundary conditions are of a mixed (Robin) type. 
This renders us impossible to prove the positivity of the norm. Namely, we 
have 

(E.18) 

Thus t.he norm is no longer positive definite for p2 + 9 / 4 > O. 

E.2.2 Condition for the existence of tachyonic bound 
state 

In order to determine whet.her a tachyonic hound state exists, we need to 
analyze the mass spectrum. The tachyonic eigenmode, if it exists, is written 
by 

where m 2 = -µ2
, q := J µ2 + 9 / 4, and q2 = -p2 • The y-derivative of it. is 

. 5~2 ( ) [(~2 -q)AqPi(i(cosh(y/f.)) + (~+q)BqP{12 (cosh(y/f.))j. f. smh y / f. 2 

(E.20) 

Using the boundary condition on each brane, Eqs. (E.14) and (E.17), we 
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obtain 

Aq (~ - q) ( (z! - l)P1/~(z+) + 11(~ + q) z+P3/~(z+)) 
+ Bq (~ + q) ( (z! - l)P1q12 (z+) + 17(~ - q)z+Pi;2(z+)) = 0, 

Aq(~ - q) ( (z: - l)P;j~(z_) + 17(~ + q)z_P:;;~(z_)) 
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+B" (~ + q) ( (z: - l)Pi12 (z_) + 11(~ - q)z_Pj12 (z_)) = O(E.21) 

where Z± = cosh(y±/i!). 
For a non-trivial solution for Aq and Bq t.o exist, the determinant. must 

vanish. Thus 

( (z! - l)P1/~(z+) + 17(~ + q)z+P3/~(z+)) 
( (z: - l)Pi12 (z_) + 11(~ - q)z_P;f12(z_)) 

-((z:- l)P;j~(z_) + 11(~ + q)z_P:;;~(z-)) 

( (z! - l)Pi12 (z+) + 11(~ - q)z+P3/ 2(z+)) = 0. (E.22) 

The pole at q = 3/2, which corresponds to the zero mode, is divided out in 
deriving Eq. (E.22). If there exists a solution of Eq. (E.22) at. q > 3/2, it. 
implies the existence of a tachyonic hound st.ate. 

E.2.3 Existence of a tachyonic bound state 

From Eq. (E.22), 

(z:2. - l)P;112(z_) + 11G- q)z_P;f12 (z_) 

(z:2. - l)P,/~(z_) +11a + q)z_P3/~(z_) 
(z! - l)P1q12 (z+) + 11(~ - q)z_Pj12 (z-) 

(z! - l)P11~(z+) + 11(~ + q)z+P31~(z+) · 

Using the definition of the Legendre functions [137], 

1 (z+l)µ./2 [ l-z] 
P/:(z) = r(l _ µ) z _ l 2F1 -v, v + l; 1 - µ; - 2- , 

(E.23) 

(E.24) 

we see that the left-hand-side of Eq. (E.23) is generally much larger than the 
right-hand-side for q ~ 1 for fixed z+ and z_. Therefore, in order for this 
equation to be satisfied, we must have 

3 (z:2. - l)Pi12 (z-) z:2. - 1 
q - - ~ -> for q _, oo. (E.25) 

2 - 17z_P;f12 (z_) 17 z_ 
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This is a consistent solution for 17 « 1. Thus a tachyonic hound state exists 
in the de Sitter ]wane case as well. 

The tachyon mass is given hy 

µH = Jq2 - 9/4H Co'. (z~ - l~He. 
1)L 

(E.26) 

In the low energy limit., we have z+ > z_ » 1 and He ""' 1 / z+ « 1. Hence, 
the above reduces to 

where 

0 
µH~­- 17€' 

This agrees with the result for the Minkowski hrane f 1391. 
On the other hand, in the high energy limit., Hf» 1, we have 

0 2H H 
µH""' 17(Hf)2 « ry. 

(E.27) 

(E.28) 

(E.29) 

Thus the high hackground expansion rate of the brane suppresses the tachy­
onic mass, giving a tendency to stahilize the t.wo-brane system. 
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In the context of the Randall-Sundrum (RS) single-brane scenario, \Ve discuss the bulk geo1netry and 
dynamics of a cosmological brane in tenns of the local energy conseivation la\V \Vhich exists for the bulk that 
allo\vs slicing \Vith a maximally sy1nmetric three-space. This conservation Jaw enables us to define a local mass 
in the bulk. We show that there is a unique generalization of the dark radiation on the brane, which is given by 
the local mass. We find there also exists a conserved current associated with the Wey! tensor, and the corre­
sponding local charge, \Vhich \Ve call the Wey! charge, is given by the sum of the local mass and a certain linear 
combination of the components of the bulk energy-1nomentum tensor. This expression of the Weyl charge 
relates the local mass to the projected Weyl tensor, E µii, \Vhich plays a central role in the geometrical 
fonnalistn of the RS brane,vorld. On the brane, in particular, this gives a decomposition of the projected Wey! 
tensor into the local inass and the bulk energy-momentum tensor. Then, as an application of these results, \Ve 
consider a null dust model for the bulk energy-momentum tensor and discuss the black hole fonnation in the 
bulk. \Ve investigate the causal structure by identifying the locus of the apparent horizon and clarify possible 
brane trajectories in the bulk. We find that the brane stays always outside the black hole as long as it is 
expanding. We also find an upper bound on the value of the Hubble parameter in tenns of the 1natter energy 
density on the brane, irrespective of the energy flux emitted fr01n the brane. 

DOI: IO. I 103/PhysRevD.70.044021 

I, INTRODUCTION 

The braneworld scenario has attracted 111uch attention in 
recent years (I]. In this scenario, our Universe is assumed to 
be on a (mem)brane embedded in a higher-dimensional 
spacetime. There are 1nany models of the brane\vorld sce­
nario and corresponding cosmologies. One of them that has 
been extensively studied is the brane\vorld cosmology based 
on a model proposed by Randall and Sundrum (RS) [2], in 
which a single positive tension brane exists in a five­
dimensional spacetime (called the bulk) with negative cos­
mological constant, the so-called RS2 model. In this paper, 
we focus our discussion on this single-brane model. 

In many cases, the five-din1ensional bulk geometry is as­
sumed to be anti-de Sitter (AdS) or AdS-Schwarzschild 
[3-5]: 

,, ,.- Mo 
2 

,.- M0 ') 

( ' ) ( ' i-1 ds-= - K+-::;-- -,- dt + K+ -;- -, dr-e- ,.- e- ,.-
0 A' + r-du(K,J), (I. I) 

where£,= J-6//\, 5 is the AdS curvature radius, M0 is the 
black hole mass, and JOZx.3) is the maximally symmetric 
(constant curvature) three-space with K = - 1 , 0, or + 1 . The 
brane trajectory in the bulk, (I ,r) =(I( T),r( 7) ), is deter­
mined by the junction condition [6]. As usual, we impose the 
reflection symmetry with respect to the brane. Then, we ob­
tain the effective Friedmann equation on the brane as [ 4,5] 

(1.2) 

PACS number(s): 04.50.+h, 98.80.Cq 

where er and p are the brane tension and energy density of 

the nlatter on the brane, respectively, and i-= dr/dr with T 

being the proper time on the brane. The final term is propor­
tional to the mass of tl1e bulk black hole and is often called 
the "dark radiation" since it behaves as the ordinary radia­
tion. Geometrically, it comes from the projected Wey! tensor 
in the bulk, denoted commonly by E µ" [7]. If we apply Eq. 
(1.2) to the real Universe, the values of er, e, and M 0 are 
constrained by observations of the cosmological parameters 
[SJ, 

When the bulk ceases to be pure AdS-Schwarzschild, or 
when there exists a dynan1ical degree of freedom other than 
the metric, the parameter M0 is no longer constant in gen­
eral, but becomes dynan1ical. For instance, this is the case of 
the so-called bulk inflaton model [9-13], or when the brane 
radiates gravitons into the bulk [15]. In particular, in Ref. 
[IO], the dynamics of a bulk scalar field is investigated in the 
context of the bulk inflaton model i.mder the assun1ption that 
the backreaction of the scalar field on the geometry is small, 
and it is found that there exists an interesting integral expres­
sion for the projected Weyl tensor in terms of the energy­
mon1entum tensor of the scalar field. This suggests the exis­
tence of a local conservation law in the bulk that directly 
relates the dark radiation on the brane to the dynamics in the 
bulk. 

In this paper, we investigate the case when there is non­
trivial dynamics in the bulk, and clarify the relation bet\veen 
the bulk geometry and the dynamics of the brane, We focus 
on the case of isotropic and homogeneous branes and hence 
assume the existence of slicing by the maximally symmetric 
three-space as in Eq. ( 1.1 ). In this case, we can derive a local 
energy conservation law in the bulk, in analogy with spheri­
cal symmetric spacetimes in four dimensions [16]. Then, this 
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conservation law can be used to relate the brane dynamics to 
the geometrical properties of the bulk, especially with the 
projected Wey! tensor in the bulk. 

The paper is organized as follows. In Sec. II, we derive 
the local energy conservation law in the bulk and discuss the 
general property of the bulk geometry and cosmology on the 
brane. We show that there exists a lUlique generalization of 
the dark radiation that is directly related to the local mass in 
the bulk. We also find that there exists another conserved 
current associated with the Weyl tensor, as a nonlinear ver­
sion of what was found in Ref. [IO]. In a vacuum (Ricci fiat) 
spacetime, the local charge for this current is foWld to be 
equivalent to the local mass. Let us call this the Wey! charge. 
The difference between the local mass and Weyl charge is 
given by the linear combination of certain components of the 
bulk energy-momenh1m tensor, and the projected Weyl ten­
sor that appears in the effective Friedmann equation on the 
brane is indeed given by this Wey! charge. Thus we have a 
unique decomposition of the projected Weyl tensor term into 
the part due to the bulk mass that generalizes the dark radia­
tion term and the part due to the bulk energy-momentum 
tensor. In Sec. III, as an application of the conservation law 
derived in Sec. II, \Ve consider a simple null dust model and 
discuss the black hole formation in the bulk. We identify the 
location of an apparent horizon and analyze possible trajec­
tories of the brane in the bulk. We show that the brane stays 
always outside of the apparent horizon of the black hole as 
long as the brane is expanding. In Sec. IV, we summarize our 
work and mention future issues. 

II. LOCAL CONSERVATION LAW IN A SPACETIME 
WITH MAXIMALLY SYMMETRIC THREE-SPACE 

In this section, \Ve discuss the general property of a dy­
namical bulk spacetime with a maximally symmetric three­
space, and consider cosmology on the brane. First, we derive 
a local conservation law in the bulk, as a generalization of 
the local energy conservation law in a spherically symmetric 
spacetin1e in four din1ensions [16]. Namely, we show that a 
locally conserved energy flux vector exists in spite of the 
absence of a timelike Killing vector field. Thjs enables us to 
define a local mass in the bulk spacetime. We also show that 
there exists a conserved current associated with the Weyl 
tensor. This gives rise to a locally defined Wey! charge. It is 
sho\vn that the Weyl charge and the local mass are closely 
related to each other. 

Next, \VC introduce the brane as a boundaty of the dy­
namical spacetime. The effective Friedmann equation, is de­
termined via the junction condition, and it is sho\vn that the 
local mass corresponds to the generalized dark radiation. Fi­
nally, we show that the projected Weyl tensor on the brane is 
uniquely related to the local n1ass. 

A. Local conservation la\V 

We assume tliat the bulk allows slicing by a maximally 
sy1n1netric three-space. Then, the bulk metric can written in 
the double-null form 

PHYSICAL REVIEW D 70, 044021 (2004) 

" 4r,ur.u " 2 
ds-=~dudv+r(u,v)-dD.(K,3), (2.1) 

\vhere we refer to u and u as the advanced and retarded time 
coordinates, respectively. In Appendix A, the explicit com­
ponents of the connection and curvature in an 
(n+2)-dimensional spacetime with maximally symmetric 
n-space are listed. 

The five-dimensional Einstein equations are given by 

where the indices {a,b} run from 0 to 3, and 5, and A5 and 
K; are the fiveMdimensional cosmological constant and gravi­
tational constant, respectively. TI1e brane is introduced as a 
singular hypersurface located at y = y 0 , where y denotes a 
Gaussian normal coordinate in the direction of the extra di­
mension in the vicinity of the brane, and Sab denotes the 
energy-n101nentum tensor on the brane. The spacetime is as­
sumed to be reflection symn1etric with respect to the brane. 

