|

) <

The University of Osaka
Institutional Knowledge Archive

Molecular Dynamics of Pressure-Induced
Title Structural Transformations and Elastic Stability
in Oxide Minerals

Author(s) |TE, BEA

Citation | KPRKZ, 2000, {Etm

Version Type|VoR

URL https://doi.org/10.11501/3169163

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



722 9236

Q OSAKA UNIVERSITY

DeparTMENT OF EarTH AND Srace SciNECE

Molecular Dynamics of Pressure-Induced
Structural Transformations and Elastic Stability

in Oxide Minerals.

Thesis submitted for the degree of
“Doctor of Philoesophy”

CANDIDATE SUPERVISOR
Taku Tsuchiya Prof. Takamitsu Yamanaka

-— January 2000 —



Index
1. Introduction 1
1.1 Motivation . . . ... .. e 1
1.2 Mechanical stability of lattices . . . . . .. .. .. ... ... ... 8
1.3 Historical survey of pressure-induced structural transitions of oxide
minerals . . . . . ... 10
2. Method of calculation 18
2.1 Molecular dynamics . . . . . .. ..o oo 18
2.1.1 Periodic boundary conditions . . . ... ... ... ... ... 18
2.1.2  The Velret time integration algorithm . . . ... .. ... .. 19
2.1.3 Temperature . ... . ... .. ..o o 20
2.14 Pressure . . . . .. ..o e 20
2.1.5 Running coordination number . . . . . ... ..o L. 23
216 QEqmethod . . ... ... ... ... o oL 23
2.2 Abinitio calculation . . . . . .. ..o oo o 26
221 LMTO .. .. . . e 26
2.2.2 Hamiltonian and overlap matrix . . .. ... ... ...... 28
2.2.3 Density and potential . . ... .. .. ... 00000 28
224 Totalenergy . . .. ... ... ... 31
2.3 Determination of interatomic potentials . . . . . ... ... ... .. 32
2.3.1 Ab initio energy surfaces . . . .. ... ... oL 32
2.3.2 Empirical techniques . . . . . .. ... oo oL 38
2.4 Computational details in MD calculation . . . . ... ... ... ... 39
2.5 Reproduction at ambient condition . . . .. ... oL 40
2.6 SUMMATY . . .« v v v v v e e e e e e e e e e e e 44



il

3. Pressure-induced transitions under hydrostatic condi-
tion 48
3.1 Transitions with coordination change . . . . . . . .. ... ... ... 48
3.1.1 Calculated P-V relations . . . .. ... ... ... ...... 48
3.1.2 Structural changes with transitions . . . . .. .. . ... ... 55
3.2 Transition without cocrdination change . . . . . . . ... ... ... 61
3.3 Summary and discussion . . . ... ..o 67
4. Elastic instability at transition 70
4.1 Born’s elastic stability condition . . . . .. .. ... o0 70
4.2 Time evolution of physical quantities . . . . ... .. ... ... ... 80
4.3 Elastic anisotropy . . . . . e 85
44 Summary and diSCUSSION . . .+ . .« . o e b e e e e 91

5. Effect of nonhydrostaticity on elasticity and transitions 93

5.1
5.2

Effect of nonhydrostaticity on traunsitions. . . . . .. .. .. .. ...

Stress-induced transitions . . . . . . o v e e e e e e e e e e e

Conclusions

Appendices

A

B
C
D

Summary of the Earth’s interior . . . . .. . ... ... ... ...
Phase diagrams . . . . . . . . .o oo e
Dynamical fluctuating charge model . . . . ... .. ... ... ...

Pressure dependence of band gaps in MgO and Ca0 . . . . ... ..

