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Abstract

We study the generalized parton distribution functions (GPDs) with the light-cone wave
function derived from the chiral quark soliton model, which is an effective model of baryons
maximally incorporating the spontaneously chiral symmetry breaking of the QCD vacuum.
In the relativistic mean field approximation in this model, one.obtains a quantitative picture
of baryons as localized states of constituent quarks bound by a self-consistent chiral filed.
Simultaneously, the negative Dirac sea is distorted by the same chiral field, leading to the
presence of an indefinite number of additional quark-antiquark pairs in the baryons. Then
the baryon wave functions can be constructed as a product of N, = 3 valence quark wave
functions and thé coherent exponent of quark-antiquark pairs.

We present the expression of the GPDs in the light-cone frame using the light-cone wave
function in this model. They are représentated as the overlap integrals of the initial and
final state Fock components. In the characteristic kinematical range in the representation of
the GPDs, there arise non-diagonal Fock space matrix elements which never appear in the
case of ordinary Feynman quark distribution functions. Consequently, GPDs contain quite
new information about nucleon structure.

We numerically investigate the GPDs under various limiting conditions. In the forward
limit, GPDs reduce to the ordinary Feynman parton distribution. When one leave the trans-
verse momentum of the struck quark unintegrated, the transverse momentum dependent
quark distribution function can be obtained. In the purely transverse momentum transfer
case, GPDs become the probability density. of both the longitudinal momentum direction
and impact parameter space. We emphasize that the chiral symmetry breaking of the QCD

plays a very important role in all kind of distribution functions.
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I. INTRODUCTION

The fundamental particles which form hadrons are long known to be quarks and gluons,

whose interactions are described by the Lagrangian of Quantum Chromo Dynamics (QCD):

L= U@ mst ol — R, )
where the Minkowski metric is g,, = diag{l,—1,—1,—1}. Thtoughout, we use the natural
units A = ¢ = 1. A striking property of QCD is that of asymptotic freedom at short
distances [1-3]. However, this knowledge is not sufficient (at the moment) for concluding
that we are completely understanding QCD, since the mechanism of hadronization of quarks
and gluons is governed by long-distance phenomena such as confinement and spontaneous
c;hiral symmetry breaking. These long-distance phenomena are in turn related to the non-
trivial structure of the QCD vacuum. It implies that the studies of hadroniZation processes
provide us with valuable information on the fundamental questions of the vacuum structure
of non-abelian gauge theories.

The spin structure of the nucleon reflects interesting nonperturbative physics in QCD [10-
12]. From the EMC data on polarized deep-inelastic scattering, one finds that about (30
7)% of the nucleon spin is carried by quark spin or helicity [4-6]. Natural questions are then
what carries the rest of the nucleon spin? How can it be measured or calculated?

Intuitively, the candidates for the missing spin are the quark and gluon orbital angular
momenta and gluon helicity. In QCD, they can be identified with matrix elements of certain

quark-gluon operators in the nucleon state [7]:

J = / Eayt [9s + & x (~id)] ¥,

J = / &z (B x A) - Ei(z x §)A)]. 2)
The problem, however, is that these operators take free-field expressions and are not gauge
invariant in-an interacting gauge theory. Hence it is doubtful that their matrix elements have
any experimental significance, although they can be calculated in some theoretical models.

In 1997 Ji showed that there exists a gauge-invariant decomposition of thé QCD angular

momentum operator into quark and gluon contributions [8]:
Jo = [ dopt s + & x (-iD)] o,
J, =/d3m[£x(ﬁx§)]. (3)
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The quark part can be separated into the usual quark helicity plus the gauge-invariant orbital
-contribution. There exists, however, no gauge-invariant separation of the gluon pa,rf into
helicity and orbital contributions, although high-energy scattering favors such a separation
in the light-like gauge and infinite momentum frame. The gauge-invariant expression for the
angular momentum operator allows one to calculate meaningfully fractions of the nucleon
spin carried by quarks and gluons. Furthermore, it allows them to be measured in deeply
virtual Compton scattering (DVCS) in which the virtual photon momentum approaches the
Bjorken limit. DVCS gives an access to a new class of nucleon observables the Generalized
Parton Distributions (GPDs) [13-17].

GPDs are generalization of ordinary parton distributions and elastic form factors. Taking
the n-th moment of the GPDs one obtains the form factors i.e., off-forward matrix elements
of the spin-n, twist-two quark and gluon operators. On the other hand, in the forward
limit the GPDs reduce to the usual quark, antiquark and gluon distributions. In other
words, the GPDs interpolate between the traditional inclusive (parton distributions) and
exclusive (form factors) characteristics of baryons and thus provide us with a considerable
new amount of information en baryon structure. The most interesting aspect of the GPDs
is that in addition to the parton intrinsic spin they also contain information on their orbital
angular momenta [8]. Hence the measurement of GPDs would allow us to determine the
quark orbital angular momentum contribution to the proton spin.

The clearest information about GPDs can: be obtained in DVCS and in hard exclusive

electroproduction of mesons,
7°(g) + N(p) = (¢) + N(®), 7'(¢) + N(p) = M(q) + N(p). (4)

in which a photon v* with high energy and large virtuality —q¢? = Q? > 0 scatters off the
hadoronic target N and produces a meson M or a real photon 7. The common important
feature of hard reactions is the possibility to clearly separate the perturbative and nonper-
turbative stages of the interactions, this is the so-called factorization theorem [17]. The hard
process-dependent parts are calculated according to perturbative QCD and the soft process-
independent part is usually encoded in soft functions, GPDs. Usually, formal definition ‘of
soft part can be formulated in terms of definite quark and gluon matrix elements (here we

show it for the quark operator only)

g—ie"‘”wv(p')hza (0) P &9 Jo 44" s (2) N (p)), (5)



where the operators are on the “light cone”, i.e. 22 = 0. The GPDs depend upon three
variables z = kt/P* ¢ = 2(p' —p)/P* and t = (p’ — p)>. In the Bjorken scaling limit,
GPDs probe light-like correlations in the target.

In principle, any soft part can be expressed in terms of the hadron wave function. The
advantage of making use of the light-cone formalism is that only in that frame one can
express GPDs probed in hard process as a ground state property of the nucleon. In all
other frames the light-like correlation function involves correlations in the time direction
and therefore knowledge of the ground state wave function of the target is not sufficient to
describe GPDs. One also needs to know the time evolution of the target with one quark
replaced by a quark that moves with nearly the speed of light along a straight line [18-24].

Unfortunately up to now, the light-cone wave functions of baryons in the low normaliza-
tion point cannot be determined from the first principle of QCD. Perturbative theory is able
to predict only the so-called asymptotic wave functions which are normalized at arbitrary
high .normalization point. For this reason, reliable models of the baryons become highly
desirable.

Recently, Petrov and Polyakov calculated the light-cone wave function based on the Chiral
Quark Soliton Model (CQSM) which is an effective model of baryons maximally incorpo-
rating the spontaneous chiral symmetry breaking of the QCD vacuum [25]. The CQSM
has been derived fromn the instanton liquid model of the QCD vacuum, which provides a
natural mechanism of chiral symmetry breaking and enables one to reproduce the dynami-
cal quark mass M [26-29]. In the relativistic mean field approximation in the CQSM, one
-obtains a quantitative picture of baryons as localized states of constituent quarks bound by
a self-consistent chiral filed. Simultaneously, the negative Dirac sea is distorted by the same
chiral field, leading to the presence of an indefinite number of additional quark-antiquark
pairs. in the baryons. Petrov and Polyakov used the technique of the finite time evolution
operator in order to obtain expressions for all Fock components describing the baryons [25].
Then the baryon wave functions can be constructed as a product of N, = 3 valence quark
wave functions and the coherent exponent of Q@ pairs. In the infinite momentum frame of
baryon, the expansion of the coherent exponent is well defined, and light cone baryon wave
functions are mainly represented by the 3Q and 5@ Fock components [30, 31]. Recently,
Diakonov and Petrov developed the framework for calculating the static physical observable

in terms of the light-cone wave functions obtained in the CQSM [32]. They showed that the



octet and decuplet baryons have non-negligible 5¢) components in addition to their leading
3@ components, while 3¢Q) component of exotic antidecuplet baryon is identically zero.

In this. thesis; we numerically evaluate various structure functions .using the
light-cone baryon wave functions based on the CQSM. These include transverse
momentum dependent parton distribution functions ¢(z,k.), spin non-flip GPDs
H(z,¢,A?), E(z, ¢, A?), H(z, £, A?) and E(m,{, A?), and impact parameter space parton
distribution functions q(z,b,). The transverse momentum dependent PDF ¢(z,k ) is the
probability of finding a quark with longitudinal momentum zP* and transverse momen-
tum k; in a nucleon. Following the Ji’s sum rule, the second moment of the combination

H%z,0,0) and E%z,0,0) gives the total quark contribution to the nucleon spin
1 ‘
[ dra (B3(2,0,0) + Ex(2,0,0)) = I~ 6)
-1

Thus, a deep understanding of the spin structure of the nucleon can be achieved through
the study of GPDs. The impact parameter space PDF ¢(z,b, ) is the Fourier transform of
the GPD in the limit { — 0

H(z,0,—A2) = / d?b,eAig(a,b,). (7)

q(z,b.) represents the momentum density to find a quark with momentum fraction z in the
longitudinal direction and the spatial density in the transverse directions. All the quanti-
ties are represented by the overlap integral of the initial and final state Fock components
sandwiching the matrix elements of corresponding operator. We emphasize that the chiral
symmetry plays various important roles in the internal structure of the baryon. In partic-
ular, the region 0 < z < £/2 where baryon emits a quark-antiquark pair, GPDs contain
completely new information about baryon structure. In this region, the initial 5¢) and final
3Q overlap are relevant, and the model prediction shows that the GPDs as functions of z
exhibit discontinuity at |z| = £/2.

The plan of this thesis is as follows. In Sec. II we outline the QCD definition of the
GPDs and their basic properties. Section III gives an introduction to the chiral quark soli-
ton model of the nucleon and a derivation of the light-cone wave function based on this
model. In Sec. IV we derive the expressions for the GPDs including the impact parameter
space distribution and the transverse momentum dependent distribution in the chiral quark

soliton model. We show that the contributions in the region z < |€|/2 to the. GPDs can

4



be interpreted as the distribution amplitudes for the mesons convoluted with the valence
wave functions of the baryon. Numerical estimates for the transverse momentum dependent
g(z,ky), spin non-flip GPDs H(z,¢, A”) and, H (z,&,A?), and impact parameter space par-
ton distribution furnctions ¢(z,b) are presented in Sec. V. A summary and conclusions are

given in Sec. VI.



II. QCD DEFINITION OF GENERALIZED PARTON DISTRIBUTIONS

To start, consider the bilocal operator (—An/2)LT*(An/2), where X is a scalar param-
eter, ¥ 1§ a quark‘ﬁéld of a certain flavor, and ['* = v* or y*s. Throuéhout, we will use
light-cone coordinate system,

1 .
¥ = ——(:c0 + :vs), z, = (z1,2;), (8)

V2

and all other vectors are treated in the same way. The light-like vector n is proportional
to (1,0,0,—1), with a coefficient depending on the choice of coordinates. The gauge link £
is along a straight line segment extending on the choice from one quark field to the other,
which makes the bilocal operator gauge invariant. In the following, we work in the light-like
gauge, A -n = 0, so that the gauge link can be ignored.

One can-now proceed to the matrix element of the bilocal operator between the nucleon
states with momenta P* and P* = P* + A*, where A* is the four momentum transfer.
The matrix element must be expressible in terms of nucleon spinors, Dirac matrices, and the
four-vectors P#, A* and n*. Since we are only interested in the leading-twist contributions
which are proportional to P* or P'* in the infinite momentum frame, we keep terms that are

non-vanishing after multiplication by n*:

Fyp(a,6,0) = [ o™X PI(-An/2)y* $(hn/2)|P) = H('m,g,t)U(P’;’;U(P) ©
+ E(z,¢,8)0(P') ";Jr 161 U(P)
+ ;
Fyon(0,6,8) = [ S5 P n/ 2y 25/ 2)|P) = Fi(a, )LL)
+ E(z,6,6)0(P) 42&@ U(P)

where t = A? and £ = —n  A/2, with U(P) the nucleon spinor, the dots (---) denote
higher-twist contributions, and Mp denotes the baryon mass. It is possible to construct
other Dirac structures that appear to be leading-twist, however, using Gordon identities
and throwing away sub-leading terms one can always reduce these to the form in Egs.(9-
10). The structures in Eqgs.(9-10) are the same as those in the definition of the nucleon’s

elastic form factors. Examination of the helicity structure of quark-nucleon scattering shows
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that there are exactly four independent amplitudes. The chiral-even distributions H and H
survive in the forward limit in which the nucleon helicity is conserved, while the chiral-odd
distributions E and E arise from the nucleon helicity flip associated with a finite momentum

transfer.

A. Properties of GPDs

The GPDs are depicted graphically in Fig.1, where k* and k'™* are the four-momenta of

the active partons. The physical meaning of the distributions becomes clear if one introduces

FIG. 1: “Handbag” diagram for DVCS.

a conjugate light-like vector p* of n*, with p-n = 1. Expanding P* = (P 4+ P')*/2 and A*

in terims of the vectors p# and n* then gives:

P* = p+ (M'/2) n* (11)
A = ¢ (p - (0T/2) n*) + AL, (12)

where M* = P° = M3 — t/4, and the spatial components of P" have been chosen along
the z-direction. If we focus on the p* components of the momenta, the initial and final

nucleons have longitudinal mornenta (1 4 £/2)p* and (1 — £/2)p*, and the outgoing and

incoming quarks carry (z + £/2)p* and (z — £/2)p*, respectively. Since the nucleon cannot



have negative longitudinal momentum, the limit on ¢ is obviously:
0<¢é<V=t/M (13)

On the other hand, since quarks cannot carry more longitudinal momentum than parent

nucleon, one has the constraint on z:
-l<z <1 (14)
The distribution in the negative = region should be interpreted as that of the antiquarks
HY(—z,¢,t) = —H¥(z,&,t), EY—=z,£,t) = —E¥(z, £,1) (15)
and
Hi(—z,¢,t) = Hi(z,£,t), EY(—z,¢,t) = E(z, €, 1) (16)
With the phase conventions of the Brodsky-Lepage light-cone spinors in Appendix A, it

is convenient to introduce the following decomposition for Eqgs.(9) and (10) in terms of the

light-cone helicities A, X’

'HQ\)\' = F»ﬁ(l’,f,t), (17)
g«\)" = F’Y""Ys(zzf’t)‘ (18)

The spinor products in RHS of Eqgs.(9) and (10) now read [23, 24]

]. — 1 [

2—1-)‘4_—U(P MYtU(P,X) = /1 — £20y y'5 (19)

ot A )\ £ 1 —)MAl—A?

= —— ' - ] 2

2P+ U(P )‘) U(P aA) \/1__—62'6,\,)\ + \/]_.——ff 2Mg -6)«,'—,\ ’ ( 0)
2P+ —U(P, )yt 'ysU(P' by ) = N1- fi’d&/\:, (21)

1 A '75 Py 62 1 —/\A1 - ZA2
2P+ (P A) U(P ,A ) = —'———WJI\’A' + \/I_—é_2 2MB JA,*—/\ (22)

For the different helicity combinations we now find
{:2
,H'++ = Ho-=y/1- f?H(.’IZ,f,,t) \/— (xaéat): (23)
£? N
. Vo1
H—+ = _(,H+—) =7 E(:z:,{-",t), (24)
2Mp

Hiy = —Hoo =/1- £H(z,,t) - ﬁE(m ,6,1), (25)
Aoy = (H) =n Y E( 61), (26)



with to defined as to = ¢2M3/(1 — €2/4) and a phase factor reading

A+ A?

7= TAd 1)

Evaluating H) » and ’i-z\,,\: for both helicity flip and non-flip, one obtains the usual GPDs
H and E. In this study, we will calculate the helicity non-flip parts Eqs.(23) and (25) using

the light-cone wave function based on the chiral quark soliton model.

1. Generalized form factors and polynomiality condition

The electromagnetic form factors are among the first measured and mostly studied ob-
servables of the nucleon [33]. They are.defined as the matrix elements of the electromagnetic,
current between the nucleon states of different four momenta. Because the nucleon is a spin
one-half particle, the matrix element defines two form factors

oMYA,

@O)lp) = U) (Filn* + B0 55=2) Vo), (28)

where F; and F), are the well-known Dirac and Pauli form factors, respectively. One of the
‘most important sources of information about the nucleon structure is the form factors of
the electroweak currents. The Pauli form factor F, gives the anomalous magnetic moment

of the nucleon, ¥ = F3(0). The charge radius of the nucleon is defined by

dGg(t)
2y _ _p0U

where Gg = F; — t/(4M?)F;. The axial vector current also defines two form factors,

15 A

(PBr*1601P) = GaD (P'yr*3U(P) + Gr(OU (P) J5r

U(P) (30)

The axial form factor G4(0) at ¢ = 0 is related to the fraction of the nucleon spin carried by
the spin of the quarks, AY, and can be measured from polarized DIS and neutrino elastic
scattering [4-6]. (Note, however, that G4(0) # AY with taking into consideration of the
a,x\ial U(1) anomaly [9].)

A generalization of the vector and axial-vector currents can be made through the following

~

sets. of twist-two operators,

Ot = o (MiDz Dy,
651""”“ _ %Zq,y(m,ys'ipuz e iD”"WJ , (31)
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where all indices py,- - ptn, -are symmetric and traceless, as indicated by (...) in the super-
scripts. These operators form the totally symmetric representation of the Lorentz group.
One can similarly introduce the gluon twist-two operators. For n > 1, the above operators
are not conserved currents from any global symmetry. Consequently, their matrix elements
depend on the momentum-transfer scale p at which they are probed. For the same reason,
there is no low-energy probe that couples to these currents.

One can define the generalized charges a,(u;) from the forward matrix elements of these
currents [34]:

(P'|O#Hn|PY = 2%(“2)13(#1 Pt .. phn) (32)

The moments of the Feynman parton distribution g(z, u?) are related to these charges as

/ ‘1 doa™q(a,u*) = [ “d e [qfe,4?) + (<1)"2(2,17)] = an() (33)

where g(z, 4?) is defined in the range —1 < z < 1. For z > 0, ¢(z, u?) is simply the density of

quarks that carry the fraction  of the parent nucleon momentum. The density of antiquarks

is customarily denoted by g(z, %), which in the above notation is —g(—z, u?) for z < 0.
One can also define the form factors [Agn m(t), Bynm(t), and Cyp(t)] of these currents using

constraints from charge conjugation, parity, time-reversal, and Lorentz symmetries [34]

(PI] O(;]u,...p.an)
) (2] ) )
— U(P')'y(’“ U(P) E Aqn,zi(t)Am <o . AP2i+1 PH2iva ,,, Phn)
=0
25

i: Bqn %(t)A”? oo o AP2i41 Puzen . pp,.)