First, we consider the Einstein equations in the bulk. They 
are given by 

(2.3) 

( ,.'if> [ ( I,. ,. I l ,. l l --- log~ +4~ -(K-cI>) Y·· 
2r r <I> r 1J 

,II ,[J ,llV 

where 'Yi} is the intrinsic metric of the maximally syn11netric 
three-space. 

Now, we derive the local conservation law. We introduce 
a vector field in five-din1ensional spacetime as 

g"=~i!>(- _.!.__ ~+ _.!.__ ~)" 
2 r,v ;Jv r, 11 du 

(2.4) 

From the form of the metric (2.1 ), we can readily see that ga 
is conserved: 

Ffigga =(Ffigg") =2H(r3r ) -(r3r ) ]=O ,a ,a fl ,II ,v ,U ,II , 

(2.5) 

where y= det Yu. Note that, for an asymptotically constant 
curvature spacetime, the vector field 1;,a beco1nes asymptoti­
cally the timelike Killing vector field - (a/ at)". 

With this vector field 1;,a, \Ve define a new vector field, 

(2.6) 

where 
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(2.7) 

Using the Einstein equations, the components of the vector 

field S" are given by 

(2.8) 

Then, we have the local conservation law as 

(2.9) 

Since ga is conserved separately, the conservation of Sa im­
plies that we have another conserved current sa defined by 

(2.10) 

Thus we have the local conservation law for the energy­
mornentum tensor in the bulk. 

From Eqs. (2.8), we readily see the local tnass corre­
sponding to S" is given by [16] 

M'=(K-<I>)r2
, (2.11) 

where the factor 3/2 in the original expression for 8° is 
eliminated for later convenience. Alternatively, correspond­
ing to S0

, we have another local mass that excludes the con­
tribution of the bulk cosmological constant, 

Af,=M- ~ A 5r 4= (K -<I> )r2
- ~A 5r4 . (2.12) 

In what follows, we focus on the matter part M, rather than 

on the whole mass M. It may be noted, however, that this 

decomposition of M to the cosmological constant part and 
the matter part is rather arbitrary, as in the case of a bulk 
scalar field. Here we adopt this decomposition just for con­
venience. For example, this decomposition is more useful 
\vhen we consider s111all perturbations on the static AdS­
Schwarzschild bulk. We note that, in the case of a spherically 
symn1etric asymptotic flat spacetime in four dimensions 
(hence K= + I and with no cosmological constant), this 
function M agrees with the Arnowitt-Deser-Misner (ADM) 
energy or the Bondi energy in the appropriate limits. 

B. Local mass and Wcyl charge 

From the five-dimensional Einstein equations (2.3), we 
can write down the local conservation equation for M in 
terms of the bulk energy-momentum tensor explicitly as 
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2 ' M - -1<-1· 3(T" 1· -T" 1· ) 
,U - 3 5 U ,II U ,U l 

2 ' M - -1<-1·3(T" 1· -T" 1· ) 
,II- 3 5 II ,U U ,// ' 

or in a bit more concise fonn, 

(2.13) 

Using the above, we can immediately write down two inte­
gral expressions for M given in terms of flux crossing the 
u=const hypersurfaces from v 1 to v2 , and flux crossing the 
u =canst hypersurfaces from u 1 to u2, respectively, as 

M(v 2,11)-M(v 1,11) 

M(v ,11 2)- M(v,11 1) 

(2.15) 

Finally, let us consider the Weyl tensor in the bulk. In the 
present case of a five-ditnensional spacetime with maximally 
sy1nmetric three-space, there exists only one nontrivial com­
ponent of the Weyl tensor, say Cu 11u

11
• The explicit expres­

sions for the components of the Wey! tensor are given in 
Appendix A, Eqs. (A 7). Using the Bianchi identities and the 
Einstein equations, we have (26] 

where 

c ;d_J 
abed - abc • (2.16) 

From this, we can sho\v that there exists a conserved current, 

(2.18) 

\vhere ea and n a are a set of h.vo hypersurface orthogonal 
null vectors, 

e"= .Ji,(-r.,,dvL, ~ 1 (a)" ea=-v7'1>:-- - ' 2 1,u au 

11 0 = .,ff(r,,,du),,, n" = ff; _!__ ( !!...) ,, 
\J2'1> r,u au 

(2.19) 

The nonzero components are \Vritten explicitly as 

Qu=-r.JVuu• Qu=-rJu1111 , (2.20) 
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and \Ve have 

(2.21) 

These are very similar to Eqs. (2.8). It is clear that r4 Cv11u
11 

defines a local charge associated with this conserved current, 
that is, the Weyl charge. 

Using the Einstein equations, we then find that the Weyl 
charge can be expressed in terms of M and the energy­
momenturn tensor as 

,-4 K2 

r 4C ""=3M+-(6G" -G;·)=3M+ -2r4 (6T" -T;.) 
UU 6 U I 6 U I • 

(2.22) 

This is one of the most in1portant results in this paper. As we 
shall see below, the Weyl component Cu 11u

11 is directly re­
lated to the projected Weyl tensor E µ 1., and hence this rela­
tion gives explicitly how the local mass M and the local 
value of the energy-momenturn tensor affects the brane dy­
namics. 

C. Apparent horizons 

As in the conventional four-dimensional gravity, the 
gravitational dyna1nics may lead to the formation of a black 
hole in the bulk. Rigorously speaking, the black hole forma­
tion can be discussed only by analyzing the global causal 
structure of a spacetime. Nevertheless, we discuss the black 
hole formation by studying the formation of an apparent ho­
rizon. 

In four dimensions, an apparent horizon is defined as a 
closed two-sphere on which the expansion of an outgoing (or 
ingoing) null geodesic congruence vanishes. Here, we extend 
the definition to our case and define an apparent horizon as a 
three-surface on which the expansion of a radial null geode­
sic congruence vanishes. Note that "radial" here means sim­
ply those congruences that have only the (v,u) components; 
hence an apparent horizon will not be a closed surface if K 
=O. 

The expansions of the congruence of null geodesics fann­
ing the u= canst and v =canst hypersurfaces, respectively, 
are given by [ 16] 

1 1 <!> 
P =- -v;a =---

u 2 ;a 2r r · 
·" 
(2.23) 

Naively, if <I>= 0, one might think that both Pu and Pu van­
ish. However, from the regularity condition of the metric 
(2. 1 ), we have 

(2.24) 

Hence, it must be that r, 11 = 0 or r.u = 0 if <I>= 0. If <l>=r.v 
= 0, we have p 11 = 0 and an apparent horizon for the outgo-
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ing null geodesics is formed, \vhereas if<I>=r 11 =0, we have 
Pu= 0 and an apparent horizon for the ingoing' null geodesics 
is formed. 

D. Branc cosmology 

We now consider the dynan1ics of a brane in a dynamical 
bulk with maximally symmetric three-space [3]. The brane 
trajectory is parametrized as (u,u)=(u(7),u(7)). Taking 7 
to be the proper time on the brane, we have 

,. 111' u .• 
4~w=-l (2.25) 

on the brane, where 1/=du/dr and so on. The unit vector 
tangent to the brane (i.e., the five-velocity of the brane) is 
given by 

(
.a .a)" va= v-+u- , 
av au 

2r,11r,u . . 
va=~(udv+vdu)(/, 

(2.26) 

and the unit nonnal to the brane is given by 

( 
. a . a )" na= -v-+u-
av au ' 

2r 11r u . . 
na=~(udv-vdu)a. 

(2.27) 

The components of the induced metric on the brane are cal­
culated as 

ax11 axh 
qµi·= ayµ ayl'gab• (2.28) 

where µ, v run from 0 to 3 and yµ are the intrinsic coordi­
nates on the brane with y 0 = rand yi=xi (i= 1,2,3). Then 
the induced metric on the brane is given by 

(2.29) 

The trajectory of the brane is determined by the junction 
condition under the Z2 symmetry with respect to the brane. 
The extrinsic curvature on the brane is determined as 

(2.30) 

where S µi• is assumed to take the form 

s;.= diag(- p,p,p,p )- 0'8'.'., (2.31) 

\Vith a and p being the tension and energy density of the 
n1atter on the brane, respectively, as introduced previously, 
and p being the isotropic pressure of the matter on the brane. 
Substituting the induced metric (2.29) in Eq. (2.30), we ob­
tain 

(2.32) 
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(2.33) 

\Vhere H=i·Jr. Multiplying the above two equations and us­
ing the normalization condition (2.25), \Ve then obtain the 
effective Friedmann equation on the brane: 

K ( K~ l ) K1 ,, M 
H2 + 7= 

36 
a2- p + J8(2up+ p-)+ ,.4 . 

(2.34) 

We see that Mis a natural generalization of the dark radia­
tion in the AdS-Schwarzschild case to a dynamical bulk. 

For a dynamical bulk, M varies in thne. The evolution of 
Mis detem1ined by Eq. (2.14), and on the brane it gives 

This result is consistent with Refs. [12,15]. From tl1e Co­
dacci equation on the brane [7], 

D "" D K'' - 2T b a v'"- µ- µ 1·- K5 abn q µ• (2.36) 

where D is the covariant derivative with respect to q µi• and 
µ . 1 

K is the extrinsic curvature of the brane, we obtain t 1e 
"" equation for the energy transfer of the matter on the brane to 

the bulk, 

. - '2 '2 p+3H(p+p)-2(-T""v +T,,,,u ). (2.37) 

Equations (2.34), (2.35), and (2.37) determine the cosmo­
logical evolution on the brane1 once the bulk geometry is 
solved. These equations will be applied to a null dust model 
in tl1e next section. The case of the Einstein-scalar theory in 
the bulk is briefly discussed in Appendix B. 

Now \Ve relate the above result to the geometrical ap­
proach developed in Ref. [7], in particular with the Eµ.,, term 
on the brane. The projected Weyl tensor 

(2.38) 

has only one nontrivial co111ponent as 

C a c b c1 4c · 2 · 2_ c vu Err= abcdn n v v = lllJllUU v - - Ull • (2.39) 

Using Eq. (2.22), this can be uniquely decomposed into the 
part proportional to Mand the part due to the projection of 
the bulk energy-momentun1 tensor on the brane. We find 

3M 1 . 3M K; . 
E = - -+ -(G'.-6G"u)=- -+ -

6 
(T';-6T"u)· 

TT ,.4 6 I ,.4 

(2.40) 
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If we eliminate the Mlr4 term from Eq. (2.34) by using this 
equation, \Ve recover the effective Friedmann equation on the 
brane in the geometrical approach [7], 

' K ( Kj ' 1) Kj 2 ''"''l ETT H-+ -.,= -u-- 7[ + -(2up+ p )+ K 51 ~' - -
3 

, 
,.- 36 I 18 

(2.41) 

where T-r~) comes from the projection of the bulk energy­
momentum tensor on the brane and is given in the present 
case by 

(2.42) 

Finally, from the brane point of vie\v, it may be worth­
\vhile to give the expressions for the effective total energy 
density and pressure on the brane. They are given by 

p<tot)= p<hr:me)+ p(bulk), p(tot)= p(bmne) + p<bulk), 

(2.43) 

where 

3M 
K2p(bulk)=-

4 ,.4 ' 

(2.44) 

where M is given by Eq. (2.11) and fa h is defined by Eq. 
(2. 7), and both contain the contribution from the bulk cos­
mological constant. It may be noted that, unlike the effective 
energy density, the effective pressure contains a part coming 
from the bulk that cannot be described by the local mass 
alone. The contracted Bianchi identity implies the consetva­
tion law for the total effective energy-momentun1 on the 
brane: 

p<bwkl + 3 H(p<bwk) + p<bvtk)) 

= _ p(brane)_ 3H{p(bmnel+ p{brane)). (2.45) 

This is mathematically equivalent to Eq. (2.35). However, 
these two equations have different interpretations. From the 
bulk point of view, Eq. (2.35) is more relevant, which de­
scribes the energy exchange beti.veen the brane and the bulk, 
whereas a natural interpretation of Eq. (2.45) is that it de­
scribes the energy exchange between t\vo different matters 
on the brane: the intrinsic 1natter on the brane and the bulk 
matter induced on the brane. The important point is, as 1nen­
tioned above, that the pressure of the bulk matter has contri-
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butions not only from the local n1ass but also fron1 a projec­
tion of the bulk energy-rnomentwn tensor, which makes the 
equation of state different from p(bulk)= p(bulk) /3, i.e., that of 
a simple dark radiation. 

