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Abstract 

We study the generalized parton distribution functions (GPDs) with the light-cone wave 

function derived from the chiral quark soliton model, which is an effective model of baryons 

maximally incorpqrating the spontaneously chiral symmetry breaking of the QCJ:? vacuum. 

In the relativistic mean field approximation in this model, one-obtains a quantitative picture 

of baryons as localized states of constituent quarks bound by a self-cons_istent chi.ral filed. 

Simultaneously, the negative Dira℃sea is distorted by the same chiral field, leading to the 

presence of an indefinite number of additional quark-antiquark pairs in the baryons. Then 

the baryon wave functions can be constructed as a product of Ne = 3 valence quark wave 

functions and the coherent expo~ent of quark--antiquark pairs. 

We present the expression of the GPDs in the light-cone frame using the light~cone wave 

function in this model. They are representated as the overlap integrals of the initial and 

final state Fock components. In the characteristic kinematical range in the representation of 

the GPDs, there arise non-diagonal Fock space matrix elements which never appear in the 

case of ordinary Feynman quark distribution functions. Consequently, GPDs contain quite 

new information about nucleon structure. 

We numerically investigate the GPDs under various limiting conditions. In the forward 

limit, GPDs reduce to the ordinary Feynman parton distribution. When one leave the trans-

verse momentum of the struck quark unintegrated, the transverse momentum dependent 

quark distribution function can be obtained. In the purely transverse momentum transfer 

case, GPDs become the probability density of both the longitudinal momentum direction 

and impact parameter space. We emphasize that the chiral symmetry breaking of the QCD 

plays a very important role in all kind of distribution functions. 
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I. INTRODUCTION 

The fundamental particles which form hadrons are long known to be quarks and gluons, 

whose interactions are described by the Lagrangian of Quantum Chromo Dynamics (QCD): 

£ = E も (i沿—叩＋外）も一 }F:11Faµぢ
f 

(1) 

where the Minkowski metric is 9μv = diag {1, -1, -1, -1}. Thtoughout, we use the natural 

units ti =・ C = 
distances [1-3). 

1. A striking property of QCD is that of asymptotic freedom at short 

However, this knowledge is not sufficient (at the moment) for concluding 

that we are ~ompletely understanding QCD, since the mechanism of hadronization of quarks 

and gluons is governed by long-distance phenomena such as confinement and spontaneous 

9hiral symmetry breaking. These long-distance phenomena are in turn related to the non-

trivial struc;ture of the QCD vacuum. It implies that the studies of hadronization processes 

provide us with valuable information ori the fundamental questions of the vacuum structure 

of non-abelian gauge theories. 

The spin structure of the nucleon reflects interesting nonperturbative physics in QCD [10-

12]. From th~ EMC data on polarized deep-inelastic scattering, one finds that about (30士

7)% of the nucleon spin is carried by quark spin or helicity [4-6]. Natural questions are then 

what carries the rest of the nucleon spin? How can it be measured or calculated? 

Intuitively, the candidates for the missing spin are the quark and gluon orbital angular 

momenta and gluon helicity. In QCD, they can be identified with matrix elements of certain 

quark-gluon operators in the nncleon state [7]: 

↓
J
q
↓
J
g
 

=!馴［和＋xx（一逍）］ゅ，

=!む［（月 xふ―E紅 x8)Ai] (2) 

The problem, however, is that these operators take free-field expressions and are not gauge 

invariant in, an interacting gauge theory. Hence it is doubtful that their matrix elements have 

any experimental significance, although they can be calculated in some theoretical modeis. 

In 1997 Ji showed that there exists a gauge—invariant decomposition of the QCD angular 

momentum operator into quark and gluon contributions [8): 

↓
J
q
↓
J
g
 

！馴［和＋XX(-iD)]ゅ，

= J d3x［召 x（月 XB)]. (3) 

ー



The quark part can.be separated into the usual quark helicity plus the gauge-invariant orbital 

・contribution. There exists, however, no gauge-invariant separation of the gluon part into 

helicity and orbital contributions, although high-energy scattering favors such a separatio~ 

in the light-like gauge and infinite momentum frame. The gauge-invariant expression for the 

angular momentum operator allows one to calculate meaningfully fractions of the nucleon 

spin carried by quarks and gluons. Further:rp.ore, it allows them to be measured in deeply 

virtual Compton scattering (DVCS) in which the virtual photon momentum approaches the 

Bjorken limit. DVCS gives an access to a new class of nucieon observables the Generalized 

Parton Distributions (GPDs) [13-17]. 

GPDs are generalization of ordinary parton distributions and elastic form factors. Taking 

the n-th moment of the GPDs one obtains the form factors i.e., off-forward matrix elements 

of the spin-n, twist-two quark and gluon operators. On the other hand, in the forward 

limit the GPDs reduce to the usual quark, antiquark and gluon distributions. In other 

words, the GPDs interpolate between the traditional inclusive (parton distributions) and 

exclusive (form factors) characteristics of baryons and thus provide us with a considerable 

new amount of iilforma~ion on baryon structure. The most interesting aspect of the GPDs 

is that in addition to the parton intrinsic spin they also contain information on their orbital 

angular momenta [8]. Hence the measurement of GPDs would allow us to determine the 

quark orbital angular momentum contribution to the proton spin. 

The clearest information about GPDs can be obtained in DVCS and in hard exclusive 

electroproduction of mesons, 

汽q)+ N(p)→1(q') + N(p'),,*(q) + N(p)→M(q') + N(p'). (4) 

in which a photon 1* with high energy and large virtualit_y -q2 = Q2 > 0 scatters off the 

hadoronic target N and produces a meson M or a real photon 1. The common important 

feature of hard reactions is the possibility to clearly separate the perturbative and nonper-

turbative stages of the interactions, this is the so-called factorizati9n theorem [17]. The hard 

process-dependent parts are calculated according to P.erturbative QCP and the soft process-

independent part is usually encoded in soft functions, G PDs. Usually, formal definition of 

soft part can be formulated in terms of definite quark and gluon matrix elements (here w~ 

show it for the quark operator only) 

f竺ei:cz〈N(p')I如(0)P i9J;。z心μ□(z)IN(p)〉，（5)
27T' 
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where the operators are on the "light cont;'1, i.e. z2 = 0. The GPDs depend upon three 

variables x =炉／p+,e = 2(p'-p) / p+ and t = (p'-p)乞 Inthe Bjorken scaling limit, 

GPDs probe light-like correlations in the target. 

In principle, any soft part can be expressed in terms of the hadron wave-function. The 

advantage of making use of the light-cone formalism is that only in that frame one can 

express GPDs probed in hard process as a ground state property of the nucleon. In all 

other frames the light-like correlation function involves correlations in the time direction 

and therefore knowledge of the ground state wave function of the target is not sufficient to 

describe GPDs. One also needs to know the time evolution of the target with one quark 

replaced by a quark that moves with nearly the speed -of light along a straight li°:、e[18-24]. 

Unfortunately up to now, the light-cone wave functions of baryons in the low normaliza— 

tion point cannot be determined from the first principle of QCD. Perturbative theory is able 

to p:redict only the so-called asymptotic wave functions which are normalized at arbitrary 

high.normalization point. For this reason, reliable models of the baryons become highly 

desirable. 

Recently, Petrov and Polyakov calculated the light-cone wave function based on the Chiral 

Quark Soliton Model (CQSM) which is an effective model of baryons maximally incorpo-

rating the spontaneous chiral symmetry breaking of the QCD vacuum [25]. The CQSM 

has been derived from the instanton liquid model of the QCD vacuum, which provides a 

natural mecha11ism of chiral symmetry breaking and enables one to reproduce the dynami-

cal quark mass M [26-29]. In the relativistic mean field approximation in the CQSM, one 

obtains a quantitative picture of baryons as. localized states of constituent quarks bound by 

a self-consistent chiral filed. Simultaneously, the negative Dirac sea is distorted by the same 

chiral field, leading to the presence of ari indefinite number of additional quark-antiquark 

pairs. in th~ baryons. Petrov and Polyakov used the technique of the finite time evolution 

operator in order to obtain expressions for all Fock components describing the baryons [25]. 

Then the baryon wave functions can be constructed as a product of Ne = 3 valence quark 

wave functions and the coherent exponent of QQ pairs. In the infinite mom~ntum frame of 

baryon, the expansion of the coherent exponent is well defined, and light cone baryon wave 

functions a~、e mainly represented by the 3Q and 5Q Fock components [30,叫 Recently,

Diakonov and Petrov developed the framework for calculating the static physical observable 

in terms of the light-cone wave functions obtained in the CQSM [32]; They showed that the 

3
 



octet and decuplet baryons have non-negligible 5Q-components in addition to their leading 

3Q components, while 3Q component of exotic antidecuplet baryon is identically zero. 

In this, thesis; we numerically evaluate various structure functions.using the 

light-cone baryon wave functions based on the CQSM. These include transverse 

momentum dependent parton distribution functions q(x, k1.), spin non-flip GPDs 

H(x，もぶ），E(x,{，△り，甘(x,＜，ぷ） and取x,，．｛，ぶ）， andimpact parameter space parton 

distribution functions q(x, b1.). The transverse momentum dependent PDF q(x, k1.) is the 

probability of finding a quark with longitudinal momentum xP+ and transverse momen-

tum k.i_ in a nucleon. Following the Ji's sum rule, the second moment of the combination 

H惰，0,0)and炉 (x,O, 0) gives the total quark contribution to the nucleon spin 

[11 dxx（い（x,0,0)＋か(x,0,0})= J見
ー1

(6) 

Thus, a deep understanding of the spin structure.of the nucleon can be achieved through 

the study of GPDs. The impact parameter space PDF q（エ」り） isthe Fourier transform of 

the GPD in the limit ~• O 

H(x,O,心） ＝J d2bJ.iA1.-b1.q(x, b1.)- (7) 

q(x,b..L）represents the momentum density to find a quark with momentum fraction x in the 

longitudinal direction and the spatial density in the transverse directions. All the quanti-

ties are represented by the overlap integral of the initial and final state Fock components 

sandwiching the matrix elements of corresponding operator. We emphasize that the chiral 

symmetry plays various important roles in the internal structure of the baryon. In partic-

ular, the region O < x < e/2 where baryon emits a quark-antiquark pair, GPDs contain 

completely new information about baryon structure. In this _region, the initial 5Q and final 

3Q overlap are relevant, and the model prediction shows that the GPDs as functions of x 

exhibit discontinuity at lxl = t/2. 
_The plan of this thesis is as follows. In Sec. II we outline the QCD definition of the 

GPDs and th~it basic properties. Section III gives an introduction t、othe ch-iral quark soli-

ton model of the nucleon and a derivation of the light-cone wave functioii. based on this 

model. In Sec. IV we derive the expressions for the GPDs including the impact parameter 

space distribution and the transverse momentum dependent distribution in the chiral quark 

soliton model. We show that the contributions in the region x < ltl/2 to the. GPDs can 
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be interpreted as the distribution amplitudes for the mesons convoluted witli the valence 

wave functions of the baryon. Numerical estimates for the transverse momentum dependent 

q(x, k.1), spin non-flip GPDs H(x,｛，ぷ） and,打（の，e，△り, and impact parameter space par-

ton distribution functions q（の，b.l）arepresented in Sec. V. A sunnnary and conclusions are 

given in Sec. VI. 

5
 



II. QCD DEFINITION OF GENERALIZED PARTON DISTRIBUTIONS 

To start, consider the bilocal operator炒（一入n/2).Cr%（入n/2),where入isa scalar param-

eter,ゆisa quark'field of a certain flavor i and rμ =,μor,芦 Throughout,we will use 

light-cone coordinate system, 

茫＝如°土砂）， X1. = (x1，巧）， (8) 

and all other vectors are treated in the same way. The light~like vector n is proportional 

to (1, 0, 0, -1), with a coefficient depending on the choice of coordinates. The gauge link£ 

is along a straight line segment extending on the choice from one quark fi~ld to the other, 

which makes the bilocal operator gauge invariant. In the following, we work in the light-like 

gauge, A・rJ,= O, so that the gauge link can be ignored. 

One can. now proceed to the matrix element of the bilocal operator between the nucleon 

states with momenta pμ. and P'μ. = _pμ.十△μ.'where△μ.is the four momentum transfer. 

The matrix element must be expressible in terms of nucleon spinors, Dirac matrices, and the 

four-vectors pμ.,△μ. and nμ.. Since we are only interested in the leading-twist contributions 

which are proportional to pμ. or p・ μ. in the infinite momentum frame, we keep terms that are 

non-vanishing after multiplication by nμ.: 

凡＋（x,e,t)=／竺eixM吟 (P'I炒（一入n/2),十ゆ（入n/2)IP〉=H(x,l, t)f!.E_'）吋U(P) （9) 
4T 2P+ 

ia+v△ 
+ E(x, l, t)U(P')~U(P) 

4P+MB 

＋ 

F,.,+,.,5(x,l,t) =／竺eixM吟〈P'I沢（一入n/2),囁（入n/2)IP)＝恥，e,t) 
U(P'),+,sU(P) 

4T 2P+ （10) 

△‘ ＋恥，l,t)U(P')~U(P) 
4P+MB 

＋ 

where t三心 and(三 -n △/2, with U(P) the nucleon spinor, the dots (・ • •) denote 

higher-twist contributions, and MB denotes the baryon mass. It is'•possibk to construct 

other Dirac structures that appear to be leading-twist, however, using Goidon identities 

and throwing away sub-leading terms one can always reduce these to the form in Eq~.(9-

10). The structures in Eqs.(9-10) are the same as those in the definition of the nucleon's 

elastic form factors. Examination of the helicity structure of quark-nucleon scattering shows 

6
 



that there are exactly four independent ampl'itudes. The chiral-even distributions Hand甘

survive in the forward limit in which the nucleon helicity is conserved, while the chiral-odd 

distributions E and E arise from the nucleon helicity flip associated with a finite momentum 

transfer. 

A. Properties of GPDs 

The GPDs are depicted graphically in Fig.I, where kμ and k'μ are the four-momenta of 

th~ active partons. The physical meaning of.the distributions becomes clear if one introduces 

Y
 

N 

FIG. 1: "Handbag" diagram for DVCS. 

a conjugate light-like vector pμ of n生withp • n = 1. Expanding pμ = (P + P')μ /2 and△μ 

in terins of the vectors pμ and nμ then gives: 

ァμ = pμ+（訊2)nμ 

ぷ＝一f(Pμ -（訂2/2)炉） ＋ △i' 

N 

(11) 

(12) 

where訂2= P2 = Mj -t/4, and the spatial components of Pμ, have beeil chosen along 

the z-direction. If we focus on the pμ, components of the momenta, the initial and final 

nucleons have longitudinal momenta (1 (1 + f/2)pμ, and (1 -e/2)pμ,, and the outgoing and 

incoming quarks carry (x + e/2)pμ, and (x -e/2)p凡respectively.Since the nucleon cannot 

7
 



have negative longitudinal momentum, the limit on f is obviously: 

0 ＜ぐ＜ Jコ／訂 (13) 

On the other hand, since quarks cannot carry more longitudinal momentum than parent 

nucleon, one has the constraint on x: 

-1 < x < l (14) 

The distribution in the negative x region should be interpreted as that of the antiquarks 

Hq(-x, (, t) = -H刃x,(, t), Eq(-x, (, t) = -E<i(x, (, t) 

and 

甘q(-x,e,t)＝甘ii(x,e, t)，Eq(-x,e,t)＝屁ii(x,e, t). 

(15) 

(16) 

With the phase conventions of the Brodsky-Lepage light-cone spinors in Appendix A,、it

is co;11venient to introduce the following decomposition fqr Eqs.(9) and (10) in terms of the 

light-cone helicities入，入＇

1-l入入'= F-y+(x,e,t), 

元入’三凡＋-y5(x,J,t). 

The spinor products in RHS of Eqs.(9) and (10) now read [23, 24] 

1 _ • 

2P+ U(P，入）吋U(P'ぶ） ＝喜万8入，入‘’

l iが 1/△1/

U(P，入） U(P'ぶ） ＝一
ぐ l —入△1 - i△2 

戸 ~U(P',X) = -JI=戸い＋汀マア 2MB 6入，ー入’’

~U(P，入）五U(P'ぶ）＝入五万，＇入’’
1 △巧5
~U(P, 入)--U(P',>.') = -

e2 1 —入ぶー込2

2P+ 2MB 汀マい＋汀マ 2MB 8入，ー入'

For the different helicity combinations we now find 

1-l十十三叫＝ ~H(x,e,t)-
e2 
v E(x, e, t), 

7 : 

1-l—＋三一 (1-l□ =TJ~E(x,e,t),
2MB 

1-l十十三—叫＝戸li(x,e, t) 
¢2 

』＝で
恥，｛，t),

1-l—＋三匹）＊ ＝ne 
ご～
2MB 

E(x,e,t), 

8 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

‘
.
~
、
~
、
・
~
ヽ
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with t。definedas t。＝ぐMi/(1ー e2/ 4) and a phase factor reading 

△1十△2

n = I△.LI. (27) 

Evaluating払，入， and元，入， forboth helicity flip and non-flip, one obtains the usual GPDs 

Hand E. In this study, we will calculate the helicity non-flip parts Eqs.(23) and (25) using 

the light-cone wave function pased on the chiral quark soliton model. 

1. Generalized form factors and polynomiality condition 

The electromagnetic form factors are among the first measured and mostly studied ob-

servables of the nucleon [33]. They are.. defined as the matrix elements of the electromagneticノ

current between the nucleon states of different four momenta. Because the nucleon is a spin 

one-half particle, the matri~ element defines two form factors 

記レ△μ〈p'IJµ(O)IP〉 =U(p'）（凡 (t)ザ＋凡(t)~) U(p), (28) 

where F1 and F2 are the well-known Dirac and Pauli form factors, respectively. One of the 

most important sources of information about the nucleon structure is the form factors of 

the electroweak currents. The Pauli form factor凡 givesthe anomalous magnetic moment 

of the nucleon,氏＝凡(0).The charge radius of the nucleon is defined by 

砂＝ー6
dGg(t) 

dt 
t=O 

(29) 

where GE= F1 -t/(4MりF2.The axial vector current also defines two form factors, 

〈P'|炒凸叫P〉=GA(t)[J（P'）五U(P)+ Gp(t)O(P'）崎U(P) (30) 

The axial form factor GA(O) at t = 0 is related to the fraction of the nucleon spin carried by 

the ~pin of the quarks,△I;, and can be measured from polarized DIS and neutrino elastic 

scattering [4-6]. (Note, however, that G..4.(0)＃△I; with taking into consideration of the 

axial U(l) anomaly [9].) 

A generalization of the vector and axial-vector currents can be made throug~ the following 

sets,of twist-two operators, 

0か'...µn ＝如炉iD四． ••iDµn)ゆ，

6が'…µn ＝和（µ富iD四． ••iD胚）ゆ， (31) 

，
 



where all indices μ1, ・ ・ ・ μn are symmetric and traceless, as indicated by (...) in the super-

scripts. These operators form the totally symmetric representation of the Lorentz group. 

One can similarly introduce the gluon twist-two operators. For n > 1, the above operators 

are not conserved currents from any global synunetry. Consequently, their matrix elements 

depend on the momentum-transfer scaleμ at which they are probed. For the same reason, 

there is no low-energy probe that couples to these currents. 

One can define the generalized charges an(μ2) from the forward matrix elements of these 

currents [34]: 

(P'IO庄••µnip〉 =2an(µ2)P佃p圧．． p匹） (32) 

The moments of the Feynman parton distribution q(x,μ2) are related to these charges as 

1-11 dェ”n-lq（五） ＝ ／。1dx xn-l [q(x~µり＋（一1)噴(x,μり］ ＝ ％（μり (33)

where ij(x, μりisdefined in the range -1 < x < l. For x > 0, q(x, μりissimply the density of 

quarks that carry the fraction x of the parent nucleon momentum. The density of antiquarks 

is customarily denoted by ij(x, μ2), which in the above notation is -q(-x, μ2) for x < 0. 

One can also define the form factors [Aqn,m(t), Bqn,m(t), and Cqn(t)] of these currents using 

constraints from charge conjugation, parity, time-reversal, and Lorentz symmetries [34] 

〈P'I0『'．．．μnip〉

［芳］
U(P'）企U(P)L Aqn,2i(t)△四．．・△知＋1圧＋2...p叫

i=O 

砂 1ai△Cl/ 庁］
+ U(P')~U(P) L Bqn,2i(t)△μ2.・・△咋＋1p知＋2...p叫

2MB i=O 

1 
＋ 年(t)Mod(n+ 1, 2)面 U(P')U(P)△佃…△胚），（34)

where Mod(n + 1,2) is 1 when n is even and o・when n is odd. Thus, Cqn is present only 

when'n is even. Multiplying the light-cone vector nμ, 

-ia咋μ△/.I

nμ1... nμn〈P'IO匹呻nip〉=Hn(t,t)UftU + En((, t)U~U (35) 
2、MB

where Hn((, t) and En((, t) are polynomials in e2 of degree n/2 (n even) or n二 1/2(n odd). 