=0

_ (mag A
! g (7AW
+ U(P )_-_—2MB U(P)
+ Cgn(t)Mod(n + 1, 2)MLBI7(P’)U(P)A("1 C AR (34)

where Mod(n + 1,2) is 1 when n is even and 0 when n is odd. Thus, C,, is present only
when n is even. Multiplying the light-cone vector n*,

—10"n,A,

My nﬂﬂ(P’iO‘“""“"'P) = Hn(f,t)UﬁU + En(Eat)U
2Mp

where H,(¢,t) and E,(&,1) are polynomials in ¢? of degree n/2 (n even) or n=1/2 (n odd).

U (35)

The coefficients of the polynomials are form factors. It is easy to see that they are the

moments of the GPDs E(z,§,t) and H(z,¢,t):
1
[ e B (.6, 1) = Bu(t,t)
-1

10



/_ 11 dz 2" H(z, €, t) = Ha(€, 1) (36)

Therefore, although GPDs are the functions of three variables, z, { and ¢, their z moment
is only a polynomial function of ¢ and ¢. This is called the polynomiality condition.

Using Eqs.(19)-(20), F, F3,G4 and Gp involve the same proton helicity structure as H
and FE [23, 24],

P BT UIPE) = I-ERE) - ), (37)

; B PP IP4) = 1Rt ), (38)

2P+ (P vty Y| P+) = /1 - £2Ga(t) - \/———GP(t)a (39)

=
2Mp

(P =t Y| P+) = né Gp(t), (40)

2P+

More specifically, the first moments of GPDs are constrained by the .form factors of the

electromagnetic and axial currents. Indeed, by integrating over z, we have

/1 de Hy(z,£,t) = F3(2), /1 do E,(2,¢,) = FI(t),
[ dz Hy(z,£,t) = G (t / dz B(z,€,t) = GS(t), (41)

where Fy, Fy, G4 and Gp are the Dirac, Pauli, axial, and induced pseudoscalar elastic form

factors, respectively.

2. Form factors of energy-momentum tensor and spin structure of the nucleon

The physical significance of GPDs was revealed in studying the spin structure of the
nucleon. Let us review this connection. In the constituent quark model, the nucleon is
made of three spin 1/2 quarks moving in the s-orbit. The spin of the nucleon is then a
vector sum of the quark spins. Although the simple quark model has been very successful
in explaining a large body of experimental data, its prediction about-the spin structure has
been challenged by the polarized DIS data obtained by the Europea,n.Muon‘ Collaboration
(EMC). In polarized DIS, a polarized electron exchanges a polarized photon with a polarized
nucleon. The polarized photon is absorbed by a polarized quark whose helicity must have

the same sign as that of the photon in the center-of-mass frame, or else angular momentum

11



conservation forbids the absorption. Therefore, polarized DIS allows measurement of the
polarized quark distributions in the polarized nucleon. From the data taken in a number of
recent experiments, along with the analysis of neutron and hyperon $-decay, the fraction of

the nucleon spin carried by the quark spin is determined to be [4—6]
AY = 0.31 £0.07. (at Q* = 10.7 GeV?) (42)

This is significantly below the naive quark model prediction AYX = 1.

The fundamental reason for the discrepancy is that the naive quark model quarks are
not the same as the QCD quarks. In DIS, the photons interact directly with the QCD
current. Applying the predictions of the constituent quark model.to the QCD quarks is at
best opportunistic. A more interesting approach to understanding the EMC data is to study
the spin structure of the nucleon directly in the fundamental theory. Reference clarified the
structure of the angular momentum operator in QCD, from which one can write down a

decomposition of the nucleon spin:

1

5= ADEAME (43)

where J, ; are the contributions from the quarks and gluons, respectively. Both contributions
are gauge-invariant but renormalization-scale-dependent. J,,(u) can be expressed as the

matrix elements of the QCD energy-momentum tensor Tq‘f;’-,

1
P-2->, (44)

Jos(p) = <P%|/ de (@ x Ty,),

which can be extracted from the form factors of the quark and gluon parts of the TFy.

Specializing Eq.(34) to n = 2, one finds

(P

my
Tq 9

PY = U(P') [Agg(t)y“P? + By y(t)PUic A, j2M
+Cag()ALAY) M| U(P). (45)

Taking the forward limit of the g = 0 component and integrating over three space, one finds

that the A,,(0) give the momentum fractions of the nucleon carried by quarks and gluons,

respectively [4,(0)+ A,(0) = 1]. On the other hand, substituting the above into the nucleon
matrix element of Eq.(44), one finds [§]

Jog = ';‘ [Aq,g(o) + Bq.g(o.)] . (46)

12



Therefore, the matrix elements of the energy-momentum tensor provide the fractions of the
nucleon spin carried by quarks and gluons. There is an analogy for this. If one knows the
Dirac and Pauli form factors of the electromagnetic current, Fi(Q?) and F3(Q?), then the
magnetic moment of the nucleon, defined as the matrix element of (1/2) [d®z (2 x J),, is
Fy(0) + F3(0).

Because the quark and gluon energy-momentum tensors are examples of twist-two, spin-

two, helicity-independent operators, we immediately have the following sum rule for GPDs:

[_11 dzz [Hq(m,ﬁat) ',*' Eq(m’ fa t)] = Aq(t)"" BQ(t)’ (47)

where the ¢ dependence, or C,(t) contamination, drops out. If we extrapolate the sum rule
to t = 0, the total quark contribution to the nucleon spin is obtained. The total quark
contribution J; can be decomposed gauge-invariantly into the quark spin AX/2 and orbital

contribution L,:

AY

Knowing J, and AY, one can extract the quark orbital angular momentum. Thus, a deep
understanding of the spin structure of the nucleon can be achieved through the study of

GPDs.

{
3. Transverse momentum dependent (TMD) parton distributions

Parton distributions were introduced by Feynman to describe DIS. They have the simplest
interpretation in the infinite momentum frame as the densities of partons in the longitudinal
momentum z. In QCD, the quark distribution is defined through the following matrix
element:

1 fd) e n7 +
(e) = g5z | 5o (PIB(=An/2)7"$(\n/2)|P) (49)
In the light-cone quantization, it is easy to show
1 Ak (P|bl(k*, &y )b(kt, k)| P)
q($)|x>o = -2_37 Z/ (27!')3 ( ,\( (P'P§ ’
=

| _ —1 . [ kg (P (k" kL)dr(k, kL)[P) )
Q($)|z<o - %;/ (2)? (PI];‘) — (50)

where bt and d' are creation operators of a quark and an antiquark, respectively, with

longitudinal momentum k* = zpt and transverse momentum k;. The interpretation as

parton densities is then obvious.
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The TMD parton distribution functions are defined through the quark density matrix

g(z, k) + gr(z, ke )(kL xSy)-p

1 pd®dX” RN kLA (Plh(0)y (A, AL)|P). (51)

~ 2 (2m)3
The new distributions generalize those of Feynman with additional information about par-
tons’ transverse momentum. For example, g(z,k,) is, roughly speaking, the probability
of finding a quark with longitudinal momentum z P+ and transverse momentum k, in a
nucleon (or hadron) with four-momentum P#* = (P°,0, P3).

The transverse-polarization S, -dependent term g¢r(z, k) ) was first introduced by Sivers
and has been called the Sivers function [35]. Physically, it signifies that the parton momen-
tum distribution in a transversely polarized nucleon is not rotationally invariant along the
z-direction. It has an azimuthal dependence. At first glance this term appears to violate
the naive time-reversal invariance; however, a careful examination indicates that time re-
versal does not forbid its existence because the quark field contains the gauge link. It has
been shown phenomenologically that gr(z,k,) can be responsible for the target single-spin
asymmetry observed in semi-inclusive deep-inelastic production of pions [35].

When T’ = y*+;, one finds [36, 37]

Ag(z,k1)(S - n) + Agr(z, kL )(ky - Sy1)

1 [ d®ALdA jpne g, _ .
=5} @ AP0 s (0, AL)IP). (52)

where Aq(:l:, k.) is a novel quark helicity distribution in a transversely polarized nucleon.

With I' = ot+4s, one has four TMD distributions,

Sqri(z,k1)Sy + dgr(z, ky)ky(ky - SL) + dq(z, kL )k, + Sqr(z, ki )k.(n - S)

1 d?A1d)\™ - - .
= 3 [ R A BIG0)0 b (07, AL (53

where dg(z, k) is a transversity distribution in an unpolarized nucleon and vanishes under
naive time-reversal transformation; dqr(z,k ) is a transversity distribution in a longitudi-
nally polarized nucleon.

TMD distributions have wide-ranging phenomenological applications in semiinclusive

DIS, the Drell-Yan process, and back-to-back jet production in e*e™ annihilation [36-38].
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4. Partonic interpretation of GPDs

From their definition, it is straightforward to see that in the limit £ — 0 and ¢ — 0,

GPDs reduce to ordinary parton distributions. For instance,
Hq(ma 0’ 0) = 'Q('$)7 Eq(ma 070) = Aq(x)a (54)

where g(z) and Ag(z) are the unpolarized and polarized quark distributions. For practical

purposes, in the kinematic region where

VIt < My and ¢ < =, (55)

an off-forward distribution may be approximated by the corresponding forward one. The first
condition, \/m & My, is crucial - otherwise there is ‘a significant form-factor suppression
that cannot be neglected at any z and {. For a given ¢, £ is restricted to [{] < V—t/ M.
Therefore, when \/|-t_| is small, ¢ is automatically limited, and there is in fact a large region
of z where the forward approximation holds.

The parton content of GPDs is made transparent in light-cone coordinates and light-cone

gauge. To see this, let us recall

. 1 d\ z)«c 1]
F = > 271_ (P

b (D) wpee e ()

where the gauge-link operator is explicitly shown. In the light-cone gauge n-A = 0, the gauge
link between the quark fields can be ignored. Using the light-cone coordinate system (8),

we can expand the Dirac field as follows:

dk+d2k-|- + + —i(z_k+—ZJ_ <ky )
Wa(k )Azzi (ba(k*, s )ua(k)e

+ di (K", kL )us (k)& F ~o k) (57)

$b+($_:w-L) =

where ¢4 = Py and P, = }y¥4*. The quark (antiquark) creation and annihilation
operators, bl,(dl,) and byi(dx), obey the usual commutation relation. Substituting the
above into Eq.(56), we have [39]
d’k,
F,(z,¢
o) = 2P+V/2\/|x2 £2/4](2m)3 2)\:
(P'B((z — &/2)p*, b + AL)bs((= + £/2)p*, EL)|P), for z > £/2
X 3 (P\di (2 + €/2)p*, ks — A1)b_x((z + €/2)p*, k1) |P), for & >z > —£/2(58)
(Pd}((~2 — &/2)p*,Fu + Au)dn(—2 + E/2)p", L)IP), for o < —¢/2
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where V' is a volume factor. The distribution has different physical interpretations in the
three different regions. In the region =z > /2, it is the amplitude for taking a quark of
momentum k out of the nucleon, changing its momentum to & + A, and inserting it back
to form a recoiled nucleon. In the region £/2 > z > —£/2, it is the amplitude for taking
out a quark and antiquark pair with momentum. Finally, in the region z < —¢/2, we have
the same situation as in z > £/2, except the quark is replaced by an antiquark. The first
and third regions are similar to those present in ordinary parton distributions, whereas the

middle region is similar to that in a meson amplitude.

5. Impact parameter space

A partonic interpretation can also be made by transforming the nucleon states to those
in the impact-paramieter space [40]. Indeed, the helicity nonflip GPD H(z,¢,t) for £ = 0 is
the Fourier transform of the (unpolarized) impact parameter dependent parton distribution

function ¢(z,b,), i.e.

LA
q(z,br) = (%)j e AL DL (2.0,—A2), (59)

The important advantages are that q(z,b, ) is a real density in the sense that it is the ex-
pectation value of a number operator, and its interpretation does not suffer from relativistic
effects as explained below. The variables b3 and z live in different. dimensions, and therefore
there is no quantum mechanical uncertainty constraint. Indeed, ¢(z,b.) is a spatial-and-
momentum-density hybrid in that it represents a spatial density in the transverse directions
and momentum density in the longitudinal direction. g(z, b, ) is also invariant under boost
along the z-direction. In particular, if the nucleon has an infinity momentum, its effective
mass is also infinity. Therefore, its spatial structure in the transverse directions, just like
in nonrelativistic systems, can be obtained directly from the Fourier transformation of the

form factors without the relativistic recoil effects [41-43].

B. Double distribution, D-term

One of the non-trivial properties of the generalized parton distributions is the polynomi-

ality of their Mellin moments which follows from the Lorentz invariance of nucleon matrix
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elements. Indeed the (N +1)-th Mellin moment of GPDs corresponds to the nucleon matrix
element of the twist-2, spin-(N + 1) local operator as shown in Eq.(36). Lorentz invariance
then dictates that the Mellin moments of GPDs should be polynomials maximally of the
order N +1, i.e. the polynomiality property implies that [8]

1

f eV HY(z,€) = hI™) 4 RN 4o RII N+ (60)
1

[ eV B €)= ™+ Mk e (61)

Note that the corresponding polynomials contain only even powers of the skewedness pa-
rameter €. This follows from the time reversal invariance [34, 37]. This fact implies that the
highest power of ¢ is N +1 for odd N (singlet GPDs) and N for even N (nonsinglet GPDs).
Furthermore due to the fact that the nucleon has spin 1/2, the coefficients in front of the
highest power of ¢ for the singlet functions H? and E? are related to each other [34, 39]:

Xl = —hii: (62)

The polynomiality conditions (60) and (61) strongly restrict the class of functions of two.
variables HY(z,¢) and E%(z,¢). For example the conditions (61) imply that GPDs should
satisfy the following integral constrains:
14 1 do
[ Z W w6 +a2) - HU(2,6)] = — [ T B (w6 +22) - BY(x, )]
= 23 R (63)
n=0

Note that the skewedness parameter ¢ enters the LHS of this equation, whereas the RHS
of the equation is -independent. Therefore this £-independence of the above integrals is
a criterion of whether the functions H%(z,¢), E9(z,¢€) satisfy the polynomiality conditions
(61). Simultaneously these integrals are generating functions for the highest coefficients
rQ),. In addition, the condition (63) shows that there are nontrivial functional relations

N+1
between the functions H q(:c €) and E(z,¢).
use the double distributions [48-50]. A detailed discussion of the double distributions has
been given in the review of Ref. [51]. In this case the generalized distributions are obtained as
a one-dimensional section of the two-variable double distributions F¥(8, &), K*(8, ) [52, 53]:
1-8|
(@)= [ g [ dab(e— - at)F(5,0), (64)

1-|8|
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and an analogous for the GPD E‘(z,§):

1-18]
Epp(a,€) = [ df [,y ded(z = B = ab) K (B ). (65)
Obviously, the double distribution function F9(8, a) should satisfy the condition:
1-|8]
[,y e (@,0) = (e), (66)

in order to reproduce the forward limit (54) for the GPD HY(=z,{). It is easy to check that
the GPDs obtained by reduction from the double distributions satisfy the polynomiality
conditions (61) but always lead to h%ﬂ = %1_,\2 = 0, i.e. the highest power of ¢ for the
singlet GPDs is absent. In other words the parameterization of the singlet GPDs in terms
of double distributions is not complete. It can be completed by adding the so-called D-term
to Egs.(64) and (65) [54]

H(z,¢) = / 4 f 1_||/3|| dad(z — B — of)FY(B,a) + 0 [1 — 5—2] D (E) . (67)

Ei(z,¢) = / B / l_ll 'l dad(z — f — at)K9(B, ) — [1—§—2] Ds ( 6) (68)

Here D9(z) is an odd function (as it contributes only to the singlet GPDs) having a support
—1 < 2 < 1. In the Mellin moments, the D-term generates the highest power of ¢:

1
N N \
) = —et®) = / (dz 2 D(z). (69)

Note that for both GPDs HY(z,{) and E?(z,{) the absolute value of the D-term is the
same, it contributes to both functions with opposite sign. The latter feature follows from
the relation (62). Goeke, Polyakov and Vanderhaeghen have shown that numerical estimates

of the D-term in the chiral quark soliton model gives D*(z) ~ D%(z).

C. GPDs from hard scattering

GPDs are nonperturbative nucleon observables, and apart from the general properties
discussed in the previous section, we know little about the dynamical information encoded
in them. This section considers several approaches to gain access to them by experimen-
tal measurement. It is fortunate that there exists a new class of hard processes in which
GPDs can be measured and/or constrained. The simplest is called deeply virtual-Compton

scattering (DVCS).

18



In recent years, the search for an experimental measurement of GPDs has open up a new.
class of QCD hard scattering processes. The simplest, and possibly the most promising, is
deep-inelastic exclusive production of photons, mesons, and even lepton pairs. Let us con-
sider briefly two experiments that have been studied extensively in the literature: DVCS,
in which a real photon is produced, and diffractive meson production. Both processes have
practical advantages and disadvantages. Real photon production is, in a sense, cleaner but
the cross section is reduced by an additional power of a.,,. The Bethe-Heitler contribution
can be important but can actually be used to extract the DVCS amplitude through inter-
ferences, as in a single-spin asymmetry. Meson production may be easier to detect, but it
has a twist suppression of 1/Q?. In addition, the theoretical cross section depends on the
unknown leading light-cone wave function of the mesons. DVCS was first proposed as a.
practical way to measure the generalized distributions. Consider virtual photon scattering
in which the momenta of the incoming (outgoing) photon and nucleon are ¢(g') and P(P’),

respectively. The Compton amplitude is defined as

T = i/d'*z eT*(P'|T (J“ (—g) J” (g))|P) , (70)
where § = (¢ + ¢')/2. In the Bjorken limit, —g*® and P - ¢ — oo and their ratio remains
finite; the scattering is dominated by the single-quark process, in which a quark absorbs the
virtual photon, immediately radiates a real one, and falls back to form the recoiling nucleon.
In the process, the initial and final photon helicities remain the same. The leading-order
Compton amplitude is then

1 1 1
woo__ Wy _ 2 5
T\ 9 /_1dx($—§+ie+x+f—ie)zq:eqF4($1f7t’Q)

1 1
+ie’“’°‘ﬁpanﬁ/ dz ( 1
-1

T—E+ie z+E—1ie
where n and p are the conjugate light-cone vectors defined according to the collinear direction

) Ze?;FQ(m’é.at,Qz) ’ (71)

of § and P, and g¢}” is the metric tensor in transverse space. ¢ is related to the Bjorken
variable zg = —¢?/(2P - q) by zg = 2¢/(1 + £).