Ill. APPLICATION TO THE NULL DUST MODEL 

In this section, by using the local mass derived in the 
preceding section, we discuss the bulk geo1netry and brane 
cosmology in the context of a null dust model. Especially, we 
pay attention to the gravitational collapse due to the emission 
of energy from the brane. Namely, \Ve consider an ingoing 
null dust fluid emitted from the brane [15, 17, 18]. 

A. Setup 

The energy-momentum tensor of a null dust fluid takes 
the form [24], 

(3.1) 

where fa and n a are the ingoing and outgoing null vectors, 
respectively, introduced in Eqs. (2.19). If we require that the 
energy-rno1nentum conservation law is satisfied for the ingo­
ing and outgoing null dust independently, we have 

<I> f(v) 
µ,,=----­

(r.,)2r3 2 ' 

cl> g(u) 
µ,.,=-----

, (r )'r' 2 , 
·" 

(3.2) 

where f(v) and g(u) are arbitrary functions of v and u, 
respectively, and have the dimension (G5 Xmass)- 1. We as­
sume the positive energy density, i.e., /( v);;, 0 and g( u) 
~O. Thus, the nontrivial components of the energy­
momentum tensor are 

(3.3) 

To satisfy the local conservation law in an infinitesimal 
interval (u ,u+ du) and ( v ,v + dv), we find that the intensity 
functions/( v) and g( u) have to satisfy the relation 

(3.4) 

In general, if both/( v) and g( u) are nonzero, it seems al­
most in1possible to find an analytic solution that satisfies Eq. 
(3.4). Hence we choose to set either/(v)= 0 or g(u) = 0. In 
the following discussion, we focus on the case that g( u) 
= 0, that is, the ingoing null dust. 

B. Bulk geometry of the null dust collapse 

For g(u)=O, Eqs. (2.14) give 

1 qi 
M,,=31<i;:--f(v), M.,,=O. (3.5) 

·" 
The second equation implies M=M(v). Substituting Eq. 
(3.3) into the Einstein equations (2.3), we find 
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cl> 
-=eF(u) ,. , 

·" 
(3.6) 

where the function F( v) describes the freedom in the rescal­
ing off the null coordinate v. This equation is consistent with 
Eq. (3.4). Thus, we obtain the solution as 

r2 M(v) 
<P=r eF<v>=K+ -- -----r-

.v e2 ,.- , 

(3.7) 

where we have asswned that/(v)=O for v<v 0 , that is, v0 
is the epoch at which the ingoing flux is turned on. For 
definiteness, we assume that the bulk is pure AdS at v < v 0 
and set M0 =0 in what follows. 

Transfonning the double-null coordinates ( v, 11) to the 
half-null coordinates (v,r) as 

r du=dr-r du 
,ll ,u ' (3.8) 

the solution is expressed as 

ds2 = -4<P(r v )e-!F(uldv2 +4e-F<vldvdr+ r2 dD.2 
• {K,3) • 

(3.9) 

where <D is given by the first ofEqs. (3. 7). This is an ingoing 
Vaidya solution with a negative cos1nological constant 
[15, 17]. For an arbitrary intensity function/( v ), this is an 
exact solution for the bulk geometry. Note that if \Ve rescale 

v as dv~d-;;=e-Fdv, f(v) scales as f(v)-•J(v) 
= e-2~f(v), which manifestly sho\vs the invariance of the 
solution under this rescaling. 

An apparent horizon for the outgoing radial null congru­
ence is located on the three-space, satisfying 

<I>= r = 0 while r =finite. 
,U ' ,II 

(3.10) 

This gives 

(3.11) 

The direction of the trajectory of the apparent horizon is 
given by 

dr 

du 2(r4+ Me2
) 

1<l.f(v)eFMe2r 

6(r4 + Me2 ) · 
(3.12) 

Thus, for/( v) > 0, dr/ dv is positive, which implies that the 
trajectory of the apparent horizon is spacelike. 

For the case of K=+ I or K=O, the apparent horizon 
originates from r= 0, \Vhile it originates from r= e for K 
= - I . A schematic view of the null dust collapse is shown 
in Fig. 1. We assume that the brane emits the ingoing flux 
during a finite interval (bow1ded by the dashed lines in the 
figures) and no naked singularity is formed. For all the cases, 
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r=O r= O 

r=:io 

r = U ", r =oo ... ... ... 

{b) 
(a) K •+I 

(c) 

FIG. I. (Color online) Causal structure o f a spacetime with ingoing null dust for the cases of K = + I , 0 and - I . In each figure, The 
(almost vertical} wavy curve represents the brane trajectory and the dotted line is the locus of the apparent horizon. The thick horizontal line 
at r = 0 represents the spacelike curvature s ingularity formed there. The ingoing flux is asswned to be emitted dwing a finite interval 
bounded by the dashed lines. 

the causal structures after the onset of emission are very 
similar. The spacelike singularity is fanned at r = 0, but it is 
hidden inside the apparent horizon. 

C. Brane trajectory in the bulk 

In the null dust model, using Eq. (2.25), the proper time 
on the brane is related to the advanced time in the bulk as 
[18] 

,:+ .J,:i+ cp 
U
. =eF(u)_-__ _ 

:!: 2 <'P (3.13) 

To determine the appropriate sign in the above, we require 

that the brane trajectory is timelike, hence ti > 0, and exam­

ine the signs of ti :t for all possible cases: 

(2) r>O, <'P <O-+ u+<O, v _< O. 

(3) r<O, <'P >O-+ u+ >O, v_<O. 

(4) r<O, <'P <O-+ v+> O, v_>O. 

From these, we can conclude the following. For an expand­

ing brane, r>O, the brane exists always outside the horizon, 

<I> > 0 , and v is given by ti+ . On the other hand, a contract­

ing brane, ,:<O, can exist either outside or inside of the 
horizon. Thus, if the brane is expanding initially, the trajec-

tory is given by u = u + , and it stays outside the horizon until 
it starts to recollapse, if ever. Tf the brane Wliverse starts to 
recollapse, which is possible only in the case K = + I , by 

continuity, the trajectory is still given by v = v + , and the 
brane universe is eventually swallowed into the black hole. 

From the above result, we find 

,..: .J,:2 +<I> 
r u=r-r u= < O. 

·" .u 2 (3.14) 
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Using Eq. (2.32), this gives an upper bound of the Hubble 
parameter on the brane as 

(3.15) 

Let us no\v tum to the effective Friedn1ann equation on 
the brane. For simplicity, we tune the brane tension to the 
Randall-Sundrun1 value, K~u= 6/f. The effective Friedmann 
equation on the brane is 

(3.16) 

where M( r) = M(v ( r)) for notational simplicity. From Eq. 
(2.37), the energy equation on the brane is given by 

. ,: f(r) ., 
p+3-;(p+p)=-2-v-, (3.17) 

1 ,.3 

where/( r)= f(u( r)). From Eq. (2.35), the time derivative 
of Mis given by 

(3.18) 

Thus, from Eq. (3.15), M continues to increase on the brane. 
The advanced time in the bulk is related to the proper 

time on the brane by v + in Eq. (3.13). Specifically, using tl1e 
equality, 

2 M ( K
4 

) ,. ') 5 ., ., 
<fl=K+ --,- --:;=r -(p+u)--H-e- ,.- 36 

(3.19) 

on the brane, we have 

F(o)( 2 )-1 . e K 5 u=-- -(p+u)-H 
2r 6 

(3.20) 

Note that the product/V 2 is invariant under the rescaling of 
v. Once/( 7) is given, \Ve can solve the system of equations 
(3.16)-(3.18) self-consistently for a given initial condition, 
and detennine the bulk geometry and the brane dynan1ics at 
the san1e time [15]. A quantitative analysis of the brane cos­
mology is left for future work. 

D. Formation of a naked singularity 

In the previous subsections, we assumed that there is no 
naked singularity in the bulk. However, it has been shown 
that a naked singularity can be fom1ed in the null dust col­
lapse [19-25]. For instance, a naked singularity exists in a 
Vaidya spacetime when the flux of radiation rises fron1 zero 
sufficiently slowly. We expect the same is true in the present 
case. 

Without loss of generality, \Ve set eF<v)=2. We consider 
the following situation. For u<O, the bulk geometry is 
purely AdS. The radiative emission from the brane begins at 
u = 0. We choose the intensity ftmction as 
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2!. 
f(v)= -,u, 

K5 
(3.21) 

where A is a positive constant. This corresponds to the self­
sitnilar Vaidya spacetime if the cosmological constant were 
absent [19]. The brane ceases to emit radiation at u = u0 and 
the bulk becomes staticAdS-Schwarzschild for u>v 0 . Tilus 
the local mass is given by 

0 (u<O) 

2 ' (Q<;u<;v 0 ) -t.v-
M(u)= 3 (3.22) 

2 ' 
3""" (vo<v). 

The singularity is fanned at (r,u)=(O,O), and it is naked 
if there exists a future-directed radial null geodesic emanat­
ing from it. The null geodesics then form a Cauchy horizon. 
The trajectory of a radial null geodesic is determined by the 
equation 

dr =.1._(K+ r 2
(u) _ ~) 

du 2 e' ,.-(u) . 
(3.23) 

Let us analyze the above equation in the vicinity of v = O. A 
future-directed radial null geodesic exists if x 
:= lin1u_, 0dr!dv is positive. Using L'HOpital's theorem, \Ve 
obtain 

. r(u) . dr 1 ( 2!.) 
x=hrn--=hm-=- K--
. u-o u v-+Odv 2 3x2 . 

(3.24) 

It is clear that the above equation has no solution \vhen K 
= 0 or K = - 1 . Hence no naked singularity is fonned for 
K = 0 or K = - 1 . Therefore, we consider the case K = 1 . We 
introduce a ftmction, 

3 
Q(x)=3x3

- 2x'+ !.. (3.25) 

Then, the condition for the naked singularity formation is 
that Q(x)=O has a solution for a positive x. The function 
Q(x) has a 1ninimal point at x= 113. Therefore, the singular­
ity is naked if 

that is, 

I 
Q(l/3)=-18+).<;Q, 

1 
O<f.o;;-18. 

(3.26) 

(3.27) 

Thus, the bulk has a naked singularity for small values of!., 
i.e., for the flux of radiation which rises slowly enough. 
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3 

2. 5 

2 

... 1.5 

1 

0.5 

:J.S 1 1.5 

v 
2 25 3 

FIG. 2. (Color on line) The loci of the null geodesic (the solid 
curve) and the apparent horizon (the dotted curve) on the (v,r) 
plane, scaled in units of the AdS radius e, in the critical case A 
= 1/ 18. Their behaviors are qualitatively the same for a ll the other 
values of A in the range O< A< 1/18. 

Our next interest is whether the naked singularity is local 
or global. If it is global ly naked, it may be vis ible on the 
brane. To examine this, we integrate Eq. (3.23). In the vicin­
ity of u = 0 , we find 

rnun(u)=xov( 1 +b ;: + · · · ), (3.28) 

where x 0 is the largest positive root of Q(x) = 0; 

I 
x0=6{1 +[ 1-36>..+i6J2A( l - 18>..) ] 113 

+ [ 1 - 36>.. - i6 Jn(I - 18>..)] '13} (3.29) 

and 

2 
Xo 

b= 2(5x
0

- I )· (3.30) 

From the form of Q(x ), we readily see that x 0 monotonically 
decreases from 1 /2 to 1 /3 as >.. increases from 0 to 1 /18, and 
hence b is positive definite. We compare th.is trajectory with 
the trajectory of the apparent horizon. It is given by Eq. 
(3. 11 ) with K=+ I. Jn the vicinity of u=O , it gives 

(3.31) 

Since x 0> J2>../3 for all the values of>.. in the range O<>.. 
~ 1/18, and drapp ldu is a decreasing function of u while 
dr,,.u1 I du is an increasing function of v, it follows that the 
null geodesic lies in the exterior of the apparent horizon and 
the difference in the radius at the same u increases as u 
increases, at least when u is small. This suggests that the 
singularity is globally naked. 