The coefficients of the polynomials are form factors. It is easy to see that they are the 

moments of the GPDs E(x, e, t) and H(x, (,t): 

/_11 dx xn-lE（以，t)= E怠，t)
-1 
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1:1 dx xn-i H(x, (, t)＝凡（｛，t)
ー1

(36) 

Therefore, although GPDs are the functions of three variables, x, e and t, their x moment 

is only a polynomial function of l and t. This is called the polynomiality condition. 

Using Eqs.(19)-(20), Fi, F2, GA and Gp involve the same proton helicity structure as H 

and E [23, 24], 

1 _ 
一2p+ 〈P',+I白巧%|P+〉

壽P',-1炒吋1%|P+〉

1 
秤〈P',+l{J,+1/JIP+〉三 ~F1(t)

e2 

辺
．凡(t),

1 こ
一一〈P',-1和和IP+〉＝ n 凡(x,e, t), 
2P+2 MB  

~GA(t)-
e2 

J 
2Gp(t), 

ne J戸
2MB 

Gp(t), 

‘
,
'
／
ヽ
｀
＇
／
ヽ
~
‘
.
~

7

8

9

0

 

3

3

3

4

 

(

（

（

‘

,

＼

 

More specifically, the first moments of GPDs are constrained by the.form factors of the 

electromagnetic and axial currents. Indeed, by integrating over x, we have 

fl dx凡(x,e, t) = Ft(t), 
-1 

/_11 dェ瓦(x,e,t)＝匂(t),
ー1

fl dx尻(x,e, t) = Fi(t), 
ー1・

/_11 dx属(x,e, t) = G~(t), 
-l 

(41) 

where F1, F2, GA and Gp are the Dirac, Pauli, axial, and induced pseudoscalar elastic form 

factors, respectively. 

2. Form factors of energy-momentum tensor and spin structure of the nucleon 

The physical significance of GPDs was revealed in studying the spin structure of the 

nucleon. Let us review this connection. In the constituent quark model, the nucleon is 

made of three spin 1/2 quarks moving in the s-orbit. The spin of the nucleon is then a 

vector sum of the quark spins. Although the simple quark model has been very successful 

in explaining a large body of experimental data, its prediction about-. the spi~ structure has 

been challenged by the polarized DIS data obtained by the European. Muon Collaboration 

(EMC). In polarized DIS, a polarized electron exchanges a polarized photon with a polarized 

nucleon. The polarized photon is absorbed by a polarized quark whose helicity must have 

the same sign as that of the photon in the center-of-mass frame, or else angular momentum 
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conservation forbids the absorption. Therefore, polarized DIS allows measurement of the 

polarized quark distr_ibutions in the polarized nucleon. From the d~ta taken in a number of 

recent experiments,_ along with the analysis of neutron and hyperon/3-decay, the fraction of 

the nu~leon spin carried by the quark spin is determined to be [4-6] 

•~ = 0.31士0・.07.(at Q2 = 10.7 GeVり (42) 

This is significantly below the naive quark model prediction△E = 1. 

The fundamental reason for the discrepancy is that the naive quark model quarks are 

not the same as the QCD quarks. In DIS, the photons interact directly with the QCD 

current. Applying the predictions of the constituent quark niodeLto the QCD quarks is at 

best opportunistic. A more interesting approach to understanding the EMC data is to study 

the spin structure of the nucleon directly in the fundamental theory. Reference clarified the 

structure of the angular.momentum operator in QCD, from which one can Write down a 

decomposition of the nucleon spin: 

1 

2 
-＝み(μ)+Jg(μ), (43) 

where Jq,g are the contributions from the quarks and gluons, respectively. Both contributions 

are gauge-invariant but renor!J?-alization-,scale-dependent. Jq,9(μ) can be expressed as the 

matrix elements of the QCD energy-momentum tensor T,は

Jq,g(μ) ＝〈P½I/ 曲 (:z: X Tq,9)屑〉， (44) 

which can be extracted from the form factors of the quark and gluon parts of the r:,;. 
Specializing Eq.(34) to n = 2, one finds 

<P'IT:.~IP>=U(P') [Aq,9(t)1<μ炉＋ Bq,g(t)P (μiav)aふ／2M

＋叫(t)△崎）/M]U(P). (45) 

Taking the forward limit of the μ = 0 component and integrating over }hree space, one finds 

that the Aq,9(0) give the momentum fractions of the nucleon carried hy quar½s and gluons, 

respectively [Ag{O) + A9(0) = 1]. On the other hand, substituting the above into the nucleon 

matrix element of Eq.(44), one finds [8] 

1 
Jq,9 = ~ [Aq,9(0) + Bq,9(0.)]. 

2 
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Therefore, the matrix elements of the energy-momentum tensor provide the fractions of the 

nucleon spin carried by quarks ap.d gluons. There is an analogy for this. If one knows the 

Dirac an.cl Pauli form factors of the electromagnetic current, F1 (Qりand応(Qり， thenthe 

magnetic moment of the nucleon, defined as the matrix element of (1/2) J d油（rex Jt, is 
凡(0)＋恥(0).

Because the quark and gluon energy-momentum tensors are examples of twist..,two, spin-

two, helicity-independent operators, we irmnediately have the following sum rule for GPDs: 

/_11 dx鳴（土）ナ尻(x,e, t)] =人（t)+Bq(t), 
ー1

(47) 

where the l dependence, or Cq(t) contamination, drops out. If we extrapolate the sum rule 

to t = 0, the total quark contribution to the nucleon spin is obtained. The total quark 

contribution Jq can be decomposed gauge-:invariantly into the quark spin△:E/2 and 9rbital 

contribution Lが

Jq 
△E 

＝ 
2 

+Lq. (48) 

Knowing Jq and△E, one can extract the quark orbital angular momentum. Thus, a deep 

understanding of the spin structure of the nucleon can be achieved through the study of 

GPDs. 

3. Transverse momentum dependent {TMD) p<irton distribution.s 

Parton distributions were introduced by Feynman to describe DIS. They have the simplest 

interpretation in the infinite momentum fra;me as the densities of partons in the longitudinal 

momentum x. In QCD, the quark distribution is defined through the following matrix 

element: 

q(x)＝上j凸州Pl辺（一入n/2),埠（入n/2)IP〉
2p+ J 27!" 

In the light-cone quantization, it is easy to show 

q(x)L>o =江J1'""'f d2k上〈P間（い上）b入(k+,kL)IP〉

入'(2が〈PIP〉

-1'""'(d2kL〈P閲(k九ん）d入(k+,紀 )|P〉
q(x)|ェく。＝五予f詞 〈P|P〉

(49) 

(50) 

where bt and d↑are creation operators of a quark and an antiquark, respectively, with 

longitudinal momentum k＋三 xp+and transverse momentum k1_. The interpretation as 

parton densities is then obvious. 
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The TMD parton distribution functions are defined through the quark density matrix 

q(x,k.L） ＋qr(x,k.L）（K.LxS.L） •P 

= - ei(K十入―-Kl.ふ）〈Pl炒(Oh情(,\-,~.L ） |P〉·1 J瓦 d入―
2 J (21r)3 

(51) 

The new distributions generalize those of Feynman with additional information about par-

tons'transverse momentum. For example, q(x, kJ.) is, roughly spea.king, the probability 

of finding a quark with longitudinal momentum xP+ an~ transverse mo~entum 杞 in a 

nucleon (or hadron) with four:...momentum pμ = (po, O, P3). 

The transverse-polarization S1.-dependent term qT(x, k1.) was first introduced by Sivers 

and has been called the Sivers function [35]. Physically; it signifies that the parton momen-

tum distribution in: a transversely polarized nucleon is not rotationallr invariant along the 

z-direction. It has an azimuthal dependence. At first glance this term appears to violate 

the naive time-reversal invariance; however, a careful examination indicates that time re— 

versal ・does not forbid its existence because the quark field contains the gauge link. It has 

been shown phenomenologically that qT(x, k1.) can be responsible for the target single-spin 

asymmetry observed in semi—inclusive deep-inelastic ptoduction of pions [35]. 

When r =,+,y5, one finds [36,_ 37] 

△q(x,k上）（S•n) ＋△qT(x, k1-)(k上 •S1-)

1 J d丸心—= - et•(い--kl.心）（PIり(O)'Y+75ゆ(A-, 入)|P〉·
2'(2T)3 

(52) 

where△q(x,k.l）is a novel quark helicity distribution in a transversely ・polarized nucleon. 

With r =び+.l15,one ha,s four TMD distributions, 

8qT,(x, k.1）S.1 ＋8qT(x, k.1）K.1（K.1.S.1） ＋8q(x, k.1）K.1 ＋8qL(x, k.1）K.1（n • S) 
1 r d2ふd,¥-

= ½ / ~ei(kサ—-K心）〈Pl炒 (0)が囁（x，ふ） IP〉. （53) 
(2i)3 

where 8q(x, k.1）is a transversity distribution in an unpolarized nucleon and vanishes under 

naive time-reversal transformation; 8qL(x, k.1）is a transversity distribution in a longitudi-

nally polarized nucleon. 

TMD distributions have wide-ranging phenomenologica,l applications in semiinclusive 

DIS, the Drell-Yan process, and back-to-back jet production in e+ e―annihilation [36-38]. 
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4. Parfonic interpretation of GPDs 

From their definition, it is straightforward to see that in the limit t→0 and t→0, 

GPDs reduce to ordinary parton distributions. For instance, 

Hq(x, O, 0) = q(x)，瓦(x,O,Q)＝△q(x), (54) 

where q(x) and△q(x) are the -unpolarized and polarized quark distributions. For practical 

purposes, in the kinematic region where 

面≪MN and e ≪ x, (55) 

an off-forward distribution may be approximated bythe corresponding forward one. The first 

condition,面≪ MN, is crucial -otherwise there is a significant form-factor suppression 

that cannot be neglected at any X and e. For a given t, e is restricted to ltl < ltl 四 ／ 訂

Therefore, when /!ti is small, t is automatically limited, and there is in fact a large region 

of x where.the forward approximation holds. 

The parton content of GPDs is made transparen~ in light-cone coordinates and light-cone 

gauge. To see this, let us recall 

和＝り皇パ鳴(-ふ）仰e―tgJり:/2da n・A(an)VJq（茫）IP〉 (56) 

where the gauge-link operator is explicitly shown. In the light-cone gauge n・A = 0, the gauge 
link between the quark fields can be ignored. Using the light-cone coordinate system (8), 

we can expand the Dirac field as follows: 

d炉d2k1.
叫(x―,m)＝ J 0（炉）~ (b入(k十ふ）U>.(k)t―i(:,;-k+-:c.L •K.L ) 

2k+(27r)3 
入＝士

+ dl(kぢい）ぬ(K)ei(S―k+-z.L•K.L )) (57) 

whereむ＝ P泣 and凡＝ i汗呼． Thequark (antiquark) creation and annihilation 

operators t ut 'bh(d入k)and如 (d入k),obey the usual commutation relation. Substituting the 

above into Eq.(56), we have [39] 

1 
E(x,e)＝/  轟 J.

2p+V I 2J戸喜可(21r)3 入
こl (P’|b!（(x-e/2)p＋ふ＋ふ）州(x+ （／2)炉ふ）lP〉, for x > [／2 

X 〈P'Jd!((-x+ e/2)p丸—応— lJ.)b→((x+ e12)p+、,ら)|P〉,fore>X > -e/2(58) 

一〈P'Jd〖((-x -e12)p丸ら＋ lJ.)d入((-x+ e/2)p+，ふ）IP〉,forX < -e/2 
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where V is a volume factor. The distribution has different physical interpretations in the 

three different regions. In the region x > t/2, it is the amplitude for'taking a quark of 

momentum k out of the nucleon, changing_its momentum to k十△， andinserting it back 

to form a recoiled nucleon. In the region e/2 > x > -e/2, it is the amplitude for taking 

out a quark and antiquark pair with rp.omentum. Finally, in the region x < -t/2, we have 

the same situation as in x > t/2, except the quark is replaced by an antiquark. The first 

and third regions are similar to those present in ordinary parton distributions, whereas the 

middle region is similar to that in a meson amplitude. 

5. Impact parameter space 

A partonic interpretation can also be made by transforming the nucleon states to those 

in the impact-parameter space [40]. Indeed, the helicity nonflip GPD H(x, e, t) fore= 0 is 

the Fourier transform of the (unpolarized) impact parameter dependent parton distribution 

function q(x, b.1.）， i.e. 

q(x, b.L） =J心元屯・bJ.H(x,O, —竺）．
(21r)2 

(59) 

The important advantages are that q(x, b.L）is a real density in the sense that it is the ex-

pectation value of a nurriber operator, and its interpretation does not suffer from relativistic 

effects as explained below. The variables b-1. and x live in different_dimensions, and therefore 

there is no quantum mechanical uncertainty constraint. Indeed, q(x, b-1.) is a spatial-and-

momentum-density hybrid in that it represents a spatial density in the transverse directions 

and momentum density in the longitudinal direction. q(x, b-1.) is also invariant under boost 

along the z-direction. In particular, if the nucleon has-an infinity :momentum, its effective 

mass is also infinity. Therefor:e, its spatial structure in the transverse directions, just like 

in nonrelativistic systems, can be obtained directly froin the Fourier transformation of the 

form facto,、rswithout the relativistic recoil effects [41-'-43]. 

B. Double distribution, D-term 

One of the non-trivial properties of the generalized parton distributions is the polynorni-

ality of their Mellin moments which follows from the Lorentz invariance ofnucleon matrix 
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elements. Indeed the (N + 1)-th Mellin moment of GPDs corresponds to the nucleon matrix 
element of the twist-2, spin-(.N + 1) local operator as shown in Eq.(36). Lo_rentz invariance 
then dictates that the Mellin moments of GPDs should be polynomials maximally of the 

order N + 1, i.e. the pol~norni.ality property implies that [8) 

[11 XNが (x,e)= h釣＋ h~(N)ぐ＋・・・＋h怜闘¢N+19
-1 

J1心 (x,e)= etN) + e~(N)ぐ＋…＋ q（N) N+1 
ー1

eN+1t.‘ 

(60) 

(61) 

Note that the corresponding polynomials contain only even powers of the skewedness pa— 

rameter e. This follows from the time reversal invariance [34, 37). This fact implies that the 

highest power off is N + l for odd N (singlet GPDs) and N for even N (nonsinglet GPDs). 

Furthermore due to the fact that the nucleon has spin 1/2, the coefficients in: front of the 

highest power oft for the singlet functions Hq and Eq. are related to each other [34, 39): 

q(N) 
eN+1 = -h 

q(N) 
N+1; (62) 

The polynorniality conditions (60) and (61) strongly restrict the class of functions of two 

variables Hq(x, e) and炉 (x,e). For example the conditions (61) imply that GPDs should 

satisfy the following integral constrains: 

/_1竺間（パ＋xz)-H□)］=-/_1竺固（以＋xz)-Eq(x, e)] 
-1 X -1X  

00 

= zど吐叫Zn (63) 
n=O 

Note that the skewedness parameter e enters the LHS of this equation, whereas the RHS 

of the equation is e-independent. Therefore this e-independe:Q.ce of tμe above integrals is 

a criterion of whether the functions Hq(x,e), E'l(x,.e) satisfy the polynomiality conditions 

(61)、Simultaneouslythese integrals are generating functions for the highest coefficients 

h(N) 
N+1• In addition. the condition (63) shows that there are nontrivial functional relations （） 

between the. functionsが (x,e) andか (x,e). 

An elegant possibility to implement the polynomiality conditions (61) for the G PDs is to 

use the double distributions [48-50]. A detailed discussion of the double distributions has 

been given in the review of Ref. [51]. In this case the generalized distributions are obtained as 

a one-dimensional section of the two-variable double distributions Fq(/3，a)，I召(/3,a)[52, 53]: 

H枷(x,e) = /_11 d/3 /_11~:, daa(x -/3 -ae)戸 (/3,a)' 
-1. J-1-1/31 

(64) 
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and an analogous for the GPD Eq(x,t): 

羞 (X,e) = /_11 d{3 /_11~:I daJ (X -{3 -at) K惰，a).
-1 -1-lPl 

(65) 

Obviously, the double distribution function F噸，a)should satisfy the condition: 

/_11~:1 da戸 (X,a) = q(X), 
-1-lf31 

(66) 

in order to reproduce the forward limit (54) for the GPDが (x,e). It is easy to check that 

the GPDs obtained by reduction from the double distributions satisfy the polynomiality 

conditions (61) but always lead to h符符＝ e仰＝ 0,i.e. the highest power of e for the 

singlet GPDs is absent. In other words the parameterization of the singlet GPDs in terms 

of double distributions is not complete..It can be completed by adding the so-called.D-term 

to・ Eqs.(64) and {65) (54] 

1 fl-I/3| 
が (x,e) = /_11 d(3／ dao(x -(3-ae)戸 ((3,a)+0 [1 -f]かじ）， （67) 

-1 -1-l/31 

訊吠）＝Jー1ld(3［;-『；紐（エー(3-ae)Kq((3，a)-0 [ 1 -ti l Dq (z) (68) 

Here Dq(z) is an odd function (as it contributes only to the singlet GPDs) having a support 

-1 ::::; z::::; 1. In the J¥4ellin moments, the D-term generates the highest power ofも

hq(N) ＝ -eq(N) 
1 

N+1 N+1= / dzzNび (z).
-1 

(69) 

Note that for both GPDs Hq(x,l) and炉 (x,l)the a.bsolute,value of the D-term is the 

same, it contributes to both functions with opposite sign. The laHer feature follows from 

the relati~n (62). Goeke, Polyakov and Vanderhaeghen have shown that numerical estimates 

of the D-term in the chiral quark soliton model gives Du.(z)～び(z).

C. GPDs from hard scattering 

GPDs are nonperturbative nucleon observables, and apart from the general properties 

discussed in the previous'section, we know little about the dynamical 1nformation encoded 

in them. This section considers several approaches to gain access to them by experimen-

tal measurement. It is fortunate that there exists a new class of hard processes in which 

GPDs can he measured and/or constrained. The simplest is called deeply virtual Compton 

scattering (DVCS). 
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In recent years, the search for an experimental measurement of GPDs has open up a new, 

dass of QCD hard scattering processes. The simplest, and possibly the most promisi.Q.g, is 

deep-inelastic exclusive production of photon_s, mesons, and even lepton pairs. Let us con-

sider briefly two ・experiments that have been studied extensively in the literature: DVCS, 

in which a real photon is produced, and diffractive meson'production. Both processes have 

practical advantages and disadvantages. Real photon production is, in a sense, cleaner but 

the cross section is. reduced by an additional power of O'.em• The Bethe-Reitler contribution 

can be important but can actually be used to extract the_ DVCS amplitude through inter-

ferences, as in a single-spin asymmetry. Meson production may be easier to deteot, but it 

has a twist suppression of 1/Q2. In addition, the theoretical cross section depends on the 

unknown leading light-cone wave function of the mesons. DVCS was first proposed as a-

practical way to measure the generalized distributions. Consider virtual photon scattering 

in which the momenta of the incoming (outgoing) photon and nucleon are q(q') and P(P'), 

respectively. The Compton amplitude is defined as 

Tμv = i Iがze吋•Z 〈 P'IT に(-~) JV (~)) Ip〉, (70) 

where ij_ = (q + q')/2. In the Bjorken limit, -q2 and P • q→oo and their ratio remains 

finite; the scattering is dominated by the single-quark process, in which a quark absorbs the 

virtual photon, immediately radiates a real one, and falls back t'o form the recoiling nucleon. 

In the process, the initial and final photon helicities remain the same. The leading-order 

Compton amplitude is then 

斤＝ gfv1:1 dx (~ 
ー1 X - ＜ ＋ ic x +＜ -i€q 

+ 1)訊 (x,e,t,Qり

+icμ匹い！ dx(~lldx(~-~)芹信(x,e,t,Qり， （71) 

where n and pare the conjugate light-cone vectors defined according to the collinear direction 

of ij and P, and g『isthe metric tensor in transverse space. e is related to the Bjorken 

variable xs = -q2 /(2P • q) by xs = 2(/(1十().

Development on the experimental front is promising. Recently, botfi ZEUS.and Hl col-

laborations have announced the first evidence for a DVCS signature, and the HERMES col-

laboration at DESY and the CLAS collaboration at JLab have made the first measurements 

of the DVCS single-spin asymmetry [44-47]. More experiments are planned of COMPASS, 

JLab, and future facilities. 
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III. LIGHT CONE WAVE FU~CTION IN THE CHIRAL QUARK SOLITON 

MODEL 

A. The effective model 

One of the most important features of the QCD lagrangian in the low-energy domain is the 

c~iral symmetry and its spontaneous breakdown (Throughout the thesis, we remain in the 

chiral limit, i.e. small "current" masses of u,d ands quarks are ignored). As a consequence 

of the spontaneous breakdown of this continuous symmetry, there appear massless N ambu"." 