Acknowledgements

Bibliography

93

103

105
105
106
108

110

113



Chapter 1

Introduction

1.1 Motivation

High-pressure structural transition of materials considered as components of the Earth is
the most fundamental and important phenomenon to understand the bulk structure of
the Earth. The idea that the observed gaps of seismological wave velocity result from the
density changes of Earth’s constituents with their pressure-induced transitions is widely
accepted (Ringwood 1991). Based on this concept, a number of high-pressure experiments
have been executed energetically to investigate thermodynamical phase relations of pos-
sible Earth’s interiors and their analogue materials. The accumulation of this knowledge
enables us to draw the entire picture of the Earth’s static structure (see Appendix A).
Nowadays it is significantly important to understand the Earth’s dynamics. Com-
paring seismological observations of mantle anisotropy with the measured or predicted
anisotropy of candidate mantle minerals can elucidate the geometry of the Earth’s mantle
flow. The most precise and informative observations of the bulk of the Earth are from
its elastic properties. The phase transition in the subducting slab affects on its rheol-
ogy. Mechanical stability of homogeneous crystals has been a subject of understanding
of their transition mechanisms. From these points of view, the elasticity of materials at
high pressure and temperature is one of substantial physical and geological interests. M.
Born initiated the systematic study of crystal stability under load, which is well known

as Born’s stability condition. Although a great number of experimental studies about



thermodynamical and elastic properties has been performed even for recent years (Upad-
hyay and Kumar 1995, Chopelas 1996, Shinogeikin and Bass 1999), the temperature and
pressure ranges studied by these experiments have all been limited to narrow area near
ambient condition by difficulties of technological aspects. Theoretical and computational
investigations are very powerful tools for this research field. One of the most efficient
simulation techniques for atomistic level structure and physical property is molecular
dynamics (MD) method.

The first attempt to understand crystalline structures microscopically was made
by V. M. Goldschmidt and a little later by L. Pauling before 1930’s. They introduced
a notion of the ionic radius (or crystal radius), which is nowadays still very useful for
understanding and roughly predicts the structure of ionic crystals. It is, however, that
only one parameter per one atom is insufficient to describe a variety of materials and their
properties such as the elastic properties. Interatomic potentials were introduced from this
viewpoint.

The idea that the structure of materials is determined by the interatomic poten-
tials is still a highly simplified picture if compared with the full problem of solving the
Schrodinger equations containing both nuclei and electrons. However, the interatomic
potential is definitely an important starting point of microscopic treatment of material
structures.

There are some levels of simplification for the interatomic potentials. The most
simplified and common version is so-called effective pairwise potentials, which are made to
depend only on the interatomic distance between two atoms. Many simple ionic crystals
are known to be simulated rather well with pair potentials (Tosi 1964). The parameters
contained in the potential function are usually determined empirically so that experi-
mental results are reproduced (Fig. 1.1a). An obvious extension is to employ three-body

interactions which depend on the bond angles among three atoms. This type of potential
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Figure 1.1 Three different procedures for the simulation of material structures and
their physical properties.

is needed to simulate covalent materials such as pure silicon (Stillinger and Weber 1985;
Biswas and Hamann 1987). If we further want to reproduce the phonon dispersion and
elastic constant tensor very precisely, the many-body potentials are known to be neces-
sary. One of them is the shell-model potentials, which take account of the distortion and
polarization of electron distribution by floating ionic shells (Catlow et al. 1982). As the
level of sophistication increases, the degree of freedom (the number of potential parame-
ters) to specify the interatomic potentials is doomed to increase, so that we cannot expect
from the interatomic potentials much ability to predict unknown properties of materials
as far as we stick to empirical determination of potential parameters. Such inefficiency of
interatomic potentials is partially due to the difficulty in deriving them from macroscopic
information obtained by experiments.