In Fig. 2, we plot the loci of the null geodesic and the 
apparent horizon. The result is clear. The null geodesic al­
ways stays outside of the apparent horizon, thus outside of 
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r-0 

... 
··· ... '.: .. :· 

r = «J 

v 

,. (I 

FIG. 3. (Color online) Causal structure of a spacetime wi1h in­
going null dust when a naked singularity is formed. The wavy and 
a lmost vertical curve represents the brane trajectory and the dotted 
line is the locus of the apparent horizon. A naked singularity is 
formed at r = 0 along the v = 0 null line. A radial, future-directed 
null geodesic originating from the naked singularity (the right­
pointed thick line) stays outside of the apparent horizon and reaches 
the brane. 

the final event horizon at v = v0 . Mathematically, this is due 
to the cosmological constant term in Eq. (3.23), which 
strongly drives the null geodesic trajectory to larger values of 
r. Thus, we conclude that the naked singularity is global and 
visible on the brane. The causal structure in th.is case is il­
lustrated in Fig. 3. Investigations on the effect of the visible 
singularity on the brane are necessary, but they are left for 
future work. 

Finally, let us mention the strength of the naked singular­
ity as we approach it along a radial null geodesic. Let w be 
an affine parameter of the geodesic, w = 0 be the singularity, 
and the tangent vector be denoted by k0 =dx0 /dw. We ex­
amine R 0 bk0 kb and Cu/". From Eq. (3.3) and the Einstein 
equations, we have 

,a L K1f(v) ( du )
2

- 2>..v ( dv)
2 

R bk k --- - -- -0 r3 dw ,.3 dw 

Also, from Eq. (2.22), we have 

(3.33) 
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Thus the Ricci tensor and the Weyl tensor diverge as \v- 2 

and lv- 2xo J( 1 - xo), respectively, \vhich is a sign of a strong 
curvature singularity. 

IV. CONCLUSION 

In this paper, in the context of the RS2 type braneworld, 
we discussed the dynamics of the bulk and the effective cos­
mology on the brane in terms of the local conservation law 
that exists in the bulk spaceti1ne \Vith a maximally symmetric 
three-space. First, we fonnulated the local conservation law 
in the dynamical bulk. We found that the bulk geometry is 
completely described by the local mass Mand it is directly 
related to the generalized dark radiation term in the effective 
Friedmann equation. We also found that there exists a con­
served current associated with the Wey! tensor and the pro­
jected Weyl tensor that appears in the geometrical approach 
is just the local charge for this current, and it can be ex­
pressed in tenns of Mand a certain linear combination of the 
components of the bulk energy-momentum tensor. 

Next, as an application of our formalism, we adopted a 
simple nuII dust model, in which the energy emitted by the 
brane is approximated by an ingoing null dust fluid, and 
investigated the general prope1iies of the bulk geon1etry and 
the brane trajectory in the bulk. UsuaJly, the ingoing null dust 
forms a black hole in the bulk. However, in the case of K 
= + 1 , a naked singularity can be formed in the bulk when 
the flux rises from zero slo\ver than a critical rate. We sho\v 
that the naked singularity is global and thus it can be visible 
to an observer on the brane. Studies on the implications of a 
visible naked singularity on the brane is left for future work. 

Also, we found that the brane can never enter the black 
hole horizon as long as it is expanding. In addition, \Ve found 
an upper boW1d on the Hubble expansion rate, given by the 
energy density of the matter on the brane, for arbitrary but 
non-negative energy flux en1itted by the brane. We also pre­
sented a set of equations that completely determine the brane 
dyna111ics as well as the bulk geometry. 

Finally, let us briefly comment on some future issues. In 
this paper, we only discussed the case of null dust. However, 
this is too sin1plified to be realistic. As a realistic situation, it 
will be interesting to consider a bulk scalar field such as a 
dilaton or a moduli field. In this case, it will be necessary to 
solve the bulk and brane dynan1ics nun1erically in general. 
Another interesting issue \vill be the evaporation of a bulk 
black hole by the Hawking radiation and its effect on the 
brane dynamics. We plan to come back to these issues in 
future publications. 
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APPENDIX A: GEOMETRICAL QUANTITIES AND 
LOCAL CONSERVATION LAWS IN (N+2) DIMENSIONS 

In this appendix, we give useful formulas in an 
(n+2)-dimensional spaceti1ne with constant curvature 
n-space, and generalize the expression for the local n1ass and 
Wey! charge. 

We consider the metric in the double-null fonn, 

? 4r,1i'",v ') ? 

ds-=~dudv+r(u,v)"dfl.(K.n), (Al) 

\vhere K = + 1 , 0, or - 1 , corresponding to the sphere, ftat 
space, and hyperboloid, respectively. We denote the n1etric 
tensor of the constant curvature space as "Yu. The explicit 
expressions for the geometrical quantities in this spacetilne 
are as follo\vS. 

The Christoffel symbol is 

f" = (I I ,.,,,,..,,I) 
vu og cp , 

,.q, 
r11.=---~ .. 11 2,. ,,1 , 

·" 

The Riemann tensor is 

r i nr; 
jk= jk. 

// U ,If ,U ( I,. ,. I l R 111w=Rvuu= - log --;p- , 
,llU 

·" 

[
I(<!>) ,.q,( 1,.,.1) l R11

illj= - 2,. -;:--- -~ log ·~ .u "Yu, 
.11 ,II ,II ,If 

[ 
I(<!>) ,.q,( I,.,. I) l R0 iuj= - 2,. ;:- -~ log ·~ ,u "Yi}, 

,U ,U ,U ,U 

[ ,. ,. ( I,. ,. I l l R;·= -~+~lo....:!!.....:!: 8. 
l(jl/ ,. ,. g <I> } ' 

·" 

[ ,. ,. ( I~,. l l R1 .= -~+....:!:.Io ,u.v 8. 
V}V /" /" g <I> j > ,,, 

R ; -Rl - r,11u d 
vju- 11ju-- -,-. Oj• 

R;ikl= (K-<I> )(8~ yF- d,yi,). 

The Ricci tensor is 

r.,, ( I r,,,J) R11u=n7 log T>j , ,._,, ( I ,.·"I l Ruu=n 7 log Ci) ' 
·" ·" 

( 1
,.,.1) ,. R11u = - log ·~~) ,u - 11 ~t:v, 

.uu 

(A2) 

(A3) 

(A4) 
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[ ,.,. "" l R..= --·-<!>+2(n-l)(K-<Ii) Y·· 
lj r 1' I) 

,II ,V 

The scalar curvature is 

<!> ( I,. ,. ll <!>,. R=--- log.....:.!!...... -211~ ,.,. <I> ,.,.,. 
,// ,V ,UV ,II ,V 

11(n-l) 
+ ' (K-<!>). 

r" 
(A5) 

The Einstein tensor is 

r.,,r.,, ( K) r.,,,, 
G1w=n(n-l)7 ]-<I> +n-

1
-. , (A6) 

{ r'<l> [( 1~· r ) r l G,.= --- lo '11 
.u +2(11-J )~ 

I) 2r ,. g <I> ,. 
,II ,U ,//U 

_ (11-2)(11-I) _, l 
2 (K <I) Yu· 

The Weyl tensor is 

11-l ( 1~· r ) r r r C 11=-- lo '11 
,u -~-~(K-<fl) 

11u11 n + I g <I> r r2<1> ' 

c _I .2 c II 
iuju - ;; 1 'Yij 11u11 • 

,llV 

(A7) 

From these formulas, we can show the existence of a 
conserved current in the san1e way as given in the text. 
Namely, with the timelike vector field S" defined by Eq. 

(2.4), the currents S"=gb'f; and S"=eT," are separately 
conserved, and the corresponding local masses are given, 
respectively, by 

(AS) 

and 

M-M 
2 

A r 11
-

1 (A9) - - (11- I )(11-2) "+2 . 

The v and u derivatives of M are given by the energy­
momentum tensor as 

2r11 

M,u = K~+2-;;-{ T'~r ,11 - r:ir.u), 

(AIO) 
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Let us now turn to the conserved current associated with 
the Weyl tensor. We start from the equation that results from 
the Bianchi identities (26], 

C abcjd =J abc' (Al I) 

where 

Fro1n this equation, we can show the existence of a locally 
conserved current Qa given by 

(Al3) 

where eu and n(I are the null vectors defined in Eqs. (2.19). 
The nonzero con1ponents are explicitly written as 

Qll=-r.JVllV' QV=-rJVllll" (A14) 

We then find the follo\ving relations, 

( ,.n+lc u11) =,-n+!Ju 
Ult ,II 1111 • (Al5) 

These relations are generalization of Eqs. (2.21 ), and imply 
that the Weyl component r11 + 1 C u~11 is the local charge asso­
ciated with this conserved current. 

Using the explicit fonn of Cv 11°11 in Eqs. (A7) and the 
Einstein equations, we can relate the Weyl charge to the local 
mass. We find 

,.n+ IC Ut1v11 

n(11-l )M 
2 

11(11- I )M 

2 

n-l 
___ ,.11+1(G;·-211Gu) 
n(n+l) 1 v 

(AJ6) 

Finally, we note that this equation implies that the linear 
combination of the energy-momentum tensor, 

(Al7) 

plays the role of a local charge as well. Therefore, the be­
havior of this quantity is constrained nonlocally by the inte­
gral of the flux given by the corresponding linear combina­
tion of the currents sa and Qa. Although we do not explore 
it here, this fact 1nay be useful in an analysis of the behavior 
of the bulk matter. 

APPENDIX B: EINSTEIN-SCALAR THEORY 
IN THE BULK 

In this appendix, we apply the local conservation law to 
the five-ditnensional Einstein-scalar theory. We assume that 
there is no matter on the brane, but we take account of a 
coupling of the bulk scalar field to the brane tension. In this 
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case, the energy exchange between the brane and the bulk, 
hence the time evolution of M, occurs through the coupling. 

We first consider a general bulk scalar field. Then, as a 
special case, we analyze the local mass on the brane for the 
exact dilatonic solution discussed by Koyama and Takahashi 
[13]. Finally, we clarify the relation between the local mass 
and the term that is identified as the dark radiation term in 
the effective four-din1ensional approach in which the contri­
bution of the scalar field energy-1nomentwn to the brane is 
required to take the standard four-dimensional form [11]. 

1. Setup 

We consider a theory described by the action 

(Bl) 

For the bulk with the metric given by Eq. (2.1 ), tl1e energy­
n1omentum tensor in the bulk is given by 

2r r 
T = - --"'--"'- V( ·' ) 

l/U <P 'f' ' 

On the brane, the first derivatives of the scalar field tan­
gent and nonnal to the brane are expressed, respectively, as 

(B3) 

The Codacci equation (2.36) gives, via the coupling to the 
brane tension, the boundary condition at the brane, 

(B4) 

In the present case, the effective Friedmann equation induced 
on the brane, Eq. (2.34), becomes 

(BS) 

The time evolution of the local mass Mon the brane is given 
by 
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From the brane point of view, as given by Eqs. (2.43) in 
the text, the effective energy density and pressure are com­
posed of the brane tension and the bulk matter induced on 
the brane as 

where 

2 (B) 3M 
K4P =-;r, 

(BS) 

where Eq. (B4) is used. From the Bianchi identity on the 
brane, the conservation Jaw for the total effective energy­
mon1entum on the brane is obtained as 

The above relation is mathematically equivalent to Eq. (B6). 
As discussed after Eq. (2.45) in the text, Eq. (B9) gives 

the point of vie\v from the brane, and it is naturally inter­
preted as the equation describing the energy exchange be­
tween the brane tension and the bulk matter induced on the 
brane. On the other hand, the time variation of the local mass 
along the brane, Eq. (B6), gives the point of view from the 
bulk, and it contains not only the energy transfer fro1n the 
brane tension to the bulk (the last term) but also the energy 
flow of the bulk scalar field at the location of the brane, 
\Vhich is nonvanishing in general even if the scalar field has 
no coupling to the brane tension. 