Development on the experimental front is promising. Recently, both ZEUS and H1 col-
laborations have announced the first evidence for a DVCS signature, and the HERMES col-
laboration at DESY and the CLAS collaboration at JLab have made the first measurements
of the DVCS single-spin asymmetry [44-47]. More experiments are planned of COMPASS,

JLab, and future facilities.

19



III. LIGHT CONE WAVE FUNCTION IN THE CHIRAL QUARK SOLITON
MODEL

A. The effective model

One of the most important features of the QCD lagrangian in the low-energy dormnain is the
chiral symmetry and its spontaneous breakdown (Throughout the thesis, we remain in the
chiral limit, i.e. small “current” masses of u ,d and s quarks are ignored). As a consequence
of the spontaneous breakdown of this continuous symmetry, there appear massless Nambu-
Goldstone bosons (7, K,n), and at the same time, quark acquire the dynamically generated
mass (It is sometimes called the “constituent” quark mass). This is the well-known Nambu-
Goldstone realization of the chiral symmetry. The simplest effective model that incorporates
such basic features of the low-energy QCD may be given by the following functional integral

over quarks in the background ‘Goldstone boson field [26-29):

exp(iSusslr(@)]) = [ DyDexp(i [ atad(ip - MU™)p)

1 1 -
;%U+ SU (1)

U = exp(in®(z)r*), U™(z)= exp(in®(z)r%ys) =

Here 9(z) and 7?(z) are, respectively, the quark and pion (including K and 7) fields, while
M is the dynamical quark mass stated above. Note that there is no kinetic term of the pion
fields in the above effective action. This means that the () and 7°(z) are not independent
fields, but 7%(z) is eventually interpreted as composite fields in the Q@ channel. We regard
M as an adjustable parameter of the model, and can investigate the effects of its variation

on the predictions of various baryon observable.

B. Soliton wave function in field theory at large N,

In principle, calculation of the wave function of a given state in terms of quarks and
antiquarks should be straightforward in the quantum field theory. However, usually this
task is too complicated. Hence, the wave functions of baryons in the low normalization
point cannot be determined from the first principles of QCD. For this reason, models of
baryons become highly desirable, and we attempt to calculate the wave functions at a low
normalization point based on the chiral quark soliton model. The most direct way to obtain

wave functions of any state is to calculate the evolution operator S(T') for a finite time
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T. This operator contains complete information about all physical states.. In particular
the expansion of S(T) in a series of exponentials exp(—iE,T') provides wave functions for
physical state “n” according to

S(T) = 3= |0, e BT (W, |. (73)

n
E., is the energy of the physical state n, (¥,| and |¥,) are its wave functions depending on
the coordinates of the system at initial (0) and final (T") time moments. Such approach has
been proposed by Feynman for quantum mechanical problems.

In the field theory the operator S(T') can be presented as a functional integral of the type

S(T) = / De(z) D9(z) Dr(z) exp {z fo " / L (i — MU™(z)) z/)(a:)} . (74)

The operators bf(p), b(p) (d'(p), d(p)) are annihilation-creation operators for quarks (anti-
quarks) which are defined through the expansion of the field 1(z) into positive-and negative-

frequency parts:

wolo) = [ 555 2/— &7+ di (p)o" (p)e ) (75)

(here o is quark polarization; u?(p), v?(p) are free plane wave spinors for U(z) = 1).

To calculate the Gaussian integral over the Fermi field, we have to pick out the dependence
on boundary conditions. This can be done changing the integration variables in Eq.(74)
according to

b=+, =1+ (76)

The fixed field 1o ought to be chosen in such a way that it would be the solution of the

Dirac equation in the external pion-meson field. The boundary values of the fixed fields 1y

are the same ones as for ¥, itself: at ¢ = 0 positive frequency of ¥, and ¢, or at t = T'its

negative frequency parts are fixed. Such boundary condition means that in terms of quark

operators the expression for S(T') will appear in the form where all quark creation operators
bt, d' belong to the moment ¢ = T, and annihilation operators b, d belong to t = 0:

(=) =dt FO)=bt T

S(T) = /¢ ., D) /¢ . D) [ Dr(e)exp (z / dwen) : (77)

where L. is the effective Lagrangian of Eq.(74). We do not impose any boundary conditions

on the m-meson field. This field appears in the derivation of the effective Lagrangians as a

result of bosonization, and it should not be considered as an elementary one.
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The required solution 1, leads to the definite Green function of the Dirac equation. The

solution of equation

(ip — MU™) 4o = 0, (78)

with the boundary conditions

*(z,t=0) = B(z) = 2 )3 & \/—%Eb (p)u (p
Wt =1)=D'e) = [ e B a o) (79)

can be expressed in terms of the finite time Feynman Green function G¥)(z, |y, 0)

dola,1) = [y (—j;’g’—J% [ GOz, tly, 0w (p)bs (p)eP * ¥
+ 6D, ly, T (P ()P Y],  (30)

with an analogous expression for ¥o(z,t). The finite time Green function G (z,t|y,t')
is the solution of the Dirac equation in the external field which has vanishing ;negative\-
frequency part at ¢ = 0 and vanishing positive-frequency part at ¢t = T. At T' — oo finite
time Green function reduces to the usual Feynman Green function.
After changing the integration variables according to Eq.(80), we get from Eq.(74)
that [55]
S(T) = / Dn(z)Det D[] Seue[, 1, (81)

where we used Eq.(77). Here Se[m, T] is the evolution operator in the given external field:

Soe|m, T = exp{/ dPaedly[D(x)y°G D (=, 0y, T)D(y) + D(z)7°G ) (z, €|y, 0)B(y)
+B'(2)y°G")(x, T|y,0)B(y) + B'(z)y°GD(z,T — ely, T)D'(y)]}, (82)

where € — +0; the quantity Det()[r] is the finite time determinant in the external field. It is
the Gaussian functional integral over the fermion field ¢/(z) with zero boundary conditions.
For this reason it does not depend on the operators b, d, bt and d, being only the functional

of pion field 7(z): )
T
log DetD|r] = / dt / Lz Trlog[ip — MU™ (z)] (83)
0 i

Thus the evolution operator in the external field is the coherent exponential of the

creation-annihilation operators. The baryon is the lowest possible state in the sector with

22



baryon charge B =.1. One can obtain its wave function by applying the evolution operator
to any colorless state of N, quarks and taking. the T — oo limit. For example, the baryon

wave function ®p can be obtained from the state of free quarks:
cg e MeTQp(bl,d") = Jim S(T H B (:)|)

~ / DaDet™[x] HG(T) (p;, 01ks, T)b, (k) exp[bt(p) G (p, TIp, T)d' (p)]  (84)

=1
Here Mp is the baryon mass and cp is the overlap between the initial state of N, quarks
and baryon wave function. The functional integral of Eq.(83) should be calculated in the
saddle-point approximation. One has to find the pion field which extremizes the integrand.

At large T, important factors are
Det™[r] ~ exp(—iEgiculm]T), G (pi,0k:, T) ~ exp(—iEievalr]T), (85)

where Ej;4[m] is the energy of the Dirac continuum with the given pion field (proportional
to N.) and Ej.eir] is the energy of the (possible) discrete level for the quark in this field.

In order to find the saddle-point one has to minimize the sum:
E[ﬂ'] = Efield[ﬂ-] + NcEIevel['/T] (86)

in the presence of the pion field. It is exactly the condition which was used in constructing
the nucleon-soliton. Both contributions to the total energy are of the order of N.. Operator
exponential in Eq.(84) does not contribute to the saddle-point Eq.(86) as the Green function
G (p,T|p', T) does not contain exponerntial with the phase proportional to the time 7.
The minimum of Eq.(86) is achieved at some stationary pion field and corresponds to the

baryon at rest. The value of the energy in the minimum is the baryon mass:
Mg = min g[r] ~ O(N,). (87)
The pion field, which gives this minimum turns out to have the so-called hedgehog symmetry:

#(2) = n*F(r), ne = 7“) U(z) = (exp (ir(-)nF(r)‘) (1))

<

(88)

where the profile function F(r) is to be calculated numerically.
We can obtain the wave function of Ba,ryon in the leading order of N, if we substitute

the saddle-point field m(z) of Eq.(86) into Eq.(84). In higher orders, one has to express
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the general pion field n(z,t) = 7 + 7" and then perform the Gaussian integration in
systematic perturbation theory in 1/N,. However, in this study, we restrict ourselves to the
leading order.

Let us stress that the above procedure for obtaining the baryon wave function is rather
general. Indeed, it is a general QCD theorem that at large N, the baryon is the soliton
of some effective meson Lagrangian. Thus, its wave function can always be presented in
the form of Eq.(84), where Green functions should be found in the self-consistent field
of all mesons entering this effective Lagrangian. Of course, the exact low-energy meson
Lagrangian is unknown. In the present work, we use the instanton vacuum model in order
to fix this low-energy Lagrangian. Let us also rewrite baryon wave function in a different
form. Asexplained above, baryon can be described as N, valence quarks + Dirac continuum
in the self-consistent external field. It is clear from Eq.(84) that wave function of the Dirac
continuum (i.e. the state with all the negative-energies orbitals occupied) can be expressed

as the coherent exponential of the quark-antiquark pairs:

10) = e |5 [ EoyBlane(a,7 - dy. 1)) 10

color
&Bp, & N
= exp |3 [ RSP (5)W 7 by, pa)dl, (o) | 10) (89)
color (27!') )

where |0) is the vacuum of quarks and antiquarks. The function W?%“2(p,, p,) can be called
the wave function of the quark-antiquark pair. We shall specify the pair wave function

bellow.

It is. assumed that the self-consistent chiral field creates a bound-state level for quarks,

whose wave function e, satisfies the static Dirac equation with eigenenergy Ejeyer:

emh(r) )

—iet* (o - n)}c](r)

Preo() = (

h'+hMsin F — j(Mcos F + Ep,) =0,
{ " —5( lev) (90)

7' +2j/r — jMsin F — h(M cos F — Ej,) = 0.
Here 7 is a spin index and j is flavor index. In the non-relativistic limit (Ej., =~ M) the
L = 0 upper component of the Dirac spinor A(r) is large while the L = 1 lower component

J(r) is small.
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The valence quark part of the baryon wave function is given by the product of N, quark
creation operators that fill in the discrete level [30-32]:

N.
valence = [] / d*p F(p) bl(p), (91)

color=1

F(p) = f (d3p')\/;£: [5(P)10%1e4(P)(27)°6(p — ') — W (2, )0 0then(—P)] ,  (92)
where 11, (p) is the Fourier transform of Eq.(90). The second term in Eq.(92) is the contri-
bution of the distorted Dirac sea to the one-quark wave function. u,(p) and v,(p) are the
plane-wave Dirac spinors projecting to the positive and negative frequencies, respectively.
In the standard basis they have the form

Stl‘_’fsa _
us(p) = ( C___:JM& ) , U_o(—p) = Cﬁf(p), uu=1= —ov, (93)

ol 5o

where € = ++/p? + M? and s, are two 2-component spinors normalized to unity, for example,

we () w= (). omre o

The charge conjugation matrix in this representation take the form

o (——iaz '0 ) (95)

0 102

The full baryon wave function is given by the product of the valence part (92) and. the
coherent exponent (89) describing the distorted Dirac sea. Symbolically, one writes the

baryon wave function in terms of the quark-antiquark creation operators

B = 11 [ doF@)¥@) e ([ dpde' Vo) Wipp) d6)) 0).  (96)

color=1

At this point one has to recall that the saddle-point at the self-consistent chiral field is degen-
erate in global translations and global SU(3) flavor rotations. Integrating over translations
leads to the momentum conservation: the sum of all quarks and antiquarks momenta have
to be equal to the baryon momentum. Integration over rotations R leads to the projection
of the flavor state of all quarks and antiquarks onto the spin-flavor state B(R) describing a
particular baryon from the (8,17), (10,2¥) or (10, 1") multiplet.

Restoring color (o = 1,2,3), flavor (f = 1,2,3), isospin (j = 1,2) and spin (o = 1,2)

indices, the quark wave function inside a particular baryon B with spin projection k is given,
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in full glory, by
B = / dR B;(R) 122 / dp, R F°"(p,) bay fuos(Pn)

oo ([ dpap bt 8) R W2 1) R 7 )) 10) (o7)

Expanding the coherent exponent to the 0?2, 1%, 27¢  order one reads off the 3-,5-,7-...quark
wave functions of particular baryon from the octet, decuplet or antidecuplet.

To make this powerful formula fully workable, we need to give explicit expressions for the
baryon rotational state B(R), the valence wave function F7?(p) and the Q@ wave function

in a baryon W/J?;z,,(p, ).

C. Baryon rotational wave functions

In general, baryon rotational states B(R) are given by the SU(3) Wigner finite rotational
matrices, and any particular projection can be obtained by a routine SU(3) ‘Clebsch-Gordan
technique. However, in order to see the symmetries of the quark wave functions, it is helpful

to use explicit expressions for B(R), and integrate over the Haar measure in Eq.(96).

1. (8,3)

From the SU(3) group point of view, the octet of baryons transforms exactly as an octet
of mesons; therefore, its rotational wave function can be composed. of quark (transforming
as R) and an antiquark (transforming as R'). Accordingly, the rotational wave function of

an octet baryon labeled by a = 1...8 and having a spin index k = 1,2 is
[DED*(R)] ~ en RY (t)] RS (98)

where ¢, is the antisymmetric 2 X 2 tensor and ¢* are the SU(3) generators. In particular,
the proton (a = 6 +:7) and neutron (a = 4+15) rotational wave functions with spin k = 1,2

are

pe(r)* = VBeuR!' R, ni(R)" = V8eu R} B3 (99)
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2. (10,3)

The decuplet states can be composed of three quarks; they are labeled by a triple flavor
index {f1f2fs} symmetrized in flavor and by a triple spin index {kik2ks} symmetrized in
spin:

24 R AL otk .
[D(w 2) (R)} ~ €k Skyky Ehiks Byt Rp? Rp? |sym in {fi fafs} (100)

V{1 f2 fa}{k1k2ks}

For example, the A-resonance rotational wave functions are

. .. 3 .
At 'spin projection + 3 ALF(R)* = V10 R’ R RI?, (101)
4 1 :
A®, spin projection + 3 AYR)* = V10 R (2R} R? + RI*RIY)). (102)
5. (1,3

From the SU(3) group point of view, the antidecuplet can be composed of three antiquarks

and its conjugate rotational wave function is

{fif2f3}

(D@ (R)],

~ R:J;l Rf Ria |Sym in {1 f2/3} (103)

In particular, the ©% rotational wave function which is one of the membeér of the antidecuplet

with strangeness +1, is
O1, spin projection k O (R)* = V30 R: RS R: (104)

They are normalized in such a way that for any spin projection

[ 4B Byin(B) B7(R) = 1 (105)

4. The QQ pair wave function

The pair wave function 'W/J?;‘f,,(p, P’) is expressed in terms of the finite-time quark Green
function at equal times in the external chiral field. We define the Green function as the

solution of the equation

[ip — M(Z + iT0y5)] g, o, (1, tal2,t2) = 6(t; — 1,)6C) (@) — x,). (106)
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On the chiral circle II(r) = n - 7sin P(r), X(r) = cos P(r). The quantity V = M(-1+ X+
iIlys) will be called the perturbation by the non-zero mean field. In what follows we shall
rename ¥ — 1 — 3. For the static hedgehog mean field lying on the chiral circle

Y(z) = (cos P(r) —1)d},, IL,(x) = (n-7)}sinP(r). (107)
We shall need their Fourier transforms,
Y(q) = /dze'iq’ *Y(x), II(q) = /dwe"iq'“’ﬂ(w). (108)

In the frame where a baryon has a constant velocity v along the z axis both fields get

the arguments (z,y,z) — (m,y, jl"_—":f) Both fields can be written through the Fourier

transforms in the rest frame:

z—vt \ (. . . z—wvl :
X 10 (z,y, \/——1—__—02) = /dq exp (qua: +iqy + Zqz_\/l—-=v2) %, 1I(q). (109)

One can present the Green function as a perturbation expansion in V = ¥ + iIlys

1 I S S 1 1 1
W-M—-V  iP-M

vy sy vy yay Gy vy vy v A )

The important point is that all free Green functions in this equation should be understood
with the Feynman —e prescription in the momentum space, meaning the shift M — 0 in the
free propagators [25].

The perturbation (107) is in fact very specific: its modulus is always less than unity. If
the pion field is much less than unity, the perturbation is small. If the chiral field is not small
but has either low (¢ < M) or large (¢ >> M) momenta, the perturbation is, effectively, also
small as will become clear from the final expression for the pair wave function. Therefore,
it is not a bad idea to restrict oneself to the first order in the perturbation in V' which
we are going to do here. Keeping higher orders in V has no principle difficulties but in our
experience the first order result is usually within 10—15% from exact (all orders) calculations.

In the first order.in the external field V the Green function is, according to Eq. (110),
T :
QW (2, ty|@s, t5) = / dt / d®z GO (x4, t]2,t) V(2,1) GO (2, t|z,, t5) . (111)
0

Here T is- the “observation time” during which the external chiral field exists; it should be

put to infinity to obtain the ground-state baryon with given quantum numbers. We can
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write it further in the momentum representation:

G(l)(mhtﬂ%,tz) = /d¢11d'J2 exp (—iqq - €1 — 1q2 * ©3) G(l)(th,tl lg2,t2),

dwydwy (T ; . . , — vt’ |
G (gy,t1|g2,t2) = / 721;)72-/0 dt'/d3z/dq exp [zqzx—l-zqyy _quilj
. 1 1
. —iwy (' — 1q1 + 2 — wwa(ty — t') +iqy - -
Pl =) ig 2 =il =0 4 g g T

(112)

where ¢; 2, = (wy, 2,9, 2)y 12 = w127 — 912°7-

The definition of the (conjugate) pair wave function is

Wie (p,p') = —Z\/% [ (@)G(p, 0lp', 0)} v, (p)] (113)

with the plane-wave spinors u,v defined in Eq. (93). One has to integrate Eq. (113) over w; 2
and the intermediate point (z,t’ ) where the perturbation V acts. Because of the Feynman
“M — 10" rule, one closes the integration contour in w; in the lower semiplane and finds the
contribution of the pole w; = € = /p? + M?. Integration over w, is closed in the upper
semiplane with w, = —€¢ = -—\/1—7'2—i——1\42 This is an important (although natural) result:
the QQ pair has a positive—energy.r antiquark and necessarily a negative-energy quark. The
physical interpretation, in terms of the level density of the Dirac sea, is given in the following.
If the mean field makes the Dirac sea less dense than in the vacuum at certain momenta, it
means a hole or the presence of an antiquark with positive energy. If the Dirac sea is more
dense in some partial wave and at some momenta, it means the presence of an additional
negative-energy quark with the corresponding quantum numbers. Since the total number
of levels in the sea is its baryon number and is conserved whatever the background field, it
implies that any distortion of the Dirac sea by the mean field creates an equal number of
quarks and antiquarks or, else, quark-antiquark (QQ) pairs inside a baryon.