Goldstone bosons (rr, K, ry), and at the same time, quark acquire the dynamically generated 

mass (It is sometimes called the "constituent" quark mass). This is the well-known N ambuこ

Goldstone realization of the chiralsymmetry. The simplest effective model that incorporates 

such basic features of the low-energy QCD may be given by the following functional integral 

over quarks in the background Goldstone bo.son field [26-29]: 

exp(iS崎 (x)])= f DゅD炒exp(i／が尋(if)ー MU囁）

U = exp(irra(x)ra) 加 (x)= exp(irra(x)ra叫＝ 1 + /5 TT,  1-/5 u+ = exptm-tXJT-J, 
2 2 

U (72) 

Hereゆ(x)and rra (x) are, respectively, the quark and pion (including K and f/) fields, while 

M is the dynamical quark mass stated above. Note that there is no Kinetic term of the pion 

fields in the above effective action. This means that the心(x)and rra(x) are not independent 

fields, butザ (x)is eventually interpreted as composite fields in the QQ channel. We regard 

M as an adjustable parameter of the model, and can investigate the effects of its variation 

on the predictions of various baryon observable. 

B. Soliton wave function in field theory at large Ne 

In principle, calculation of the wave functio~ of a given state in terms of quarks and 

anti quarks should be straightforward in the quantum field theory. However, usually this 

task is too complicated. Hence, the wave functions of baryons in tlle low normalization 

point cannot be determined from the first principles of QCD. For t_his reason, models of 

baryons become highly desirable, and we attempt to calculate the wave functions at a low 

normalization point based on the chiral quark soliton model. The most direct way to obtain 

wave functions of any state is to calculate the evolution operator S(T) for a finite time 
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T. This operator contains complete information about all physical states., In particular 

the expansion of S(T) in a series of exponentials exp(-iEnT) provides wave functio.ns for 

physical state "n" according to 

S(T) = ~I屯n〉 e―i恥T〈此 I. (73) 
n 

En is the ene;rgy of the physical state n,〈W』and凡〉 areits wave functions depending on 

the coordinates of the system at initial (0) and final (T) time moments. Such approach has 

been proposed by Feynman for quantum mechanical problems. 

In the field theory the operator S(T) can be presented as a functional integral of the type 

S(T) =／匹(x)D{;(x)加 (x)exp{ilo。Tdt I心(if) — MU-Y5(x)）如(x)}. (74) 

The operatorsが(p),b(p)（が(p),d(p)) are annihilation-creation operators for quarks (anti-

quar~s) which are defined. through the expansion of the fieldゆ(x)into positive-and negative-

frequ~ncy parts: 

叫x)＝ぽ鱈昌(b,(p)u'(p)e'•·• + d;,(p)ザ(p)e―••·•) (75) 

(here a is quark polarization; uu(p)，炉(p)are free plane wave spinors for U(x) = 1). 

To calculate the Gaussian integral over the Fermi field, we have to pick out the dependence 

on boundary conditions. This can be done changing the integration variables in Eq.(74) 

according to 

ゆ＝ゆo十ゆ', 巫＝伽＋忍 (76) 

The fixed fieldゅ。 oughtto be chosen in such a way that it would be the solution of the 

Dirac equation in the external pion-meson field. The boundary values of the fixed fieldsゅ。

are the same ones as for'P n itself: at t = 0 positive frequency of叱 and炒， orat t =Tits 

negative frequency parts are fixed. Such boundary condition means that in terms of quark 

operators the expression for S(T) will appear in the form where all.quark creation operators 

訊が belongto the moment t = T, and annihilation operators b, d belong tot= 0: 

f記＝が記＝bt T 
S(T)＝ゅ(+)＝b 匹 (x)！岬＝d 厖 (x)！加(x)exp (i la。 dt.Ceff•), (77) 

where.Ce// is the effective Lagrangian of Eq.(74). We do not impose any boundary conditions 

on the 71"-meson field. This field appears in the derivation of the effective Lagrangians as a 

result of bosonization, and it should not be considered as an.elementary one. 
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The required solutionゅ。 leadsto the definite Green function of the Dirac equation. The 

solution of equation 

(if)-M加）心O= o, (78) 

with the boundary conditions 

副 (m,t= 0) = B(m)三！ d3p 
詞 ei吋恥：bu(p)uu(p), 

炉（記，t=T)＝叫）三！畠e―→恥渇（p)vu(p), (79) 

can be expressed in terms of the finite time Feynman Green function G(T)（工，tly,o) 

ゆo（の，t)= f心f立戸
(2ザ M

L [ a(T)(m, tly, O)uq(p)bu(p)eiP. y 

+ a(T)(m, tjy, T)vu(p)d!(p)e―ip．叫，（80)

with an analogous expression for ¢0(re,t). The finite time Green function Q(T)(re,tly,t') 

is the solution of the Dirac equation in the external field which has vanishing.negative-

frequency part at t = 0 and vanishing positive-frequency part at t = T. At T→oo finite 

time Green function reduces to the usual Feynman Green function. 

After changing the integration variables according to Eq.(80), we: get from Eq.(74) 

that [55] 

S(T) = j応 (x)Det(T)[1r ]Sext[rr, T], {81) 

where we used Eq.(77). Here Sext[1r, T] is the evolution operat_or in the given external field: 

知 [1r,T] == exp{/心心［D（か°G(T)（:c,Oly,T)び(y)+ D（か°G(T)（:c,clY, O)B(y) 

+Bt(:c h゚Q(T).(:c,Tly, O)B(y) + Bt(:c)1°G(T)(:c, T -clY, T)Dt(y)]}, (82) 

where c→ +O; the quantity Det(T)[rr] is the finite time determinant in the external field. It is 
the Gaussian functional integral over the fermion field紺(x)with zero boundary conditions. 

For this reason it does not depend on the operators b, d, bt and d↑,being only the functional 

‘ of pion field 1r(x): 

T 
log Det(T)[1r] = l1. dt f d油Trlog[if) -M ij-Y5 (x)] 

゜
(83) 

Thus the evolution operator in the external field is the coherent exponential of the 

creation-annihilation operators. The baryon is the lowest possible state in the sector with 
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baryon charge B = 1. One can obtain its wave function by applying the evolution operator 

to any colorless state of Ne quarks and taking. the T→oo limit. For example, the baryon 

wave function知 canbe obtained from the state of free quarks: 

Ne 

CB e―iM紅％（bt,dり＝｝匹S(T);Q見(P叩 o〉
i=l 

！ 
Ne 

～応Det(T)［1r)IIGiT)（Pi,0|Ki,T)ba,（K)exp［が（p)G(T)(p,Tjp', T)が(p')] (84) 
3. =1 

Here MB  is the baryon mass and CB is the overlap between the initial state of Ne quarks 

and baryon wave function. The functional integral of Eq.(83) should be calculated in the 

saddle-point approximation. One has to find the pion-field which extremizes the integrand. 

At large T, important factors are 

Det(T)[1r] ~ exp(-iEJie/d[1r]T), G~T)(Pi,Olki, T.) ~ exp(-iE1eve1[1r]T), (85) 

where ;Eがeld[rr]is the energy of the Dirac continuum with the given pion field (proportional 

to Ne) and E1ev~t[1r] is the energy of the (possible) discrete level for the quark in this field. 

In order to find the saddle-point one has to minimize the sum: 

c［叶＝ Efield[1r]十NcElevel[7r] (86) 

in the presence of the pion field. It is exactly the condition which was used in constructing 

the nucleon-soliton. Both contributions to the total energy are of the order of Ne. Operator 

exponential in Eq.(84) does not contribute to the saddle-point Eq.(86) as the Gree:n function 

Q(T)(p, Tip', T) does not contain exponential with the phase proportional to the.time T. 

The minimum of Eq.(86) is achieved at some stationary pion field and corresponds to the 

baryon at rest. The value of the energy in the minimum is the baryon mass: 

MB  = min c[1r] ~ O(Nc)• (87) 

The pion field, which gives this minimum turns out to have the so-called hedgehog symmetry: 

示a(re)＝炉F(r),
a, 

a, r 
n = -

r' 
U(x) = ('xp(ir ~ nF(r)} :) 

where the profile function F(r) is to be calculated numerically. 

(88) 

We can obtain the wave function of baryon in the leading order of Ne, if we substitute 

the saddle-point field 1r(x) of Eq.(86) into Eq.(84). In higher orders, one has to express 
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the general pion field. 7r（北，t)= ft + 7riJuant and then perform the Gaussian integration in 

systematic perturbation theory in 1/ Ne. However, in this study, we restrict ourselves to the 

leading order. 

Let us stress that the above procedure for obtaining the baryon wave function is rather 

general. Indeed, It is a general QCD theorem that at large Ne, the baryon is the soliton 

of some effective meson Lagrangian. Thus, its wave function can always be presented in 

the form of Eq.(84), where Green functions should be found'in the self-consistent field 

of all mesons entering this effective Lagrangian. Of course, the exact low-energy meson 

Lagrangian is unknown. In the present work, we use the instanton vacuum model in order 

to fix this low-energy Lagrangian. Let us also rewrite baryon wave function in a different 

form. As・explained above; baryon can be described as Ne valence quarks+ Dirac continuum 

i_n the self-consistent external field. It is clear fr~m Eq.(84) that wave function of the Dirac 

continuum (i.e. the state with all the negative-energies orbitals occupied) can be expressed 

as the coherent exponential of the quark-antiquark pairs: 

1n〉=exp[fr/ d油d3yBt（か°G(T)（叫，T-lly,T)か(y)l10〉
color 

三 expL~r/ 誓ぐ？喝知）W叫2(P1,P2)dし (P2)] IO〉 (89) 
color 

where IO〉isthe vacuum of quarks and antiqua:,;ks. The function W叩 2(p1,p2)can be called 

the wave function of the quark-antiquark pair. We shall specify the pair wave function 

bellow. 

It is. assumed that the self-consistent chiral field creates a bound-state level for quarks, 

whose wave functionゆlevelsatisfies the static Dirac equation with eigenenergy E1eve1: 

転（の）＝（＿i€jk€(j;h[;：ij(r))
{ h'+ hMsinF-j(McosF + E叫＝ 0， 

j'+ 2j / r -j M sin F -h(M cos F -E叫＝0.
(90) 

Here i is a spin index and j is flavor index. In the non-relativistic limit (E1ev ~. M) the 

L = 0 upper component of the Dirac spinor h(r) is large while the L = l lower component 

j(r) is small. 
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The valence quark part of the baryon wave function is given by the product of Ne quark 

creation operators that fill in the discrete levei-[30,-32): 

Nc 

valence=』！ d3pF(p)が（p), (91) 

F(p) = fばp'）~[u(p),心 (p)(21r)3J(p-p') -W(p,p')v(p'),o転 (-p')], (92) 
P。

whereゆlev(P)is the Fourier transform of Eq.(90). The second term in Eq.(92) is the contri-

bution of the distorted Dirac sea to the one—quark wave function. uu(P) and vo-(P) are the 

plane-wave Dirac spinors p~ojecting to the positive and negative frequencies, respectively. 

In the standard basis they have the form 

u,(P)＝（夏；グ），い(-P)＝図（p), Uu = 1 = -iiv, (93) 
声 |pIs, 

where f = +~ and Su are two 2-component spinors normalized to unity, for example, 

S1 = (~)，む＝(;), 0'=1,2. (94) 

The charge conjugation matrix in this represeritation take the form 

C = (。び2 i:J (95) 

The full baryon wave function is given by the product of the valence part (92) and the 

coherent exponent (89) describing the distorted Dirac sea. Symbolically, one writes the 

baryon wave function in terms of the quark-antiquark creation operators 

B[b1，が］ ＝ cog=1/dpF(P)が(P)exp(Jdpdp'が(P)W(p,p'）が(p'))10〉. （96) 

At this.point one has to recall that the saddle-point at the self-consistent chiral field is degen-

erate in global translations and global SU(3) flavor rotations. Integrating over translations 

leads to the momentum conservation: the sum of all quarks and antiquarks momenta have 

to he equal to the baryon momentum. Integration over rotations R leads to the projection 

of the-flavor state of all quarks and antiquarks onto the spin-flavor state B(R) describing a 

particular baryon from the (8,『），（10,『)or(Io,『） multiplet.

Restoring color (a= 1,2,3), flavor (f = 1,2,3), isospin (j = 1,2) and spin (a-= 1,2) 

indices, the quark wave function inside a particular baryon B with spin projection k is given, 
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in full glory, by 

3 

吋＝ ／dR,BZ(R) l叩 2a311J dpn欧pinun(Pn) ban/nun (Pn) 

•exp(/ dpdp'鯰（p)Rf W:芸(p,p')R}位tf'u'(p'))jO〉 (97) 

Expanding the coherent exponent to the 0th, 1st, 2nd order one reads off the 3-,5-, 7-…quark 

wav~ functions of particular baryon from the octet, decuplet or antidecuplet. 

To make this powerful formula fully workable, we need to give explicit expressions for the 

baryon rotational state B(R), the valence wave function Fiu(p) and'the QQ wave function 

in a baryon~]ル(p,p').

C. Baryon rotational wave functions 

In general, baryon rotational states B(R) are given by the SU(3) Wigner finite rotational 

matrices, and any particular projection can be obtained by a routine SU(3) ・Clebsch-Gordan 

technique. However, in order to see the symrn.etries of the quark wave functions, it is helpful 

to use explicit expressions for B(R), and integrate over the Haar measure in Eq.(96). 

1. (8,り

FrQm the SU(3) group point of view, the octet of baryons transforms exactly as an octet 

of mesons; therefore, its rotational wave function can be composed of quark (transforming 

as R) and an antiquark (transforming as Rt.). Accordingly, the rotational wave function of 

an octet baryon labeled by a = l...8 and having a spin index k = l, 2 is 

[D(B,½)*(R)]: ~ Ek/紺（t況Ri (98) 

where tk/ is the antisymmetric 2 x 2 tensor and ta are the SU(3) generators. In particular, 

the p・roton (a= 6 +i7) and neutron (a= 4+i5) rotational wave functions with spin k = 1, 2 

are 

Pk(r)* = V8叩 Rt1Rt nk(R)* = J忍kl 咄 R~ (99) 
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2. (10, i) 

The decuplet states can he composed of three quarks; they are labeled by a triple flavor 

index {f1f2h} symmetrized in fl~vor and by a triple spin index {k1柘和｝ symmetrizedin 

spm: 

[ n(lo,½)*(R) ]{J崎｝，｛k1kふ｝ ～ €平1 €k知包K3 R閃Ri9R}りlsymin {J晶 ｝

For example, the△-resonance rotational wave functions are 

3 △+＋ l. ． , spin projection十一
2 
1 

△0. soin oroiecti , spin projection十一
2 

3. (Io,½) 

△#（R)* = ✓面Ri2 Ri2 Ri2, 

△i(R)* = VlOR『(2紺 R「+R『Riり）．

(100) 

(101) 

(102) 

From the SU(3) group point of view, the antidecuplet can be composed of three antiquarks 

and its conjugate rotational wave function is 

[D四）＊（R）］｛flf填｝
k 

~ R{1 R{2 R勺．k lsym in {Ii邸｝ (103) 

In particular, the 0+ rotational wave function which is one of the member of the antidecuplet 

with strangeness, + 1, is 

e+, spin projection k 0[（Ry ＝渾R国R~ (104) 

They are normalized in such a way that for any spin projection 

f dRBら(R)Bspin(R) = 1 (105) 

4, The QQ pair wave Junction 

The pair wave functio°''W:況(p,p')is expressed in terms of the finite-ti四~ quark Green 

function at equal times in the external chiral field. We define the Green function as the 

solution of the equation 

[ii/) -M(E + ill,5)]:z:1,t1 G(:z:1, t1l:z:2, t2) = 8(t1 -t2)8(3)（北1-:z:2). (106) 
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On the chiral circle II(r) = n • TsinP(r), E(r) = cosP(r). The quantity V = M(-l +E+ 

iII叫 willbe called the perturbation by the non-zero mean field. In what follqws we shall 

rename E -1→E. For the static hedgehog mean field lying on the chiral circle 

~1,(re) = (cos P(r) -l)oJ,, II1,(re) = (n ・ r)1, sin.P(r). (107) 

We shall need their Fourier transforms, 

I:(q) = j droe—iq•xr:(ro), IT(q) = j droe―iq. xrr(の）． (108) 

In the frame where a baryon has a constant velocity v along the z axis both fields get 

the arguments (x,y,z) → (x,y, 示~). Both fields can be written through the Fourier 

transforms in the rest frame: 

叫x,y，昌）＝jdq exp (iq.x ＋疇＋｀~) E,II(g). (109) 

One can present the Green function as a perturbation expansion in V = E + iII,5 

1 

i砂ー M-V
1 + l v 1 + l v l v 1 

if)ーM ゆー M.if)-M'i砂ー M.if)ーM io-M 
＋ (110) 

The important point is that all free Green functions in this equation should be understood 

with the Feynman'--f prescription in the momentum space, meaning the shift M -iO in the 

free propagators [25]. 

The perturbation (107) is in fact very sl?ecific: its modulus is always less than unity; If 

the pion field is much less than unity, the p~rturbation is small. If the chiral fie~d is not small 

but has either low (q ≪: M) or large (q >> M) momenta, the perturbation is, effectively, also 

small as will become clear from the final expression for the pair wave function. Therefore, 

it is not a bad idea to restrict oneself'to the first order in the perturbation in V which 

we are going to do here. Keeping higher orders in V has no principle difficulties but in our 

experience the first order-result is usually within 10-15% from exact (all orders) calculations. 

In the first order.in the external field'v the Green function is, according to Eq. (110), 

T 

砂 (:v1,t1I叩，わ） ＝ ／ dt/d3z G(O)（m,t中，t)V(z, t) a<0)(z, t|叩 ,t2'). (111) 

Here T is-the "ob,servation time" during which the external chiral field exists; it should be 

put to infinity to obtain the ground-state baryon with given quantum numbers. We can 
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write it further in the momentum representation: 

砂（叫，tヤ凸）＝jdq1如 exp(-iq1 ・ a::1 -iq2 ・叫）砂(q叫 q2,t2), 

砂 (q叫 q凸） ＝ Jご亨f。Tdt'戸 jdqexp [iq,x 1+ iq,y + iq,二］
1 

• exp [-i凸 (t'-ti)+ iq1 • Z - iゥ (t2-t') + iq2 ・ z] ~V(q) 
かー M+iO 舶ー M+iO

(112) 

when~ q1,2μ = (w1,2,q1,2), f1,2 = W1,2,o -q1,2 ・'Y・ 

The definition of the (conjugate) pair wave function is 

W翡'(p,p')= -i畠忙‘(p')G(p,Olp', o)f Uu(P)] (113) 

with the plane-wave spinors u, v defined in Eq. {93). One has to integrate-Eq. (113) over w1,2 

and the intermediate point (z, t') where the perturbation V ads. Because of the Feynman 

"M -iO" rule, one closes the integration contour in w1 in the lower semiplane and finds the 

contribution of the pole w1 = f = -/p2+M2. Integration over w2 is closed in the upper 

semiplane with 吟＝—¢ = -0戸丁正 Thisis an important (although. natural) result: 

the QQ pair h as a positive-energy antiquark and necessarily a negative-energy quark. The 

physical interpretation, in ternis of the level density of the Dirac sea, is given in the following. 

If the mean field makes the Dirac sea less dense than in the vacuum at certain momenta, it 

means a hole or the presence of an antiquark with positive energy. If the Dirac sea is more 

dense in some partial wa'!e and at -some momenta, it means the presence of an additional 

negative-energy quark with the corresponding quantum numbers. Since the total number 

of levels in the sea is its baryon number and is conserved whatever the background field, it 

implies that any distortion of the Dirac sea by the mean field creates an equal number of 

quarks and antiquarks or, else, quark-antiquark (QQ) pairs inside a baryon. 