2. Dilatonic exact solution 

In the case K = 0, and for special forms of V( cf;) and 
er(¢>), an exact cosmological solution is known, as a realiza­
tion of the bulk inflaton model [13]. The forms of the poten­
tial and brane tension are 

(BIO) 

(Bl I) 

where 8, b, and A0 are constant and are all assumed to be 
non-negative, and 

' 8 li=4b-- -3· {Bl2) 

If 8=0, there exists a static, Minkowski brane solution [14]. 
In order to avoid the presence of a naked singularity, the 
dilatonic coupling b2 is assumed to be smaller than 1/6 [13]. 
This implies that D.. is negative and is in the range 
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(B13) 

The exact solution takes the fonn 

¢= ¢( r)+ S(z), (B14) 

\vith the brane located at z=z0 and it is assumed that 
S(z0)=0 without loss of generality. The scale factor of the 
brane and the scalar field on the brane are given by 

r( r) = e•C•I= (H0r) 11"
2
, e'!bu5¢;(•l=H0r, (BIS) 

where 

(Bl6) 

As seen from the first ofEqs. (BIS), the power-law inflation 
is realized on the brane for b1< 116. 

Let us consider the time evolution of the energy content in 
this n1odel. From the brane point of view, the time derivative 
of the brane tension p<T) is always negative: 

'(T) fl 
p <0. 

48b4 8-r' 
(B!7) 

Thus, frotn Eq. (B9), for an observer on the brane, there is 
one-way energy transfer from the brane tension to the bulk 
matter induced on the brane. From the bulk point of vie\v, 
however, the situation is slightly more complicated. The time 
derivative of the local mass (or the generalized dark radia­
tion) on the brane, Eq. (B6), is evaluated as 

(BIS) 

The sign of M is detem1ined by the sign of MS+ 8. Note 
that the sign of MS+ 8 determines the sign of the bulk po­
tential as well, as seen from Eq. (BIO). If M8+8>0, i.e., 

8>(-Ll)/8=(b2/2)-l/3, we have M>O. Since Mis the 
total bulk mass integrated up to the location of the brane, the 
increase in M implies an energy flow from the brane to the 
bulk. Therefore, in this case, the energy in the brane tension 
is transferred to the bulk scalar field and it flows out into the 

bulk. Tn contrast, if 8<(-Ll)/S, we have M<O. Tn this case, 
although there is still energy transfer from the brane tension 
to the bulk scalar field, the bulk energy flows onto the brane. 
Jn other words, there is a localization process of the bulk 
energy onto the brane that overwhelms the energy released 
from the brane tension. 

3. Local mass and the effective four-dimensional description 

Tn the bulk inflaton model with a quadratic potential 
[9-12], it has been shown that the bulk scalar field projected 
on the brane behaves exactly like a four-dimensional field in 
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the low energy limit, H 2 e 2~ l , where H is the Hubble pa­
rameter of the brane, and the leading order correction gives 
the gradual energy loss from the scalar field to the bulk, 
giving rise to the dark radiation tenn (9,1 l]. Here, we discuss 
the relation between the dark radiation term appearing in this 
effective four-dimensional description and the generalized 
dark radiation term given by the local mass in the bulk. 

From the geometrical description [7], the induced Einstein 
equation on the brane is written as 

(B!9) 

where 

is the projected tensor of the bulk energy-momentum onto 
the brane that includes the contribution of the cosmological 
constant; see Eq. (2.7). For a homogeneous and isotropic 
brane, the nonvanishing co1nponents are 

f(b)i -~Ti - ~Tv _ 1!_711 +Tu 
;- 6 i V u zi v v. (B21) 

Let us decompose E µ 1• as 

E -EC'l+Etdl µr·- µ1' µ1•• (B22) 

where E~~, is to be expressed in tenns of the bulk energy-
1nomentum tensor in such a way that the effective four­
dimensional description is recovered, and EY:,!, is the part that 
should be identified as the dark radiation term in this effec­
tive four-dimensional approach. To be in accordance with 
Ref. (11 ], we choose the components of E~,~ as 

and identify the remaining part with the dark radiation 
term, X, 

(B24) 

In the effective four-di1nensional description, the Einstein 
equation on the brane takes the forn1, 

(B2S) 

where r;;? is the effective energy-momentun1 tensor on the 
brane, 
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2,.,...(eff)_ I 4 ? 2;:r.fb) (b) 
K4l/i,1• --12K5<Tqµ1•+K5l 'µ1·-£µ1•• (B26) 

and K~ is the four-dimensional gravitational constant that 
should be appropriately defined to agree with the conven­
tional four-dimensional Einstein gravity in the lo\v energy 
limit. In the present case of homogeneous and isotropic cos-
111ology, the only nontrivial components are the effective en­
ergy density and pressure, which are given explicitly by 

I '( u _ ,j _ ) 
-3K5 -:-TVu+-:-T"v ' 

v 11 

3 '('i- ,j_ ) --8«5 -:-Tvu+-:-I''u . 
u u 

(B27) 

The effective Friedmann equation on the brane is \Vritten as 

(B28) 
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451 

We investigate linearized gravity on a single de Sitter brane in the anti-de Sitter (AdS) 
bulk in the Einstein Gauss-Bonnet (EGB) theory. We find that Einstein gravity is recovered 
for a high energy brane1 i.e., in the limit of a large expansion rate1 i.e., for Hf~ 1, 'vhere 
H is the de Sitter expansion rate and f is the curvature radius of the AdS bulk. We also 
sho\v that 1 in the short distance li1nit1 r << n1in{C, H-1 }, Brans-Dicke gravity is obtained, 
\Vhereas in the large distance lin1it, T » max{ e, H-1}, a Brans-Dicke-type theory is obtained 
for HC = 0(1) 1 and Einstein gravity is recovered both for Hf>> 1 and }JC<< 1. In the limit 
Iii! - 0, these results s1noothly n1atch the results kno>vn for the :Nlinkowski brane. 

§1. Introduction 

Recent progress in string theory suggests that our universe is not a 4-dimensional 
spacetime in reality, but is a 4-dimensional submanifold "brane" embedded in a 
higher-dimensional spacetime called "bulk". As a simple realization of this braneworld, 
the model proposed by Randall and Sundrum (RS) 1l has attracted much attention 
because of its interesting feature that gravity is localized on the brane not through 
compactification but through warping of the extra dimension. This model is a solu­
tion of the 5-dimensional Einstein equations with a negative cosmological constant, 
where a Minkowski brane is embedded in the 5-dimensional anti-de Sitter (AdS) bulk. 
The linear perturbation theory in the RS model reveals that Einstein gravity is re­
alized on the brane in the large distance limit. However, in the short distance limit, 
gravity on the brane becomes essentially 5-dimensional, which can be attributed to 
the large contribution of the Kaluza-Klein corrections. 2) The cosmological extension 
of this model, the inclusion of black holes, and so on, have been discussed by various 
authors.3) 

From the stringy point of view, it is plausible that there exist many fields and 
higher-order curvature corrections in addition to the bulk cosmological constant. 
In this paper, we consider the gravitational action with the Gauss-Bonnet term 
added to the usual Einstein-Hilbert term. This type of correction appears as low 
energy corrections in the perturbative approach to string theory, and it is a natural 
extension of the Einstein-Hilbert action from 4 dimensions to higher dimensions.4l 6) 

*) E-mail: n1asato@vega.ess.sci.osaka-u.ac.jp 
**) E-mail: inisao@yuka>va.kyoto-u.ac.jp 
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Cosmological braneworld models in the Einstein Gauss-Bonnet (EGB) theory are 
treated in Refs. 7)-13), and black holes in the EGB theory are studied in Refs. 14)-
19). 

Recently, Deruelle and Sasaki showed that in the EGB theory, the linearized 
gravitational force on the Minkowski brane behaves like a 4-dimensional one even 
in the short distance limit.20l Then, Davis showed that Brans-Dicke gravity21) is 
realized on the Minkowski brane in the short distance limit.22) Although the effective 
gravitational theory in the nonlinear regime is completely unknown, these results 
imply that the experimental constraint on the maximum size (curvature radius) of 
the extra dimension is drastically weaker than in the RS model, in which the size of 
the extra dimension must be less than ~ 0.1 mm. Thus, the EGB theory deserves 
more detailed investigation from various points of view. 

In this paper, as a step toward the understanding cosmological implications 
of the EGB theory, we investigate lineai- perturbations of a single de Sitter brane 
embedded in the AdS bulk. This paper is organized as follows. In §2, we describe 
our formulation in the EGB theory. We consider an AdS bulk with a single de Sitter 
brane as the background spacetime. In §3, we analyze the linear perturbation themy 
in the bulk and on the de Sitter brane. In §4, we consider the effective gravity theory 
on the brane in various limits. In the case H fl » 1, where H is the expansion rate of 
the de Sitter brane and 1! is the AdS curvature radius, we find that Einstein gravity 
with a cosmological constant is recovered on the de Sitter brane. We also show 
that Brans-Dicke gravity is obtained in the short distance limit, whereas in the large 
distance limit a Brans-Dicke type theory is obtained for Hi! = 0(1) and Einstein 
gravity both for H 1! » 1 and H 1! « 1. Furthermore, it is shown that the results 
for the Minkowski brane are recovered in the limit Hfl --> 0, namely, Brans-Dicke 
gravity in the short distance limit and Einstein gravity in the large distance limit.22) 

In §5, we briefly summarize our results. In Appendix A, we review the results for 
the Minkowski brane.22) In Appendix B, we define harmonic functions on the de 
Sitter spacetime that correspond to the Fourier modes in the Minkowski spacetime. 
In Appendix C, we consider the case of two de Sitter branes and show that there 
exists a tachyonic bound state mode that makes the system unstable, just as in the 
Minkowski case discussed in Ref. 23). 

§2. Einstein Gauss-Bonnet braneworld 

We consider a braneworld in the EGB theory with a cosmological constant. As 
usual, we assume mirror symmetry with respect to the brane. Then, we can focus on 
one of the two identical copies of the spacetime M with the brane as the boundary 
8M. The action is given by 4), 5) 

S = 11d5xy'=g2~~ [(5) R - 2A5 + a(l5) R2 - 4(5) Rab(5) R"b + (5) Rabcd(5) Rabcd) l 
+ klvl d4xH[-a+£m+ :~ (K + 2a(J- 2GµvKvµ))], (2·1) 
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where a is the coupling constant for the Gauss-Bonnet term, which has dimensions 
of (length)2 , As is the negative cosmological constant, Yab and 'lµv are the bulk and 
brane metrics, respectively. Here, .Cm is the Lagrangian density of the matter on the 
brane, and IJ' is the brane tension. The second term on the second line of Eq. (2·1) 
is the generalized Gibbons-Hawking term,24) which is added to the boundary action 
in order to obtain a well-defined boundary value problem. Further, Kµv is extrinsic 
curvature of the brane, and 

Jµv = -~!{µ pJ(P ,,J{'7 v + ~J( J(µ pJ(P v + ~!{µ v ( J(W J(P" - K 2
). (2·2) 

The Latin indices {a, b, · · ·} and the Greek indices {µ, v, · · ·} are used for tensors 
defined in the bulk and on the brane, respectively. 

Extremizing the action S with respect to the bulk metric, the vacuum bulk 
Einstein Gauss-Bonnet equation is obtained as 

(S)Gab +As Yab 

+ a [ 2 es) Ra cde(s) Rbcde - 2<s) Rcd(S) Racbd - 2(s) Rae (S) Rcb + (s) R(s) Rab) 

- ~Yab es) R2 - 4(s) Rcd(s) Red + (s) Rcde/s) Rcdef) l = 0. (2·3) 

The brane trajectory is determined by the junction condition, which is obtained by 
varying the action S with respect to the brane metric,2S), 26l 

(2·4) 

where 

Pµpv<I := Rµpv<I + ( Rµ,,'lpv - Rp,,CJµv + Rpv'lµ<I - Rµv'lpa) 

-~R(qµ,,CJpv - 'liw'lpa ), (2·5) 

and Tµv is the energy momentum tensor of the matter on the brane, defined as 

(2·6) 

Note that the extrinsic curvature here is that for the vector normal to alvf pointing 
outward from the side of M. 

§3. de Sitter brane in the Einstein Gauss-Bonnet theory 

We next consider a de Sitter brane in the AdS bulk in the EGB theory and 
investigate the linearized gravity on the de Sitter brane. 