Integration over d®z leads to the 3-momentum conservation, ¢, = —(p + p')1, ¢ =
—(p.+p.)//1 — v2. Integration over the intermediated time ' gives the energy denominator
—i/[e + € — i0 — (p, + p’.)v]. Finally, one has to use the Dirac equation for the plane-wave
spinors: (M — p)u,(p) = 0,5 (p')(M + #') = 0. As a result one obtains

M? \/1—_1,_

¢ et+¢—(p. +p)v

Wi (07) =\~ [ @WVp-p)uw)]  (1149)
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In the infinite momentum frame, one has to take the limit v — 1. The momentum of the
baryon with mass Mp is
Mgy P M
Vi Ny i)

The quark and the anti-quark of the QQ pair have the 4-momenta

2 2 /2 12
_ . pl."'M ’ ’ p-_L +M / ’
p - (ZP-I— 2ZP )p.L7ZP) ’ p - (ZP"I‘ 2z/P 7p_L7,ZP) ? (]‘]‘6)

(115)

hence the energy denominator is
vi-v?  Mp 222'P

ete—(p+pv P Z
In the infinite momentum frame, it is convenient to rescale the annihilation-creation oper-

ators, bIMF(z,p,) = 1/P/2nb,(p) and similarly for bf, d,d!, where the subscript o = 1,2

, 4 =Miz(z+ 2+ z(p’f + M?) +2'(p% + M?). (117)

refers now to helicity states. The new operators satisfy the anticommutation relations

.{balﬁol (21,P11), 6, 1500 (Zzapu)} = 5:;;51{2153215(21 — 2)(27)263)(p,, — Py, ) (118)

and similarly for the new d,d'. The use of the rescaled operators requires rescaling Wc’;"'

by a factor of P/(2~). Taking the v — 1 limit in the spinors (93) one gets finally
MMp

Wi (z,p137,01) = 57 (%] (@M ~2)oa+ Qu-o]]
+ AT () [-M (2 + 2)1 — i€apQ a0 1] } (119)
q=(P+pP),(2+2)Mp), Qia=2P\q—2Pray =12 (120)

The non-primed. indices refers here to the quark and the primed ones to the antiquark.
Eq.(119) gives the wave function of the additional QQ pairs in a baryon in the infinite
momentum frame. The indices j, 7' = 1,2 are the isospin indices (to be rotated by the SU(3)
flavor matrices R in Eq. (97)) and 0,0’ = 1,2 are the quark and ‘antiquark helicity states.
The annihilation-creation operators in Eq. (97) are now understood to be normalized by the

condition (118), and the integrals over momenta there are understood as [ dz [ d%p,/(2m)2.

5. Discrete-level wave function
As seen from Eq.(92), the discrete-level wave function F#(p) = Fi’ (p)+ Fi (p) consists

of two pieces: one is directly the wave function of‘the valence level, the other is related to
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the change of the number of quarks at the discrete level due to the presence of the distorted
Dirac sea, it is a relativistic effect and can be ignored in the non-relativistic limit, together
with the lower L = 1 component j(p) of the level wave function.

In the infinite momentum frame the evaluation of the spinors @, % from Eq.(93) produces

Mp
Fi(z,py) = V [dah(P) + (P21 + i€apPra0ip)li€’” J(p)} (121)
27" I | pz=zMB—E
where h, j(p) are the Fourier transforms of the valence wave functions
hp) = [dae®=h(r) = ar [ drs? smprh(r), (122)

7*(p) = /dazc e P T (—in®)j(r) = %}j(p), Jj(p) = ;t—;r/dr (pr cos pr—sinpr)j(r). (123)

Similarly, the evaluation of the “sea” part of the discrete-level wave function gives

Fir(z,py) = ‘—\/M; / dz' (2p LW (p,p)e " [(as)g;,h(pf) — (P 3(p')

T
(124)

where the pair wave function (119) has to be used. The conjugate functions are hermitian

conjugate.
We have thus all quantities entering the master Eq.(97) for the 3,5, 7, ... Fock components

of baryons’ wave functions.
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IV. LIGHT-CONE WAVE FUNCTION REPRESENTATION OF THE GENERAL-
IZED PARTON DISTRIBUTIONS IN THE CHIRAL QUARK SOLITON MODEL

Recently, Diakonov and Petrov showed the way to calculate the various physical observ-
able in terms of the light-cone wave function based on the CQSM [30-32]. It is straight-
forward to extend it to the structure functions including the GPDs, and we will show how
these functions can be represented in the CQSM.

In the second quantization, the normalization constant can be representated in principle

as the superposition of those of each Fock components:
N(B) = %5{%\1:“%) = NGR(B) 4+ NGA(B) + N(B) + (125)

As we explained in the previous section, the expansion of the coherent exponent of the QQ
pair wave function is well converged series in terms of their Fock components, so we will

take up to the 5Q) component in the wave function.

A. 3 quark components

We first consider the three quark components in baryon. Each of three valence quarks
are rotated in the SU(3) flavor space by the matrix ij where f = 1,2,3 is the flavor and
§ = 1,2 is the isospin index. To obtain the color-flavor-spin-space 3¢) wave function of a
particular baryon, one has to integrate over all 8-parameter SU(3) rotations R with the
rotational wave function Bf(R) corresponding to the chosen baryon with spin projection k.

Then the wave function of the three quark components of baryon can be representated as

YOA(B) = T(B)LLL, x Firos(py) 22 (py) 2 (p) (126)

213272,

where T(B);l‘f:jj;s,k means the SU(3) group integral as

T(B) 2, = / dR Bj(R)R\' R R, (127)

113232,

Hence the normalization of the three quark component is

6-6
N(3Q)_(B) — (—2—)5:°T(B)flf2fakT(B ?11.721?3/‘1 123/ (Pl 235(21+22+23—1) (128)

713272, 2 )6

{(2m)?6(py + 2 + ps)FP (p1) F272 (p2) F°% (p3) Y, (p1) FiL o, (P2) Fil o (P3) »
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the factor (6 - 6) comes from the fact that there are 3! possible contractions, and ensuing
contraction in color indices gives another factor of 3! = €%1%2%3¢, . ...

A typical physical observable is the matrix element of some operator sandwiched between
the initial and final baryon wave functions. These operators can be written in terms of the
creation or annihilation operators a,a’,b,b' as Eq.(118), and in the 3Q) components only the
ata term survives because there is no antiquark. First, we consider.the quark operators of
the vector charge type ¢y*q in the forward limit ¢ — 0. This charge gives the quark number

in the baryon. We obtain the following expression for the vector charge

yea - 6 6 6-83) ppypsete, 1 (B)}2d / (dp123) (129)

J1j252,k

[FM(,, JEE (02) P (ps)] [Pl (1) Pl (p2) Fly ()] [T

where we use the abbreviation [(dpi 23) for the integral over momenta with the conservation
d-functions as in Eq.(129). Although we assume that the third quark is struck, there is a
factor of 3 by considering which quark of the three quarks can be struck. J7 is the flavor
content of the charge, and 7,0 = 1,2 are helicity states. For example, if we consider up
quark charge, J§ = 6{°6},. One can easily check that in the proton case the above quark
number gives exactly 2 for the up quark and 1 for the down quark after dividing the 3 quark
normalization M G?)(p) [32].

From the above representation, we can easily develop formulas for many other structure
functions. For the off-forward matrix element, one has t6 change the momentum of one
of the quarks on which the operator acts, by the corresponding momentum transfer, and
leave the rest quarks momenta unaltered. As shown in Eqgs.(23) and (25), the light-cone
helicity non-flip form factors are linear combination of the Dirac and Pauli form factor.
Hence the matrix element corresponding to the helicity non-flip form factor in the 3 quark

approximation is

6-6-3 :
V1-eFf() - V—F‘”’m ( . ©8-3) str(myetter(BY45! [(dprae) (130)

. [Fjl”‘ (p1)Fj2v2(p2)Fj303. (p3 - %)]

[Ft o o) F o)L (o + 5] [5257]
We next consider the matrix elements of the GPD which have an additional argument

of the light-cone momentum fraction zg. In our expression, the Bjorken variable zg corre-

sponds to .zz which is the longitudinal momentum fraction of the third quark with respect
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to the total baryon momentum Pg = MpV/+/1 — V2. Therefore, for the spin non-flip GPD

Heyp = VI—EH (z,€,t)— \/——f-z_—?E(:c, €,t), one should leave the 23 unintegrated in the above

expression of the light-cone helicity non-flip form factor Eq.(130):

2
Her(en,6,8) = /1 - EHOD (g = 23,6,8) \/f—_gE(sQ)(xB:zs,é,t) (131)

6- 6 -3
_ ( )5kT(B)f1.f2f3kT(B)?ll;:2fra

313272,

d P1,2,3L

(2m)° A
et

A
[Fzm (p1) szz(l’z)f*}“3 (Pa + )] [5735 ]

— 2 =dz 20(21 + 22 + 23 — 1)(27)28(p1s + p2r + P31)

The impact parameter space parton distribution functions g(z,b, ) is the Fourier transform

of this expression with { =0

b b, @by b,
(@) (2m)?

From this expression Eq.(131), one can obtain the Feynman parton distribution functions

glz,by) = Bipy (2,0t = —A2) = ALH(z,0,-A%). (132)

q(z) by taking the forward limit ¢ — ‘0. Similarly the Transverse Momentum Dependent
(TMD) parton distributions g(z, p1) can also be obtained by leaving the unintegrated trans-

verse momentum pz; in the forward limit in Eq.(131):

O3 srrm)f Ty (13%)

219232,

®N(z,p.) =

d
/ (21’1)24]_ dz128(z1 + 22 + 23 — 1)(2m)?6(pro + pav + Ps1)

(PR ) P (p2) P2 ()] [Fl o, (1) Bl () Fl ()] 67302

For the spin polarized case, one replaces averaging over baryon spin by %(0'3)f° , and the
axial charge operator is now (03)}% instead of 73. For example, if we consider the polarized

parton distribution function Ag(z), one gets

6-6-3 .
( . )( )kT(B)fxfzfs (B)fflll}:f;l (134)

J1d2J2:k

AqBI(z) =
F dpr2aL 2
(2 6 dzlﬂ&(zl + 2+ 23— 1)(27r) 5(P1L + paL + P3¢)

[pr YF=%2(pg) F2%2 (pg) | [FiL . (51) i, (p2) Fi 1y (p3)] [(05)2 6% ]
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Formulas of the polarized functions H,. = VI—EH(z, (1) —
;7%17(33, €,1), Aq(z,p1), Ag(z,by) can be obtained from those of the non-polarized case
by changing the operators §f — (03)f; 6% — (03)2

B. 5 quark components

Next, we consider the 5-quark components in the baryons. Convoluting the linear order
QQ wave function in the expansion of the coherent exponent with the three valence quark

wave functions, we can get the 5 quark wave function in the baryons as

VO = T(BYLLolhn < F7 () F2% (po) P2 (ps) W5 (pasps),  (135)

J1723334,f5,

where the T(B)ﬁ f;]fjf‘;:’k represents the SU(3) group integral involving now three R's from
the valence level and R, R! from the pair, times the rotational wave function B} (R) of the

baryon in question

T(B)flfzfaf«ms — /dR BZ(R)Rfl Rf2 Rf3Rf4 Rt’5 , (136)

J1J27334,f5.k =

where we systematically attribute the indices 1,2,3 to the valence quarks, index 4 to the
extra quark of the QQ pair, and index 5 to the antiquark. The normalization factor of the

5 quark component is

N(SQ)(B) 108 T(B)f1f2faf4,JskT B)hlzlalmfs, [(dm 5) (137)

J1323334, s, f1f29394,l5

FJ101 (P )Fchrz (pz)FJsas (ps)m?::: (p4,p5)
Eldl (pl)F}zo'z (pz)Esda (p3) Cli’,:;i (p4’p5) ?: ?:

where we have denoted

/ (dprs) = / dzy_s dz;r—)j*(zﬂ)2a(pu+...+p5 )6+ et zs—1).  (138)

The factor of 108 arises from the foilowing' consideration: one contracts a! from the pair
wave function with @ in the conjugate pair, and all the valence operators are contracted with
each other. There are 6 such possibilities, and the contraction in célor gives a factor 3 - 6,
all in all 108.

The ratio of the normalization factors N'®?)(B)/N(Q)(B) gives the probability to find
a 5 quark component in a mainly 3 quark baryon. In the case of the nucleon, Diakonov and

Petrov indicated its value is 0.535 ~ 50%.
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For the matrix elements of a typical physical observable, there are three contributions:
one when the charge operator acts on the antiquark, the second when it acts on the quark
from the pair, third when it acts on one of the three valence quarks. At first, we write down

the expression for the 5 quark component of the vector charge in the forward limit.
108 , libalsle,gs,
VED = ST BT (B et (139)

d Pi1—5L
(2m)10

Fion (pl)szaz (p2)Fjscrs (ps) W/JJ::: (p_4,p5)
Etal(pl)F}Zaz(pQ)Eaaa( ) ci4o:4(p47p5)
X (B89 87087 + 6% T3 612676875 — 6263 T 12672674678

faYgs 03" a4 fa Vg5 03 04" T8 g5 Y0304

X

/d21_5(271')25(p1_|_ + ... +p5J_)(S(21_ + ...+ Z5 — ].)

X

X

In order to express the GPD H(z,§,t) and E(z,§,t), one has to change the momentum
of one of the quarks on which- the operator acts, by the corresponding momentum transfer
as in the process of the 3Q component case, thereby extracting three separate contributions
from the valence contribution, the quark from the QQ pair, and the antiquarks respectively.

The valence contribution in the 5 quark component is

108
M (@ 68) = =TT (B il (140)
'd -
X _Z;jr)—f:- / d21d22dz4dz5(27r)25(p1_|_ + ...+ p5_|_)5(21 + ...+ 25— ].)

. /A

% F‘“al( )F]zdz (p )FJsda (p + ) Wj:a: (p4,P5)
_, A

x i (p))FL, (p)F},, (p;; ) W5 (4, ps)

x [3J%8%stsnsnsy]

fa"gs" 03 04" 18

the quark contribution from the qg pair is

108 lalage,

HED a2, 6,) = -0 T(BY L T(B) s, (141)
d — ¥ .

X —_—(;:r)lso-l- /dz1d22d23d25(27r)25(p1J_ + ...+ 1.7\5_]__)6(z1 + ...+ 25 — 1)

X

F.nﬂ (pl)FhUz (pz)Fjsvs (p3)W§754054 (134 + 5,]’5)
150'5 — A
‘Fllal(pl) lza'g(pZ) 1303(p3) clyog \ P4 — 5)1’5

[5 Jgslsanonez

gs 03 04 Ts

X

X
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and the antiquark contribution is

5Q 108 2 fafa.05 r pylil2lals,gs, -
Hitla(@,61) = =0 T(B) L Ll T(B)Y e (142)
d
X /—(—g;t—;—-L/dzld22dZ3dZ4(27T) 5(131_1_ + .. +p5_1_)5(21 + ...+ 25 - ].)
onf - A
X FJ101 (P )F.7202 (p2)FJaas(p3)W.?o_5 <p4,p5 + _2_)

o5 _ A
F|l1a1 (pl)Fllzaz (p2)F|1303 (p3) ?404 (p47p5 - 'E')

|- o5:6% 05267367467

gs "03 04 " T5

X

X

As in the 3 quark components, the matrix elements of the spin polarized case can be
obtained by the replacement of the helicity operators 6f — (03)f, dosss = (03)osss-

One can also get other structure functions by the same procedure as ‘the 3 quark
components. The impact parameter space distributions are the Fourier transform of the

(5Q)(:1: 0,¢) or HY )(a: 0,t) as Eq.(214), the parton distributions are the forward limit of

(5Q)( 6,1) or H "T Q)( J€,1)

q(fl?) = %i_l')%%++(w7§)t) = H((IB,0,0),
AQ(m) = %E&ﬁ++(maé7t) = F(l'aO)O)a (143)

and TMD parton distributions are the unintegrated versions of Eq(143) over the transverse

momenta of the struck quark

q(mabl) = limH++($;b.La§at) = H(m;b.lno 0)
Aq(z;b)) = hm’H++(:c by,£,t) = H(z; b.,0,0). (144)

C. |z| <&/2 region

As we have explained in the sec.Il, in the |z| < /2 region, baryon emits a quark-antiquark
pair, and the GPDs has the physical meaning as the meson distribution amplitude not as
the partonic densities. The matrix elements in this region should be the overlap between
the initial N + 1 component and the final N — 1 component [23, 24]. Thefe are two cases
according to the momenta of the quark and antiquark in the pair, one when the quark with
+ component momentum (z + ¢{/2)Mp and the antiquark with —=(z —{/2)Mp are emitted,
the second when the quark with —(z—¢/2)Mp and antiquark with (z+£/2)Mp are emitted.
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We assign the quark with (z+£/2)Mp case to the distribution amplitude in the 0 < z < £/2
region, and the antiquark with (z + {/2)Mp case to the one in the —£/2 < z < 0 region,
following the case with || > ¢/2 where the quark or antiquark with (z + £/2)Mp is struck.
Its representation is

108

2
(5Q—)3Q)( 1) = +— JkT(B)flfszf"’]“"kT(B)?lI}kf;I dpl—_“-/dzldzzd,z3 (145)

1523334, 55 (2m)10

X (2”) d(p1L + P2y +Psi)é(z1+ 22+ 23 — 1)

X (27)*6(par + PsL)

X FR (py) %2 (pg) 7 (pa) W7 (pa F A/2,p5 £ A/2)

lyoq

llal(pl)‘Flzoz(p2) Iaa'a(p3) [52375‘] ] ’

where the + sign in front of RHS represents the distribution amplitude in the 0 < z < £/2

X

case, on the other hand, the — sign represents the one in the —¢/2 < z < 0 case. In the above
representation, we take the quark in the emitted quark -antiquark as the one of the QQ pair
arisen from the coherent exponent. Hence, the three valence quarks in the 5Q component
are contracted with the 3Q component with equal momenta respectively. Then the total
QQ pair momentum turns into the emitted meson momentum as ¢-= ({§Mp, AL). The spin.

polarized GPDs . (z, ¢ ,t) can be also obtained by replacing §f — of, and 674, — 07%..

D. Overlap integrals in the infinite momentum frame

After all contractions in Eqgs.(140)-(145) over flavor (f,g), isospin (j,%) and spin (o, 7)
indices, one is left with scalar integrals over longitudinal (z) and transverse (p1) momenta of
five quarks. The integrals over the relative transverse momenta in the QQ pair are generally
UV divergent, reflecting the divergence of the negative energy Dirac sea of quarks. In'this
study, we cut this divergence by the Pauli-Villars cutoff method at Mpy = 562MeV. This
value is chosen. from the requirement that the constant F, = 93MeV is reproduced with
M = 375MeV.