The molecular dynamics (MD) technique is one of the efficient methods to sim-
ulate temperature and pressure behavior of physical properties of solid and melt. By
empirical fitting to experimental results including crystal structures, dielectric and elastic

properties and phonon dispersion, many of the effective interatomic potentials used in



such calculations have been determined. Although these empirical potentials have been
applicable for ionic solids and melts, the reliability of the calculated results are limited by
the selection of the interatomic potential functions and parameters. The application of
simulation techniques for complex systems demands accurate knowledge of the interatomic
interactions. Modeling dynamics as well as static properties of perfect and defective lat-
tices severe requirements on the accuracy of the potentials and also derivatives. Nowadays
it is possible to study the structure of materials using non-empirical electronic structure
calculations (Fig 1.1b). There exist well-known examples of such an approach by M.
L. Cohen and his co-workers (Yin and Cohen 1980; Cohen 1989 and references therin).
Using density functional theory (DFT) (Hoenberg and Kohn 1964), they successfully ob-
tained the most stable structure of crystalline silicon. In these studies, a certain atomic
configuration is firstly assumed, the electronic structure is calculated non-empirically, the
forces working on each atom at the position are derived, and then the atoms are moved
to obtain the optimum configuration. The simulated annealing method (the so-called ab
initio molecular dynamics method) developed by Car and Parrinello (1985) would give a
more efficient approach along this line.

Although such a non-empirical approach would in principle be more desirable,
there are many difficulties left as future problems. The most serious one is the huge
amount of computational time and memories required for the calculation, which limit the
number of atoms and electrons in the unit cell of the crystal. Thermal effects are also
difficult to be taken into account. Such limitations are serious even for the simulation
of such a common material as silica (Si0;) which has many similarity to GeO, going to
discuss in the thesis.

Two approaches to the simulation of atomic configurations have been mentioned,;
the simulation using empirical interatomic potentials and the simulation by no-empirical

calculations of electronic structure. Although the latter has more predictability, so far it



is not feasible in many cases. The former approach has also been favored in using several
kinds of simulation techniques such as the lattice dynamics or the molecular dynamics
where empirical potentials are employed. However it is evidently more desirable to derive
the non-empirical potentials which are then provided into the molecular dynamics.

From this point of view, in the present thesis, these two approaches to investi-
gate the structural and elastic properties of complex crystals have been combined, that
is, interatomic potentials were derived from the first-principles electronic structure cal-
culation and applied to the molecular dynamics simulation of crystals (Fig. 1.1c). It is
known that the crystal structure at absolute zero depends on the minimum condition of
the total energy, and its elastic moduli depend on the second derivatives of the potential
with respect to the structural parameters. Lassaga and Gibbs (1987), Tsuneyuki et al.
(1988) and Kramer et al. (1991) determined parameters of interatomic potential from
ab initio Hartree-Fock (HF') calculations using clusters such as H,SiO,. However, their
potentials were derived from the calculation results of the cluster and it is not clear that
the interatomic potential obtained from the cluster calculation can be applied to crys-
talline systems with sufficient accuracy. Allan and Mackrodt (1994) applied DFT and
calculated the interatomic potential of the Mg?* and 0%~ pair. It, however, may also
be less accurate when it is applied to crystallire systems, especially in the case of those
having strong covalency. SiO; should be considered as a special case such that the cluster
model seems to be valid because of the large rigidity of the SiO4 tetrahedron. The bulk
modulus of a-quartz calculated by Newton et al. (1980) agrees well with the experimental
value in spite of assuming rigid regular SiO, tetrahedra in their calculations.

Gale et al. (1992) directly determined interatomic potentials for Al,Os which
were represented by the following Buckingham form,

Py = %q_] + Agj exp(—ri;/pi;) — Cijri™°, (1.1)

¥



by fitting to the energy surface obtained from the periodic HF calculation. Their successful
result indicates that interatomic potentials derived from HF level calculation are more
accurate than empirically derived ones. It is suggested that in the ionic systems as this,
dispersion forces play a minor role in determining crystal structure since the HF scheme
does not include electron correlation diﬁering from DFT. However, authors pointed out
a lack of this model related to short-range attractive C' parameters between cations.
One can infer that unphysically large values of them are caused by the highly correlated
nature of the parameters in the fixed functional form of potentials. Recently, Kamiya
( 1996) developed a more sophisticated model using multiple exponential terms for the
non-Coulombic contribution in order to avoid the restriction from the fixed form of the
potential function. He successfully reproduced the crystal structure, its bulk modulus and
optic properties of MgO by the fitting procedure in a wide volume range. However, since
his potential belongs to the two-body approximation, it cannot reproduce the deviation
from the Cauchy relation and thus fails to estimate the shear elastic modulus correctly. In
order to reproduce the elasticity and its pressure and temperature dependence correctly
beyond limitations of pair potentials using an efficient and inexpensive way, new methods

noted in the next chapter was applied in this study.