Integration over d3z leads to the 3;..momentum conservation,釦＝一(p+ p')J., qz 

-(pz+Pり／~- Integration over the inten;nediated time t'gives the energy denominator 

-i/[t:十f'-iO -(Pz + p~)v]. Finally, one has、touse the Dirac equation for t・he plane-wave 

. As a result one obtains spinors: (M -p)馬 (p)= O, vu'(p')(M + p') = 0. A 

w;;qq'（p,p’) ＝呂€十€＇：二：）v 厨（P'）V（-P-P'）応(P)］ （114) 
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In the infinite momentum frame, one has to take the limit v→1. The momentum of the 

baryon with mass MB is 

P=  
M即

~' 
hencev=~ ~ 1-~ ⑪―戸・ (115) 

The quark and the anti-quark of the QQ pair have the 4-momenta 

p = (zP＋ 鸞f,P.L，zP), p'= (z'P+~,P~..L,z'P), (116) 

h ence the energy denominator is 

』島2zz'P
＝ 

€十 €1 - (Pz + p~)v P Z 
'z三 M如z'(z+ z') + z(JJ?＋記）＋z'(P1+ Mり．（117)

In the infinite momentum frame, it is convenient to rescale the annihilation-creation oper-

ators, b!MF(z,p.l） ＝⑪茄冠(T(p)and similarly for bt, d, dt, where the subscript a = 1, 2 

refers now to helicity states. The new operators satisfy the anticomm.utation relations 

{balflグi(z1,Pa), b~2J匹2(z2,Pa)} == <5ci;<5f~<5;;<5(z1 -z2)(27r)2<5(2)(P1」--Pa) (118) 

and similarly for the new d, dt. The. use of the rescaled operators requires rescaling W:塁'
by a factor of P/(27r). Taking the v→1 limit in the spinors (93) one gets finally 

MMB 
W翡'(z,p臼 ',pり）＝百図位(q)_[M(z'-z)o-叶 Q.l.•9.l.l:’ 

+ ill{ (q)[-M(z'+ z)l —叫QJ_aerJ_(3ご｝ （119) 

q = ((p + p')L, (z + z')MB), QLa = ZP~a —Z1PLa, a,/3 ＝1, 2 (120) 

The non-primed indices refers here to the quark and the primed ones to the antiquark. 

Eq.(119) gives the wave function of the additional QQ pairs in a baryon in the infinite 

momentum frame. The indices j,j'= 1, 2 are the isospin indices (to be rotated by the SU(3) 

flavor matrices R in Eq. (97)) andび，が＝ 1,2 are the quark and antiquark helicity states. 

The annihilation-creation operators in Eq. (97) are now understood to be normalized by the 

condition (118), and the integrals over momenta there are understood as f dz f d2pL/(27r)乞

5. Discrete-level wave function 

As seen from Eq.(92), the discrete-level wave function F叫p)＝凡ク:(p) + Ff :a (p) consists 

of two pieces: one is directly the wave function of'the valence level, the other is related to 
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the change of the number of quarks at the discrete level due to the presence of the distorted 

Dirac sea, it is a relativistic effect and can be ignored in the non-relativistic limit, together 

with the lower L ='1 component j (p) of the level wave function. 

In the infinite momentum frame the evaluation of the spinors u, v from Eq.(93) produces 

戸誓，pl.)＝ 2T［炉h(p)+ (pzl + ifapPL心）：芯＇詈 lPz=zMB-C (121) 

where h,j(p) are the Fourier transforms of the valence wave functions 

h(p) = !む e―ip•:z:h(r) = 47r / drr2 
smpr -―h(r), 
pr 

(122} 

屑）＝ J心 e―ip•:z: （一町）j(r) = pa • I ¥ • I ¥ 47!" 

IPI 
j(p), j(p) =戸jdr (pr cos pr-sinpr)j(r). (123) 

Similarly, the evaluation ofthe "sea" part of the discrete;,-level wave function gives 

F品(z,p~) =一屡！dz／急W芦(p,p'） €3'C‘'[（疇：，h(p') -(.,.. P'）％曽］
Pz=ZMBーe

(124) 

where the pair wave function (119) has to be used. The conjugate functions are hermitian 

conjugate. 

We have thus all quantities entering the master Eq.(97) for the 3,5, 7,…Fock components 

9f baryons'wave functions. 
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IV. LIGHT-CONE WAVE FUNCTION REPRESENTATION OF THE GENERAL-

IZED PARTON DISTRIBUTIONS IN THE CHIRAL QUARK SOLITON MODEL 

Recently, Diakonov and Petrov showed the way to calculate the various physical observ-

able in terms of the light-cone wave function based on the CQSM [30-32). It is straight-

forward, t.o extend it to the structure functions including the GPDs, and we will show how 

these functions can be represented in the CQSM. 

In the second quantization, the normalization constant can be representated in principle 

as the superposition of those of each Fock components: 

N(B) = ~称〈バ〉＝臼(B) + N(5Q)(B) + N(7Q¥B)1 + (125) 

As we explained in the previous section, the expansion of the coherent exponent of the QQ 

pair wave function is well converged series in terms of their Fock components, so we Will 

take up to the 5Q component in the wave function. 

A. 3 quark components 

We first consider the three quark components in baryon. Each of three valence quarks 

are rotated in the SU(3) flavor space by the matrix Rf where f = 1, 2, 3 is the flavqt and 

j = 1, 2 is the isospin index. To obtain the color-flavor-spin-space 3Q wave function of a 

particular baryon, one has to integrate over all 8-parameter SU(3) rotations R with the 

rotational wave function Bk(R) corresponding to the chosen baryon with spin projection k. 

Then the wave function of the three quark components of baryon can be representated as 

w(3Q¥ B) = T(B)f :t仇，KxFJ.191(P1)Fi匹 2(p2)Fi匹 3(p3) 

where T(B)侶泣，kmeans the SU(3) group integral as 

T(B)｛掌，K三／dRBZ(R)R詞因．

(126) 

(127) 

Hence the nqrmalization of the three quark component is 

N(3Q)・(B) (6 ・ 6) = --6fT(B)邸 f 3 hl必，l
d2 Pl,2,3 

2 如涵，kT(B)紐 2J!Id Z1,2,3 / w8(z1 + i2十硲ー 1) (128) 

・(27r)28(p1 + P2 + pj)F”び1(Pl)Fj2グ2(p2)Fお93(P3)Fぶ1(p1)F1：グ2(p2)F1!び3(p3)' 
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the factor (6 ・ 6) comes from the fact that there are 3! possible contractions, and ensuing 

contraction in color indices gives another factor of 3! = t:~10匹3fa1 a2aぶ

A typical physical observable is the matrix element of some operator sandwiched between 

the initial and_ final baryon wave functions. These operators can be written in terms of the 

creation ・or annihilation operators a, at, b, bt as Eq.(118), and in the 3Q components only the 

がaterm survives because there is no antiquark. _First, we consider.the quark operators of 

the vector charge type ij吋qin the forward limit t→0. This charge gives the quark number 

in the baryon. We obtain the following expression for the vector charge 

v(3Q) (6・6・3) 
= 2 8fT(B)似泣，kT(B)祝計(dp1,2,a) (129) 

• [F3161(Pl)已（P2）曰（p3)］［弘(P1心（P2)広 (P3)］［吠JJ:]'

where we use the abbreviation J(dpi,2,3) for th~ integral over momenta, with the conservation 

ふfunctionsas in Eq.(129). Although we assume that the third quark is struck, there is a 

factor of 3 by considering which quark of the. three quarks can be struck. JJ: _is the flavor 

content of the charge, and 7，び＝ 1,2 are helicity states. For example, if we consider up 

quark charge,炉＝ 四lf3 l f3 . One can easily check that in the proton case the above quark 

number gives exactly 2 for the up quark and 1 for the down quark after dividing the 3 quark 

normalization N(3Q) (p) [32]. 

From the.above representation, we can easily develop formulas for many other structure 

functions. For the off-forward matrix element, one has to change the momentum of one 

of the quarks on which the operator acts, by the corresponding momentum transfer, and 

leave the rest quarks momenta unaltered. As shown in Eqs.(23) and (25), the light-cone 

helicity noll'-flip form factors are linear combina_tion of the Dirac and Pauli form factor. 

Hence the matrix element corresponding to the h~licity non-flip form factor in the 3 quark 

approximation is 

汀万F{3Q)（t)- e2 (6. 6. 3) hl必，1
辺 2

FJ3Q)(t) = 
2 
紅(B)｛温，KT(B)邸f~I (dp1,2,3}(130) 

△ 
• ［日（Pl)日 (P2)F如 3P3 --

• [nに(Pl)Fiふ）広（；［＋合〗11位呟l
We next consider the matrix elements of the GPD which have an additional argument 

of the light-cone momentum fraction XB. In our expression, the Bjorken variable XB corre-

sponds to.z3 which is the longitudinal momentum fraction of the third quark with respect 
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to the total baryon rnornenturri Ps = M_紅／』＝戸． Therefore,for the spin non-flip GPD 

1-l++＝』マH(x,e, t)-~ 
ご

E(x, e, t), one should leave the硲 unintegratedin the.above 

expression of the light-cone helicity non-flip form factor Eqs(l30): 

¢ 
叫 (xB,e, t)＝ 五 万H(3Q)（咋＝疇，t)-~E(3Q)（拉＝硲， e,t) (131) 

J「マ
(6・6・3) 

2 
砕T(B)｛泣13,kT(B)灼尻

！がp1,2,3l.
(27r)6 

dz1,2o(z1 + z2十硲ー 1)（2T)28(Pll.＋恥＋恥）

△ 
・ [F如 1(P1)日 (P2)己 (P3--

• [Flし1(Pl)心 (P2心（四＋ 欧`砂：］
The impact parameter space parton distribution functions q(x, b.l）is tlie Fourier transform 

of this expression with e = 0 

d2b.l-ibJ..A がb.l -ibJ..A 
q(x,b.l） ＝ J―e (2i)2 

J.1-l++(x, 0, t = -Ai) = / ~e-iba1.-AJ. H(x, 0, -Ai). (132) 
(21r)2 

e 

From this expression. Eq.(131), one can obtain the Feynman parton distribution functions 

q(x) by taking the forward limit t→0. Similarly the Transverse Momentum Dependent 

(TMD) parton distributions q(x,p.L）can also be obtained by leaving the unintegrate<,l trans-

verse momentum p3.lin the forward lirrii.tin Eq.(131): 

q(3Q>(x,p..L） (6・6・3) 
= 6fT(B)｛泣h3,kT(B)閃¢閃 (133)

屡丑J (21r)4 
dz1,2J(z1 + z2 +硲ー 1)(21r)2J(p1.L＋P2.L ＋p3.L） 

. [ FjlO'l (P1)Fj20'2 (P2)Fj3(J'3(p3)] [ Fi~(J'1 (P1)F'i~(J'2 (P2)Fz~,,3 (p3)] [ J;! Jj!] 

For the spin polarized case, one replaces averaging over baryon spin by ½（四）f, and the 

axial charge operator is now(び3以insteadof'5;!. For example, if we consider the polarized 

parton distribution function△q(x), one gets 

△q<3Q)(x) = (6・6・3) 伍）7T(B)肛珀 T(B)1l,1必，12 3132J2,K J山 J3 (134) 

! d2Pl,2,3J_ 
(21r)6 

dz1,2iS(z1 + z2十硲ー 1)（加）2J(pa+Pa+ p3J_) 

. [Filび1(p1)Fhu2 (P2)Fiaus (p3)} [ F1~u1 (P1)F1;u2 (P2)F1!-rs (p3)] ［（び3):~'5~!]
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Formulas of the polarized functions 1-l++ 』オ万(x,l,t)

ナ厄（x,e,t)，△q(x,p.L），△q(x,b.L）canbe obtained from those of the non-polarized case 
1-e2 

p 

by changing the operators Jf→(O'堺，匁→ (0-3以・

B. ~ quark components 

Next, we consider the 5 quark components in the baryons. C~nvoluting the linear order 

QQ wave function in the expansion of the coherent exponent with the three valence quark 

wave func~ions, we can get the 5 quark wave function in the baryons as 

w(5Q) = T(B)f ~f:!saL4,1ss,k x pi1<T1(p1)Fi2び2(P2)F和<T3(P3)W]:<T?（p4,p5), (135) 

where the T(B)｛泣訟，fふrepresentsthe SU(3) group integral involving now three R's from 

the valence level and R, Rt from the pair, times the rotational wave function BZ(R) of the 

bary~n in question 

T(B)紐絵，｝55,K三／dRBZ(R)R{：咄R詞噂 (136) 

where we systematically attribute the indices 1,2,3 to the valence quarks, index 4 to the 

e?{tra quark of the QQ pair, and index 5 to the・antiquark. The normalization factor of the 

5 quark component is 

.Af(sQ)(B) 108 k 
す釘T(B)f位認，応T(B)11尻と訂(dp1-s)

F如 1(Pl)F].292伽）F］.363(P3)W此？（p4,p5)

n！び1(P1)F1~u2 (p2)F1~u3(p3)W1f4:よ (P4,Ps)i5冗号：

where we have denoted 

j(dp叫＝ ／dz1_5 f が~(21r)2o(P1J. +…十p江）o(z1+…+Z5.,.... 1). 
(2rr)lo 

(137) 

(138) 

The factor of 108. arises from the following consideration: one contracts at from the pair 

wave function with a in the conjugate pair, and all the vaience operators are contracted with 

each other. There are 6 such possibilities, and the contraction in color give~ a factor 3 • 6, 

all in all 108. 

The ratio of the normalization factors.N（5Q) (B) /,N(3Q) (B) gives the probabili~y to find 

a 5 quark component in a mainly 3 quark baryon. In. the case of the nucleon, Diakonov and 

Petrov indicateq its value is 0.535 ~ 50%. 
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For the matrix elements of a typical physical. observable, there are three contributions: 

one when the charge operator acts on the antiquark, the second when it acts on the quark 

from the pair, third when it acts on one of the three valence quarks. At first, we write down 

the expression for the 5 quark component of the vector charge in the forward limit. 

v(5Q) 108 
＝一6fT(B)hf2l，3如 5J.1J.2J.3J.4,J5,K 

T(B)hl2砂，95,1
2 hf293叫 5

/ d2Pl-5.!./ dz1-s(27r)2 X / ~ / dz1-s(27r)i8(p1.!. ＋…＋p5.!.）8(z1 +…＋Z5 -1) 
(27r)10 

X F如 l(p1)Fi匹 2(P2)Fjsび3(P3) W]:：54(P4,p5) 
x月し．1(P1)F1し．2伽）F/し．3(p3) w.如よ(p4,p5)

x [3Jぬ四f58T3炉炉＋炉J虹 8%T3炉炉
f f f3 f 

ー炉炉Jfs6T3炉炉3 4 g5 93グ4T5 4 g5び3び4T5 f3 f4 gs 93グ4'T5] 

(139) 

In order to express the GPD H(x, (, t) and E(x, e, t), one has to change the momentum 

of one of the quarks on which the operator acts, by t];ie corresponding momentum transfer 

as in the process of the 3Q component case, thereby extracting three separate con~ributions 

from the valence contribution, the quark from the QQ pair, and the antiquarks respectively. 

The valence contribution in the 5 quark component is 

糾咆al(x,e, t) 
108 k ＝一釘T(B){:邸 J4,j5T(B)hl2砧，g5,I2 3.13.23.3].4,J5,K 邸 g迎 4,/5 (140) 

XI悶；ば／dz1dz2dz凸（加）2J(p1.L＋．．．＋p5.L）J(z1 +…+Z5 -1) 

X F年 1(P1)F加 2(p2)F加 3（西＋閂w此？（p4,p5)

x 吋51(Pl)心（四）Fに (P3 ー合〗鮒は(P4洒）
X [3Jぬ四f5炉炉605J3 J4 gs 93 94 T5 ]， 

the quark contribution from the qij_ pair is 

砂
108 

+＋，q-Sea(”'t,t) ＝―8fT(B)hf凶 f4,i5T(B)hl2/3h,g5,1 2 虹2i功，J5,K Ilf四3叫 5 (141) 

J疋Pl-5.Lx J ~ J dz1dz2dz凸 (21r)2o(p1.L十…＋如）o(z1+…＋ z5 -l) 

X F如 1(P1)已 (P2)曰 (p3)W:ご：（西＋合，p5)

x似 (p1)心 (P2)土 (P3)W；は（西ー］，p5)

f3 f4 g5 63 64 T5 ]， x ［炉J946%T38T4 865 
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and the antiquark contribution is 

叫立(x,e, t) ＝累紅(B)kf2砂，J．5 hl叫，g5,I
J.1 J.23.3J.4,J5,K T(B) 紐 g3g4,15 (142) 

XI信；；;t-J dz凸 d五（加）2J(p1.L＋…＋和）J(z1+…十森ー 1)

X F加 1(P1)Fi2u2 (P2)Fj3u3(p3)~ご：（m，和＋ー△ 

X F1!01(Pl)心（P2心(P3)W：は （p4ふー〗
x [—炉炉J吋3炉炉f3 I4 g5 63 64巧l

As in the 3 quark components, the matrix elements of the spin polarized case can be 

obtained by the replacement of the helicity operators Jf→ （疇， 8訂芯→ （叫芸芯・

One can also get other structure functions by the same procedure as̀、the3 quark 

component$. The impact parameter space distributions are the Fourier transform of the 

糾守(x,O,t) or元印(x,0, t) as Eq.(214), the parton distributions are the forward limit of 

叫守(x,t,t)or元岬(x,e, t) 

q(x)＝掴1l+＋（以，t)= H(x, 0, 0), 
-.―ー.

△q（ェ） = ~i~ 1l++(x, e, t) = H(x, 0, 0), 
t→O 

(143) 

and TMD parton distributions are the unintegrated ver.sions of Eq(l43) over the transverse 

momenta of the struck quark 

q(xふ）＝棚1-l++(x;b.L，t,t) = H(x;b.L，0, 0), 
. - ．．-

△q(x;b.L） ＝ lim1-l++（x;b.L，t,t) = H(x;b.L，o, 0). 
t→0 

(144) 

C. lxl < e;2 region 

As we have explained in the sec.II, in the lxl < e/2 region, baryon emits a quark-antiquark 

pair, and the GPDs has the physical meaning as the meson distribution amplitude not as 

the partonic densities. The matrix elements in this region should be the oyerlap between 

the initial N + l component and the final N -l component [23, 24]. There are two cases 

according to the momenta of the quark and antiquark in the pair, one when the quark with 

+ component momentum (x + e/2)MB and the antiquark with -'(x -(/2)MB are emitted, 

the second when the quark with -"(x-(/2)MB and antiquark with (x+(/2)MB are emitted. 
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We assign the quark with (x+(/2)MB case to the distribution amplitude in the O < x < f/2 

region, and the antiquark with (x + (/2)MB case to the one in the -(/2くェ <0region, 

following the case with lxl > f/2 where the quark or antiquark with (x + (/2)MB is st!uck. 

Its representation is 

H++ 
(5Q→3Q) ． (x,f,t)＝士

108 
了 o;T(B)｛悶認，1:,kT(B)灼以J唸；；M=,f dz1dz凸 (145)

X (27r)2J(p1.L ＋P2.L ＋P3.L）o(z1 +砂＋硲ー 1)

x （加）2J(p4.L＋Ps.L） 

X. F虹 1(P1)Fi匹 2(p2)Fi匹 3(P3)WII4閃(p4干△／2，p5士△／2)

x F此 (P1)F1~u2(P2)F1!u3 (pa)［心Jf:]'

where the + sign in front of RHS represents the distribution amplitude in the O < X < e12 

case, on the other hand, the -sign represents the one'in the -e/2 < x < 0 case. In the above 

representation, we take the quark in the emitted quark -antiquark as the one of the QQ pair 

arisen from the coherent exponent. Hence, the three valence quarks in the 5Q component 

are contracted with the 3Q component with equal momenta respectively. Then the total 

QQpai air momentum turns into the emitted meson momentum as q = (eMB人）． Thespin 

polarized GPDs元＋十(x,e, t) can be also obtained by replacing絆→叶，and犯ら→び：；ぶ

D. Overlap integrals in the infinite momentum frame 

After all contractions in Eqs.(140)-(145) over flavor (f,g), isospin (j,i) and spin (a-,t) 

indices, one is left with scalar integrals over longitudinal (z) and transv~rse (p.l.）momenta of 

five quarks. The integrals over the relative transverse momenta in the QQ pair are generally 

UV divergent, reflecting the divergence of the negative energy Dirac sea of quarks. In'this 

study, we cut this divergence by the Pauli-Villars cutoff method at Mpv = 562MeV. This 

value is chosen. from the requirement that the constant凡＝ 93MeVis reproduced with 

M = 375MeV. 