The pair wave function W is determined by the Fourier transforms of the mean field
II(g) and ¥(q). In the matrix elements of the initial 5@ and final 5@ components with
zero momentum transfer, the following seven scalar integrals arise from squaring Eq.(119),
corresponding to i) the full square of II(q) for the spin polarized and non-polarized cases

ii) the square of X(q) for the spin polarized and non-polarized cases, iii) the square of the
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third component II3(q) for the spin polarized and non-polarized cases, and iv) the mixed

II(g)X(q) term. We name these terms,

Koo = o [ k0 (1 00) 0a)acl) (146)
/ / G(lzfrz)z [ (Q1L+ e ++y](‘f2r gy M Mev) } ’
AKpr = g / (;;)3&1) ( My ,(IL) 8(q.)¢.11%(q) (147)
Q3 2
/ / 2Q)2 [ (@1 + M'~’L ++yj(‘f— y)a?)? (M~ MPV)] ’
Koo = 30 | ke (2 01) 0a)e5%(a) (118)

d? 1 2 —1)° .
/ i1 | Gk [t arr o=y~ = M)

MK, = o [ 500 (L 01) oe)eT(@ (149)
R e )
K = o [ et (10 b S10(0) (150)
d2Q Q2 M2
f 2 '/ G X e ++y(13— g~ 0> ),
AKs = o~ [ (jﬂ) 80 (3 a1) 0a) 5100 (151)
d2 2 M2
/ y/3 o [Q_L+M2++y(1—y)‘1) (M%MPV)]’
Koo = 3 (jﬂ)p( 0.) 0.1 £ T(0)2(a) (152)

/ ] G e st~ O M)

In this representation, the integrals dp;_s have been rearranged such that one first integrate
over the relative momentum inside the QQ pair y, Q. and then over the 3-momentum q of
the pair as a whole. The step function 6(q,) ensures that in the infinite momentum frame
the longitudinal momentum carried by the pair is the positive. By \;I>(z, g.) we denote the
probability that the three valence quarks leave the longitudinal fraction z = ;:4 +25=4¢. / Mp
and the transverse momentum g = pss + ps. to the QQ pair:

®(z,qL) = %%(gidzl,z,a.(2ﬂ)25(P1.L + P21 +PsL+qu)d(z+ 2tz +2z2—1)
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|F(po)I* - [F(p2)|” - |F (p3) [ (153)

In the 3Q) components of the baryons, there are no additional Q@ pair, and all quantities
are proportional to ®(0,0). Since the normalization of the valence level wave function is
arbitrary, we choose it such that ®(0,0) = 1. On the other hand, A®(z,q,) means the
probability that the three valence quarks leave the momentum ¢, and q; to the QQ pair

when the spin polarization operator acts on the three valence quarks:

d?
A®(z,q1) = ng’z);“'dzl,z,a(%)%(Pu. + P21 + P31 +9L)0(z1+ 22+ 23+ 2—1)
[F()* - |F(p2) - |AF (p3)|?, (154)

As seen from Eq.(92), the discrete-level wave function F(p) = Fiey(p) + Fiea(p) consist of
two pieces: one is directly the wave function of the valence level, the other is related to the
change of the number of quarks at the discrete level due to the presence of the Dirac sea.

Hence, the square of the valence wave function:can be denoted as

IF(P)I* = |Fieu(p)[* + Fit(p) - Fuca(p) + Freu(p )« Flea(p )+ | Faea(P)I”, (185)

and we write down explicitly the square of the valence part. |Fie,(p)|*:

) = 22| (0) + 22560 + o) (156)

and the square of the level pa\rt in the spin-polarized case
2 Mp 2
|AFe(p)|” = 5 | (h(p) 1 ip | 3(p))* - —J (p) (157)

The complete expressions for the |F(p)|* and |AF(p)|* including the sea part contribution
F(p)seq are given in ‘Appendix C.

Let us give examples how the normalization, vector and axial charge of the baryon up to
the 5@ components are expressed through the integrals after all contractions in Eqs.(146)-
(152) are performed.

Nucleon normalization:
N(N) = 98(0,0) + -1523(111{,”, + 23K,,). (158)
For the proton case, the vector charge of the u, d, s quark contributions in the 3¢ component:

Ve = 18%(0,0), V‘3‘f)—9<1>(0,0), V6 = g, (159)
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and the axial charge of the u, d, s quark contributions in the 3¢ component:

AB = 12A8(0,0), Aﬁf’Q) = —9A(0,0), ALY =0, (160)
The vector and axial charge of the valence contribution in the 5@ components:
Y walinSQ) — 3(54K,, +21.36 Ky,),
vetin®Q) — 3(26.4K,, + 14.88K,,),
‘/s(ualinSQ) — 3(2-4Kaa + 336K1r1r) ’
AlalinSQ) — 3(36 24AK,, + 9.84AKrr + 3.36AKs3),
Agyazin-sQ) = 3(—8.48AK,, — 6.88A K, + 6.08AK33),
ALelinsQ) = 3(_0.11AK,, — 1.76AK,y + 2.56 AKs3), (161)
the quark contribution from the @ Q
’Vu(se“) = 38.16K,, + 26.64K 1 ,
Vd(sea) = 32.88K,, + 12.72K 1,
Ve = 11.76K,, + 0.24 K,
Al = _30.24K,,,
A‘(isea) = 19.68Kj5, ,
AL = 3.36Ks, (162)
and the antiquark contributions
V) = —34.56K,, — 11.52K
V}m) = —29.28K,, — 17.76 K ry ,
Vs_(““) = —18.96K,, — 10.32K,, ,
AL*) — _93.04Ks,,
AS*) = 112.48K,,,
Ag‘sea) = +3‘36K3a P (163)

The physical observables are given by adding these contribution and then dividing the

normalization, for example, the vector charge of the u quark is

u

- Q) + 1/u('ualin5Q) + V}sea) + ‘/ﬁ(sea)

=2, (164)

N
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which gives exactly the u quark number in the proton as expected.
Another quantity in which we are interested is the spin content of the proton. From the

above expressions of the axial charge, the representations of spin components of each flavor

are
Ay — 12A9(0,0) + 108.72A K, + 29.52AK 5 + 10.08 A K33 — 53.28 K3,
B 99(0,0) + 39.6 K, + 82.8K,, ’
Ad = —3A%(0,0) —25.44AK,, — 20.64A K, + 18.24A K33 + 32.16 K3,
T 99(0,0) +39.6K . + 82.8K,, ’
—0.48AK,; — 5.28AK r + 7.68AK33 4 6.72K3,
As = , (165)
99(0,0) + 39.6 Krr + 82.8K,,
hence the proton spin content is
. oo + 3.6AK , — 14.4K;,
AS = Au+Ad+ As = 9A®(0,0) + 82.88AK,, + 3.6 AK s + 36AKa3 . 4K . (166)

99(0,0) + 39.6 Krr + 82.8K,,
and the isovector axial charge is

15A8(0,0) + 134.16AK,, + 50.16 AKz — 8.16AKss — 85.44K,
98(0,0) + 39.6 K, + 82.8K,, -

¢ = Au—Ad =
(167)

Recently Diakonov and Petrov evaluated the isovector axial charge gf) in the nonrelativistic
limit where they neglected the L = 1 lower,component j(p) and the sea quark contribution.
In the non-relativistic limit, the integrals of 5Q) components are set to be zero, and the
probability A®(z,p,) for the spin polarized case becomes equal the ®(z,p.) for the spin
non-polarized one because there is no effect the lower components and the sea contribution
Fieo(p) to the one quark wave function. Therefore in the non-relativistic approximation the

nucleon axial charge is

@ _ 159(0,0)
94" = "9%(0,0)

which is well known result of the nonrelativistic quark model. The account for any number

- g ~1.67 (168)

of pairs and for the relativistic corrections is expected to bring gff) very close to the experi-
mental value gf) = 1.27. For the same reason, in the nonrelativistic 3¢) approximation, the

proton spin content is
99(0,0)
AY = =1 16
%= 980,00 = (169)

which is also the value expected in the nonrelativistic quark model. Again, this value

may be expected to be close to the experimental value 0.31 £ 0.07 measured-by the EMC

collaboration by taking account of the relativistic effects and higher Fock components [4, 5].
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Although the overlap integrals of the structure functions including the GPDs can also be
expressed in terms of the chiral mean field as in the static observable for the vector and axial
charges, a little caution are required. For example, the full square integral of the scalar field
K,, has to be classified further into the three contributions: one when the charge operator
acts on the quark in the QQ, second when it acts on the antiquark, third when it acts on one
of the three valence quarks. When one of the three valence quark is measured, the overlap

integral of the square of X(p) is
M? [ d3q

K{elinSQ) (g = 7, €,1) = o m‘q’ (2,915 23, €,t) 0(g.)q.11(q) (170)
dZQJ- 2 +M2
/ y/ [ L+M2+y(1 pgry ~ M Mev)

where we interpret ® (g, q4;23,&,t) as the probability that the three valence quarks leave
the momentum ¢,,q, to the QQ pair when the third quark has the longitudinal momentum

at rest frame ps, = 23 Mp — €}, and with the momentum transfer A as

d?
®(z,q1;23,&,t) = —gl—z)a—Ldzldzz(zﬂ) §(P1L + P21 + P31 +qL)d(z1 +22+23+2—1)
A A :
.|F(Pl)|2 . IF(P2)|2 - (F (ps - E) . F _(Ps + E)) pi2se=712.8Mp—cies (171)
When the quark or the antiquark is struck, the overlap integrals are:
: M? 1 d? dz
KW o = 20 6,8) = 5o [ A58 (,2) 0() (@) (172)
| Q-giim
QL+ M2 +y(1-y)g®)' - (@1 + M? +y(1 —y)q*)F
—(M — Mpv)],
. : M? [ d? dz _
K4 (o = 2,6,1) = 3 [ TR (2, p) e(z)n(qI)H@F) (173)
Q%L+ M2+ y(1 - y)¢12)I (Q + M2 +y(1 - y)g?)F
-—(M — Mpv)j' y

where we denote the momentum with the indices I (F) as the one. before (after) the charge

operator acts on the quark. For the case that the quark in the QQ pair is sti;uck,
A - 2
{-Qﬂ_ = (24 + %)‘Ps.l. — zs, (Pu. - %) , q4'= (P - A) +ps, V= o
\ Qi = '(24 - %),PsJ. — 25 (P4.L + Af‘) , ¢ = (P4 + %) +ps, ¥F= (24—_51712%74
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and the antiquark struck case,

{ 1= (Ps.L—é'zJ‘) —(zg+-§~)p4l, q1=p“+(p5_
PSS H Y A .

o[>

) | N
» YT niGste?)

b

F __ 25
v Y T z4+(z5—-€/2)
(175)

After all, in the |z| > £/2 region, the light-cone helicity non-flip, spin non-polarized GPDs

HS . (x,€,t) and spin polarized H3,(z,&,t) of each flavor are represented as

i+($7 §7t) = ﬁ

r .
7y (6200, 0;2,€,1) +162K73 (2, €, 1)
+64.08 K21 in59Q (g, £, t)) valence

) . . ) (176)
(o) (38.16 K3in==2(g, £, ) + 26.24 K =*(z, £, t)) Dirac sea, quark

Hi (2,6,t) =

—

\ ﬁ (34.56 K3in (g £ ¢) + 11.52K%in**(z, ¢, ¢)) Dirac sea, antiquark

(

s (32(0,0;2,€,1) + 79.2K52259(z, £, 1)

+3464K;Ir:: insQ(xa fa t)) Va;lence
ﬁ (32‘88](,;;“ (g, €,t) + 12.72K " =*(,€,t)) Dirac sea, quark
(29.28 K3in*=(z, £, t) + 17.76 Kin=*(z, ¢, t)) Dirac sea, antiquark

(177)

Mo, (2,€,1) =

He (2,6,t) = 4

\

ﬁi+($’£)t) = 9

1
\ N(P)

ﬁp) (7.2 K259 (g, € ) + 10.08 K259z, €, t.)) valence
NIT (11.76 K9i» =*(z, £, ) + 0.24K3i**=*(z,£,t)) Dirac sea, quark (178)

(»)
K/%)‘ (18:.96 K2ir==*(z, £,t) + 10.32 K" *=*(z, {,t)) Dirac sea, antiquark

[ 5 (1288(0,0;,¢,1) + 108.72A K322, €, 1)

e
+29.52A K 5@ (g ¢ 1) 4+ 10.08 AK33(z, &, t)) valence (179)
3\7%5)‘ (_30‘241(:3;“ “*(,¢, t)) Dirac sea, quark
m (_23-04K§;n (e, €, t)) Dirac sea, antiquark
(s (=3AD(0,0;2,€,) — 25 4A K592, £,1) ~
—20.64A K9z, £,1) + 18.24AKi5(z, £,1))  valence 150)
Fl('ﬁ (19.68K7%; (<, ¢, 1)) Dirac sea, quark
{ A‘T'l(,?j (12.48Kr **(,¢,1)) Dirac sea, antiquark
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(
e (—0.48AK;3"59(z, ¢, 1)
) —528AK™ 59z £ ¢) + 7.68AK33(x,§,t)) valence
#) (3.36 K2ir*=2(z, &, 1)) Dirac sea, quark
.Af(p) (3.36 K2in*=2(z, &, 1)) Dirac sea, antiquark.

Hiy(2,6,t) = (181)

Next we show the results in the center region |z| < £/2 which can be representated in
terms of the non-diagonal matrix element in the Fock state components. After all contraction
over the spin, flavor, and isospin indices, the spin non-polarized GPDs H(z, ¢, t) have only

the scalar components of the mean chiral field,

3
M, 6,1) ~ =07, S(0,6,0) = —67, [ FEEZ AL, (182)
where
(& AL
1= ((1+£/2)MB’ (1+§/2))’
1 (2% — £2/4)

(M - AZ) + M — (~tp, - .ml)?) (189)

Z = —— P S e
((1 +£/2)? (1 +¢/2)?
The operator acting on the quark antiquark helicities 6%, means that the quark antiquark

in the QQ pair has to appear in the total helicity state

(It + 1) (184)

One should recall that the function ’H( 259 in this region corresponds to the D-term
introduced in Sec.Il. It is important to argue the relation between the spontaneous chiral
symmetry breaking and the D-term [56]. In particular, this is seen clearly in the case of the

pion GPD. To see this, it is useful to decompose the D-term in the Gegenbauer polynomials
D(2) = (1 = 2) (diCy/*(2) + dsC5/*(2) + dsC5/*(2) + ) (185).

In the case of pion D-term , the value of the coefficient d; in the parameterization (185) can
be computed in a model independent way and it is strictly nonzero [57-60]. To compute
the pion D-term, Polyakov used the soft-pion theorem for the singlet GPD in the pion [56].
This soft-pion theorem has been derived using the fact that the pion is a (pseudo)Goldstone
boson of the spontaneously broken chiral symmetry. They obtained the expression for pion
D-term

D(z) =~ 21— ) (0¥(2) + ), (186)
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where M™ is the momentum fraction carried by the quarks in the pion. One see therefore
that the first Gegenbauer coefficient of the pion D-term is negative and strictly nonzero [57).

The nucleon D-term is not fixed by general principles. However, Petrov et.al. expect that
the contribution of the pion cloud of the nucleon can be significant [57]. Quantitatively for
the coefficients d,, d3, ds, the numerical estimate which is based on the calculation of GPDs

in the chiral quark soliton model gives
dy~ =40, dy~—12, dso —0.5. (187)

They argued that the coincidence of the signs in the nucleon and pion D-terms hints that
the D-term in the nucleon is intimately related to the spontaneous breaking of the chiral
symmetry. On the other hand, Eq.(182) which is obtained by the overlap integral-of the
light-cone wave function indicates more directly that the physics of the spontaneously chiral
symmetry breaking plays an important role in determining the size and the sign of the
D-term. As one can see from Eq.(182), the nontrivial structure in terms of z = z/¢ is
determined mainly by the scalar part of the mean chiral field ¥(q). As we will show in
Sec.V, the sign of the function ?—L‘iQ_,__’sQ gives same sign as that of the pion D-term.

Oh the other hand, the spin polarized GPDs H,..(z, ¢ ,t) in this region have zero ampli-
tude since the SU(3) flavor group integration gives zero value. This is because we have taken
only the 1st order QQ pair in the wave function, so if we include higher Fock contribution the
7A-ZT|.+($,§, t) in the central region may have non-zero value. The spin non-polarized GPDs

A
H2, (z,€,t) of each flavor can be represerited as

. 21.65(z,¢,t)/N(B) for 0 <z <¢/2
v (z,6,8) = 188
H(®61) { —21.65(z,¢,t)/N(B)  for —£/2<2<0 (1%8)
19.85(z, ¢,t) /N (B) for 0 <z < ¢/2
HE, (z,6,1) = | 189
#+(061) {—19.85(:::,5, t)/N(B) for —¢/2<z <0 (189)
12.65(z,¢,t)/N(B) for 0 <z <&/2
He, (z,6,1) = 190
H(2:60) { ~12.65(z,¢,t)/N(B) for —£/2 <z <0 (10)

These Eqs.(176)-(181) (188)-(190) are the our final representation for the GPDs, and in a
sense “master” formulae from which the impact parameter space PDF, TMD PDF, and

form factor, all structure functions we want, can be obtained with appropriate operation.
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V. NUMERICAL RESULTS AND DISCUSSION

For the numerical evaluation of the integrals contained in the overlap representations of
the matrix elements, we need first of all the self consistent profile function. This function

can be evaluated self-consistently with the following variational principle

§
WE[F(r)] =0. | | (191)

The resultant shape of the self-consistent profile function are dependent also on the dy-
namical quark mass M. In this study, we will perform the numerical estimate of the all
physical quantities with the quark mass M = 375MeV, and with the Pauli-Villars mass

Mpy = 562MeV reproducing the pion decay constant 93MeV. Our profile function self-
consistently obtained with the mass M = 375MeV is shown in Fig.2. '

FIG. 2: Self-consistent profile function F(r): the horizontal axis is plotted in units of 1/M with
M=375MeV. '

With this profile function, the baryon mass Mg becomes 1017.5MeV, the classical mass
(without quantum correction) in the mean field approximation. The self-consistent pseu-
doscalar II(p) and scalar X(p) field is plotted in Fig.4.