3.1. de Sitter brane in the Einstein Gauss-Bonnet theory 

We employ the Gaussian normal coordinates with respect to the brane and 
assume that the bulk metric takes the form27) 

(3·1) 
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where /iw is the metric of the 4-dimensional de Sitter spacetime with R( I) = 12H2. 
The background Einstein Gauss-Bonnet equation is 

b" 
-3H2 + 3b"b + 3b12 

- 12ab {U2 
- H 2

) = -A5b2
. (3·2) 

This has the solution 

b(y) = Hf!sinh(y/£.), (3·3) 

where I! is given by 

1 1 ( v 4aA5 ) f!2 = 4a 1 ± ·l + -3- . (3·4) 

This is identical to the lvlinkowski brane case.20l. 28) Without loss of generality, we 
choose the location of the de Sitter brane to be 

b(yo) = 1. 

Thus H is the expansion rate of the de Sitter brane. 

3.2. Bulk gravitational perturbations 

(3·5) 

First, we consider gravitational perturbations in the bulk. We take the RS 
gauge,1),2),29) 

h55 = h5µ = 0 , hµ µ = Dvh" µ = 0 , (3·6) 

where D,, denotes the covariant derivative with respect to /µv, and the perturbed 
metric is given by 

(3·7) 

The (µ,v)-components of the linearized Einstein Gauss-Bonnet equation are 
given by 

(1- a) [ . } oy(sinh4 (y/1!)8") 
smh (y/1!) 

+ (Hf!)2 si~h2(y/£.) (04 - 2H2) l h1w = 0' (3·8) 

where 

(3·9) 

and 04 = Dµ Dµ is the d'Alembertian with respect to /µv· Throughout this paper, 
we assume a of 1. 
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Equation (3·8) is separable. Setting hµv = 1fp(Y) Yjf,·2) (:c"), we obtain 

[sinh4~y/J!)ay(sinh4(y/J!)8y) + J!2sin~:(y/J!)]itip(?J) = 0, 

[04 - (m2 + 2)H2]Yjf•2) = 0, 
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(3· 10) 

(3· 11) 

where p2 = m2-9/4 and Yjf,·2) are the tensor-type tensor harmonics on the de Sitter 
spacetime, which satisfy the gauge condition30l 

Y (p,2)µ - D 1'(p,2)v - 0 µ- v µ- . 

The properties of these harmonics are discussed in Appendix B. 

(3· 12) 

Equation (3·10) is the same as that for a massless scalar field in the bulk. 31) 
There exists a mass gap for eigenvalues in the range 0 < rn < 3/2.27) There is 
a unique bound state at rn = 0, which gives ipp(y) =constant and is called the 
zero mode. For rn > 3/2, the mass spectrum is continuous and they are called the 
Kaluza-Klein modes. The general solution is 

1fp(Y) = . 31~ [APP;j2(cosh(y/J!)) + BpQT;2(cosh(y/J!))j, 
smh (y/J!) 

(3· 13) 

where Pf} ( z) and Q~ ( z) are the associated Legendre functions of the first and second 
kinds, respectively. 

For p2 > 0 (rn > 3/2), we choose those harmonic functions Yje·2) that behave 
as e-ipt in the limit t --> oo. Then, assuming that there is no incoming wave from 
the past infinity y = 0, we find that we should set Bp = 0. In fact, the asymptotic 
behavior of P;/2 for y --> O is32) 

1 . 2iP (sinh(y/J!) )-ip-3/2 
sinh312(y/J!) P;/2(cosh(y/J!)) ~ I'(l - ip) cosh(y/J!) 

"' 2ip (¥.)-3/2 e-ipin(y/e)' 
r(1 - ip) e (3·14) 

which guarantees the boundary conditions with no incoming wave (i.e., retarded). 
Thus the bulk metric perturbations are constructed by 

h1w = i dp1fp(y)Yjf,•2l(xµ), (3· 15) 

where the contour of integration C is chosen on the complex p-plane such that it 
runs from p = -oo to p = oo and covers the bound state pole at p = 3i/2 below the 
contour. 33) 

3.3. Linearized effective gravity on the brane 

We now investigate effective gravity on the brane. The position of the brane in 
the coordinate system is displaced in general as 

(3· 16) 
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where the second term on the right-hand side describes the brane bending.2D), 3o) 
The induced metric on the brane is given by 

(3·17) 

The extrinsic curvature on the brane is given by 

(3· 18) 

We consider the junction condition (2·4). The background part gives the relation 
between the brane tension and the location of the brane, 

where 

2 6 ( a 2a ) 
" 517 = -e coth(yo/ e) 1 - -3 + . 2 I e) , 

3smh (Yo 

coth(y0 /e) = )1 + (He)2, 
. 1 

smh(yo/I!) = He. 

In the limit He-> 0, Eq. (3·19) reduces to the Minkowski tension, 

2 6 ( 1 -) li.51T"" "ji 1 - 3(1' . 

The perturbative part of the junction condition gives 

where Sµ" is the perturbation of Tµ"' namely 

and 

(3·19) 

(3·20) 

(3·21) 

(3·22) 

(3·23) 

/3 := cosh
2

(~o/£) + 
1 a= (2coth2 (y0 /£)-1) a= (2(He) 2 +1) a. (3·24) 

smh (yo/I!) 

The trace of Eq. (3·22) gives the equation determining the brane bending as 

(3·25) 

where S = Sµ w Note that the field <p seems to be tachyonic, with mass-squared 
given by -4H2 . However, in the case of a de Sitter brane in Einstein gravity, there 
is a similar equation for the brane bending, but it was found to be non-dynamica!.30) 

We see below that the situation is quite similar in the present case of the EGB theory. 
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To find the effective gravitational equation on the brane, we proceed as follows. 
Using the expression for the incl ucecl metric on the brane, Eq. (3· 17), the perturbation 
of the brane Einstein tensor is given by 

JG1w[h] = -~04hµv - 2H2hµv + 2coth(yo/£) [DµDv - 04 ')'µv ]'P 
= -3H2 (hµv - 2 coth(110/ fh1w'P) - ~ ( 04 - 2H2

) hµv 

+2 coth(yo/£) [ DµDv - 04 ')'µv - 3H2')'µv] 'P. (3·26) 

Using the perturbed junction condition (3·22), we can eliminate the term involving 
<p from the above equation to obtain 

- r 1 - O: ( 2) oGµv[h] + 3H hµv = -
2

(
1 

+ /3) 04 - 2H hµv 

1 - a "°g coth(y0/ £) 
- £(l + /3) coth(yo/f)hµv,y + e (l + /3) Sµv· (3·27) 

Eliminating the term proportional to (04 -2H2 )hµv from Eqs. (3·26) and (3·27), we 
obtain 

"G [/-] 3H 21- _ ligtanh(yo/£) S 
u µ11 1. + lµv - 21! a tfll 

-
1 ~a tanh(110/£) ( DµDv - "l'µv04 - 3H2"l'µv )'P 

1- a 
-

2
£0: tanh(110/£)hµv,y. (3·28) 

Together with Eq. (3·25), this can be regarded as an effective gravitational equation 
on the brane. The effect of the bulk gravitational field is contained in the last term, 
proportional to hµv,y· Note that the limit 0: --+ 0 is singular in the above equation. 
Thus an Einstein Gauss-Bonnet brane exhibits entirely different effective gravity 
from an Einstein brane even if 0: « 1. 

3.4. Harmonic decomposition 

Using the harmonic functions defined in Appendix B, we can obtain a closed 
(integro-clifferential) system on the brane. We decompose the perturbations on the 
brane as 

Sµv = s£V + S1~ ; s£V = l: dp ( Scp,oJ YJ~·0l) , 
<p = l: dp 'P(p) y(p,O)' 

- (p,2) 1
00 

hµv - -oo dp h(p) Yµv , 

sc2J = loo dp (sc 2Jy(p,2J) µv p, /tV J 

-00 

where y(p,O) are the scalar harmonics and YJ~·0) are the scalar-type tensor harmonics 
given in terms of y(p,O), as defined in Appendix B. Note that, hecause of energy­
momentum conservation, Dl'Sµv = 0, there is no contribution from the vector-type 
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tensor harmonics that do not satisfy the divergence-free condition. If a bound state 
exists, we have to deform the contour of integration so that the corresponding pole 
is covered, as mentioned at the end of §3.2. 

With the above decomposition, the metric perturbation on the brane liµv given 
by Eq. (3· 17) consists of the isotropic scalar-type part and tensor-type part. The 
scalar-type part is determined by Eq. (3·25), which gives 

(3·30) 

where NP is the normalization factor for the harmonics defined in Appendix B. We 
see that the propagator part of the above (i.e., the coefficient of S(p,o)) does not 
contain a pole at p = (5/2)i, which would correspond to the tachyonic mode with 
mass-squared -4H2. Instead, it becomes a branch point, and a branch cut appears 
between the points p = ( /21/2)i and p = (5/2)i. Thus we find that the tachyonic 
mode is absent and there is no instability associated with the brane bending due to 
the matter source on the brane. 

Before we proceed, it is useful to note the equation 

(3·31) 

which directly follows from Eq. (3·30) and the definition of the scalar-type tensor 

harmonics YJ~,D). 
There is a free propagating tachyonic mode corresponding to the homogeneous 

solution of Eq. (3·25), which couples to neither the scalar nor tensor-type matter 
perturbations on the brane. However, we argue in the next subsection that the 
mode that corresponds to the exponential growth of the perturbation is unphysical; 
that is, the only physical mode associated with this tachyonic mode is exponentially 
decaying in time. 

The traceless part of Eq. (3·22) gives 

1 

(ip+3/2) 

£2 sinh(yo/f!) P~/2 (zo) 
x . . 

(1 - a)P{j2 (zo) + a(-ip + 3/2)(H£)2 cosh(y0/£)P;/2 (z0) 

,,,2 

x ; s(p,2), (3·32) 

where zo = cosh(yo/f!). This shows that the harmonic component of the tensor-type 
metric perturbations on the brane has a simple pole at p = (3/2)i in the complex 
p-plane, which corresponds to the zero mode. 
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For convenience, we also present the y-derivative of h(p)' 

(3·33) 

Then, Eqs. (3·25), (3·28) and (3·33) constitute the effective gravitational equations 
on the brane, which form a closed set of integro-differential equations. 

3.5. Source-free tachyonic mode 

Now, we consider the source-free tachyonic mode on the brane.29) This mode 
corresponds to the homogeneous solution of Eq. (3·25), and therefore it does not 
couple to the matter perturbations on the brane. 

On the complex p-plane, the solution corresponds to a pole at p = (5/2)i. Thus, 
the solution is given by 

\0 = \0(5i/2)y(5i/2,0). (3·34) 

For this mode, the junction condition (3·22) reveals that it is associated with a 
non-vanishing hµv· The solution in the bulk is given by29) 

This satisfies the transverse-traceless condition and the relation 

(04 -4H2 )hµv = 0. 

(3·35) 

(3·36) 

Thus, this mode falls within the mass gap between m = 0 and 3/2, with mass 
mH= V°2H. 

Let us first analyze the behavior of the function </.>(y). It should satisfy Eq. (3·8), 
which becomes 

(3·37) 

The general solution of this equation is given by 

</.>(y) = CJ</.>1(y) + c2</.>2(y), 

</.>1(y) = coth(y/R), </.>2(y) = 1 + coth2(y/R), (3·38) 

where the coefficients c1 and c2 are related through the junction condition (3·22) as 

1 2 2 1 + O:coth2(yo/R) 
1- -H c1 - H coth(yo/R) c2 = 0. 

2 1 + ,B 
(3·39) 

As is readily seen, this mode diverges badly as y --> 0. Therefore, the regularity 
condition at y = 0 eliminates this mode. Nevertheless, because its effect on the 
brane seems to be non-trivial, it is interesting to investigate its physical meaning. 
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We note that ¢1 is a gauge mode. This can be checked by calculating the 
projected Wey! tensor E1w := (5) Cnµn} 3 ), 34) which is gauge invariant. We find that 
only the coefficient c2 survives: 

(3·40) 

This means that the junction condition (3·39) does not fix the physical amplitude 
c2. It just fixes the gauge amplitude c1. 