T_he pair wave function W is determined by the Fourier transforms of the mean field 

II(g) and ~(q). In the matrix elements of the initial 5Q and final 5Q components -with 

zero momentum transfer, the following seven scalar integrals arise from squaring Eq.(119), 

corresponding to i) the full square of II(q) for the spin polarized and non-polarized cases 

ii) th:e square of ~(q) for the spin polarized and non-polarized cases, iii) the square of the 
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third component I13(q) for the spin polarized and non-polarized cases, and iv) the mixed 

IT(q)~(q) term. We name these terms, 

K1r1r =誓！畠◎（嘉叫蜘）証(q)

f。ldy J翌［（屯＋虞T2-y)q叩― (M→Mpv)］¥’

叫＝誓！畠叫羞q.L）蜘）両(q)

f。ldyf闘［心＋：ば[2-y)砂―(M→Mpv)],

M2 
k,，＝戸！知（い）蜘）認(q)

fol dy I図［屯＋M2(2y-1)2 
o (2が (Qi+M臼 y(1-y)q叩―(M→Mpv)],

M2 
叫＝ ／ 

西
-—• o (生
21r J (2ザ MB

,q.L0(qz)qぶ (q)

い！閤 [(Q̀ 2M+2霊―-ly}2q叩― (M→MPV)],

M2. ．d3q3  
K33 = -J→ (-lf;,q.L）蜘）告rr2(q)

21r J (2が MB q 

い！翌［（屯＋腐｝＋］名2-y)q叩― (M→Mpv)],

叫＝翌！畠叫羞叫 0(qz)~I12(q)
fldy戸［屯＋M2
o -;? J (21r)2 /l(Qi + M2 + y(I -y)q叩

M2 Jがq
K3u＝ー一の（ii;,q.L) 皇

21r J (2が MB
g.L0(qz)AIT(q)~(q) 

lql 

-(M→Mpv)], 

11 dy・f沿Qi[生+M2(2y-1) 
o (2ザ (Qi+M臼 y(1-y)q叩― (M→Mpv)]

(146) 

(147) 

(148) 

(149) 

(150) 

(151) 

(152) 

In this representation, the integrals dp1_5 have been rearranged such that one first integrate 

over the relative momentum inside the QQ pair y, Q.Land then over the 3,.momentum q of 

the pair as a whole. The step function 0(qz) ensures that in the in~nite momentum frame 

the longitudinal momentum carried by the pair is the positive. By ~(z, q..L．） ẁe denote the 

probability that the three valence・ quarks leav~ the longitudinal fraction z = z4 + z5 = <J,z/ MB 

and the transverse momentum q..L＝p4..L +P5..Lto the QQ pair: 

~(z,q..L) ＝J沿p1,2,3..L
(21r)6 

dz1,2,3(21r)28(p1..L＋P2..L＋P3..L＋q..L）8(z1十死＋硲十 Z-1 
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・IF(p1)l2 ・ IF(p2)l2 ・ IF(p3)l2 (153) 

In the 3Q components of the baryons, there are no additional Q(J pair, and all quantities 

are proportional to <1>(0_, 0). Since the normalization of the valence level wave function is 

arbitrary, we choose it such that <1>(0, 0) = 1. On the other hand,△<l>(z, q.L）means the 

probability that the three valence quarks leave the momentum qz and q.Lto the QQ pair 

when the spin polarization operator acts on the three valence quarks: 

頌（z平） ＝ J d2Pl,2,3.Ldz1,2,3(21r)2 o(p1.L ＋P2.L ＋恥＋q追 (z1+ Z2十硲十 z-l) 
(21r)6 

・IF(p1)l2 • IF(p2)l2 ・ I△F(p3)l2, (J.54) 

As seen from Eq.(92)1 the discrete-level・wave function F(p) = F1ev(P) + Fsea(P) consist of 
two pieces: one is directly the wave function of the valence level, the other is related to,the 

change of the number of quarks at the discrete level due to the presence of the Dirac sea. 

Hence, the square of the valence wave function・can be denoted as 

IF(P)l2 = IF1ev(P)l2 + F1し(p)・ Fsea(P) + Frev(P) ・ F;ea(P) + 1Fsea(P)l2, (155) 

and we write down explicitly the square of the valence part IF1ev(P)l2: 

匹（p附＝詈[(h(p)＋靡j(p))2+雇j2(p)l (156) 

and the square of the level part in the spin-polarized case 

MB 2 I△F1ev(P)ド＝~ [(h(p)＋脅・（p))2＿厨(p)l (157) 

The complete expressions for the IP(p) 12 and I△F(p) 12 including the sea part contribution 

F(p)sea are given in Appendix C. 

Let us give examples how the normalization, vector and axial charge of the baryon up to 

'the 5Q components are expressed through the integrals after all contractions in Eqs.(146)-

(152) are performed. 

Nucleon normalization: 

18 
N(N) = 9<I>(0,0)，十一(llK11"11"+ 23Kaa). 

5 
(158) 

For the proton case, the vector charge of the u, d, s quark contributions in the 3q component: 

V』3Q)= 18の(0,0), ~戸＝ 9仰(0,O}, ~(3Q) = 0, (l59) 
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and the axial charge of the u, d, s quark contributions in the 3q component: 

Ai3Q) = 12△<l>(O, 0), A~3Q) = -9△<l>(O, 0), Ai3Q) = 0. 

The vector and axial charge of the valence contribution in the 5Q components: 

vJvalinSQ) = 3(54Kuu +21.36K1r1r)' 

vtalin5Q) = 3(26.4K,。 +14•.88K1r1r),

vs(VaI切 SQ)= 3(2.4Kuu + 3.36}く~1T)'

Atvalin5Q) = 3(36.24△Ku(1 +9.84△K1T1T+3.36△K33), 

A~valin5Q) = 3(-S.4S△k(1u -6.88△K1T1T+6.08△Iく33)'

A~valin5Q) = 3(-0.11△Kuu -l.76△K1T1T +2.56△K33), 

the quark contribution from the・ QQ: 

vJsea) = 38.l6Ku(1+26.64K1r1r, 

v}sea) = 32.88K(1(1＋12. 72K1r1r, 

~(sea) = ll.76K(1(1＋0.24K1T1T, 

Atea) = -30.24K3(1， 

A~sea) = 19.68K3(1 9 

Aisea) = 3.36K3(1， 

and the antiquark contributions 

vJsea) = -34.56Kuu -ll.52K'II"'II"， 

Vj8ea) = -29.28Kuu -l7.76K'Tr'Tr, 

vs(sea) = -18.96kC, -10.32k71"7r， 

心~ea) = -23.04K3u, 

A『ea)= + 12.48K3u, 

A~sea) = +3.361(茄 9

(160) 

(161) 

(162) 

(163) 

The physical observables are. given by adding these contribution and then dividing the 

normalization, for example, the vector charge of the u quark is 

V(3Q) + vjvalin5Q) + vJsea) + vJsea) 
vu = 

N” 
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which gives exactly the u quark number in the proton as expected. 

Another quantity in which we are interested is the spin content o(the proton. From the 

above expressions of the axial charge, the representations of spin components of each flavor 

are 

△u=  
12△<I>(O, 0) + 108. 72△k(T(T +29.52△K11'11'+ 10.08△K33 -53.28K3(T 

9<1>(0, 0) + 39.6K11'11'+ 82.8K(T(T 

△d =. 
-3△<P.(O, 0) -i25.44△k(T(T -20.64△K11'11'+ 18.24△K33 + 32.16K3(T 

9<l>(O, 0) +39.6K11'11'+ 82.8K(T(T 

△s=  
-0.48△k(T(T -5.28△K11'11'+ 7.68△K33十6.72K3(T

9<1>(0, 0) + 39.6K11'11'+ 82.8K(T(T' 

hence the proton spin content is 

△E ＝△u＋△d十△s= 9△<l>(O, 0) + 82.88△k(T(T +3.6△K11''1r+36△K33 -14.4K3(T 

9<1>(0, 0) + 39.6K11'11'+ 82.8K(T(T 

and the isovector axial charge is 

(165) 

, (166) 

(3) 
gA ＝ △u―△d=  

15△4l(O, 0) + 134.l6△Kuu + 50.16△K1r1r -8.16△K33 -85.44K知

呼 (0,0) + 39.6Ku + 82.8K匹

(167) 
(3) 

Recently Diakonqv and Petrov evaluated the isovector axial charge g'f'in the nonrelativistic 

limit where they neglected the L = 1 lower、componentj(p) and the sea quark contribution. 

In the non-relativisti、~ limit, the integrals of 5Q components are set to be zero, and the 

probability△4l(z,p.L）for the spin polarized case becomes equal the 4l(z,p.L）for t~e spin 

non-polarized one because there is no effect the lower components and the sea contribution 

Fsea(P) to the one quark wave function. Therefore in the non-relativistic approximation the 

nucleon axi_al charge is 
(3) _ 15~(0, 0) _ ~ 

gA = ＝一~—―1.679~(0,0) 3 
(168) 

which is well known result of the nonrelativistic quark model. The account for any number 

(3) 
of pairs and for the relativistic corrections is expected to bring g'f'very close to the experi-

(3) 
mental value g'f'= 1.27. For the same reason, in the nonrelativistic 3Q approximation, the 

proton spin content is 

•~= 
9<P(O, 0) 

9<P(O, 0) 
= 1, (169) 

which is also the value expected in the nonrelativistic quark model. Again, this value 

may be expected to be close to the experimental value 0.31士0.07measured-by the EMC 

collaboration by t&king account of the relativistic effects and higher Fock components [4, 5]. 
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Although the overlap integrals 9f the structure functions including the GPDs can also be 

expressed in terms of the chiral mean field as in the static observable for the vector and axial 

charges, a little caution are required. For example, the full square integral of the scalar:field 

K(f(f has to be classified further into the three contributions: one when the charge operator 

acts on the quark in the QQ, second when it acts on the antiquark, third when it acts on one 

of the three valence quarks. When one of the three valence quark is me邸 ured,the overlap 

integral of t-he square of ~(p) is 

Ktalin5Q)( M2 f d3q 
talin5Q)(x =・忍，C，t)＝ -I -

21r J (21r)3 
q> (qz,q.L；Z3, e, t) 0(qz)訳 (q) (170) 

f。1dy I忍［（屯＋院悶2-y)q叩― (M→Mpv)],

where we interpret <I> (qz, q.L； Zぁe,t) as the probability that the three valence quarks leave 

the momentum qz,q.L to the QQ pair when the.third quark has the longitudinal momentum 

at rest frame P3z = Z3島— e1ev and with the momentum transfer△as 

の(z,q.L；硲，e,t) = J d2p1;2,s.1.． 

(21r)6 
dz1dz2(21r)28(p1.L＋P2.L＋P3.L＋ q.L）8(z1＋硲＋硲十z-1) 

・IF(p1)l2 ・ IF(pz)l2 ・ (Ft （四ー合）•F （四十合））IP1,2,sz=z1,2,sME1-e1ev(l 7l) 

When the quark or the antiquark is str'uck, the overlap integrals are: 

[{i~in sea)(x＝叫，t)=竺！がp4,5J.dz5
271" J (271")5 

cl> (z,p1.) 0(z)IT(qりIT(qり (172) 

［屯•Qt+M2
(Qi +M2+y(l-y)qザ・(Qi+ M2 + y(1...:.. y)q叩

-(M→Mpv)], 

M2 西p4,s1.dz4
Kitin sea)(x = z恥 (,t)= ;; 271" f (27r)5 ◎(z,pJ.)0（ゑ）II(ず）IT(qり (173) 

[ QlJ. •Qt+M2 
(Qi+ M2 + y(i -y)q2)I ・(Qi+ M2 + y(l -y)qりF

-(M→Mpv)], 

where we denote the momentum with the indices I (F) as the one. be、for_e (after) the charge 

operator acts on the quark. For the case that the quark in the QQ pair is st加uck,

｛屯＝（召＋§）恥— Z5（四—午），ず＝ （p4 —今）＋四
Qi_= （召ー i)P5.L-Z5 （加＋~), qF=伍＋令） ＋四
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yl=~ 
伍＋＜／2）＋Z5

炉＝店(z4-ef2)+zs 
(174) 



and the antiquark struck case, 

｛生＝Z4(P5.L一午）ー(z5+§)p4.L，

Qj_ = Z4（応＋牛）ー(z5-0p4.L， 

qi ＝四＋（p5 —今），

qF=pけ伍＋今），

計＝な
z4+(zs十</2)

y F ＝ Z5 

召＋（Z5ーe/2)
(175) 

After all, in the lxl > e/2 region, the light-cone helicity non-flip, spin non-polarized GPDs 

祖十(X'e't)and spin polarized社い疇，t)of each flavor are represented as 

命 (6の(0,O; x, f, t) + 162K;がin5Q(X'f't) 

1-l~+(x, e, t) = 
+64.08/{ヰin5Q(x,f, t)) valence 

1 
(17g) 

匹 y(38.16KJ~n ••..(x, e, t) + 26.24K;~n ••.. (x, e, t)) Dirae sea, quark 

irac sea, antiquark 命(34.56KJ~n....（ェ， e,t). + 1 l.52K;~n sea.（以，t))Di 

命 (3<I>(0,O; x, e, t) + 79.2K;~ in5Q(x, e, t) 

祖＋（x,(, t) = 
+34.64K;~ in5Q(x, e, t)) valence 

1 
(17[） 

可(32.88~!~n••..(x,e,t) + 12.72/q~nsea(x,e,t)) Dirac sea, quark 

赤 (29.28.K窃呵x,e,t)+ 17.76K!~n•ea(x,e,t)) Dirac sea, antiquark 

l命 (7.2k;:In5Q(x,e,t)＋10.08k;aiIn5Q(x,e,t)） valence 
1-l伝(x,e, t) ~ 命（ll.76Ki~n.."(x, e, t) +0.24K芹呵x,e,t)) Diracsea,quark (17~) 

咋(18:96KJ~n••"(x, e, t) + 10.32K!~n ••"(x,f;t)) Dirac sea, antiquark 

元出(x,f,t)= 

祖＋（の，e,t) = 

命 (12△<I>(O,O;x,e,t)-+108.72△Kはin5Q(x, e, t) 

+29.52• K;~ in5Q(x, e, t) + 10.08△K33(x,e,t)) 

命 (-3Q.24Ktnse..（x,e,t)) 

ぬ(-23.04Ktn"e"(x, e, t)) 

咋 (-3△<I>(O,0；疇，t)-25.44• I<;~ in5Q (x, e't) ". 

valence 
(179) 

Dirac sea, quark 

Dirac sea, antiquark 

ー20.64△k;がin5Q(x,e, t) + 18.24△k命(x,e, t)) valence・ 
• (1 8 0) 

曲(19.68I<!~n "0"(x, e, t)) Dirac sea, quark 

土(12.48I<~~n"°"(x・, e, t)) Dirac sea, antiquark 
.N(p) 
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元十(x,e, t) 

祐 (-0.48△K;~in5Q(x, (, t) 

-5.28• K;~ inSQ(x, (, t) + 7.68△K33(x, (, t)) 

志(3.36K!~n"""(x, (, t)) 

命(3.36K!~n se&（吠，t))

valence 
(181) 

Dirac sea, quark 

Dirac sea, antiquark. 

Next we show the results in the center region lxl < e/2 which can be representated in 

terms of the non-diagonal matrix element in the Fock state components. After all contraction 

over the spin,:flavor, and isospin indices, the spin non-polarized GPDs 1l++(x, e, t) have only 

the scalar components of the mean chiral field, 

where 

q=  

Z=  

碑:→3Q)(x,e, t)～ー似S(x,e, t) 三一犯~5f登国巴
(2が Z e' 

(（1+（［/2)島，―（~),
((1 +［/2)2ぼMi-ぶ)+Mi-；ニ―喜嘉(-ep.L-xa.L)2) 

(182) 

(183) 

The operator acting on the quark antiquark helicities 8門ら means that the quark antiqtiark 

in the QQ pair has to appear in the total helicity state 

(I↑↓〉+1 ↓↑〉)． {184) 

One should recall that the function 1-l~?• SQ) in this region corresponds to the D-term 

introduced in Sec.IL It is important to argue the relation between the spontaneous chiral 

symmetry breaking and the D-term [56]. In particular, this is seen clearly in the case of the 

pion GPD. To see this, it is ・Useful to decompose the D-term in the Gegenbauer polynomials 

D(z) = (1 -z2) (d1C{12(z) +d3C;12(z) + d5C;12(z) + ・ ・ ・) (185)、

In the case of pion D-term, the v~lue of the coefficient d1 in the parameterization {185) can 

be_computed in a model independent way and_ it is strictly nonzero [57-60]. To compute 

the pion D-term, Polyakov used the soft-pion theorem for the singlet GPD、 thepion [56]. 

This soft-pion theorem has been derived using the fact that the pion is a {pseudo)Goldstone 

boson of the spontaneously broken chiral synrmetry. They obtained the expression for pion 

D-term 

~(1 D(z) =-―(1 -z2)（愈(z)+・・・),
4 

(186) 
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where M1r is the momentum fraction carried by the quarks i:r;t the pion. One see therefore 

that the first Gegenbauer coefficient of the pion D-term is negative and strictly nonzero [57]. 

The nucleon D:..term is not fixed by general principles. However, Petrov et,al. expect that 

the contribution of the pion cloud of the nucleon can be significant [57]. Quantitatively for 

the coefficients di, d3, d5, the numerical estimate which is based on the calculation of GPDs 

in the chiral quark soliton model gives 

d1 ~ ~4.0, da ~ -1.2, ¢s ~ -0.5. (187) 

They argued that the coincidence of the signs in the nucleon and pion-D-terms hints that 

the D-term in the nucleon is intimately related to the spontaneous. breaking of the chiral 

symmetry. On ・the other hand, Eq.(182) which is obtained by the overlap integral--of the 

light-cone wave function indicates more directly that the physics of the spontaneously chiral 

symmetry breaking plays an important role in determining the size and the sign of the 

D-term. As one can see from Eq.(182), the nontrivial structure in terms of z = x/(is 

determined mainly by the scalar part of the mean chiral field I:(q). As we will show in 

Sec. V, the sign of the function冗翌→SQgives same sign as that of the pion D-term. 

Oh the other hand, the spin polarized GPDs元＋十(x,(, t) in this region have zero ampli-

tude since the SU(3) flavor group integration gives zero value. This is because we have taken 

only the 1st order QQ pair in the wave function, so if we include higher Fock contr-ibution the 

糾＋（x,(, t) in the central region may have non-zero value. The spin non-polarized GPDs 

1i++(x, (, t) of each flavor can be represented as 

立 (x,t,t)＝{21.6S(x,t,t)IN(B)

-21.6S(x, l, t)/N(B) 

祖十(x,e, t) 
{ 19.8S(x,e,t)IN(B) 

-19.8S(x, e, t)/N(B) 

叩 x,(,t)＝{ 12.6S(x,(，t)IN(B) 
-12.6S(x, t, t)/N(B) 

for O < X < (/2 

for ~(/2 < X < 0 

for O < X く e12

for -e/2 < X < 0 

for O < X <;. e/2 

for -e/2 < X < 0 

(188) 

(189) 

(190) 

These Eqs.(176)-(181) (188)-(190) are the our final representation for th~ GPDs, an.fl in a 

sense "master" formulae from which the impact parameter space PDF, TMD PDF, and 

form factor, all structure functions we. want, can be obtained with appropriate operati_on. 
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V. NUMERICAL RESULTS AND DISCUSSION 

For the numerical evaluation of the integrals contained in the overlap representations of 

the matrix elements, w~ need first of all the self consistent profile function. This function 
can be eva:luated self-consistently with the following variational principle 

6 

8F(r) 
E[F(r)] = 0. (191) 

The resultant shape of the self-consistent profile function are dependent also on the dy-

namical quark mass M. In this study, we will pe~form the numerical estimate of the a~ 

physical quantities with the quark mass M = 375Mey, and with the Pauli-Villars mass 

Mpv = 562MeV reproducing the pion decay constant 93MeV. Our profile function self-

consistently obtained with the mass M = 375MeV is shown _in Fig.2. 

3
 

2
 

ー

゜
6
 

8
 r

 
FIG. 2: Self-consistent profile function F(r): the_ horizontal axis is plotted in units of 1/M with 

M=375MeV. 

With this profile function, the baryon mass'島 becomes1017.5MeV, the classical mass 

(without quantum correction) in the mean field approximation. The self-c~nsistent pseu-

doscalar II(p) and scalar ~(p) field is plotted in Fig.4. 

We first evaluate the probability distribution ~(z, q1.) for the three valence quarks spin 

unpolarized case and also • ~(z, q1.) for the ・one of the three valence quarks spin ・polarized 

case. These probabilities have the ・physical meaning as that the QQ pair carry the fraction 

r 
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FIG. 3: Uppers-wave component h(r) (solid) and the lower ~wave component j(r) (dashed) of the 

bound state quark wave function. All th~ three valence quarks have the energy E1ev = 150MeV. 
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FIG. 4: The self-consistent p~eudoscal~r III(q)I (dashed) and scalar IE(q)I (soli1).. fields in baryons 

in the momentum space. The horizontal axis is in units of M = 375Me V 

z of the baryon momentum and the transverse momentum q.L．We show the numerically 

evaluated probability in the two cases, one with the non-relativistic approximation where 

we set the discrete wave function }-nvolved in Eq.(121) as F(p) ~ fo,五五五(p),second. 

with the lower L = l component j(p) = 1 component j (p). 

