<table>
<thead>
<tr>
<th>Title</th>
<th>Curvaton scenario in a theory with two dilatons coupled to the scalar curvature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>馬塲, 一晴</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>none</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/46483</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
論文内容の要旨

現在のところ、標準宇宙論として、インフレーション宇宙論が広く支持されている。緩やかに時間発展するスカラー場（インフラトン）のポテンシャルエネルギーにより、初期宇宙において指数関数的宇宙膨張（インフレーション）が起こり、それによって大域的に一様、等方、平坦な宇宙が実現された、と考えられている。更に、このインフレーションにより、宇宙の大規模構造の種となる曲率揺らぎが、インフラトンの量子揺らぎから生成される。宇宙背景波長の非等方性に関する WMAP の観測から示唆される振幅及びほぼスケール不変なスペクトルを持つ曲率揺らぎが生成されるためには、①スローロールインフレーションが実現される事、②インフレーションのスケールが比較的大きな値である事、が要求される。しかし、高エネルギー理論の観点に基づいて構築されたインフレーションモデルでは、これらの条件が満たされない場合がある。

一方、近年、曲率揺らぎを生成する新たな物理機構として、カーバトンシンナリオが提唱されている。このシンナリオでは、曲率揺らぎが、インフラトンとは異なるより遅くに崩壊するスカラー場（カーバトン）の量子揺らぎから主として生成される。この場合、スケール因子が時間の瞬に比例するパワーローインフレーションであっても、観測からこの制限と整合的なパワースペクトルを持つ曲率揺らぎが生成される。しかし、カーバトンの質量は、インフレーション期のハッブルパラメータに比べて十分大きな値である事が要求される。

ところで近年、素粒子物理学及び宇宙論における階層性が問題を同時に解決する試みとして、スカラー曲率と結合した２つのディラトンが存在する理論が提唱された。前者は、重力と素粒子物理における質量のスケールとの間の階層性である。一方、後者は、極めて小さいが有限の値を持った宇宙項（暗黒エネルギー）の存在である。しかし、このモデルでは、パワーローインフレーションが実現され、また、インフレーションのスケールも比較的小さな値であるため、WMAP の観測から示唆される曲率揺らぎが生成されないという問題点が存在する。この問題点は、カーバトンシンナリオを適用する事により解決される可能性がある。

そこで本博士論文では、上述した理論の枠組みにおいて、カーバトンシンナリオの実現可能性を研究した。結果として、2つのディラトンとスカラー曲率との結合定数が1より充分小さくかつ互いに近い値の場合、即ち、2つのディ
ラトンが近似的な $O(2)$ 対称性を持つ場合には、パワーローインフレーションが実現され、更に本理論の枠組みにおいて、2つのディラトン以外にその他の場を導入せずにともかくカーバトンに相当する場が存在する可能性がある事が明らかにされた。更に、このカーバトンに関当する場が2次型のポテンシャルを持つ場合のカーバトンシナリオを考察した結果、WMAP の観測からの制限と整合的なパワースペクトルの振幅及びその指数を持つ曲率揺らぎが生成可能である事が示された。

論文審査の結果の要旨

本論文は、インフレーション宇宙の新しいモデルとして注目されているカーバトンシナリオを、スカラー曲率と結
合した2つのディラトンが存在する理論の枠組みにおいて実現する可能性を指摘したものである。カーバトンシナリ
オでは、通常のインフレーションシナリオとは異なり、宇宙の大規模構造の種となる曲率揺らぎが、インフレーショ
ンを引き起こすスカラー場（インフラトン）とは異なるスカラー場の量子揺らぎから生成される。そのため、低いエ
ネルギースケールでのインフレーションが可能となる。

本論文では、基本相互作用の階層性問題や宇宙問題の解決を志向して提案されている2つのディラトンが存在す
る場合の宇宙モデルを詳しく解析した。その結果、2つのディラトンが近似的な $O(2)$ 対称性を持ち、かつ、スカラー
曲率との結合定数が1より充分小さい場合には、これらのディラトン場により充分なインフレーションが実現され、
かつ2つのディラトンの非線形な組み合わせで構成される2つの自由度のうちの一つがカーバトンに相当する役
割をすることが可能であることを明らかにした。更に、このカーバトンによる曲率揺らぎを評価した結果、最近の宇
宙背景観測の非等方性の観測データと整合的な揺らぎのスペクトルを生成するモデルが存在することを示した。
本論文は初期宇宙の研究に新しい展開の可能性を与えるものであり、その意義は大きい。よって、本論文は博士（理
学）の学位論文として十分価値あるものと認める。