To understand the physical meaning of this mode, it is useful to analyze the 
temporal behavior of the projected Wey! tensor. For simplicity, let us consider a 
spatially homogeneous solution for <p. Choosing a spatially closed chart for the de 
Sitter brane, for which the scale factor is given by a(t) = H- 1 cosh(Ht), we find 

5/2 -5/2 P112 (tanh(Ht)) P112 (tanh(Ht)) _ H _ 
'P = C1 + C2 ~ C1 e ' + C2 e-4

Ht , (3·41) 
cosh312(Ht) cosh312 (Ht) hoo 

where C1 and C2 differ from C1 and C2, respectively, only by unimportant numerical 
factors. We see that the solution associated with C1 is that which exhibits instability. 
If we insert this solution into Eq. (3·40), however, this unstable solution disappears. 
In fact, we obtain 

Et, "" 15H
2
C2 c2 "" 15(Hf!.)

2
C2 c2 . 

f!.2 sinh4 (y/f!.)e4Ht 16(Hf!.)4 sinh4 (y/f!.)a.4(t) 
(3·42) 

We note that E'1 on the brane decays as l/a.4 (t). This is exactly what one expects 
for the behavior of so-called dark radiation. We also note that, although Eµv does 
not vanish for spatially inhomogeneous modes, they decay as l/a.3 (1:),29) giving no 
instability to the brane. 

In the Einstein case, the dark radiation term appears if there exists a black 
hole in the bulk. This is also true in the EGB case. There also exists a spherically 
symmetric black hole solution in the EGB theory. 14)-!9) The metric is given by 

2 2 dR2 
2 2 

ds = - f(R)dT + f(R) + R dJ2(3); 

f(R) = 1 + - 1-R2 ( 
4a 

l+--+-m1s 16aµ 4 ) 
3R4 3 ' 

(3·43) 

where µ = 1>gM / (27r2) and lvl is the mass of the black hole. For this solution, the 
projected Wey! tensor is given by 

, µ ( 4 16aµ)-3/2( 4 16aµ) 
Et = R4 1 + 3aA5 + 3R4 1 + 3aAs + 9R4 

µ ( 4 )-1/2 
"" - l+-aA5 R4 3 ' 

(3·44) 
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for R » (a1i) ~ .13) Comparing Eq. (3·42) with Eq. (3·44), with the identification 
R = esinh(y/e) cosh(Ht), we find 

(3·45) 

Thus the solution that decays exponentially in time corresponds to adding a small 
black hole in the bulk. 35) 

In the two-brane system, the mode discnssed here corresponds to the radian, 
which describes the relative displacement of the branes.29), 3o) As in the case of 
Einstein gravity, the radian mode is truly tachyonic. However, for the EGB theory, 
there is a tachyonic bound state mode other than the radionic instability, as in the 
limit of the Minkowski brane,23) as discussed explicitly in Appendix C. This renders 
the two-brane system physically nnrealistic in the EGB theory. 

§4. Linearized gravity in limiting cases 

In this section, we discuss the effective gravity on the brane in various limiting 
cases. \Ve find that the effective gravity reduces to 4-dimensional theories in all the 
limiting cases. 

4.1. High energy brane: He » 1 

For a high energy brane, i.e., in the He» 1 case, we have tanh(yo/e) eo< 1/(He) 
and f3"" 2(He) 2. We assume that matter perturbations on the brane are dominated 
by modes for which p ~ 0(1). Specifically, we consider the case He» p. Then, from 
Eqs. (3·31) and (3·33), we find that the second and third terms on the right-hand 
side of Eq. (3·28) are suppressed by a factor of 1/(He)2 relative to the first term, 

b'Gµv[ii.) + 3H2 ii.µv = n:g ta~~~yo/e) ( Sµv + O((He)-2 )) • ( 4·1) 

Thus, we obtain Einstein gravity with the cosmological constant 3H2 , with the 
gravitational constant G 4 given by 

~2 ~2 

87rG4 = 2J!~ tanh(yo/e)""' 2(H;)ae· (4·2) 

The terms we have ignored give the low energy non-local corrections: 

( 
-) "H1-a) b'G1w[h) = -

2
e_ tanh(y0 /e) 

corr,H£ O'. 

x 1_: dp { Yj~·2 ) S(p,2) 

[ 
P{j2 (zo) ] 

x ( 1 - a )Pi/2 (zo) + a(-ip + 3/2) (He)2 cosh(yo/ e)P~/2 (zo) 

+y(p,O) S l } (4 3) µv (p,O) (l + (3) · ' 
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4.2. Short and large distance limits 

In order to study short and large distance limits, it is convenient to start from 
the expression (3·26) for the perturbed Einstein tensor and Eq. (3·31), which relates 

the brane bending scalar 'P to the scalar part of the energy momentum tensor sj,~. 
Let us recapitulate these expressions: 

(4·4) 

( 4·5) 

1. Short distance limit: r ~ min{R,H-1 } 

For the short distance limit, p---> oo, using Eq. (3·32), we find 

(4·6) 

Also, using Eq. ( 4·5), we manipulate as 

2coth(yo/f!) ( DµDv - ')'µvD4 - 3H21'µv )'P 
1(,2 1= = 
2

/!5_ tanh(yo/ f!) dp S(p.D) ~'.~,O) °' -co 

- l ~a tanh(yo/f!) ( DµDv - ')'µvD4 - 3H2')'µv )'P, ( 4·7) 

where we have used the identity 

l+,8 l+,8 
2coth(yo/f!) = 2coth(y0/f!)- -_-tanh(y0/f!) +-_-tanh(y0 //!) 

°' °' 1-a l+,8 
= --_- tanh(110/f!) + -_- tanh(yo/i!), (4·8) 

°' °' 
which follows from the definition of the parameter ,8, given in Eq. (3·24). 

Substituting Eqs. (4·6) and (4·7) into Eq. (4·4), the linearized gravity on the 
brane at short distances becomes 

- 2- - l(,g . 
5Gµv[h] +3H hµv-

2
/!a tanh(yo/f!)Sµv 

(1 - a) ( 2 ) °' tanh(yo/f!) DµDv -Dnµv-3H ')'µv <p, (4·9) 
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with 

n,2 
5 s 

6(1 + (3)£ . 
( 4·10) 

This is a scalar-tensor type theory. 
Interestingly, the scalar field <p that describes the brane bending degree of free­

dom turns to be dynamical. As we have seen in the previous subsection, there is 
no intrinsically dynamical mode associated with the brane bending. Therefore, this 
emergence of a dynamical degree of freedom is due to the accumulative effect of 
all of the Kaluza-Klein modes, like a collective mode. Furthermore, because of the 
tachyonic mass, the system appears to be unstable. However, this is not the case. 
Because we have taken the limit p --> oo, all the perturbations have energies much 
larger than H, and the tachyonic mass-squared -4H2 is completely negligible. In 
other words, the spacetime appears to be flat at sufficiently short distance scales. 

We can rewrite Eq. ( 4·9) in the form 

with the identifications 

87rG4 n,g 
-;;:- = n- tanh(yo/ £) , 

"'0 2ux 
3a 

w = --_ coth2 (Yo/£), 
1- a 

oif.> 1 - a - = --_-tanh(·vo/f)<p, 
if.Jo a 

A4 = 3H2
. 

(4·11) 

( 4· 12) 

Ignoring the tachyonic mass of oif.>, which is justified for the reason stated above, this 
is the linearized Brans-Dicke gravity with a cosmological constant.21) For Hfl « 1, 
we have tanh(yo/ £) "" coth(yo/ £) e:< l. Thus we obtain 

This is in agreement with the Minkowski brane case investigated recently. 22) 

The corrections are written 

(4·13) 

(4·14) 
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2. Large distance limit: T >> max{ e, H- 1 } 

For the limit p-> 0, using Eq. (3·32), we have 

(4·15) 

For the term involving <p, we pull out the part that takes the same form as the above 
equation. Using Eq. (3·30), we find 

2coth(yo/i!)(DµDv-/µvD4 - 3H2/µv )'P 
_ 3 0.~ (HC)P3;2(zo)/P1;2(zo) 100 d S y(p,O) 

- 4£ (1 - a)+ (3/2)(HJ!) coth(yo/C)aP3;2(zo)/ P1; 2(zo) _
00 

p (p,o) µv 

(HJ!)(l - a)P-1;2(zo) 

2(1 + (3)P1;2(zo) - (HC) coth(yo/C)aP_1;2(zo) 

( 4· 16) 

where we have used the recursion relation 

( 4· 17) 

Thus, the effective gravitational equation is expressed as 

( 4· 18) 

where we have rescaled <p to <p = 6(1 + (3)<p, and Fr and Fs are constants that 
represent the tensor and scalar coupling strengths, respectively, given by 

(HC) ( 4cosh(yo/f!)P1; 2 (zo) - P_1; 2 (zo)) 
fy= ' 

2( 2(1 + (3)P1;2(zo) - (HJ!) 2 cosh(yo/f!)aP_1; 2 (zo)) 

Fs = (HJ!)(l - a)P_ 1;2(zo) . (
4

_
19

) 

6(1 + (3) ( 2(1 + (3)P1;2(zo) - (HJ!) 2 cosh(yo/C)aP_1;2(zo)) 



Linearized Gravity on the de Sitter Brane 465 

In the intermediate range of JU, i.e., when Hi!= 0(1), Fr and Fs are comparable 
and we obtain a Brans-Dicke-type theory given by Eq. ( 4· 11) with the identifications 

87rG4 _ n.g "' i5iP 
<Po _e,·r, <Po=-Fs(/>, 

Fr-3Fs 
W= 

2Fs 

= 
6(1 + /3) cosh(yo/f)P1; 2(zo) - 3( 1 + (H£)2a )P-1; 2 (zo) 

(1 - a)P-1;2(zo) 
( 4·20) 

A potential problem in this case is that the tachyonic mass of the scalar field seems 
to make the system unstable. However, as discussed in §3.4, the tachyonic pole is not 
excited by the matter source. Further, as discussed in §3.5, the source-free tachyonic 
mode does not cause an instability either. 

For He« 1, we have w » 1, and the scalar field decouples to yield 

i5G [/-] H2/- _ Kg coth(yo/£) S 
µv l + 3 lµv - e 1 + /3 µv· ( 4·21) 

Thus we obtain Einstein gravity with 

G Kg coth(yo/ £) 
811" 4= I! l+/3 . ( 4·22) 

In the limit Hi!---> 0, we have 

K2 1 
8KG4 ""' ---'!. __ _ 

I! 1 +a 
(4·23) 

This is the result for the Minkowski brane. 
In the case HI! » 1, we have w » 1, and we recover 4-dimensional Einstein 

gravity on the brane with 

( 4·24) 

Note that this is just a special case of the high energy brane case discussed in §4.1. 
Thus we conclude that despite the presence of the tachyonic mass, the system 

is stable and well-behaved for all ranges of Hi!. 

§5. Summary and discussion 

We have investigated the linear perturbation of a de Sitter brane in an anti-de 
Sitter bulk in the 5-dimensional Einstein Gauss-Bonnet (EGB) theory. We have 
derived the effective theory on the brane which is described by a set of integro­
differential equations. 

To understand the nature of this theory in more detail, we have investigated 
its behavior in various limiting cases. In contrast to the case of a braneworld in 
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5-dimensional Einstein gravity, in which both the short distance and high energy 
brane limits exhibit 5-dimensional behavior, we have found that the gravity on the 
brane is effectively 4-dimensional for all the limiting cases. 

For a high energy brane, i.e., in the case He» 1, Einstein gravity is recovered, 
provided that the length scale of the fluctuations is of order H- 1 . It is found that 
the low energy corrections are suppressed by an O((He)-2) factor. 

In the short distance case, r «min{/!, H-1 }, the scalar field that describes brane 
bending becomes dynamical, and we obtain Brans-Dicke gravity. This is consistent 
with the case of the Minkowski brane. A slight complication is that this brane­
bending scalar field is tachyonic, with mass-squared -4H2 . Therefore, if it becomes 
dynamical, one would naively expect the theory to become unstable. However, be­
cause the energy scale of fluctuations is much larger than H, the fluctuations actually 
do not see this tachyonic mass, and hence there is no instability. 

In the large distance case, r » max{/!, H-1 }, Einstein gravity is obtained in 
both cases Hf! « 1 and Hf! » 1, while a Brans-Dicke type theory is obtained for 
Hf!= 0(1). Although the scalar field of this Brans-Dicke gravity is tachyonic with 
mass-squared given by -4H2 , we have shown that this mode is not excited by the 
matter source, and hence it does not lead to an instability of the system. 

In the limit Hf! --> 0, the previous results for the Minkowski brane have been 
recovered, that is, Brans-Dicke gravity at short distances and Einstein gravity at 
large distances. 