For the spin polarized case, the probability△cI>(z,qょ） isequal to the spin unpolarized 

probability cI>(z, q1.) in th e non-relativistic approximation. When we include the L = i 

lower component,、j(p)in the discrete wave function, both probability densities are drasti-
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FIG. 5: The probability distributions cp(z, q.L）that the QQ pair carries the fraction z of the baryon 

momentum and the transverse momentum q.Lplotted in units of M = 375MeV. The solid curved 
surface shows the probability with the s-wave upper component h(r) only, the dashed curved 

surface is that also the ~wave lower component j(r) included. 
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FIG. 6: The spin polarized probability distribution△cp(x,q.L)． 

cally changed. From Figs.5,6, oi;ie sees that the△cI>(z,・q.1) is redu尋 comparedwith the 

unpo!arized one q>(z, q.L) . S~nce the numerical calculation of the probability distrib~tion 

with sea-qua~k effects Fsea(P) by our computer takes too much time, it is not evaluated 

except the value at the zero momentum-point q>(O, 0) and△q>(O, 0). The nucle9n 3Q nor-
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malization is denoted with the value at the zero momentum carried by the QQ pair cI>(O, 0) 

N(3Q>(N) = 9cI>(O, 0) (192) 

and flavor decomposition of the nucleon 3Q axial charge are 

杷＝ 12△~(O,0) = l t:: ；二：： C十二゚ご。tm。こ）ent)

6.12 (upper+ lower component+ Dirac sea effect) 

(193) 

-3 (upper component only) 炉＝ー3△~(0,0) = l—l.89(upper + lower component) 

-1.53 (upper + lower component + Dirac sea effect) 

(194) 

A~3Q) = 0 (195) 

(3) 
From Eq.(167), g'f'and the nucl e nucleon spin contents in the 3Q component approximation 

are 

g;3) = 5△0(O,0) l 1.67 (uppercomponentonly) 

3<!>(0, 0) 
= { 1.05 (upper + lower compoli~:mt) 

0.85 (upper +'lower component + Dirac sea effect) 

(196) 

1 (upper component only) 

△E=~贔？＝l 0.63 (upper + lower component) 

0.51 (upper+ lower component +.Dirac sea effect) 

(197) 

With the above probability distributions△<I?(z, q) and <I?(z, q), the numerical evaluation 

of the integrals (146)-(152) yields 

Kn = 0.07 4 78, K。。 =0.03693,K3u = 0.05750, K33 = 0.05655, 

△Iく'Tr'Tr = 0.05160,△Kuu = 0.02666,△l<3q = 0.04134. 

Putting these value into Eq.(158), we obtain nucleon 5Q normalization: 

N<5Q) = 15.019 

and flavor decomposition of the nucleon 5Q axial charge: 

AtsQ) = 1. 775, A~sQ) = 0.860, AisQ) = 0.419. 
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In the 5Q approximation, the flavor decomposed nucleon spin content are 

△u = 
A[3Q) + A[SQ) 
N(3Q)＋N(5Q) 

= 0.53, 

△d = -0.04, 

△s = 0.02, 

from which the isovector axial coupling constant and nucleon spin contents are 

91) = 0.57, •~ = 0.51. 

(201) 

(202) 

With the relativistic effects, the nucleon axial coupling constant /J_) has been underestimated 

compared with the experimental value 1.27, even in the 3Q component approximation. The 

5Q component effect works to reduce gf) to smaller value. This value may be further modi-

fied by taking account of more higher Fock component in the baryon wave function. This is 

well known as /} problem in the chiral soiiton model, and is caused by the fact that we are 

working in the relativistic mean field approximation without quantum corrections. Indeed, 

the isovector axial coupling constant 4as a sizable 1/ Ne correction which is a quantum quark 

loop effect. Wakamatsu and Watabe indicated that the model can give the reasonable valqe 

of 9A if we include the subleading order in the 1 / Ne expansion [61). On the other hand, the 

spin content of the nucleon△I:, as the isoscalar axial charge, has only subleading correction 

in the n expansion. Again, the spin content△I: may be also mor~ reduced if Wy include. the 

higher Fock components, and can be expected. to be more close to its experimental value 

0.31 [29). Now, we find that the ratio of the 5Q to the main 3Q normalization in the nucleon 

with lower component is fairly large, i.e. 

N(sQ) 

N(3Q) 
= 0.668 ~ 67%. 

A. Quark distribution function q(x) and△q(x) 

(203) 

Next, we will show the predictions for the distribution functions. First, we compute 

unpolarized and polarized spin non-flip GPD Hg{ x, e, t) and瓦(x,e,t) of each flavor q in 

the forward limit, t→0, where it coincides with the usual quark and antiqur,rk distributions. 

These-results are shown in Figs.7,8, and 9 for unpolarized distributions and in Figs.10,11, 

and 12 for polarized distributions, where-we plot separately the contributions of the discrete 
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FIG. 7: Theoretical pr�diction for the unpolarized u quark distributi?n u(x). solid curve: the 

discrete level contribution. dashed curve: Dirac sea quark contribution. dashed dotted curve: 

Dirac sea antiquark contribution 
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FIG. 8: Theoretical prediction for the unpolar�zed d quark distribution d(x). The curves have the 

same meanings as in Fig. 7. 

level and that of the Dirac sea quarks. Note that the contribution of the discrete level is 

the sum �f all contribution of 3q component and valence quarks contribution of the 5Q 

component. The discrete level distribution functions have peaked around at x = 1/3. On 

the other hand, the contributio� of the Dirac sea quarks arise、 from the additional QQ pair 
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FIG. 10: Theoretical prediction for the polarized u quark distribution△u(x). solid curve: the 
discrete level contribution. dashed curve: Dir邸 sea quark contribution. dashed dotted curve: 
Dir邸 sea antiquark contribution 

in the 5Q component. I_t has peaked at the 、� = 0. Th� behavior of the Q{l p�1r distribution

qualitatively reproduces well the predictions obtai:p.ed by the cranking formula based on the 

sa:me model [62-71]. As character of this model, Dirac sea contributions are closely related 

to the effect of the pion clouds. It is interesting, in the present formalism, that only one 
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quark-ant�quark pair reproduce the Dirac continuum effects. The absolute value of the Dirac 

sea contribution in the present estimate, however, is about one third compared with the one. 

based on the perturbation in the soliton angular veloci locity n. 

order 9CJ pair has been included in the present calculation. If higher Fock �omponents are

included, we would expect comparable absolute value as the res�lt obtained based on the 

This is because only the 1st 
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cranking treatment {68-71]. We emphasize that・our results obtained based on the light-cone 

wave function satisfy the positivity of the unpolarized parton distributions. 

It may sound peculiar that the strange quark has valence contribution in the x >。
region. However, because of the SU(3) flavor rotation in the 5Q Fock components, val~nce 

quarks are i:;nixed state in the SU(3) fl~vor space. It is important to realize that, as far as 

total numbers ~f s and s quarks are precisely equal in the nucleon, vale~ce quarks can have 

the strangeness com?onent. There are two_types of ~on~ributions to s(x), one the valence 

contribution having the peak around x = 1/3, second Dirac sea contribution having the 
peak rapidly growing at x = ・ 0, while there is only Dirac sea contribution for s(x }. From 

this reason, the shape of the strange quark and_ antiquark distributions have significant 

asymmetry. In Fig.13, we show the CQSM prediction for x [s(x) -s(x)]. This asymmetry 

0.014 

0.012 

0.01 

0.008 

0.006 

0.004 

0.002 

゜-0.002 

-0.004 

x(s(x)-s(x)) 

x
 FIG. 13: The th~oretical prediction for x [s(x) -s(x)] at the energy scale 16 GeV2. 

of s(x) and s(x) distributions would be the origin of the NuTeV anomaly. The Nu.TeV ・' 

Collaboration extracted the value of the weak mixing. angle, sin2 0w, by measuring the r~tio 

of neutrino neutral-current and charged-current cross sections on iron [72, 73]. Their四 lue,

sin2 0w・ = 0.227}士0.0013(stat)士0.0009(syst),is 3 st standard deviatiQD.s above the standard 

model prediction. The measured ratio R-is related to the Weinberg angle 0.w by 

R― 
吠cーボc

咤c —吃c
1 

2 
~ -sin2 0w + 8RA + 8Rqco + 8R詠w,
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where the three correction terms, respectively, stand for the target nonisoscalarity correction 

(JRA), QCD corrections { 8Rqco), and higher-order electroweak corrections { JRiw). The 

QCD corrections come from three main sources as 

訊 QCD=JR-;+ JR"i + JR砿o, (205) 

where JR;-, 8R1 and JRNLO, respectively, stand for possible strange-sea asylllliletry (S—三

s -s =J 0), isospin violation (up,n =J dn,p) effects in the parton density of the nucleon, and 

the NLO corrections. If we focus on the first correction due to the possible asymmetry of 

the strange sea in the nucleon, the QCD correction is given as 

砥=
1 7 [S1 

-(---sin2 %） -
2 6 [Q一］＇

where 

［ ］ 
1 

s-三 /x[s(x) -s(x)] dx, 

゜[Q-] 
1 

Q―三Jx[u（x)一u(x)+d(x) -d(x)] dx. 

゜

(206) 

(207) 

(208) 

Recently, the CTEQ group performed a global PDF fit including the NuTeV "dimuon events" 

on the neutrino and antineutrino production of charm [74, 75]. Their analysis leads to 

a central 1value [S-JcTEQ ~ 0.002; Note that the positjve [S-J, which means that the 

momentum distribution of s quark is harder than that of the s quark in the nucleon, works 

tbreduce the discrepancy between the NuTeV determination of sin2()w and the world average 

of other measurements. As shown in Fig.13, the CQSM predicts the s quarks carry mote 

momentum fraction than the i quarks, and the moment of the x [s(x) -s(x)] is given as 

[S-JcQSM ~ 0.0016 at the energy scale Q2 = 16 GeV2 evolved from the model energy 

scale 0.3GeV2 in order to compare with the NuTeV measurement. Inserting this value with 

[Q-] = 0:226 obt<!,ined by the same mbdel into Eq.(206), we obtain the correction due to 

the strange sea asymmetry 

JR; =・0.0034, (209) 

which explains nearly 70% of the NuTeV anomaly. This estimate are performed without the 

SU(3) symmetry breaking term, arising from the effective mass difference△m8 b~tween the 

stra.nge and.non-strange quarks. It was also shown that [S-J is sensitive to the△m8. With 

the SU(3) breaking term△ms, it was confirmed in this model that the momentum carried 
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by s quarks becomes more large compared with that of the s quarks, then the asymmetry 

of the s quarks ands quarks distribution may resolved the NuTeV anomaly [76]. 

Also very interesting are the isovector antiqμark distributions u(x) -d(x) and△u(x) -

△d(x). An interesting quantity related to the isovector antiquark distribution is the Got-

tfried sum, which is defined as 

1. 2 fl 
品＝—＋—f 心 [u(x) -d(x)], 3. 3。 (210) 

The integral on the RHS is scale-dependent only at the two loop level; its scale dependence 

is negligible over the entire perturbative region. If the sea quark distribution were isospin 

symmetric, u(x)＝如）， whichwould be the case if, for example, one assumed the sea 

quark distribution to be generated entirely radiatively, this quantity would be equal to 1/3 

"Gottfried sum ;ule". However, the NMC experiment finds a significant deviation from this 

value., 

Sa= 0.2356士0.0026 at Q2 = 4GeV~, (211). 

indicating that the sea quark distribution is rather far from flavor-symmetric [77). Note 

that the Gottfried sum rule does not follow from any fundamental princi~les of QCD. In 

fact, the large況 pictureof the nucleon as a chiral soliton naturally \,~xplains the presence 

of a flavor-antisymmetric antiquark distribution. In Fig.14, one can see that the antiquark 

distribution u-dindicates the is~spin asymmetry. Note,.however, that the.present prediction 
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FIG. -14: The theoretical prediction for the unpolarized antiquark asymmetry u(x) -d(x). 
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for the asymmetry u(x) -J(x) is not enough to reproduce the value extracted by the NMC 

collaboration, although the IllOdel predicts excess of the J quark than the u quark in the 

proton. Our model gives 

Sa= 0.29 at Q2 = 0.3GeV2. (212) 

In fact, in the_ model calculation based on the cranking formalism, the unpolarized isovector 

distribution arise in the next to leading order in the 1/ Ne expansion. Therefore, if we 

include subleading 1/ Ne quantum corrections in this formalism, we would expect more large 

asymmetry of u(x) -d(x) distribution [70, 71). It has been suggested by several authors that 

this isospin asymmetric sea is due to the pionic contribution to the sea quark distribution. 

Henley and Miller argued that the pionic contribution to the difference between the number 

of dd pairs and uu ones in the proton is equal to the difference between the number of戸

andず inthe proton [78]. In the CQSM, the difference of the d quarks and u ones arise 

from the SU(3) flavor r_otating chiral mean field. In fact, the hedgehog ansatz Eq.(88) breaks 

the flavor SU(3) and spatial rotational symm~try [70, 71). We have to rotate chiral mean 

field in the flavor and ordinary space in order to restore the symmetry. The nucleon in this 

model is obtained as the collective rotational state. 

Next we show the model prediction for the polarized antiquark distribution. As shown in 

Fig.15, our model predictions also indicate the breakdown of the SU(2) symmetric sea quark 

polarization,△u(x)＝△d(x), which is frequently used in semipheiiomenological analysis 

of parton distributions. In the present mean field approximation, u is-weakly polarized 

in the opposite direction to the proton spin, while d is polarized along the proton spin. 

However, these spin polarization direction of each flavor may be reversed if we include the 

1 / Ne quantum correction. Indeed, the same model prediction including the sub leading 1 / Ne 

correction based on the perturbative expansion of the soliton rotational angular velocity n 

shows the sizable breakdown of polarized antiquark distribution△u(x)―△d(x) with positive 

sign, which indicates that the polarizations of u and d prefer parallel and anti-parallel to the 

proton spin respectively [62-65]. Although strange quark and antiquatk only appear from 

the sea quark polarization, the polarized strange distributions also have asymmetry be~ween 

quark and'antiquark contributions. The origin of this asymmetry is the same as those of 

the unpolarized strange quark distribution. The polarized sea quark asymmetry is the one 

of the prominent prediction based on the chiral quark soliton model. 
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FIG. 15: The theoretical prediction for the polarized antiquark asymmetry△u(x)―△d(x). 

B. TMD parton distribution q(x,p.L) and△q(x,p.L） 

The TMJ? parton distributions can be easily evaluated by leaving the transverse momen-

tum of the struck quark unintegrated. Figs.16-21 shc:>w the model predictions of the flayor 

decomposed TMD parton distributions. 
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FIG. 16: The theoretical predictions for the unpolarized TMD distribution u(x,p.L)with the 
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375MeV. (a)The red curved surf邸 eis the discrete valence contribution, while the hfoe curved 

surface is the Dirac sea quark contribution. (b)The theoretical predfotion for the antiquark TMD 

distribution u(x, p 1.), 
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FIG. 17: The theoretical predictions for the unpolarized TMD distribution d(x,p.L)and d(x,p.L）． 

The curved surfaces have the same meaning as in Fig.16 

(a) (b) 
valence — 

Dirac sea quark---
Dirac sea antiquark― 

• 
•
.• 

-

•

-

―
―
―
.-

9
8
7
6
5
4
3
2
1
0
1
1
 

0
0
0
0
0
0
0
0
0
0
 

0.45 
0.4 

0.35 
0.3 

0.25 
. o.2 
0.15 
0.1 

0.05 

゜-0. 

FIG. 18: The theoretical predictions for the unpolarized TMD distribution s(x,pL) and s(x (x,pL) and s(x,pL)-

The curved surfaces have the same meaning as in Fig.16 

For the distributions in the transverse ~irection, we show its dependence on the absolute 

value IP 1. I• All the 1iscrete level distributions have Gaussia~ shape in the transverse direc-

tion, and・ are fully suppressed in the region IP 1. I > 0.5GeV. On the other hand, the; Dirac 

sea quark distribution has a long tail contribution in the transverse direction, although its 

. absolute value is ver~ small in the low IP 1. I region compared with that of the.discrete level 

distribution. In Fig.22, we show the unpolarized u quark distribution in the transverse di-

rection with the fixed Bjorken variable x = 0.3. This long tail contribution cc5m蕊fromthe 

deep neg~tive-energy Dirac sea continuum distorted by the presence of the chiral mean field. 

Recently, the transverse momentum dependent PDF have attracted much attention in the 

relation wi~h the single spin asymmetry (SSA) measured in the semi-inclusive deep inelastic 
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FIG. 19: The theoretical predictions for the polarized TMD distribution△u(x,p1.) and△蘇(x,p1.)．

The curved surfaces have the same meanings as in Fig.16 
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FIG. 20: The theoretical predictions for the polarized TMD distribution△d(x,pJ.) and頌 (x,p J.)-

The curved surfaces have the same meaning as in Fig.16 ・・ 

scatterings [!9, 80]. Interestingly, these SSA phenomena can be explained by taking account 

of the "Sivers function" f好（エ，p1.) [35]. Recently, Collins et.al. tried to extract information 

for the Sivers function from the HERMES data [81, 82]. They assumed the Gaussian function 

in the transverse direction as 

f(x,p 1-)三 f(x)
exp(-pi/Pら）

吠 np
， 

祐(x,p.L）三応(x)
exp(-pJ./pな）

咋な
， ヽ

(213) 

and use the mean square, and mean transverse momentum in their analysis of the HERMES 

data 

〈Pl〉 Jがpl.pif(x,pl.)2

f d2p1.f(x,p1.) 
= P;np, 
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FIG. 22: The theoretical prediction for u(x,pJ.) at x = 0.3. The transverse momentum is plotted 
in units of M = 375MeV. 

〈P.l〉＝
Jがp.l|p.l|f(x,p.l） Jテ・
J d2p.1f(x,p.l) 2 

=—Punp• (21'4) 

However, our analysis・ here shows that it is not the good assumption when the Dirac sea 

distribution has a long tail contribution in the transverse direction、Ifwe include higher 

Fock com~onents in this for~alism, the Dirac sea contribution predicted in the CQSM may 

be more enhanced. Then,..,the mean square and mean trans~erse moment1.1m are strongly 

influenced by the large p.Lregion, and would be drastically different from the ones obtained 

by the.Gaussian ansatz Eq.(214). The Sivers function "f奸(x,p.L）'’ .itselfis a time-rev:ersal 
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odd function. Whether one can calculate such a T-odd functions using a chiral model is still 

examined by many people [83, 84]. Nonetheless, the important fact the CQSM suggests is 

that one have to take into consideration the Dirac sea contribution more seriously in the 

investigation of the SSA phenomena. 

～ 
C. GPDs: 1l++(x,{，△1_ = 0) and ft_+＋（吠，△1_= 0) with zero transverse momentum 

transfer 

Now, we will start to show the GPDs in the case t =/: 0. As we have reviewed in sec.II, 

this structure function defined by the off-forward matrix element have information of quark 

spatial distribution as well as those of momentum, distribution. The electromagnetic form 

factors calculated in the chiral quark soliton model agree rather well with the experimentally 

measured oi;ies up to transferred momenta of the order -t ~ 1GeV2 [85, 86).. First, we will 

give the model predictions with zero transverse momentum transfer△1 = 0, where 

t = -4M~ 
ぐ2

(1ーだ）．
(215) 

In the overlap representation, the GPDs are parameterized in terms of the longitudinal 

momentum transfer e: 

糾叫）＝ 0 し—~) 1{,~N十→N)（x,(）＋ 0じ―x)叫N+＋1→N-I)(x,t). (216) 

In the lxl > l/2 region, superscript (N→N) means that the structure function is denoted 

by the diagonal matrix element in the Fock compoilc:nts. On the other hand, the function in 

the center region lxl < (/2 is represented by N + l→N -l non-diagonal Fock component 

transition. In Fig.23, a typical shape of the flavor decomposed GPD祖＋（以，t)as a 

function of the variable x is shown at (/2 == 0.3. For t/2 = 0.3 one has t = 0.35GeV2. 
In this figure, we show separately the contributions of the valence level and of the Dirac 

continuum. We see that the Dirac continuum contribution is essential especially in the region 

ー(/2< x < t/2, and also in the region x < -e/2, corresponding -to (min!ls) antiquark 

distributions, the Dirac continuum contribution ensures the positivity of antiquarks. Let us 

also note that the points lxl = e/2 divide the interval of the variable x(....... 1 < x < l) in three 

regions:x < -(/2, where the function 1i++(x, e, t) describes the antiquark distribution; x > 

e/2, where it corresponds to the quark distribution, and -t/2 < x < l/2, where H(x, e, t) 
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FIG.. ・ 23:'i:he'!L quark distribution H(x,e，心） for △i 三—ぶ— e2M和＝ O and e/2 = 0.3. 
Solid curve: contribution from the valence level. Dashed curve: contribution from the Dirac sea 

continuum. 

resembles a meson wave function. It is therefore natural that the function 1-l++ (x, e, t) has 

discontinuity at lxl = e/2. Actually, we divide artificially the division of the x integrals into 

separate domains: 

f―e/2-e dx糾凡→N)(x,f)＋Je/2-edx叫岱＋1→N-1)(x,（）＋Jl dx叫岱→N)(x,f), 
ー1 -C/2十e e/2+c 

{217) 

In the present approximation, i.e. the absence of the higher Fock comp~nents, the. GPD of 

the center region lxl < e12 is odd funct~on of x, so that the integration from this, region 

is zero. The form factor integrated over x cont叫nsa N→N diagon~l transition in Fock 

sp~ce. However, such discontinuity would lead immediately to a violation of the factorization 

theorems for DVCS processes, since the expression for the DVCS amplitude (71) contains a 
factor 

f_1ldx (x -t}2+i€ + x十喜＿i,)H(x,(,t)...., , ・ (218) 

which would be l~garithmically divergent if H(x, e, t) was discontinuous at lxl = l/2. 