We first evaluate the probability distribution ®(z,q,) for the three valence quarks spin
unpolarized case and also A®(z,q, ) for the one of the three valence quarks spin polarized

case. These probabilities have the 'physical meaning as that the QQ pair carry the fraction
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FIG. 3: Upper s-wave component h(r) (solid) and the lower p-wave component j(r) (dashed) of the
bound state quark wave function. All the three valence quarks have the energy Ej., = 150MeV.
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FIG. 4: The self-consistent péeudosca.llar |TI(g)| (dashed) and scalar |£(g)| (solid) fields in baryons
in the momentum space. The horizontal axis is in units of M = 375MeV
z of the bal"yon momentum and the transverse momentum q,. We show the; numerically
evaluated probability in the two cases, one with the non-relativistic ap;r)roxima,tion where
we éet the discrete wave function involved in Eq.(121) as F(p) ~ W h(p), second
with the lower L = 1 component j(p). : "
For the spin polarized case, the probability A®(z,q,) is equal to the spin unpolarized
probability ®(z,q,) in the non-relativistic approximation. When we include the L =1
lower component j(p) in the discrete wave function, both probabiiity densities are drasti-
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upper component only —

upper + lower component - - -

FIG. 5: The probability distributions ®(z,q ) that the QQ pair carries the fraction z of the baryon
momentum and the transverse momentum q; plotted in units of M = 375MeV. The solid curved
surface shows the probability with the s-wave upper component A(r) only, the dashed curved

surface is that also the p-wave lower component j(r) included.
upper component only —

upper + lower component - - -

FIG. 6: The spin polarized probability distribution A@(x, q,)-

cally changed. From Figs.5,6, one sees that the A®(z,q,) is reduced compared with the
unpolarized one ®(z,q,). Since the numerical calculation of the proba,bilij:‘y distribution
with sea-quark effects F,,(p) by our computer takes too much time, it is not evaluated

except the value at the zero momentum point ®(0,0) and A®(0,0). The nucleon 3Q) nor-
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malization is denoted with the value at the zero momentum carried by the QQ pair ®(0,0)
NER(N) = 99(0,0) (192)

and flavor decomposition of the nucleon 3Q axial charge are

12 (upper component only)
A® = 12A8(0,0) = { 7.56 (upper + lower component) (193)
6.12 (upper + lower component + Dirac sea effect)
-3 (upper component only)
AP = _3A9(0,0) = { —1.89 (upper + lower component) (194)

—1.53 (upper + lower component + Dirac sea effect)

ABGQ) — g (195)

From Eq.(167), gf) and the nucleon spin contents in the 3¢) component approximation

are

gA

= 38(0,0) 1.05 (upper + lower component) (196)

0.85 (upper + lower component + Dirac sea effect)

1 (upper component only)

A®(0,0 :
AY = Q—((()O_)) =1 0.63 (upper + lower component) (197)

0.51 (upper + lower component + Dirac sea effect)

With the above probability distributions A®(z,q) and ®(z,q), the numerical evaluation
of the integrals (146)-(152) yields

K., = 0.07478, K,, = 0.03693, Ka, = 0.05750, Kaz = 0.05655,
AK,y = 0.05160, AK,, = 0.02666, AKs, = 0.04134. (198)

Putting these value into Eq.(158), we obtain nucleon 5¢) normalization:
NG = 15019 (199)
and flavor de¢composition of the nucleon 5@ axial charge:
AGD = 1775, APY =0.860, AL =0.419. (200)
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In the 5Q approximation, the flavor decomposed nucleon spin content are

AGR) 1 AGR)

Au = ey Ne = 053
Ad = —0.04,
As = 0.02, (201)

from which the isovector axial coupling constant and nucleon spin contents are

¢ =057, AZ = 051. (202)

With the relativistic effects, the nucleon axial coupling constant gf) has been underestimated

compared with the experimental value 1.27, even in the 3Q) component approximation. The
5@ component effect works to reduce gﬁf’) to smaller value. This value may be further modi-
fied by taking account of more higher Fock component in the baryon wave function. This is
well known as gf’) problem in the chiral soliton model, and is caused by the fact that we are
working in the relativistic mean field approximation without quantum corrections. Indeed,
the isovector axial coupling constant has a sizable 1/N, correction which is a quantum quark
loop effect. Wakamatsu and Watabe indicated that the model can give the reasonable value
of g4 if we include the subleading order in the 1/N, expansion [61]. On the other hand, the
spin content of the nucleon AY, as the isoscalar axial charge, has only subleading correction
in the § expansion. Again, the spin content AY¥ may be also more reduced if we include. the
higher Fock components, and can be expected to be more close to its experimental value
0.31 [29]. Now, we find that the ratio of the 5Q to the main 3Q normalization in the nucleon
with lower component is fairly large, i.e.

NG

D = 0.668 ~ 67% . (203)

A. Quark distribution function ¢(z) and Aq(z)

Next, we will show the predictions for the distribution functions. First, we compute
unpolarized and polarized spin non-flip GPD H,(z,§,t) and ﬁq(x,f ,t) of each flavor q in
the forward limit, ¢ — 0, where it coincides with the usual quark and antiquark distributions.
These results are shown in Figs.7,8, and 9 for unpolarized distributions and in Figs.10,11,

and 12 for polarized distributions, where we plot separately the contributions of the discrete
\
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FIG. 7: Theoretical prediction for the unpolarized u quark distribution u(z). solid curve: the
discrete level contribution. dashed curve: Dirac sea quark contribution. dashed dotted curve:

Dirac sea antiquark contribution
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FIG. 8: Theoretical prediction for the unpolarized d quark distribution d(z). The curves have the

same meanings as in Fig.7.

level and that of the Dirac sea quarks. Note that the contribution of the discrete level is
the sum of all contribution of 3¢ component and valence quarks contribution of the 5@
component. The discrete level distribution functions have peaked around at z = 1/3. On

the other hand, the contribution of the Dirac sea quarks arise from the additional QQ pair
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FIG. 9: Theoretical prediction for the unpolarized s quark distribution s(z). The curves have the

same meanings as in Fig.7.
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FIG. 10: Theoretical prediction for the polarized u quark distribution Au(z). solid curve: the
discrete level contribution. dashed curve: Dirac sea quark contribution. dashed dotted curve:

Dirac sea antiquark contribution

in the 5Q component. It has peaked at the z = 0. The behavior of the QQ pair distribution
qualitatively reproduces well the predictions obtained by the cranking formula based on the
same model [62-71]. As character of this model, Dirac sea contributions are closely related

to the effect of the pion clouds. It is interesting, in the present formalism, that only one

93



h valence =
on g Dirac sea quark = * *
ek Dirac sea anti-quark === |

FIG. 11: Theoretical prediction for the polarized d quark distribution Ad(z). The curves have the

same meanings as in Fig.7.

0.057 ¥ = ¥ ¥ ¥ T T - -
I Diac se\éaéeﬂ;?ﬁ s
0.045p " Dirac sea anti-quark === 1

oo4f .
0.035} .
0.03f .
0.025f .
0.02f .
0.015f N
001} -

0.005 /\ el

0 o

-0.005 . . o o . . ! ‘ gl 1

FIG. 12: Theoretical prediction for the polarized s quark distribution As(z). The curves have the

same meanings as in Fig.7.

quark-antiquark pair reproduce the Dirac continuum effects. The absolute value of the Dirac
sea contribution in the present estimate, however, is about one third compa,re;l with the one .
based on the perturbation in the soliton angular velocity §2. This is because only the 1st
order QQ pair has been included in the present calculation. If higher Fock components are

included, we would expect comparable absolute value as the result obtained based on the
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cranking treatment [68-71]. We emphasize that our results obtained based on the light-cone
wave function satisfy the positivity of the unpolarized parton distributions.

It may sound peculiar that the strange quark has valence contribution in the z > 0
region. However, because of the SU(3) flavor rotation in the 5@ Fock components, valence
quarks are mixed state in the SU(3) flavor space. It is important to realize that, as fa,.r as
total numbers of s and 5 quarks are precisely equal in the nucleon, valence quarks can have
the strangeness component. There are two types of éon_tributions to s(m), one the valence
contribution having/the peak around z = '1 /3, second Dirac sea contribution having the
peak rapidly growing at x = 0, while there is only Dirac sea contribution for 3(z). From
this reason, the shape of the strange quark and antiquark distributions have significant

asymmetry. In Fig.13, we show the CQSM prediction for z [s(z) — 3(z)]. This asymmetry
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FIG. 13: The theoretical prediction for z [s(z) — 5(z)] at the energy scale 16 GeV>.

of s(z) and 3(z) distributions would be the origin of the NuTeV anomaly. The NuTeV
Collaboration extracted the value of the weak mixing angle, sin® fy, by measuring the ratio
of neutrino neutral-current and charged-current cross sections on iron [72, 73]. Their valué,
sin? = 0.2277 4 0.0013(stat) £ 0.0009(syst), is 3 standard deviatiens above the standard

" model prediction. The measured ratio R~ is related to the Weinberg angle 8y 'by

R = INc ~ 9N a,'?c
O6c — 0cc
-1 ! -
= -2— = Sll’l2 0w + JRZ + 6R60D + JREW’ (204)
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where the three correction terms, respectively, stand for the target nonisoscalarity correction
(6R%), QCD corrections (§Rgop), and higher-order electroweak corrections (éRgy). The:

. /
QCD corrections come from three main sources as ‘

where §R;, §R7 and Ry, respectively, stand for possible strange-sea asymmetry (S~ =
s — 5 # 0), isospin violation (up, # dnp) effects in the parton density of the nucleon, and
the NLO corrections. If we focus on the first correction due to the possible asymmetry of
the strange sea in the nucleon, the QCD correction is given-as

SR, ~ — <% - gsin2 0W) -[%-:—]], (206)
where

5] = [ ' [s() — 5(2)] d, (207)

@)= "2 [u(z) - a(e) + d(z) - d(2)] da. (208)
Recently, the CTEQ group performed a global PDF fit including the NuTeV “dimuon events”
on the neutrino and antineutrino production of charm [74, 75]. Their analysis leads to
a central 'value [S'—]JCTEQ ~ 0.002. Note that the positive [S~], which means that the
momentum distribution of s quark is harder than that of the 3 quark in the nucleon, works
to reduce the discrepancy between the NuTeV determination of sin? 6 and the world average
of other measurements. As shown in Fig.13, the CQSM predicts the s quarks carry mote
momentum fraction than the 3 quarks, and the moment of the z [s(z) — 5(z)] is given as
[S7]logsm = 0.0016 at the energy scale Q? = 16 GeV? evolved from the model energy
scale 0.3GeV? in order to compare with the NuTeV measurement. Inserting this value with
[@7] = 0:226 obtained by the same model into Eq.(206), we obtain the corréction due to

the strange sea asymmetry

SR =-0.0034, (209)

which explains nearly 70% of the NuTeV anomaly. This estimate are performed without the
SU(3) symmetry breaking term, arising from the effective mass difference Am, between the
strange and non-strange quarks. It was also shown that [S™] is sensitive to the Am,. With

the SU(3) breaking term Am,, it was confirmed in this model that the momentum carried
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by s quarks becomes more large compared with that of the s quarks, then the asymmetry
of the s quarks and § quarks distribution may resolved the NuTeV anomaly [76].
Also very interesting are the isovector antiquark distributions #(z) — d(z) and A#(z) —

Ad(z). An interesting quantity related to the isovector antiquark distribution is the Got-

tfried sum , which is defined as
1. S _ ‘
Se=3%+3 /0 dz [a(z) — d(=)), (210)

The integral on the RHS is scale-dependent only at the two loop level; its scale dependence
is negligible over the entire perturbative region. If the sea quark distribution were isospin
symmetric, @(z) = ‘d(x), which would be the case if, for example, one assumed the sea
quark distribution to be generated entirely radiatively, this quantity would be equal to 1/3
“Gottfried sum rule”. However, the NMC experiment finds a significant deviation from this
value, .

Se = 0.2356 + 0.0026 at Q? = 4GeV?, {211,

indicating that the sea quark distribution is rather far from flavor-symmetric [77]. Note
that the Gottfried sum rule does not follow from any fundamental principles of QCD. In
fact, the large-N, picture of the nucleon as a chiral soliton naturally gxplains the presence
of a flavor-antisymmetric antiquark distribution. In Fig.14, one can see that the antiquark

distribution @—d indicates the isospin asymmetry. Note, however, that the present prediction

Y a— . : 5 i
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X

FIG. 14: The theoretical prediction for the unpolarized antiquark asymmetry %(z) — J(x)
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for the asymmetry @(z) — d(z) is not enough to reproduce the value extracted by the NMC'
collaboration, although the model predicts excess of the d quark than the @ quark in the

proton. Our model gives

Se =029 at Q*=0.3GeV>. (212)

In fact, in the model calculation based on the cranking formalism, the unpolarized isovector
distribution arise in the next to leading order in the 1/N,. expansion. Therefore, if we
include subleading 1/N, quantum corrections in this formalism, we would expect more large
asymmetry of %(z)—d(z) distribution [70, 71]. It has been suggested by several authors that
this isospin asymmetric sea is due to the pionic contributien to the sea quark distribution.
Henley and Miller argued that the pionic contribution to the difference between the number
of dd pairs and ui ones in the proton is equal to the difference between the number of 7+
and 7~ in the proton [78]. In the CQSM, the difference of the d quarks and % ones arise
from the SU(3) flavor rotating chiral mean field. In fact, the hedgehog ansatz Eq.(88) breaks
the flavor SU(3) and spatial rotational symmetry [70, 71]. We have to rotate chiral mean
field in the flavor and ordinary space in order to restore the symmetry. The nucleon in this
model is obtained as the collective rotational state.

Next we show the model prediction for the polarized antiquark distribution. As shown in
Fig.15, our model predictions also indicate the breakdown of the SU(2) symmetric sea quark
polarization, A@(z) = Ad(z), which is frequently used in semipheriomenological analysis
of parton distributions. In the present mean field approximation, % is" weakly polarized
in the opposite direction to the proton spin, while d is polarized along the proton spin.
However, these spin polarization direction of each flavor may be reversed if we include the
1/N, quantum correction. Indeed, the same model prediction including the subleading 1/N,
correction based on the perturbative expansion of the soliton rotational angular velocity
shows the sizable breakdown of polarized antiquark distribution A%(z)—Ad(z) with positive
sign, which indicates that the polarizations of 4 and d prefer parallel and anti-parallel to the
proton spin respectively [62-65]. Although strange quark and antiquark only appear from
the sea quark polarization, the polarized strange distributions also have asyminetry between
quark and antiquark contributions. The origin of this asymmetry is the same as those of
the unpolarized strange quark distribution. The polarized sea quark asymmetry is the one

of the prominent prediction based on the chiral quark soliton model.
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FIG. 15: The theoretical prediction for the polarized antiquark asymmetry A#(z) — Ad(z).
B. TMD parton distribution ¢(z,p,) and Ag(z,p,)

The TMD parton distributions can be easily evaluated by leaving the transverse momen-
tum of the struck quark unintegrated. Figs.16-21 show the model predictions of the flavor
decomposed TMD parton distributions.

(a) ()
: valence —— Dirac sea antiquark =
Dirac sea quark -~ -

FIG. 16: The theoretical predictions for the unpolarized TMD distribution u(z,p,) with the
fraction z of the baryon momentum and the transverse momentum p, plotted in units of M =
375MeV. (a)The red curved surface is the discrete valence contribution, while the blue curved
surface is the Dirac sea quark contribution. (b)The theorefical prediction for the antiquark TMD

distribution @(z,p, ).
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FIG. 17: The theoretical predictions for the unpolarized TMD distribution d(z,p,) and d(z,p, ).

The curved surfaces have the same meaning as in Fig.16

(a) . (b)
valence ~— Dirac sea antiquark —
Dirac sea quark ---

FIG. 18: The theoretical predictions for the unpolarized TMD distribution s(z,p,) and .§(w,-p 1)

The curved surfaces have the same meaning as in Fig.16
’ |

For the distributions in the transverse direction, we show its dependence on the absolute
value [p, |. All the discrete level distributions have Gaussian shape in the transverse direc-
tion, and are fully suppressed in the region |p,| > 0.5GeV. On the other hand, the Dirac
sea quark distribution has a long tail contribution in the transverse direction, although its
absolute value is very small in the low |p, | region compared with that of the discrete level

'

distribution. In Fig.22, we show the unpolarized u qué,rk distribution in the transverse di-
rection with the fixed Bjorken variable z = 0.3. This long tail contril;utioﬁ comes from the
deep negative-energy Dirac sea continuum distorted by the presence of the chi;‘al mean field.

Recently, the transverse momentum dependent PDF have attracted much attention in the

relation with the single spin asymmetry (SSA) measured in the semi-inclusive deep inelastic
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(a) , (b)
' valence — Dirac sea antiquark —
Dirac sea quark ---

FIG. 19: The theoretical predictions for the polarized TMD distribution Au(z,p ) and A'El(x, Py).

The curved surfaces have the same meanings as in Fig.16 (

(a) , (b)
valence — Dirac sea antiquark —
Dirac sea quark ==~

FIG. 20: The theoretical predictions for the polarized TMD distribution Ad(z, py) and Ad(z,p,).

" The curved surfaces have the same meaning as in Fig.16

scatterings [79, 80]. Interestingly, these SSA phenomena can be explained by taking account
of the “Sivers function” fi.(x,p,) [35]. Recently, Collins et.al. tried to extract information

for the Sivers function from the HERMES data [81, 82]. They assumed the Gaussian function

in the transverse direction as

f((l?) exp(_pi/pfmp)

f(w$pJ.) = ﬂ_pznp ]
s exp(—p1 /Pl ~
 Fhlep) = Syl T2 ), . e

Y -

and use the mean square, and mean transverse momentum in their analysis of the HERMES

'

data

2\ _ fd2P_LP§_f($,P_L) L2
(pJ) B fd2P1.f($aPJ.) R
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FIG. 21: The theoretical predictions for the polarized TMD distribution As(z,p,) and As(z,p,).

The curved surfaces have the same meaning in as Fig.16
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FIG. 22: The theoretical prediction for u(z,p ) at = 0.3. The tra,nsv_erse momentum is plotted
in units of M = 375MeV. '
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However, our analysis here shows that it is not the good assumption when the Dirac sea

distribution has a long tail contribution in the transverse direction. If we include higher
Fock components in this formalism, the Dirac sea contribution predicted in tile CQSM may
be more enhanced. Then, the mean square and mean transverse momentum are strongly
influenced by the large p; region, and would be drastically different from the ones obtained

by the Gaussian ansatz Eq.(214). The Sivers function “fiz(z,p,)” itself is a time. reversal
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odd function. Whether one can calculate such a T-odd functions using a chiral model is still
examined by many people [83, 84]. Nonetheless, the important fact the CQSM suggests is
that one have to take into consideration the Dirac sea contribution more seriously in the

investigation of the SSA phenomena.