In all the cases, the effective 4-dimensional gravitational constant depends non­
trivially on the values of Hf! and a, where a is the non-dimensional coupling constant 
for the Gauss-Bonnet term. This indicates a variation in time of the gravitational 
constant in the course of the cosmological evolution of a brane in the EGB theory. 
It will be interesting to investigate in more detail the cosmological implications of 
the braneworld in the EGB theory. 
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Appendix A 
The Results for the Minkowski Brane --

Here, we summarize the results for the Minkowski brane. 22
) 

A. l. Effective equations on the brane 

In the RS gauge, the perturbed metric in the bulk is written 

(A-1) 
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where 1/µv is the Minkowski metric. The brane is located at y = 0 in the background. 
The background part of the Einstein Gauss-Bonnet equation (2·3) gives the relation 
of the AdS radius to the bulk cosmological constant, Eq. (3·4). The perturbative 
part of Eq. (2·3) gives 

(A-2) 

Again, we consider the case & # 1. The location of the brane is perturbed to be at 
y = -£<p. The induced metric on the brane is given by 

(A-3) 

The solution for hµv on the brane which satisfies the junction condition is given 
by 

where H~l) is the Hankel function of the first kind and q2 = -p2 • The equation that 
determines the brane bending is 

(A·5) 

The perturbed 4-dimensional Einstein tensor is expressed as 

(A-6) 

Inserting Eq. (A-4) into Eq. (A·6), we obtain the effective equation on the brane, 
which reads 

6G v[h] = ~ _P_eip·x a.q ~ 2 q~ 
.2 J d4 - 2n2H(1)( n) 

µ 2a£ (27r)4 (1- i1)q£HJI)(q£) + aq2£2H~l)(q£) 

x [ Sµv(P) - ~ ( 1/µv - Pi;v) S(p) l 
+2 (8µ8v - TJµvD4) <p. (A·7) 

A.2. Short distance limit 

In the short distance case, q£ » 1, Eq. (A-7) becomes 

(A-8) 



468 M. Minamitsuji and M. Sasaki 

Comparing Eqs. (A·5) and (A·S) with linearized Brans-Dicke gravity 

we find the correspondences 

"2 5 

2cd' 
o.P 1-a 
.Po = --r;-<p, 

The corrections can be rewritten as 

D i5<I> = SrrG 4 S 
4 

3 + 2w ' 

36' 
W=--. 

1-6' 

(5Gµv[iiJ) = - "~ J d4p eip·x (1- a)q£Hjll(q£) 
con 26'£ (2rr)4 (1 _ a)q£Hj1l (qf) + aq2f!2 H~l) (qf) 

X [ Sµv - ~ ( ryµv - p;;v) S l · 
A.3. Large distance limit 

In the large distance case, qi'.« 1, Eq. (A·7) becomes 

- "~ 1 
5Gµv[h] =Cl+ a Sµv· 

Thus we obtain Einstein gravity with 

"2 1 
8rrG4 = ~--. e l+a 

Appendix B 
-- Harmonic Punctions on de Sitter Geometry --

(A·9) 

(A·lO) 

(A-11) 

(A-12) 

(A-13) 

In this appendix, we consider the harmonics on the de Sitter spacetime with 
curvature radius H-1. They are obtained by the Lorentzian generalization of the 
tensor harmonics on an n-dimensional constant curvature Riemannian space.36) 'vVe 
focus on the tensor-type and scalar-type harmonics. 

B. l. Tensor-type harmonics 

The tensor-type tensor harmonics satisfy the relation 

(B·l) 

which corresponds to 4-dimensional massive gravitons with mass-squared m2 H 2 = 
(p2 + 9/4)H2 . They satisfy the transverse-traceless condition, 

(B·2) 

In reality, the tensor harmonics have 3 more indices for the spatial eigenvalues. 
If we adopt fiat slicing, 

(B·3) 



Linearized Gravity on the de Sitter Brane 469 

we can use the standard Fourier modes eik·w, and the spatial indices will be con­
tinuous. In addition, we also have discrete indices CJ that describe the polarization 
degrees of freedom (5 in 4-dimensions). However, for notational simplicity, we omit 
these indices. 

We ortho-normalize the tensor harmonics as 

I d4xAYJf·2) Y*(p',2)µv = o(p - p')o3(k - k')oa,a'. (B·4) 

Although we have no explicit proof of completeness, due to our poor knowledge, 
we assume that YJf'2) for -oo < p < oo constitute a complete set for the space of 
transverse-traceless tensors. 

B.2. Scalar-type harmonics 

The scalar-type harmonics y(p,O)(xµ) satisfy the equation for a scalar field with 
mass-squared m.2H 2 = (p2 + 9/4)H2, 

(04 - (p2 + ~)H2)y(p,O)(xµ) = 0. (B·5) 

We assume that they satisfy the ortho-normality condition, 

j d4xAY(p,o)y•(p',o) = o(p- p')o3(k - k'). (B·6) 

From y(p,O), the ortho-normalized scalar-type vector harmonics are constructed 
as 

y(p,O) = i D y(p,O) 
µ H)p2 +9/4 µ ' 

(B·7) 

which satisfy the relation 

j d4xnYJp,o)y*(p',o)µ = o(p - p)o3 (k - k'). (B·8) 

The trace-free and divergence-free scalar-type tensor harmonics are constructed, 
respectively, as 

y(p,O) = N [D D y(p,O) - ~ (P2 + ~) 'V /{2y(p,O)l µv p µ v 4 4 1µv 1 

y(p,O) = N [D D y(p,O) - (P2 + 21) 'V /{2y(p,O)l 
µv p µ v 

4 
1µv 

= y(p,O) - ~ N (P2 + 25) H2-v y(p,O) (B·9) µv 4 p 4 1µv , 

where 

IN 12 - 1 
P - 3(p2 + 21/4) (r + 25/4)H4. 

(B·lO) 

\Vithout loss of generality, we assume that Np is real and positive. The scalar-type 

divergence-free tensor harmonics Yjf·0
) satisfy the ortho-normality condition 

I d4xnljf·0ly•(p',O)µv = o(p - p')o3(k - k'). (B·ll) 
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Appendix C 
-- Tachyonic Bound State in de Sitter Two-Brane System --

In Ref. 23), Charmousis and Dufaux showed that for a Minkowski two-brane 
system, there exists a tachyonic bound state on the negative tension brane. This 
fact implies that the Minkowski two-brane system is unstable with respect to linear 
perturbations. Following Ref. 23), we show that there exists a tachyonic bound state 
also for the de Sitter two-brane system. 

C. l. Possibility of a negative norm state 

\Ve consider a de Sitter two-brane system. The brane located at smaller ra­
dius in the AdS space has negative tension. We discuss only the bulk gravitational 
perturbations. The matter perturbations on each brane are not taken into account. 

The bulk component of the perturbed Einstein Gauss-Bonnet equation including 
the boundary branes is written in Sturm-Liouville form as 

Using Eq. (C·l), the boundary condition on each brane is derived. For H = 0 and 
b(y) = e-lvl/e, Eq. (C·l) naturally reduces to the Minkowski version, Eq. (8) in 
Ref. 23). 

1. On the positive tension brane 
Imposing Z2 symmetry, the warp factor around the positive tension brane can 
be expressed as 

b(y) =Ile sinh(Y+ - I~ -y+I ). 

Integrating Eq. (C·l) around y = Y+ and using the Z2-symmetry, 

where 

8 of, ('f - 0) = ( (p
2 + 9/4) cosh(y+/I!) 1}; (·1 ) 

Y'l'P Y+ I! sinh3(Y+/I!) . P Y+ ' 

ii 
(:=-. 

1 - ii 

2. On the negative tension brane 

(C·2) 

(C·3) 

(C·4) 

Similarly, the Z2 symmetry gives the warp factor around the negative tension 
brane as 

(C·5) 

Integrating Eq. (C·l) around y = Y- and using the Z2-symmetry, we have 

8 of, (· 0) - ( (p2 + 9/4) cosh(y-/1!) of, (· ) 
y'l'p Y- + - I! . 3 'f'p Y- · 

smh (y_/f!) 
(C.6) 
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For both branes, the boundary conditions are of a mixed (Robin) type. This 
makes it impossible for us to prove the positivity of the norm. Explicitly, we have 

l,"+ dy (b4 - ae2 (b2b12 - b2 H2)) (ov1/Jp)2 
Y-

= (He) 4 (p2 + ~) [ ~(sinh(2y+/£)1jJ;(v+) - sinh(2y-/£)1/J~(Y-)) 

(1 - Ci) 1"+ ] + £2 Y- dy sinh
2

(y//!)1/J;(y) . 

Thus the norm is no longer positive definite for p2 + 9 / 4 > O. 

C.2. Condition for the existence of a tachyonic bound state 

(C·7) 

In order to determine whether a tachyonic bound state exists, we need to analyze 
the mass spectrum. The tachyonic eigenmode, if it exists, is given by 

where rn2 = -µ2
, q := y' µ2 + 9 / 4, and q2 = -p2

. The y-derivative of the quantity 
is 

oy1/Jq = . 5~2 ( ) [(-
2

3 
-q)AqP1/Hcosh(y/1!)) 

/!smh y/f! 

+(% + q)BqP'f12 (cosh(y/1!)) J. (C·9) 

Using the boundary conditions on the two branes, Eqs. (C·3) and (C.6), we 
obtain 

Aq(%- q)((z!-1JP1/~(z+) + ((% + q)z+P0~(z+)) 

+Bq(% + q) ( (z! - l)P'f12 (z+) + ((%- q)z+Pj12 (z+)) = 0, 

Aq(%- q) ( (z:l_ - l)P;j~(z_) + ((% + q)z_P0~(z-)) 

+Bq (% + q) ( (z:l_ - l)P'f;2 (z-) + ((%- q)z_Pj;2 (z_)) = 0, 

where Z± = cosh(Y±/1!). 

(C·lO) 

In order for a non-trivial solution for Aq and Bq to exist, the determinant must 
vanish. Imposing this condition explicitly, we have 

( (z! - l)P;j~(z+) + ((% + q)z+P3/~(z+)) 
x ((z:l_ - l)P'f12 (z_) + ((%- q)z-Pj12(z_)) 



472 M. Minamitsuji and M. Sasaki 

-( (z:. - l)Pif~(z_) + ((~ + q)z_P0~(z_)) 

x ( (z! - l)P{;2 (z+) + ((~ - q)z+Pj12(z+)) = 0. (C·ll) 

The pole at q = 3/2, which corresponds to the zero mode, is divided out in deriving 
Eq. (C·ll). If there exists a solution of Eq. (C·ll) for q > 3/2, its existence implies 
the existence of a tachyonic bound state. 

C.3. Existence of a tachyonic bound state 

From Eq. (C·ll), we have 

(z:. - l)P{12(z_) + ((~ - q)z_Pj12(z_) 

(z:. - l)Pif~(z_) + ((~ + q)z_P0i(z_) 

= 
(z! - l)P{12(z+) + ((£ - q)z-Pj12 (Z-) 

(z! - l)P{j~(z+) + ((£ + q)z+P31~(z+). 

Using the definition of the Legendre functions,32) 

µ. _ _ 1 (z + l)µ./2 [ . . 1 - z] 
Pv (,,) - I'(l _ µ) z _ l 2F1 -1,, v + 1, 1 - µ, - 2- , 

(C-12) 

(C·l3) 

we see that the left-hand side of Eq. (G 12) is generally much larger than the right­
hand side for q » 1 for fixed z+ and z_. Therefore, in order for this equation to be 
satisfied, we must have 

(C·l4) 

This is a consistent solution for ( « 1. Thus a tachyonic bound state exists in the 
de Sitter brane case as well. 

The tachyon mass is given by 

(z2 - l)Iie 
µH = Jqz - 9/4H ""'- - . 

(z_e 
(C·l5) 

In the low energy case, we have z+ > z_ » 1 and He""'- l/z+ « 1. Hence, the above 
reduces to 

(C-16) 

where 

(C·l 7) 

This is consistent with the result for the Minkowski brane.23
) 
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In the high energy case, He ? 1, we have 

!?2H H 
µH"" ((H£)2 « (. 
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(C·l8) 

Thus the high background expansion rate of the brane suppresses the tachyonic mass, 
resulting in a tendency to stabilize the two-brane system. 
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