On・ th~ other hand, Petrov, et al. have indicated that the discontinuities are artifa~ts of 

neglecting the momentum dependence of the constituent quark mass [57]. They show that if 

64 



(b) 
(a) Dirac sea — 

valence-

5
4
5
3
5
2
5
1
5
0
5
 

．
．
 

4

3

2

1

0

0

 

2
1
8
6
4
2
0
2
4
6
a
 

1

0

0

0

0

0

0

0

0

 

―

―

―

―

―

 

x
 

FIG. 24: The theoretical predictions for (a) the valence distribution 1{江．~al.(x,{，吐＝ 0) and (b) 

the Dirac sea quark distribution 1l++sea(x,{，吐＝0).
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FIG.、25:The theoretical predictions for (a) the valence distributi~n 磁］ッal.(x,€, 俎＝ 0) and (b) 

the Dirac sea quark distribution 1-li+sea(x,€, ~1 = 0). 

one include the momentum dependence of the quark mass, the discontinuities are smeared, 

and the model predicts the characteristic crossovers at lxl = t/2. Hence, the integrals 

is finite but enhanced by the contribution near lxl = (/2. In the present.light ~one wave 

function formalism, it is very complicated to include the~。血entumdependence of the quark 

mass. We emphasize that the active quark antiquark pair in the cent~r region lxl < (/2 are 

correlated in the scalar isoscalar (or a channel Eq.(182)). Such a contributiop is supported 

by the recent preliminary HERMES data on beam:..charge asymmetry in DVCS [87]. As 

explained in the Sec.IV, the function in this region corresJ?oiids _・to the so-called D-term. 

As is shown in Fig.(23), we can see.that the amplitude in the region O < X < 1e121 has 

65 



(b) 
(a) Dirac sea — 

valence-

0.25 

0.2 

0.15 

0.1 

0.05 

゜-0.0~ 
・1 

2
1
8
6
4
2
0
2
4
6
a
 

1

0

0

0

0

0

0

0

0

 

―

―

―

―

 

x
 

FIG. 26: The theoretical predictions for (a) the valence distribution 1l江;al.(x,<，△l= 0) and (b) 

the Dirac sea quark distribution 1l江➔ea(x, ＜，△l = 0). 
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FIG. 27: The theoretical predictions for (a) the valence distribution W++val.(x, e，俎＝0)and (b) 

the Dirac sea quark distribution元店_sea(x,e,△i = o). 

negative sign. In this framework, the size. and sign of the D-term are thoroughly determined 

from the scalar part of the additional QQ pair wave function generat~d due to the chiral 

mean field Eq.(182). As emphasized frequently until now, this Dirac sea contributions are 

closely related with the effect of the pion clouds. From dynamical point of view, the two 

pion exchange contributes to the I'!-term in the CQSM since _the p-term consists of_ the 

scalar-isoscalar part only. Although D-term contribution is invisible in th~~.forward limit, 

the second moments of the H (X'e't) and E（ェ，｛，t)have the contribution from the D-term, 

even its first moment have no D-term effects. For example, the second moment of Hq(x, l, t)' (x,l,t) 
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is expressed as [56] 

[11 dx X Hq(x, e, t) = Mi(t)＋!が(t)ぐ．
ー1 5 

(219) 

Here, Mi(t), that at t = 0 it i it is related to the momentum fraction carried by quarks, gives 

us information about the spatial distribution of quark momentum inside the nucleon. The 

constant MI(O) is related to the parton distributions via 

Mi(O) = 11 d口 (q(X)+ ij(X)). 

゜

ヽ

(220) 

On the other hand, the form factorが(t)is related to the traceless part of the energy-

momentum tensor花(r)= ½炒1{i▽屈(r) which characterizes the spatial distribution of 

shear force~ experienced by quarks in the nucleon: The form factorが(t)contributes to the 
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xwindependent part of the real part of t4e DVCS amplitude, which is accessible through 

the beam charge asynunetry. Anot.her inte:,:esting quantity related to the second_ moment is 

the generalized form factor, Aq(t) + Bq(t) 
1 

み(t)= ½'(Aq(t) + Bq(t)) = 1ー1dxx(Hq(x,(,t) + Eq(x,J,t)), (221) 

which gives us information about the spatial distribution of the quark angular momentum 

inside the nucleon. The second moment of E(x, e, t) is represented as 

fo1 dx x E(x, (, t) = Bq(t)-［が(t)ぐ，

゜
(222) 

where Bq(t) is called the anomalous gravitomagnetic moment. Since the signs. of the D-term 

involved in the second moments of H(x, l, t) and E(x, l, t) are opposit~ to each other, the 

Ji's sum rule Eq.(221) has no contribution from the D-term. 

Next, we display the full X and e dependence of祖十(x,t,t) of each flavor in Figs.24-26. 

By moving along lines of constant l, one nicely sees how the sensitivity of the GPDs t_o the 

distribution in the lxl < e/2 region increases relative to the distribution in lxl > l/2 region 

when increasing the parameter l-

The polarized G PDs社i十（x,l, t) of each flavor,q are shown in Fig.27-29. As we have 

explained in Sec.IV, there is no contribution from the center region lxl < l/2 because we 

neglect the higher Fock components. 

D. Impact parameter space parton distribution q(x, b.L） 

, e, ~i) have very interesting informa— GPDs in thee = 0 limit, 1-l+＋（以，△i)and 1-l++(x, eぷ）

tion of the baryon structure. As shown from Eqs.(23)-(26), we can obtain only H(x, 0，△i） 

and甘（x,O，△i),on the other l;iand E（の，0，△i)and E(x,O，△i) decouple in thee→0 limit. 

We can get the impact parameter space parton distributions q(x, b J.) by Fourier transform 

of H(x, 0，△i). q(x, bJ.) is the expectation va1ue of the number operator, and its interpre-

tation does not suffer from relativistic effects [88]. The':ariables b 1-and x live in different 

dimensions, and therefore there is no quantum mechanical uncertain、tyconstraint. Indeed, 

q(x,b.L）is a spatial-and-momentum-density hybrid in that it represents a spatial density in 

the transverse directions and momentum density in the longitudinal direction. In Figs.30, 

31, and 32, we show the model prediction of the impact parameter space distributions for 

u, d, and s quarks 
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FIG. 31: The theoretical prediction for d(x, lb.L |）． 

Foi u and d quarks,· the contributions of the Dirac sea quarks are small compared with 

that of the valence quarks. But the Dirac sea quark contributions、.have long tails in the 

impact parameter space, and its contribution become dominant as x becomes small.. In 

order to sea this, -we show the u quarl� Q.istributions at various fixed x points. We can see 

from Fig�.33 and 30 that although the valence contributio� ha� a peak around x = 0.3,

the Dirac sea contribution increases monotonously as x decreases. From Fig.33 (a), we can 
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see that.the contributions of the Dirac sea and valence quarks with small x are reversed 

bordering at I b.LI = 1.8 fm. As we have mentioned repeatedly, the Dirac sea � s we have mentioned repeatedly, the Dirac sea contributions 

would be more large if higher order Fock components are included. Therefore, the CQSM 

predicts that the partonic distribution have large spatial extension in the b.Ldirection due 

�o the long tail contributions of the Dirac sea contributions, This indicates that the QQ 

pair contributions in ·this model are closely related to the pionic cloud srounding the three 

valence quark core. 

A density interpretation of the distributions印 (x, e, t) at e = O is more subtle, since 

the corresponding matrix elements �re still non-diagonal in the proton helicity (Eq.(24)). 

One can however di�gonalize by the usual trick of changing basis, from helicity states|＋〉z

and|-〉z to transversity states I士〉X = l/✓う(|+〉z 土I-〉z). For a particle at rest the new 

basis states are polarized along the positive o� negative x-axis,. but for our fast-moving and 

transversely localized protons they are not eigenstates of the angular.momentum operator 

J1 along the x-axis, and their physical meaning is not quite clear. This reflects the notorious 

difficulty of defining· transverse spin for relativistic particles and the complicated nature of 

transverse _spin operators �n the light-cone framework. Proceeding iievertheless along this 

lin�, Burkardt has.obtained several physically intuitive results [88]. The Foq_;ier transforms 

of E�(x, 0, i) describe a relative shift in the trans-yerse density of partons along they direction 

between· the polarization states|＋〉x and|-〉x; or between the states|＋〉x and|＋〉z· The 

second moment of炉(x, t, t) is called anomalous gravitomagnetic mom�nt Eq.(222). In the 
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FIG. 33: x-dependence of the u quark impact parameter space distribution 

chiral quark soliton model, it is shown that the isoscalar combination in the t→0 and 

(→ 0 limit identically vanishes [58] 

Bu+d(O)＝瓢dxx炉 (x,0, 0) = 0. (223) 

In terms of the impact parameter space, the moments F!j(t) = J dェ炉(x,e,t)and 

J dxxEq(x,s,t) ate= 0 and t = 0 are_also related with the corresponding averages〈bり

and〈xbりforquarks. Conservation of the transverse center of momentum implies that the 

sum of 〈曲〉 ov~r all parton species.is zero in a hadron with zero center of momentum, 

which provides another derivation of the sum、!ule(223) for the distributionsか (x,e, t) in 

the forward limit. As we have denoted, in order to obtain H(x, t, t) and E(x,~t, t) separately, 

~e have to calculate the light-cone helicity flip amplitude 1l+-in additi<?n _ to the helicity 

non-flip one 1l++・ To calculate E in the light-cone wave function is a task of future studies. 

Next, we point out that there is another class of hadronic matrix elements that carries 
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information on both the transverse and longitudinal structure of partons, namely TMD par-

ton distributions. In the present formalism, they can be obtained by leaving the transverse 

momentum unintegrated, and the predictions based on the CQSM w~re already shown in 

Figs.16~21. As we have explained in the Sec.II, in momentum space they have the meaning 

as the density of the transverse and longitudinal momentum space of the struck parton. The 

definition of the TMD parton distributions is 

q(x,杞） ＝ ／五~eixP+z- -ik.L•Z.L 〈Pl如 (0, 1 Z_ 1 1 1 
l61r3 - \•IT,-, 2 -- ，ーー互）吋炉(0,~z―_互)|p〉, （224) 

2 2'2 

which is related to the usual quark density by q(x) = J d2柘q(x，ふ）． Thiscorresponds to 

different transverse positions of the emitted parton (b1. + 1/2互） andthe reabsorbed parton 

(bl.ー 1/2互）． TheFourier transforms of unintegrated parton distributions ~ith respect 

to the parton k 1. thus describe correlations of the transverse loc~tion of partons in the 

nucleon, and never represent densities in impact parameter space. On the other hand, the 

impact parameter space PDF is the transverse space density measured from the transverse 

center of momentum of all partons凡 ＝ Ei=qXi叫，i,where Xi is the momentum fraction 

carried by each parton and r 1-,i is their transverse position. Therefore, if the struck quark 

momentum k1-is left unintegrating in the GPDs in thee→0 limit, we have opportunity to 

get double information about the nucleon structure in the transverse direction. The Fourier 

transform of these GPDs over the今 containsa mean impp.ct parameter space information 

6↓ =1/2(bi_r + b~ut) measured from the transverse center of momentum, and a correlation 

in the transverse direction z 1-of the incoming and outgoing quarks. 
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VI. SUMMARY AND CONCLUSIONS 

We have studied the generalized parton distribution functions (GPDs) through the light-

cone wave function derived from the chiral quark sdliton model, which is an effective model 

of baryons maximally incorporating the spontaneous chiral symmetry breaking of the QCD 

vacuum. In the relativistic mean field approximation in this model, one obtains a quantita— 

tive picture of baryons as localized states of constituent quarks bound by a self-consistent_ 

chiral filed. Simultaneously, the negative Dirac sea is distorted by the same chiral field, 

leading to the presence of an indefinite number of additional quark-antiquark pairs in the 

baryons. Then the baryon wave functions can be constructed as a product of Ne= 3 valence 

quark wave functions and the coherent exponent of quark-antiquark pairs. 

The GPDs are denoted by H, E，甘 and豆， whichdepend on three variables; the light-

cone momentum fraction x, light-cone momentum transfer e, and total squared momentum 

transfer t =△乞 Inthe light-cone framework, these four type GPDs appear in-the particular 

combinations according to the light-cone nucleon helicity flip or non-flip. In this thesis, 

we have concentrated on the spin unpolarized and polarized helicity, non-flip combinations 

1i++ ＝』マH-eッ~Eand 甘＋＋ ＝』マ瓦e2/v'lコ屯， respectively.

We have clarified the expression of the GPDs in the light-cone frame using the light-cone 

wave function in this model. They are representated as the overlap integrals of the initial 

and final state Fock components. In the characteristic kinematical range in the expression of 

the GPDs, there arise non-diagonal Fock space matrix elements, whi~h never appear in the 

case of ordinary Feynman quark distribution funct1ons. Consequently, the GPDs contain 

quite new information on the nucleon structure. 

In the lxl < e12 region, where the nucleon emits a quark_;antiquark pair, the initial 5Q 

and final 3Q Fock components are relevant. The GPDs in this region, called D-term, behave 

like a meson distribution amplitude. The phfsical content of the x-moment of this function 

is interpreted as the distribution of the shear forces experienced by quarks inside nucleon. 

In our model analysis, the GPDs in this region have contributions OJ!_ly from the Dirac sea 

continuum distorted by the presence of the chiral mean fields. The size a~、d sign of the 

D-term are thoroughly determined by the scalar part of the chiral mean field. 

We numerically investigate the GPDs under various limiting conditions. In the forward 

limit t→0, the GPDs reduce to the ordinary Feynman parton distribution. The model 
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predictions show that the valence contribution -has a peak around x = 1/3, while the Dirac 

sea contribution has a rapidly growing peak near x = 0. The model also predicts the 

u(x) -d(x), s(x) -s(x)，△u(x)ー△如）， and△s(x) △（） -~s(x) asymmetries. We have point 

out that the predicted magnitude of s(x) -s(x) asymmetry is large enough to resolve the 

so-called NuTeV anomaly on the fund~mental parameter sin2 0w in the standard model. 

When one leave the transverse momentum of the struck quark unintegrated in the forward 

limit t→0, one can obtain the transverse JJ?-Omentum dependent quark distribution function. 

While the valence quark distribution has like a Gaussian shape in the transverse directions, 

the Dirac sea distribution has a long tail in that directions. This long tail contribution cbmes 

from the d.eep negative Dirac sea orbitals distorted by the presence of the chiral mean field. 

Recent~y, the transverse momentum dependent PDF have attracted much attention in the 

relation with the single spin asymmetry (SSA) measured in the semi""inclusive deep inelastic 

scatterings. Interestingly, these SSA phenomena can be explained by taking account of the 

"Sive.rs function" f好(x,p1_)expected to be able to extract information from the HERMES 

data. In the data analysis, the unpolarized transverse momentum distributions f(x,p1_) are 

nyeded, and the Gaussian ansatz in the transverse momentum directions for f(x,p↓)are 

employed. Then the mean square and m€!an transverse momentum for f(x,p上） evaluatedby 

the Gaussian ansatz are frequently used in the analysis. H~wever, qur analysis here shows 

that it is not the good assumption when the Dirac sea distribution has a long tail contribution 

in the transverse direction. Then, the mean square and mean transverse momentum are 

strongly influenced by the 1.argep上region,and would be drastically different from the ones 

obtained by the Gaussian ansatz. We emphasize that this Dirac sea contribution has to be 

taken more seriously into the analysis of the single spin asyrrnnetry phenomena. 

In the zero-transverse-momentum transfer case△l = 0, we have shown the full x and e 
q~pendence of the GPDs 1-l伝(x,e, t) and元t+(x,Lt) of each flavor q. In the chiral quark 

soliton model, the large.and negative sign contribution for the D-term in the jxl < e/2 region 

is given by the isosc非larpart of the QQ pair wave function. This Dirac sea contributions 

are closely connected with the effect of the pion clouds, and the negative sign、?fthe nucleon 

D-term obtained by us coincides with that of the pion D-term evaluated by using the soft 

pion theorem. Therefore, we emphasize that the behavior of the D-term is related to the 

spontaneous chiral syrrnnetry breaking of the QCD vacuum. From the dynamical point of 

view, the two pion exchange contributes to the D-term in the CQSM, since the D-term 
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consists of the scalar-isoscalar part only. 

In the purely transverse momentum transfer case, GPDs become the probability density 

of both the longitudinal momentum direction and impact parameter space. The model 

predicts that quarks in low-x region have large spatial extension in the b L direction. The 

QQ pair contributi mes f utions are essential in this result. It comes from the fact th~t the QQ pair 

simulates to the pion cloud surroundi:qg the three valence quark core. 

We have point out that the impact parameter space quark distribution and transverse 

momentum dependent quark distribution have different information about transverse space 

directions. The TMD parton distributions have the meaning as the density of the transverse 

and longitudinal momentum space of the struck parton. The Fourier transforms of TMD 

parto11; distributions with respect to the parton杞 describecorrelations of the transverse 

location of partons in the nucleon, and never represent densities in impact parameter space. 

On the other hand, the.impact parameter space PDF is the transverse space density mea— 

sur~d from the transverse center of momentum of alfpartons R:1. = Li=q Xir 1.,i・ Therefore, 

if the struck quark momentum如 isleft unintegrating in the GPDs in the §→ 0 limit, 

we have opportunity to get double information about the nucleon structure in the trans-

verse direction. The Fourier transform. of these GPDs over the今 containsa mean impact 

parameter spac;:e information b1. = 1/2(b7_ + b~ut) measured froi:n the transverse center of 

momentum, and a correlation in the transverse direction z 1. of the incoming and outgoing 

quarks. 
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APPENDIX A: GENERAL CONVENTIONS 

For comol or completeness, notational conventions are collected in line with the standard text-

hooks. 

Lorentz vectors. We have used 

豆＝伍゜＋岱） and x-＝伍o_岱）， (Al) 

respectively, referred to as the "light-cone time" and "light-cone i:>,osition". The covariant 

vectors are obtained by x μ = g仰炉， withthe metric tensor 

゜
1 

゜゚1 

゜゚゜gμv = 9μv = I 

゜
-1 

゜
(A2) 

゜
゜゚゜

-1 

Scalar products are 

x •p =砂Pμ,=討四＋エ―P-+ x1p1+ェ泊＝討p―十 x―p―一m.L•P.L . （A3) 

All other four-vector includingザ aretreated in the same way. 

Dirac matrices; Up to unitary transformation, the 4 x 4 Dirac matrices 1μ are defined by 

ザ,v+,勺μ= 2g仰 (A4) 

呼ishermitean andや-an:ti-hermitean.Useful combinations are/3 ＝,0 and ak = 1゚や， as

well as 
1 (J'μv = -i (1μ1u _ 1IIザ）， 5 ．0 1 2 3 

2 
/5 = T = i,-,-,-,-. 

They are usually expressed in terms _of the 2 x 2 Pauli matrices 

l=[: ・:],0-1=[: :J,a-2=[; ~i],u3=[: ~1] 
In'the Dirac representation the matrices are 

9

9

 

ヽ
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ヽ
ー
）

I

I

O

 

0

-

O

I

 

I
O
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勺＇

＝
 ゚

T
 

°!k =（＿゚0kaok),

め＝（uok -0ok), a”= （°0k ook) 

(A5) 

(A6) 

(A7) 
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Projection operators. The chiral representation of the 7-matrices is used, particularly 

1十吋＝ 1―1―=0. (A8) 

Alternating products are, for example, 

吋1―吋＝ 2や and,―,+,― =2,― (A9) 

The projection matrices becomes 

1 1 
ふ＝一1゚1+＝-1―吋 and A 

. 1 0.— 1 
¥1'21 I 2 ＝一T'Y = ~ 十一

- v'2/ / 2 ,+,- (AlO) 

Dirac spinors. The spinors ua(k，入） andva(k，入） aresolutions of the Dirac equation 

(~-m)u(k，入） ＝0, (~ + m) v(k,入） ＝0. (All) 

They are prthonormal and complete: 

u(k，入）u(k，入')= -v(k，入）v(k,入')=2m入入，>-', (A12) 

I:u(k，入）u(k，入） =~+m, I:v(k，入）叩(K，入）＝,-m, (A13) 
入入

The Gordon decomposition of the currents is useful: 

1 
u(p，入）,μu(q,>.1)= v(q，入）ザv(p，入＇） ＝一u(p，入） ［（p＋q)μ + io•µv(p- q)』u(q，入＇）．（ A14)

2m 

W~ use as Dirac spinors 

,J2k+ 

。
u(k,，↑） ＝ 

1 I柘十 iky

21/4年 m 

゜゚
v(k，↑） ＝ 

1 

21/4叩 l-kェ十 iky

0k+ 

-m  

1 I m 
u(k，↓） ＝ 

21/4嘉 1-kx十iky

V汲＋

V汲＋

v(k，↓） ＝ 
1 I kx + iky 

21/4,./k+ I'• -m 
(A15) 

゜
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APPENDIX B: GROUP INTEGRALS 

In this appendix, we give a list of group integrals used in the main text, over the Haar 

measure of the SU(N) group, normalized to unity, J dR = l. 