C. GPDs: Hyi(z,{,A] =0) and Hys(z,6,A% = 0) with zero transverse momentum

transfer

Now, we will start to show the GPDs in the case ¢t # 0. As we have reviewed in sec.I,
this structure function defined by the off-forward matrix element have information of quark
spatial distribution as well as those of momentum distribution. The electromagnetic form
factors calculated in the chiral quark soliton model agree rather well with the experimentally
measured ones up to transferred momenta of the order —t ~ 1GeV? [85, 86]. First, we will

give the model predictions with zero transverse momentum transfer A% = 0, where
t= —4M§—L. (215)
1-¢?)
In the 'oVerfap representation, the GPDs are parameterized in terms of the longitudinal
momentum transfer £:

Hesle,6) =0 (o= ) Do) + 0 (S o) WP Ve, (aae)

In the |z| > £/2 region, superscript (N — N) means that the structure function is denoted
by the diagonal matrix element in the Fock components. On the other hand, the function in
the center region |z| < £/2 is represented by N +1 — N — 1 non-diagonal Fock component
transition. In Fig.23, a typical shape of the flavor decomposed GPD Hi,(z,¢,t) as a
function of the variable z is shown at £/2 = 0.3. For {/2 = 0.3 one has t = 0.35GeVZ.
In this figure, we show separately the contributions of the valence level and of the Dirac
continuum. We see that the Dirac continuum contribution is essential especially in the region
—€/2 < z < £/2, and also in the region z < —¢/2, corresponding to (minys) antiquark
distributions, the Dirac continuum contribution ensures the. positivity of antiquarks. Let us
also note that the points |z| = £/2 divide the interval of the variable z(—1 < = < 1) in three
regions:z < —¢/2, where the function H, 4 (z, ¢, t) describes the antiquark distribution; z >
£/2, where it corresponds to the quark distribution, and —¢/2 < z < £/2, where H(z,¢,t)
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FIG. 23: The u quark distribution H(z,£,A?) for A} = —A? — ¢2MF, = 0 and £/2 =

Solid curve: contribution from the valence level. Dashed curve: contribution from the Dirac sea

continuum.

resembles a meson wave function. It is therefore natural that the function H, 4 (z, ¢, ) has
discontinuity at |z| = /2. Actually, we divide artificially the division of the = integrals into

separate domains:

-¢/ —-—c - 1+N-1 L -
[ e+ / W00 + [, aHE V@0, e

In the present approximation, i.e. the absence 6f the higher Fock components, the GPD of
the center region |z| < {/2 is odd function of z, so that the integra.tio-n from this region
is zero. The form factor integrated over z contains a N — N diagonz;l transition in Fock
space. However, such discontinuity would lead immediately to a violation of the factorization
theorems for DVCS processes, since the expression for the DVCS amplitude (71) contains a

factor .

1 1 1 - '
[, (m—§/2+ie+x+f/2 )H(”” SUIR (218)
which would be logarithmically divergent if H(x,¢,t) was discontinuous at |z| = £/2.

On' the other hand, Petrov, et al. have indicated that the discontinuities are artifacts of

neglecting the momentum dependence of the constituent quark mass [57]. They show that if
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FIG. 24: The theoretical predictions for (a) the valence distribution #43"*"(z,¢, A% = 0) and (b)

the Dirac sea quark distribution #%47°*%(z,¢, A% = 0).
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FIG. 25: The theoretical predictions for (2) the valence distribution H$3'*"(z,&, A2 = 0) and (b)

_the Dirac sea quark distribution Hf_‘_‘,_”“ (z,€,A%2 =0).

one include the momentum dependence of the quark mass, the discontinuities are smeared,
and the model predicts the characteristic crossovers at |z| = /2. Hence, the integrals
is finite but enhanced by the. contribution near |z| = £/2. In the present light cone wave
function formalism, it is very complicated to include the momentum dependence of the quark
mass. We emphasize that the active quark antiquark pair in the center region |z| < /2 are
correlated in the scalar isoscalar (or o channel Eq.(182)). Such a contribution is supported
by the recent preliminary HERMES data on beam-charge asymmetry in DVCS [87]. As
explained in the Sec.IV, the function in this region corresponds;to the so-called D-term.

As is shown in Fig.(23), we can see that the amplitude in the region 0 < z < |¢/2| has
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FIG. 26: The theoretical predictions for (a) the valence distribution Hf,;f'“l‘ (z,€,A% = 0) and (b)

the Dirac sea quark distribution #357°°*(z,£, A% = 0).
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FIG. 27: The theoretical predictions for (a) the valence distribution #43"*"(z,&, A% = 0) and (b)

the Dirac sea quark distribution ﬁ'_ﬁ_”“(z,f A =0). .

negative sign. In this fra,mework-, the size and sign of the D-term are thoroughly determined
from the scalar part of the additional QQ pair wave function generated due to the chiral
mean field Eq.(182). As emphasized frequently until now, this Dirac sea contributions are
closely related with the effect of the pion clouds. From dynamical point of view, the two
pion exchange contributes to the D-term in the CQSM since the D-term consists of the
scalar-isoscalar part only. Although D-term contribution is invisible in the forward Hmit,
the second moments of the H(z,¢,t) and E(z,¢,t) have the contribution frofn the D-term,

even its first moment have no D-term effects. For example, the second moment of H?(z,¢,t) -
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FIG. 28: The theoretical predictions for (a) the valence distribution #47"*"(z,¢, A% = 0) and (b)’
the Dirac sea quark distribution #47°**(z,¢, A% =0).
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FIG. 29: The theoretical predictions for (a) the valence distribution ﬁf,:,_”“"(a:,f , A% =0) and (b)

the Dirac sea quark distribution Hie (2, ¢, A2 =0).

is expressed as [56]

1 4
/ doo HY(a,£,8) = Mi(t) + zd"(1)¢" (219)
i
Here, M3 (t), that at ¢ = 0 it is related to the momentum fraction carried by quarks, gives
us information about the spatial distribution of quark momentum inside the nucleon. The
constant M3 (0) is related to the parton distributions via

MO = [ doa @) +a=). - @)

>

On the other hand, the form factor d?(t) is related to the traceless part of the energy-
momentum tensor T,'fj(r) = £y V;3(r) which characterizes the spatial distribution of

shear forces experienced by quarks in the nucleon. The form factor d?(t) contributes to the
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zp;-independent part of the real part of the DVCS amplitude, which is accessible through
the beam charge asymmetry. Another interesting quantity related to the second moment is
the generalized form factor, A,(t) + B,(t)

T(0) = 5(A0) + Bo(0) = [ doo(H,(o,6,) + By(a,£,1) (221)

which gives us information about the spatial distribution of the quark angular momentum

inside the nucleon. The second moment of E(z,§,t) is represented as
1
[ doz B(z,,1) = B,(t) - gdi(0)é? (222)
0

where By(t) is called the anomalous gravitomagnetic moment. Since the signs. of the D-term
involved in the second moments of H(z,¢,t) and E(z,§,t) are opposite to each other, the
Ji’s sum rule Eq.(221) has no contribution from the D-term.

Next, we display the full z and ¢ dependence of H%, (z,£,t) of each flavor in Figs.24-26.
By moving along lines of constant £, one nicely sees how the sensitivity of the GPDs to the
distribution in the |z| < /2 region increases relative to the distribution in |z| > £/2 region
when increasing the parameter £.

The polarized GPDs ?7?,_+(x,§,t) of each flavor q are shown in Fig.27-29. As we have
explained in Sec.IV, there is no contribution from the center region |z| < £/2 because we

neglect the higher Fock components.

D. Impact parameter space parton distribution ¢(z,b,)

GPDs in the § = 0 limit, H44(z,¢,A}) and H,(x,&,AZ) have very interesting informa-
tion of the baryon structure. As shown from Eqs.(23)-(26), we can obtain only H(z,0,A3%)
and H(z,0,A?2), on the other hand E(z,0,A2) and E(z,0,A?) decouple in the & — 0 limit.
We can get the impact parameter space parton distributions ¢(z, b, ) by Fourier transform
of H(z,0,A%). ¢(z,b,) is the expectation value of the number operator, and its interpre-
tation does not suffer from relativistic effects [88]. The variables b, and z live in different
dimensions, and therefore there is no quantum mechanical uncertainty constraint. Indeed,
q(a:, bi)isa spatial-and-momentum-density hybrid in that it represents a spatial density in
the transverse directions and momentum density in the longitudinal direction. In Figs.30,
31, and 32, we show the model predicti‘on of the impact parameter space distributions for

u, d, and s quarks
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FIG. 30: The theoretical prediction for u(z, |by|).
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FIG. 31: The theoretical prediction for d(.a:, [by]).

For u and d quarks, the contributions of the Dirac sea quarks are small compared with
that of the valence quarks. But the Dirac sea quark contributions-have long tails in the
impact parameter space, and its contribution become dominant as z becor}les small.l. In
order to sea this, we show the u quark distributions at various fixed = points. We can see
from Figs.33 and 30 that although the valence contribution has a peak around z = 0.3,

the Dirac sea contribution increases monotonously as z decreases. From Fig.33 (a), we can
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FIG. 32: ‘The theoretical prediction for s(z,|bL|).

see that the contributions of the Dirac sea and valence quarks with small  are reversed
bordgring at |by| = 1.8fm. As we have mentioned repeatedly, the Dirac sea contributions
would be more large if higher order Fock components are included. Therefore, the CQSM
predicts that the partonic distribution have large spatial extension in the b, direction due
to the long tail contributions of the Dirac sea contributions, This indicates that the QQ
pair contributions in‘this model are closely related to the pionic cloud srounding the three
valence quark core.

A density interpretation of the distributions E?(z,§,t) at ¢ = 0 is more subtle, since
the corresponding matrix elements -are still non-diagonal in the proton helicity (Eq.(24)).
One can however diagonalize by the usual trick of changing basislfrom helicity states |+),
and |—), to transversity states |+); = 1/4/2(|+). & |—-).). For a particle at rest the new
basis states are polarized along the positive or negative z-axis, but for our fast-moving and
transversely localized protons they are not eigenstates of the angular momentum operator
J; along the z-axis, and their physical meaning is not quite clear. This reflects the notorious
difficulty of defining transverse spin for relativistic particles and the complicated nature of
transverse spin operators in the light-cone framework. Proceeding nevertheless along this
line, Burkardt has obtained several physically intuitive results [88]. The Fourier transforms
of E%(z,0,t) describe a relative shift in the transverse density of partons along the y direction
between the polarization states |+), and |—)., or between the states |[+), and [+),. The

second moment of E?(z,¢,t) is called anomalous gravitomagnetic moment Eq.(222). In the
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FIG. 33: z-dependence of the u quark impact parameter space distribution

chiral quark soliton model, it is shown that the isoscalar combination in the ¢ — 0 and

¢ — 0 limit identically vanishes [58]
1 .
B*(0) =Y /0 dz 2E(z,0,0) = 0. ' (223)
7

In terms of the in_lpa,ct‘ parameter space, the moments Fj(t) = [dzEi(z,¢,t) and
f c_l:t:a:Eq(m,g,t) at £ = 0 and ¢ = 0 are also related with the corresponding averages (by)
and (zb¥) for quarks. Conservation of the fransverse center of momentum implies that the
sum of (zb¥) over all parton species is zero in a hadron with zero center of momentum,
which provides another derivation of the sum rule (223) for the distributions E9(z, ,t) in
the forward limit. As we have denoted, in order to obtain H(z,§,t) and E(z, ¢, t) separately,
we have to calculate the light-cone helicity flip amplitude H;- in addition to the helicity

non-flip one Hy4. To calculate E in the light-cone wave function is a task of future studies.

Next, we point out that there is another class of hadronic matrix elements that carries
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information on both the transverse and longitudinal structure of partons, namely TMD par-
ton distributions: In the present formalism, they can be obtained by leaving the transverse
momentum unintegrated, and the predictions based on the CQSM were already shown in
Figs.16-21. As we have explained in the Sec.H, in momentum space they have the meaning
as the density of the transverse and longitudinal momentum space of the struck parton. The

definition of the TMD parton distributions is

dZZJ_.dZ_ 'i:cP'*'.z_—ik Z - ]. _ ]. ]. — 1
Q(%kl):/we + *-(P|¢q(0,—§2 ,—EZL)’YJ’W(Oa 5% ,Eh)lp), (224)

which is related to the usual quark density by g(z) = [ d*k, g(z, k). This corresponds to
different transverse positions of the emitted parton (by +1/2z) and the reabsorbed parton
(by —1/22z,). The Fourier transforms of unintegrated parton distributions with respect
to the parton k, thus describe correlations of the transverse locz?tion of partons in the
nucleon, and never represent densities in impact parameter space. On the other hand, the
impact parameter space PDF is the transverse space density measured from the transverse
center of momentum of all partons R, = ¥, z;r1 ;, where z; is the momentum fraction
carried by each parton and r, ; is their transverse position. Therefore, if the struck quark
momentum k; is left unintegra,'ting in the GPDs in the £ — 0 limit, we have opportunity to
get double information about the nucleon structure in the transverse direction. The Fourier
transform of these GPDs over the A, contains a mean impact parameter space information
b, = 1/2(b™ + b%**) measured from the transverse center of momentum, and a correlation

in the transverse direction z,; of the incoming and outgoing quarks.
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VI. SUMMARY AND CONCLUSIONS

We have studied the generalized parton distribution functions (GPDs) through the light-
cone wave function derived from the chiral quark soliton model, which is an effective model
of baryons maximally incorporating the spontaneous chiral symmetry breaking of the QCD
vacuum. In the relativistic mean field approximation in this model, one obtains a quantita-
tive picture of baryons as localized states of constituent quarks bound by a self-consistent
chiral filed. Simultaneously, the negative Dirac sea is distorted by the same chiral field,
leading to the presence of an indefinite number of additional quark-antiquark pairs in the
baryons. Then the baryon wave functions can be constructed as a product of N, = 3 valence
quark wave functions and the coherent exponent of quark-antiquark pairs.

The GPDs are denoted by H, E, H and E, which depend on three variables; the light-
cone momentum fraction z, light-cone momentum transfer £, and total squared momentum
transfer t = A?. In the light-cone framework, these four type GPDs appear in the particular
combinations according to the light-cone nucleon helicity flip or non-flip. In this thesis,
we have concentrated on the spin unpolarized and polarized helicity non-flip combinations
Hoy = VIZEH — /T EE and Ty, = yT—EH - £/y/T=F, respectively.

We have clarified th\e expression of the GPDs in the light-cone frame using the light-cone
wave function in this model. They are representated as the overlap integrals of the initial
and final state Fock components. In the characteristic kinematical range in the expression of
the GPDs, there arise non-diagonal Fock space matrix elements, which never appear in the
case of ordinary Feynman quark distribution functions. Consequently, the GPDs contain
quite new information on the nucleon structure.

In the |z| < £/2 region, where the nucleon emits a quark-antiquark pair, the initial 5Q
and final 3¢Q) Fock components are relevant. The GPDs in this region, called D-term, behave
like a meson distribution amplitude. The physical content of the z-moment of this function
is interpreted as the distribution of the shear forces experienced by quarks inside nucleon.
In our model analysis, the GPDs in this region have contributions only from the Dirac sea
continuum distorted by the presence of the chiral mean fields. The size and sign of the
D-term are thoroughly determined by the scalar part of the chiral mean field.

We numerically investigate the GPDs under various limiting conditions. In the forward

limit ¢ — 0, the GPDs reduce to the ordinary Feynman parton distribution. The model
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predictions show that the valence contribution has a peak around z = 1/3, while the Dirac
sea contribution has a rapidly growing peak near * = 0. The model also predicts the
#(z) — d(z), s(z) — 3(z), Ad(z) — Ad(z), and As(z) — A5(z) asymmetries. We have point
out that the predicted magnitude of s(z) — 5(z) asymmetry is large enough to resolve the
so-called NuTeV anomaly on the fundamental parameter sin? fy in the standard model.

When one leave the transverse momentum of the struck quark unintegrated in the forward
limit ¢ — 0, one can obtain the transverse momentum dependent quark distribution function.
While the valence quark distribution has like a Gaussian shape in the transverse directions,
the Dirac sea distribution has a long tail in that directions. This long tail contribution comes
from the deep negative Dirac sea orbitals distorted by the presence of the chiral mean field.
Recently, the transverse momentum dependent PDF have attracted much attention in the
relation with the single spin asymmetry (SSA) measured in the semi-inclusive deep inelastic
scatterings. Interestingly, these SSA phenomena can be explained by taking account of the
“Sivers function” fi5(z,p,) expected to be able to extract information from the HERMES
data. In the data analysis, the unpolarized transverse momentum distributions f(z,p,) are
needed, and the Gaussian ansatz in the transverse momentum directions for f(z,p,) are
employed. Then the mean square and mean transverse momentum for f(z,p, ) evaluated by
the Gaussian ansatz are frequently used in the analysis. However, our analysis here shows
that it is not the good assumption when the Dirac sea distribution has a long tail contribution
in the transverse direction. Then, the mean square and mean transverse momentum are
strongly influenced by the large p, region, and would be drastically different from the ones
obtained by the Gaussian ansatz. We emphasize that this Dirac sea contribution has to be
taken more seriously into the analysis of the single spin asymmetry phenomena.

In the zero-transverse-momentum transfer case A2 = 0, we have shown the full z and ¢
dependence of the GPDs H3 ,(z,¢,t) and H  (z,£,1) of each flavor ¢. In the chiral quark
soliton model, the large and negative sign contribution for the D-term in the |z| < £/2 region
is given by the isoscalar part of the QQ pair wave function. This Dirac sea contributions
are closely connected with the effect of the pion clouds, and the negative sign of the nucleon
D-term obtained by us coincides with that of the pion D-term evaluated by using the soft
pion theorem. Therefore, we emphasize that the behavior of the D-term is related to the
spontaneous chiral symmetry breaking of the QCD vacuum. From the dynamical point of

view, the two pion exchange contributes to the D-term in the CQSM, since the D-term

74



consists of the scalar-isoscalar part only.

In the purely transverse momentum transfer case, GPDs become the probability density
of both the longitudinal momentum direction and impact parameter space. The model
predicts that quarks in low-z region have large spatial extension in the b, direction. The
QQ pair contributions are essential in this result. It comes from the fact that the QQ pair
simulates to the pion cloud surrounding the three valence quark core.

We have point out that the impact parameter space quark distribution and transverse
momentum dependent quark distribution have different information about transverse space
directions. The TMD parton distributions have the meaning as the density of the transverse
and longitudinal momentum space of the struck parton. The Fourier transforms of TMD
parton distributions with respect to the parton k, describe correlations of the transverse
location of partons in the nucleon, and never represent densities in impact- parameter space.
On the other hand, the impact parameter space PDF is the transverse space density mea-
sured from the transverse center of momentum of all.'partons Ry = ¥ ;=y zir1 ;. Therefore,
if the struck quark momentum k, is left unintegrating in the GPDs in the £ — 0 limit,
we have opportunity to get double information about the nucleon structure in the trans-
verse direction. The Fourier transform. of these GPDs over the A contains a mean impact
parameter space information b; = 1/2(b" + b%**) measured from the transverse center of
momentum, and a correlation in the transverse direction z; of the incoming and outgoing

quarks.
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APPENDIX A: GENERAL CONVENTIONS

For completeness, notational conventions are collected in line with the standard text-
books.

Lorentz vectors. We have used

zt = %(wo +2°) and 2z~ = —12-(;50 — 2%, (A1)

respectively, referred to as the “light-cone time” and “light-cone position”. The covariant

vectors are obtained by z, = g,,2”, with the metric tensor

01 0 O
9 = gw = LO0 0 (A2)
0 0 -1 0
oo o -1
Scalar products are
g-p=a'p, =cp, +ap_+a'p+atp=2tp +eTp —xL-p,. (A3)

All other four-vector including 4# are treated in the same way.

Dirac matrices. Up to unitary transformation, the 4 x 4 Dirac matrices y* are defined by
T+t = 2g" (A4)

4° is hermitean and v* anti-hermitean. Useful combinations are 8 = 7* and o = 1%9*, as
well as
1., ,
o =i =), =17 =i (A5)

They are usually expressed in terms of the 2 x 2 Pauli matrices

O O B R

In the Dirac representation the matrices are
(o) (5
0 -1/’ —o* 0/’
o= (0 I) e (crk 0 ) i <a'k 0) (A7)
I 0/)’ 0 —ot)’ 0 of '
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Projection operators. The chiral representation of the y-matrices is used, particularly
7t =171 =0 (A8)
Alternating products are, for example,
Yyt =2y and 9Tyt =297 (A9)

The projection matrices becomes

1 1 | 1, 1.,
A= ™" =577 and A==’y =50y (A10)

Dirac spinors. The spinors u,(k, ) and v,(k, ) are solutions of the Dirac equation

(B —m)u(k,X) =0, (k+m)v(k,X)=0. (Al11)

They are prthonormal and complete:

u(k, Nu(k,X') = —v(k, Nv(k, X') = 2m, , (A12)
Z)\: u(k, \)a(k,\) =k +m, ;v(k, No(k,\) = —m. (A13)

The Gordon decomposition of the currents is useful:
. n o 1 o
u(p, Ay u(g,A) = 9, \)y*o(p, X) = 5—u(p, ) [(p + ¢)* + 10" (p — q)uJu(g, X). (Al4)

We use as Dirac spinors

(V2 0
L . )
Ry = R a7 =) B
\ o vk
0 Za
& 1 -m k ! etk Als
D= | ki, | TR | A
\ VR ’
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APPENDIX B: GROUP INTEGRALS

In this appendix, we give a list of group integrals used in the main text, over the Haar
measure of the SU(N) group, normalized to unity, [dR = 1.
For any SU(N) one has
; A
[drR! =0, [dRR} =0, [dRRIR =85, (B1)
For N = 2 the following group integral is non-zero:

1
/ dRR[R] = Zc;;. (B2)

For N > 2 this integral is zero; its analog in SU(3) is
1
/dRR{ RRE = 2% (B3)

On the contrary, in SU(2) it is zero.

The general method of finding integrals of several matrices R, R! is as follows. The result
of an integration over the invariant measure can be only invariant tensors which, for the
SU(N) group, can be built solely from the Kronecker § and Levi-Civita € tensors. One
constructs the supposed tensor of a given rank as a combination of é’s and €’s, satisfying

" the symmetry relations following from the integral in question. The indefinite coefficients
in the combination are then found from contracting both sides with various ¢’s and €’s and
thus by reducing the integral to a previously derived one.

For any SU(N) group one has

[ dRRL R RER: = s [ahat (50 — ooy + et (5453 — oo

g1 92 N J2 71 N 71772
(B4)
since its contraction with, say, d% must reduce it to Eq.(B1).
In SU(2) there is an identity
5;3 €j1j, 5;1 €jajs T 6?26]'3.7'1 =0, (B5)
using which one finds that the following integral is non-zero:
1 . . .
/ dRR]RIRERY = 5 (60185 7 ey, + 81280, es, + 580, M ey, s,) (B6)
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In SU(3) and higher group, integral is zero. The analog of the identity (B5) in SU(3) is

(notice the signs in the cyclic permutation!)
6;'1 €jadsia — 5;'2 €jajais T 5;'3 €iagije — 6;'4‘€j1j2j3 =0, (B7)

and the analog of Eq.(B6) is

J3 "4

| ARES RERERERY (BS)

1 . . . o
— ,2_4 (59/1 5}1 ef2fafs €injais + 5;‘2 5.17,2 efsfah €isjair + bea 5;3 fihif €iiria T+ 554 5;4 efifafs 5]'11'2.7'3)

This integral arises when one projects three quarks from the bound-state level onto the octet

baryon.

To evaluate the SU(3) average of six matrices, one needs the identities

€irjojs Crigia T Eizgoja Ciriris T Cisjojs€iriziy =

€j1413s Einizis T Eirinia €irjais T €jrisgs Cirinis

€512t Eisinis T €itaia Cirisis F €irinia Ciriggs = Eivinds Cirigia- (B9)
One gets
£ s pfs ph phe phs _ L (_fifofs hihoha. .
/dRle Rjz Rja Ril Riz R'ia - 79 € € €51 5273 €iriais (BIO)

+ ehfafsgfihahe €irjzjs Eiriais T ehafafa hfihe €irjajaCirris T+ hfafshihafi €iaj2ja Cirizgn
+ el g i + PRI iy + B,
+ efifahiehahate €j1inis Eizinis T ¢ftfaha chifohs €j1iriz€irgais T ¢fifahs chihafs €j12is 6‘51521.3:) :
The result for the next integral is rather lengthy. We give it for the general SU(N). For

abbreviation, we use the notation

L6252 50157255 = (231)(321), ete. (B11)

3 h1%33%51 %0

One has

[ 4RRERERE R R R = g
{(N2 —2)[(123)(123) + (132)(132) + (321)(321) + (213)(213) + (312)(231) + (231)(312)]
— N[(123)((132) + (321) + (213)) + (132)((123) + (231) + (312)) + (321)((312) + (123) + (231))
+ (213)((231) + (312) + (123)) + (312)((213) + (132) + (321)) + (231)((321) + (213) + (132))]
+ 2[(123)((312) + (231)) + (132)((213) + (321)) + (321)((132) + (213))

+ (213)((321) + (132)) + (312)((123) + (312)) + (231)((231) + (123))]} -

(B12)
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Apparently, at N = 2 something gets wrong. For N = 2 there is a formal identity following
from the fact that at N = 2 one has €/1/2%2¢5 5, = 0:

(123) — (132) — (321) — (213) + (312) + (231) = 0. (B13)

Consequently, for SU(2) one obtains a shorter expression:

+

RARf R.{: RIt1 gtz ptis (B14)

717702

h1 “Yhg “Ths

%{[(123)(123) + (132)(132) + (321)(321) + (213)(213) + (312)(231) + (231)(312)]

%[(123)((132) +(321) + (213)) + (132)((123) + (231) + (312)) + (321)((312) + (123) + (231))
(213)((231) + (312) + (123)) + (312)((213) + (132) + (321)) + (231)((321) + (213) + (132))]}

In case one is interested in the presence of an additional quark-antiquark pair in an octet

baryon, one has to use the group integral

3 ] 1
[ ARRS RERE(RIR)RPRE = = (B15)
{efitehe;,;, (660 (43z0% — 3ok + 6fssfs (a0 8%, — o324% )]

eishe; ;. [5526% (a8%8h — a2t ) + 615l (45:6%, — 638t

J4 732 J2 "4 J2 "4 74702

ehifihe; ;. (67265 (40325E — 53268 ) + sfo ol (ad3sk, — o4

7134 J3 732 J2 773 J2 773 13732

)
eletihe, i, [5sfs (asissh, — 8% ) + sinsl: (asisst, — 6i6%)
)
)

J4 " n .74) J1 774 Ja N
ehiithe, ., (5765 (a838h — 66k ) + 61257 (4533 6% — o326

J3 N n i3 J1773 3N
fofsh. . [xfishe (gsis sk sis sk 4 stash (qxis sk _ sis gk
et [0 67 (adis6t — 5k) + 6250t (asisof, — o),

)
]
]
]
J
]

+ 4+ 4+ + o+

}

This tensor defines, in particular, the five-quark wave function of the nucleon.

For finding the quark structure of the antidecuplet, the following group integrals are

relevant. The rotational wave function of the antidecuplet is

IR |
AN (R) = 3 (R R R® + Ry Ry R} + RPRYR}). (B16)

Projecting it on three quarks and using Eq.(B11) we get an identical zero because all terms

in Eq.(B11) are antisymmetric in a pair of flavor indices while the tensor (B16) is symmetric.

It reflects the fact that.one cannot build an antidecuplet from three quarks:

J2 7778

[ dRRSRE RS A7 (R) = 0. (B17)
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However, a similar group integral with an additional quark-antiquark pair is non-zero:

/dRRfl sz Rfs(Rf4 RTJS) *{h1h2h3}(R) 1080 {611]’2 €iia [5?: (Eflfzhl fofsha | fifah2 €f3f4h1)
+ 5}151 (eflfzhz ef3fahs + f112hs 6,7’3.1’4’12) + 5}1: (efl‘fzhl ef2fahs + f1f2hs €f3f4h1)]
4 €iais€iria [Jhs(efzfshl frfshe | (fafahe Ef1.f4hx) + 5}151 (efzfshz ¢fifshs | cfafshs €f1f4h2)
+ 6h2(6f2f3h1 eftfihe | efafehe cfifahs )] + €j1ja e [5?: (€f1f3h1€f2f4h2' + eftfsh2 efz'f‘ihl)

+ 5?51(6f1f3h2€f2f4h3 + €f1f3h3€f2f4h2) + 5}152(.6f1f3h1 6fz.fqhe, + €f1f3h3€f2f4hl )]} (B18)

In particular, for the ©1 baryon being the 333-component of the antidecuplet we have
01(R) = V30A;"*}(R) = V30RIRR], ©F(R)=+30RPRIPRI (B19)

The projection of five quarks onto to the ©F rotational wave function (B19) gives the tensor

THESI(0) = [ dRR) RERS(R):RY)0}(R) (B20)
85,60 /50

frf2 f3fa + €56

€j2s€ f2f3 f + €15 €insa eflfs f2f4) .

= 180 (ejljzejau
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APPENDIX C: CONTRIBUTIONS OF THE DISTORTED DIRAC SEA EF-
FECTS TO THE DISCRETE WAVE FUNCTION

The discrete wave function F(p) consists of three terms, i.e., upper component, lower

component and sea quark effect:
F*(p) = Fiy (p) + Fiy,(p) + Fiz,(p) = Fi(p) + Fic,(p)- (C1)

In order to evaluate the spin unpolarized and polarized observables, one needs the products

of the level and sea wave functions

FL(0)F ()85 = |Fi(p) + FL(P) - Foca(p) + Fiea(p) - FLo(P) + |Fecalp)l?  (C2)
(p)F‘w (P)(O'a)gr = IAF'Ie'u(p)l2 + A'Fliu * (p)Fsea(p) + A-Fle'u(p) sea(p) + |AF5€a(p)|2
(C3)

The sea effect independent parts |Fie,(p)|* and |AFje,(p)|* can be expressed in terms of the
L = 0and L = 1 wave functions h(p) and j(p), and these representations have been shown in
Eq.(156) and Eq.(157). In this section, we will show the complete representations including
the sea effect Fi.,(p) in the proton case.

1. Interference terms of Fj.,(p) and Fi,.,(p)

For saving space, we will express spin polarized and unpolarized case together. In the
following equation, upper sign denotes unpolarized case and lower sign denotes polarized,

case:

9 (FLy(5) * Fyea(p) + Fiew(p) - Floa(p)) o1 9 (AFL, - (p) Faca(p) + AFieu(p) - FLa(p))

- (5) e 'd;fé Z [( (7) + 15 )) ( @) - Loito ))
X {182(q YM (2" — z) £ 18T(q )(ETM(Z,—}-z)—g_l_;&)} -

+ ( ) (—jllj'l))-{lspg-qlz(q) 15PL qL+[qup - Q*M(z’+z)ﬂ(q)}

(h(p)—lply( ) (22) {5190, - @u200) 7 182 B2 Dy 4|

+
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; %}%’Z}l.{ilspl-p;M(z'—z)z(qﬁpL A EME 4200

II(q
F 18 l(l) (p.uQu(Pﬁ_ -q,) +pu1g1(PL - Q)

+ P12Quri(€apPiy* q.5) + P11912(€pQ 14 "h.ﬁ)) }] )

(C4)
where
Z = MyzZ (2 +2) + 2(p2 + M?) + 2/ (P2 + M?), (C5)
and
qg=(pL+P)),(z+2IWMn), Qra=2p\,—2Ppra, a=1,2. (Ce)

2. Square terms of F.,(p)

The unpolarized and polarized square parts of Fieq(p) in Eq.(C2) and Eq.(C3) in the

proton case are written as:

9|Fsea(p)|2 or 9|AFsea(p)|2
M d2dp,. [ dZ"d*p| (MMpy\? 1 D, ., ,

= ot S () (v - i) (00~ B
{z(q"’m(q') (M2 = 2)( — ) £ 9@ - @) - 56"V XD (0a2(:" — 2)(" + =),

'
+ IM(2" —2)q, - Q' FIM(2 ' Q) +94Q, - Q' NIG)
g, - QLFIM(Z +2)d, - Q1 +9,Q - Q) - 2(¢)— v

(9M*(2" + 2)(2" — 2)q, FIM(2" +2)g, - QL +IM(z' — 2)q. - Q1 +94,Q', - Q')
H(lq")”H(Iq ) (2OM*(2" +2)(' +2) (a1 - 91 £ ¢,9) FIM(2" +2)q.q - QL
+ 9M(2" +2)q,q) - QL FIM(Z +2)q,91 - QL +9IM(2" +2)q,q - QL
+9{(Q! -Ql) (q) -9\ £4.q)) + caparpr (Q1.Q15) (d1w0tis) }) }

~ (h6") - Zrit) HE - (95061300 (M - 2, - @ % M - =) - QL)

H n 1 ! ! " I 1 ’ 1 1 7 n
— 9%(q )5 (a) (M - 2)(2 +2)p, - dL — M(2" - 2)g.p. - QL F M(Z +2)g.p. - Q\

lq'|
F (pL- 1) (QL- QL) F aparpr (Pratis) (Q1urQlp)) — 9(d HIEJ_%I)
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(M*(2" + 2)(7 — 2)p, - g\ + M(z" +2)a.P, - Q| F M(' - 2)¢.p\ - Q]
+ (le_ ’ qlJl_) (QIJ_ : QIJI_) * €apearpr (le.aqiﬂ) (QlJ_a'QlJl.ﬁ'))')
+ *gnl(g'|)|1;'(lg“) (FM2(2" + 2)(7 + 2)a.q, - P+ M (2" +2)( +2)q;q. - P,
F M +2){(q.-9)) (QL-PL) + eapewrp (10dls) (Quapis)}
+ M(2"+2){(qL-qL) (QL - PL) + apewrpr (41atis) (QLuapis) }
— ¢.{(p.-q1) (@1 PL) + capeap (¢1apip) (Q1w@'sp) }

(¢, {(p.-q.) (QL - PL) + eapearpr (d1aPs) (Q1a@'s) })

- ( o) - Lt )) K ). (om(q)(e") (M(< - )9} - @3 MC" - )9l - Q)

H n " n ! " on n " " _n !
~ 95(q) (4) (M2 - 2)(z" + 2)pL -dL - M(Z — 2)g,p. - QL F M(z" +2)g,p - Q)

l¢l
F (51 41) (@1 QL) F coscurs (i) (@1elp) - 9506 T

(M +2)(z" — 2)p| -4\ + M(' + 2)g.p) - Q| F M(" - 2)g.,p, - Q
(P} -4)) (QL- QL) % eapearp (P1adls) (QLar@isr)))
9MI(¢")TI(q)
l"|lq']
M(z' +2){(q} - 4.) (QL-PL) * capearsr (d1adlis) (QLarpis) }
M(Z +2){(q" - 41) (QL-PL) + eapearsr (¢10015) (Qrarpp)}
— ¢ {(pL-4.) (QL-PL) + capeapr (41aP1p) (QraQip) }
(2a {(pl - 41) (QL - PL) + capearr (d1aPls) (Quer@lpr) })

+ 20U (g y310) (som" - ) — ) (8 51) + (@ @1) (5 51)

+ eapewrp (Q1aQlp) (Plapis)) — (g H(q {?M 22" - 2)(7 + 2)q, (PL - PL)

+ M(2" - 2) (FaQipip: + 6,Qip;p; + quzplpl F 6Qpypy £ 0, Qopy Py + 61 Q5pap:

F @Qippy T 4Qiop;) + M2 +2) ((QL-pL) (Pl - d1) + capears (QLapls) (Prordis))
— ¢.((QL- QL) (P - PL) + copewrsr (Q1aQs) (Plorplsr)) }

- ) M )+ (65

+ M(z' - 2) (Fa, Q\pipy ¢, Qypop; + 6, Qopipy F 0, Q3p:p; *+ 61 Qyp1p; + 4, Qp,p;

F Qi F 6 Qipip;) + M(2" +2) (QL-pL) (PL- 41) + eapewrs (Qraplis) (PLotis))

(FM( + )" + 2)ald, B+ MG +2)(" +2)dd Pl

+ H o+ W
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- q, ((Ql Q'i) (P'L -p'i) + €aptarp! (QIJ.aQ'JI.B) (Pla'P'iﬁ'))}
____(I‘; )Ilg(lq) (M*(2" + 2)(z" + 2) {(qL - 41) (P PL) + €apeapr (41ad1p) (Prarpip)}
+ M(z"+2)g, {(p) - 4\) (QLPL) + apear (Pradip) (Qruwpis)}

— M("+2)¢.{(P, ) (Q. - PL) + apews (d1aps) (Pror@ip)}

+ M(z' +2)q, {( ) ( L) + €apearpr (P’Laq'f.ﬁ) (Q wPLgr )}

~ M(z' +2)d {(p. - 4.) (QL - L) + apeer (depis) (PLur@1s) }

+ (g5 -4, ﬂ:qzqz) ((m J.) (QJ. QL_) + €apearp '(plapm) (Qla:Qm))

+ (pL-PL) (capewrs (21ad1s) (Q1w@ip)) £ (QL- QL) (capews (71ad1s) (Prapis)))}]

+

(C7)
where
Z' = M}z (2 +2) + 2(p} + M?) + 2P} + M?), (C8)
| 2" = Myz" (2" +2) + 2(p2 + M?) + 2 (p] + M?), (C9)
and
q’ = ((pl + piL)7 (Z + ZI)MN) ) QlJ.a = zp'J.a - zlpJ-.aa o= 17 2, (010)
q" = ((pL+P),(z+2WMy), Qla=2p10—2"Pray a=12.  (Cl1)
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