For any SU(N) one has 

1 
j dRR{ = O, j dR的＝ 0, j dRR{ R~i =―判．N g 

For N = 2 the following group integral is non-zero: 

J dRR{柁 ＝
1 

t J 5€jg€ij • 

For N > 2 this integral is zero; its analog in SU(3) is 

jdRR！だRh
1 

2 3 k = -C 
fgh 

6 
fijk• 

On the contrary, in SU(2) it is zero. 

(Bl) 

(B2) 

(B3) 

The general method of finding integrals of several matrices R, Rt is as follows. The result 

of an integration over the invariant measy.re can be only invariant tensors which, for the 

SU(N) group, yan be built solely from the Kronecker J and Levi-Civita E tensors. One 

constructs the supposed.tensor of a given rank as a combination of J's and t's, satisfying 

the symmetry relations following from the integral in question. The indefinite coefficients 

in the combination are then found from contracting both sides with various J's and E's and 

thus by reducing the integral to a previously derived one. 

For any SU(N) group one has 

j dRR{:炉 R紐 tJ.2= 1 炉炉が1が2
1 1 

n g1 i2 g2 m-1  [mg2. (J1 ]2一討芯）＋吟砂：（恐欧一冠芯）］
(B4) 

since its contraction with, say,炉fl must reduce it to Eq.(Bl). 

In SU(2) there is an identity 

呟和ゎ＋6}1 €ゅ＋号2fj3j1 = 0, (B5) 

using which one:finds that the follow1ng integral is non-zero: 

jdRR伍砂砂＝一
1 

J1 ]2 J3 g 6 （砂喝ilc紅3知＋砂位古l知＋砂喝3凸f2€i132) ． （B6) 
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In SU(3) and higher group, integral is zero. 

(notice the signs in the cyclic permutation!) 

The analog of the identity (B5) in SU(3) is 

号1伍j3j4 ―号·2€J.33ゅ＋号3伍im-8;4 €j13233 = 0 (B7) 

and the analog of Eq.(B6) is 

jdRR傾攣R紐 tiJ1 J2 33 34 g 

1 
＝五（砂吐凸f4c32i…＋砂喝2cf叫 1fj3ゅ＋砂喝•3€邸f2c343132 + 6作詞“t132i3)

(B8) 

This integral arises when one projects three quarks from the bound-state level onto the octet 

baryon. 

To evaluate the SU(3) average of six matrices, one needs the i~entities 

€ •.． c· ・・ 十€ • • • € •・・ 十€ • ・ • € ・ •. t1]2J3 11t2ta t23233 2131ta 233233 212231 

€ • ・ • C・・・ 十€・· • C・・・ 十€ ·・・€・・・J1]1J3 J2t2t3 112233 t13223 J13333 t112]3 ＝ 

€ •.. c. .. 十€・ • • €·・・ 十€ ・ • ・ € ・ • ・ =€ ·・・€•.. 313221 332223 3132t2 913323 313223 213233 313233 t12233 • (B9) 

One gets 

jdR砂 R紐知R叫
1 

J1 J2 ]3 t1 22 t3 72 = - （凸faEh1 h2ha Eiij2j3 Ei1 i2i J1J2J3 ~i1 i2.i3 

十€hlf2/3 /1h吐3€ € • • C・ヽ ． 十€加f2/3hlflh3 
€ €わ函ふ・1年3 + € 

厨追仕1h廿191]233 ]1tが3 c虹2J.3和虹1

(BlO) 

十€hhlf3 J2如h3€ c.．． c・・・ 十｀€flh2J3 hlf吐3
J1t133 32t2t3 € €· • • C ・・十 €hh凶仕1h2J2c.． J1t2J3 21J2t3 ・ € ・ •. J12333 t12,2J2 

“吐1€f占h3 c ．・• C・・・ 十 €h J西 €h1紐3 €・・・€・・・ 十 €KI西 h山J3十€ 3132t1 33tが3 31]が2t133t3 € €mi西和i2is) ・ 

The result for the next integral is rather lengthy. We _give it for the general SU(N). For 

abbreviation, We use the notation 

8'｛;8{:d{：6.；6}:8'；●：三 (231)(321),etc. (B11) 

One has 

(B12) 

＋
 

I dRRf:砂砂R
1 

]1 32 J3 位R位叫＝ ~)(N2-4)
{(N2 -2)[(123)(123) + (132)(132) + (321)(321) + (213)(213) + (J12)(231)+ (231)(312)] 

-N[(123)((132) + (321) + (213)) + (132)((123) + (231) + (312)) + (321)((3、12)+ (123) + (231)) 

+ (213)((231) + (312) + (123)) + (312)((213) + (1.32) + (321)) + (231)((321) + (213) + (132))] 

+ 2[(123)((312) + (231)) + (132)((213) + (321)) + (321)((132) + (213)) 

(213)((321) + (132)) + (312)((123) + (312)) + (231)((231) + (123))]}. 

79 



Apparently, at N = 2 something gets wrong. For N = 2 there is a formal identity following 

frorri the fact that at N = 2 one has €/ih/a€h1h山＝ 0:

(123) -(132) -(321) -(213) + (312) + (231) = 0. (Bl3) 

Consequently, for SU(2) one obtains a shorter expression: 

jdRR｛噂R訊？R灼R灼（B14)

1 
= ;; {[(123)(123) + (132)(132) + (321)(321) + (213)(213) + (312)(231) + (231)(312)] 

f 
- ;[(123)((132) + (321) + (213)) + (132)((123) + (231) + (312)) +.(321)((312) + (123) + (231)) 

4 

+ (213)((231) + (312) + (123)) + (312)((213) + (132) + (321)) + (231)((321) + (213) + (132))]} 

In case one is interested in the presence of an additional quark-antiquark pair in an octet 

baryon; one has to use the group integral 

I dRRf:砂砂(Rf:R
1 

J1 32 J3 J4 f5 
ti5)Rtk閣＝

g.  360 

{cflj2h€J1J.2 [8{3 8f:（46;:6:！ - 6;：6:i)+ 8J46f:(48 6夕4 ― 6~ ：8夕3)］

十 €flf3hcれが3 [8[26f: （46i:8}2 -6;：§え） ＋ 6J46f: （46}:§:i―5;!5J2)] 

十 €flf4h€j134 [6{,8f:（46}:6全:―8}：6:｝） ＋ 6[36f: （46~:6夕3 -6}：6夕2)］
十 €f2J;h€J233 [8J16f: （48]:8}； -6;：d'i) ＋ 6;48{; (46~:6:i —6::6:;)] 

十 €f2J4h€3.234 [6;16f: （46}：6:l―of: oj3) + ots of: (4of: oj3 -o;: oj1)] 

十 €f3f4.h€j3j4 [6J16f: （46}9:6えー8i:§:/)＋ 6[26f: （46'：6;2 -6;9:8え）］｝ 

This tensor defines, in particular, the five-quark wave function of the nucleon. 

(B15) 

For finding the quark structure of the antidecuplet, the following group integrals are 

relevant. The rotational wave function of the antidecuplet is 

A;{h崎 s}(R)= 1 (RがR疇＋R崎 Rが＋R疇 Rが）．（B16)

Projecting it on three quarks and using Eq.(Bll) we get an identicai'"zero beGause all terms 

in Eq.(Bll) are antisymmetric in a pair of flavor indices while the tensor (B16) is symmetric. 

It ・reflects the fact that one cannot build an antidecuplet from three quarks: 

f dRRf:砂 R虹＊｛h崎 3}
]1 J2 33 k (R) = 0. (B17) 
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However, a similar group integral with an additional q1,1ark-antiquarkpair is. non-zero: 

j dRRf:砂砂(Rf:炉）A;{h1h心｝（R)=
珀

J1 32 33 34 J5 k 両0{€紺2伍j4 ［窃（沙紐1€邸h2 + €叫2€f心1)
＋吹（€邸h2€砂h3 + €邸h3€砂h2) ＋吹（€紐h1€邸hs + t::11,叫 J山 h1)]

＋知紐J.4［吹（€年1€!叫2 十€邸h2€J叫1) ＋吹(€/叫2€叫3 ＋四叫J叫 2)

＋吹(cl叫 1€flf4h3 + €邸ha €fif4h1)] + €ji砂功位（凸叫J山h2 + €hf凸f追1)

＋吹(chJ凸J山h3 十€邸h炉f4り＋窄(ch紅1€邸h3 + €hJ凸恥1)]} (Bl8) 

In particular, for the e+ baryon being the 333-component of the antidecuplet we have 

釘(R)＝高A;{333}（R)＝⑱6硲硲Ri，が（R)＝⑪詠『R『R『 (B19) 

The projection of five quarks onto to thee+ rotational-wave function (B19) gives the tensor 

虞加応(0)= j dRR詞国(Rf:R1/ss)釘(R) (B20) 

砂5年”= 18。(€j1i2伍j4Ehh €faf4 +臼j3€jij4 €砕凸＋知j3伍j4 €hJ3凸）．
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APEENDIX C: CONTRIBUTIONS OF THE DISTORTED DIRAC SEA EF-

FECTS TO THE DISCRETE WAVE FUNCTION 

The discrete wave function F(p) consists of three terms, i.e., upper component, lower 

component and sea quark effect: 

炉 (p)＝樗(p)+ Ffo:(p) + Fj;a(P)三 Fに(p)+ Fj;:(p). (Cl) 

In order to evaluate the spin unpolarized and polarized observables, one needs the products 

of the level and sea wave functions 

Fよ(p)F位'(p)妬＝ IF1ev(P)ド＋Flし(p)・ Fsea(P)＋凡ev(P)• F;ea(P) + IFsea(P)12 (C2) 

吐(p)F加‘(p)(0:況＝ 1△Fiev(P)ド十△nし・(p)Fsea(P)＋△Ftev(P)• F!ea(P) + I△Fsea(P)l2 ・ 

(C3) 

The sea effect i!1dependent parts|凡ev(P)l2and I△凡ツ(p)12 can be expressed in terms of the 

L = 0 and L = 1 wave functions h(p) and j(p), and these representations have been shown in 

Eq.(156) and Eq.(157). In this section, we will show the complete representations including 

the sea effect Fsea (p) in the proton case. 

1. Interference terms of F1ev (p) and Fsea (p) 

For saving space, we will express spin polarized and unpolarized case together. In the 

following equation, upper sign denotes unpolarized case and lower sign denotes polarized. 

case: 

9 (F1し(p)・ Ffea (p)＋知(p)• F; ea (p))。r9（△Flし・(p)Fsea(P)＋△加(p)・ Ffea (p)) 

= -（竺）`三髯[(h(p)＋加(p)).(h(p')、j(p'))
x { 18~(q)M(z1 -z)士18II(q)（生M(z'+z) -~.L •Q.L 

lql 

+ （h(P) ＋い）（曽） • ｛18p'.L •Q.LE(q)-q18P']}q.L ］q↑zP'.L • Q.LM(z'+ z)II(q)} 

+ (h(p')一恥'))・（門）・｛干18p.L• Q.L~(q) 干 18p.L •q.L 丁q↑zPl. • Q.LM(z'+ z)II(q)} 
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＋詈曽｛土18p.L•P'.LM(z'- z)E(q) 土 p.L•P'皇M(z'+ z)IT(q) 
lql 

干 18
IT(q) 

lql 
(P.L2釦 (p.L• q.L)＋p.L1如 (P'.L..Q.L)

+ p.L2Q.L1 (Eaf3P~.La •q.L/3) + p.L1q.L2(€a/3Q.La•q.L/3))}], 

where 

(C4) 

Z=M炉z'(z'+z) + z(p; + M2) + z'(Pi + Mり， (C5) 

and 

q = ((p.L +p~), (z + z')MN), Q.La = zp'.La―z'p.La, a== 1, 2. {C6) 

2. Square terms of Fsea(P) 

The unpolarized and polarized square parts of Fsea(P) in Eq.(C2) and Eq.(C3} in the 

proton case are written as: 

9IFsea(P)l2 or 91△Fsea(P)l2 

＝竺に’d2P'.Lfdz"咋 ‘i(MMN「二[(h(p'‘)一互j(p'り） （h(p'）一五•
2rr J (2ザ (2ザ 2rr J Z"Z'l ¥..,r I IP"IJ¥r 1} ¥'"¥r I IP'I 

{E(q’'）E(q'） （9M軍'-z) （z'-z) 士 9Q]•Q'.L）ー E(q1号 (9記(z’'-z) （z’'+'zJ)(q:'）)
,¥ Il(q") 

+ 9M(z11 -z)q~.L •Q‘.L 干 9M(z1 + z)q~.L •Q'；士 9¢Q'.L •Q:)-~(q')W 
lq" I 

(9M刊z''+z)(z11 -z)q;＇干 9M(z11+ z)q: • Q'..L +9M(z1 -z)q: • Q:士9q;’Q'.L•Q';) 
II(q"）II(q'） 

lq" llq'I 
＋ （士9M刊z''+z)(z'+z)(q: •q'..L 土 q;q;) 干 9M(z11 + z)q:q: • Q'..L 

+ 9M(z11 + z)q;q~ • Q~ 干 9M(z1 + z)q;q'..L •Q: + 9M(z11 + z)q:q: ・ Q: 

+ 9 {（Q‘i •Q'.L) （q'i •q'.L 士 q;q:) +％胚a'/3、(Q'i心）（心叫）｝）｝

- (h(p';) -~j(p")) ~ ',f • (9~(q11)~(q1) (M(z" -z)p'..L •Q.L 干 M(z1 -z)p~ • Qり—E,,ij(p") —• 
IP" I J ¥I'I) Ip'I 

9~(q 
II¥ II(q1) 

-）—•(M知'’
lq'I 

z)(z1 +z)p'..L•q'..L-M(z11 -z)もP.L•Q.L 干 M(z'+ z)q:P'..L •Q: 

干 (p'.L•q~) (Q'..L • Q'；）干 €aBC0(’B' （p'.Lふ）（Q'..L0/,Q'..L{3')) -9~(q')!W,? 
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(M2(z" + z)(z'-z)p'..L•q: + M(z" + z)q;p'..L •Q'..L 干 M(z1 -z)q;p~ • Q: 

士 (P'..L•q:) (Q'..L • Q'i) 士 €a/3“'/3'(P'..La心）（Q'..La,Q:/3‘)））

＋ 
9IT(q1)IT(q") 

|q‘||q’'| （干記(z"+ z)(z'+ z)q:q: ・ p~ + M知"+z)(z1 + z)q;q'..L．p'」-

干 M(z"+z){(q'..L•q:) (Q'..L •p~) 士 €af3€a’f3' （qiaq:f3) （Q'.La1P:131)}

+ M(z" + z) { (q'..L•q:) (Q: • P~) + laf3la1{31 (q:aq~/3) (Q:a1P'..i/3')} 

— q: {(P'..L•q'i) (Q'i •Pi) ＋ €af3伝'{3'(q:aP~13)(Q:a,Q'..i/3')}

（土q;{ (P'..L •q~) (Q: • P~) + lat3la1/31 (q~aP~/3) (Q:a,Q'..i{3')}) 

- (h(p') -fij(pり） j（p"） ( ',;f • (9~(q1)~(q") (M(z'.-z)p.L • Q.L干M(z"-z)p: • Q'..L） 
IP'IJ¥r I J IP"I 

I II(q"）,’’‘  -9E(q),' 
lq"I 

• (M知'-z)(z"+ z)p: • q: -M(/ -z)q;p: • Q'；干M(z"+ z)q;p.L • Q.L 

干 (P:.q_:) (Q:. Q'..L) 干 €af3€a’f3'(p'iふ）（Q‘心Q'；f3' ）) -9E(q‘'）應摩

(M2(z1 + z)(z11 -z)p: ・ q'..L+M(z1 + z)q:p: • Q'；干M(z11-z)q:p: • Q'..L 

士 (P:.q~) (Q:. Q~) 士 €af3知/3'(P:aq~/3) (Q:a,Q~/31))) 

＋ 
9II(q")II(q') 

lq"llq'I 
（干M2(z'+z)(z" + z)q;q'..L •p: + M2(z'+ z).(z" + z)q:q: ・ p: 

干 M(z1+ z) {(q: • q'..L) （Q'i •p'i) 士 €a/3“‘/3、 (q:aq口） （Q'砂p正）｝

+ M(z'+ z) { (q: -q~) (Q'..L •P:) + la/3伝9/3' （q~aq五）（Qia’p’;/3'）}

-q; { (P: ・ q~) (Q~ ・ p:) + la/3€a’/3' （q~aP'丘） （Q'..La,Q'i/3＇）｝ 

（士q:{ (P: ・ q:) (Q~ ・ P:) + la/3€a1/3' （q:aP五） （Q'..La'Q'丘）｝）
+ j(p"）j(p'） ｛ 

IP"IIP'I 
E(q’和(q')（士9M知‘'-z)(z1-z) (P'..L・P:)+ (Q'..L •Qi) (P~ •p:) 

,,, II(q') 
十 €a/3% 9/3' (Q:aQ~/3) (P:a1P~/3,))-E(q )--—ァー｛干M軍'-z)(z'+z)q: (P'..L •P:) 

+ M(z’'-z) （五Q‘lp'1,p'1士五Q'西‘応士q悶闘p；冦Q迅'P臼曇'1'応士五Q迅'p'1

干 q;Q殴 1干砂P山＋M(z1+ z) ((Q.L •P.L P.L •q.L 十 €ag€a1/3, Q.LaP.L/3) (P.La'q.L/3＇）） 9 9 91 9 9 9 99'）')  (（"’'） （'‘) （'’’’’‘ 

-q: ((Q: ・ Q~) (P: ・ P'..L)+ €a/3€d/3' (Q:aQ'..i/3) （p;a,p'.i/3＇））｝ 

')!W,?｛誓(z1-z)(z" + z)q; (P~ -E(q')ffi { =i=M2(z1 -z)(z" + z)q; (P.L •P』

+ M(z'-z)干q心 PIP1五 Q;p;p;士吟'Q迅 P1干 qふ加2士q;Qザ1P2士qIQ2加 1
('’91 1 11 99 99 1 11 11 9 11 19 99 1 11 99 19 1 19 11 91 9 11 

91 11 9 91 91 11 9 11 
干 q凸 p叩干q2Qlp叫＋M(z"+ z) ((Q.L •P.L) （ ） II // 

＂ ＂ p.L ·釦＋ €a/3fa'/3＇（Q.LaP.L/3) （p.La'q.i/3')） 
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-q;'（（Qi • Q'i) （p'.L •p'i) ＋ €ag€Ct'B' (Q'.LaQ‘i/3) （p'.la1P:13,))} 

十
II(q11)II(q1) 
lq"llq'I (M2(z" +z)(z1 +z){(q~ •q:) (P~ •v:) +t::a/3“'/3' (q~aq:/3) (P'..la1P:131)} 

士 M(z"+ z)q; { (v: • q'..L) （Q'..l.P'..L）＋ cCt/3ta'/3'(P:aq~/3) (Q'..La1P'..l/3‘)｝ 
-M(z" + z)q: { (P: ・ q:) (Q'..L •P~) + tc,t3ta1{3'(q:aP:13) (P~a,Q~/3‘) } 
士 M(z'+z)q: { (P'..L• q'L) （Q'；．p'；)＋ caB€Ct'/3、 (P~aq:/3) (Q:a1P:131)} 

-M(z'+ z)q; { (P~ ・ q~) (Q: ・ v:) + ta/3€Ct'/3‘(qiaP9.L/3) (P:a'Q:13,) } 

士 (q:.q~ 士 q;q:) ((v: ・ P~) (Q: ・ Q'..L） ＋ €a/3％9/3、 (P:aP~/3) （Q:a,Q'..L/3'))

士 (v:・ Pi) (ta/3€Ct’B'(q:aqi/3) （Q:a,Q'..LB'）)土(Q:•Q'..L）（g/3伝9/3'(q[aq;3) （p’;O'p'.L/3')))}]'
(G7) 

where 

and 

z'・= M炉z'(z'+z) + z(p; + M2) t z'(Pi + Mり，（C8)

z" = M和zz11(z" + z) + z(p'『＋Mり＋z''(pi+ Mり ， （C9)

q'= ((P1.+P~),(z+z')MN), 

q" = ((P1. + pり，（z+ z'')MN)' 
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Q~a = zp~a -z'p.1..c,, a= 1, 2, 
II II II 

Q~°'= zp~°'- z p1-o,, a= 1, 2. 

(ClO) 

(Cll) 
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