The materials chosen as a target of our simulation are MgO, CaO, GeO, and MgGeOs,
whose high-pressure transitions have physical, geophysical and mineralogical significance

. 1
summarized as follows:

1. The cosmic abundance of nonvolatile elements is listed in Table II (Anders and
Grevesse 1989). If it is assumed that the Earth accreted from nebula of a solar
composition and takes the core composition to be roughly Fe, the composition

of the terrestrial mantle can be estimated from these cosmic abundance as



shown in Table I. Since MgO (periclase) easily reacts with SiO, (silica), the
dominant phases of the Earth’s crust and mantle are magnesium silicate MgSiO3;
and Mg,SiO4. Considering that silica and periclase are as a basic module of
the crystal structure of magnesium silicate, these oxides and silicates are most
significant materials of the Earth. As well-known, GeO, (germania), CaO (lime)
and MgGeO; (germanate) are also of importance as good analogue materials of
structural and physical properties. However, few theoretical and computational
studies of these materials have been carried out.

. These oxides have long been of interest as typical cases for understanding bond-
ing in ionic and covalent oxides. These are also one of most fundamental ma-
terials for industrial sciences. From the crystal chemical points of view, their
structural and elastic properties and the structural transitions are quite interest-
ing problems to confirm whether these are reproduced with common interatomic
potentials. Mizushima et al. (1994) stated in their computational study of Si
that mechanical instability gave the bound on the limit of stability of ideal crys-
tal lattices. The relations between elasticity and transition are quite interesting

themes for solid-state physics.



TABLE I Cosmic abundance of nonvolatile elements {relative to
1000 atoms of Si) (Anders and Grevesse 1989).

Mg 1074
Al 84.9
Si 1000
Ca 61.1
Ti 2.4
Fe 900

TABLE II Constitution of the model Earth (wt. %).

Crust-+Mantle
MgO 25.6%
Si0, 38.5%

Core
Fe 35.5%

1.2 Mechanical stability of lattices

According to thermodynamics, the low-pressure phase will coexist with the high-pressure
phase at a pressure where the Gibbs free energy, G = F+ PV —TS5 = H TS, of the two
structures are equal. It is well known that the equilibrium phase boundary is given by
this definition. To estimate the thermodynamical transition pressure using MD method,
free energy difference AG is approximately substituted AH for since MD method can not
calculate entropy directly and roughly speaking, in typical oxide minerals at about room
temperature, it can be thought that there is no significant difference between AH and
AG. However macroscopic thermodynamics provides no information about mechanisms
of the phase transition from the atomistic point of view. Mechanical stability of lattice is
rather of importance for the crystal chemical and the crystallographic understanding of

phase transitions. Dynamical theory of crystal lattices is described in detail in a textbook



written by M. Born and K. Huang (1954). For a lattice to be mechanically stable, the
energy density must be a positive definite quadratic form so that the energy is raised by
any small strains e. For lattices, the variation given by the homogeneous deformation is

equal directly to the strain-energy function

1
= Cprtrto (1.2)
2%

where ¢,, is the corresponding elastic stiffness constants in the Voigt notation, defined
as coefficients in a stress (o)-strain (€) linear response relation so-called Hook’s law ¢;; =

0o;/0¢;. When we arrange the elastic constants in the form of a matrix,

Ci1 €12 G113 Ci4 Ci5 Cis

Co1 | C22 C23 Co4 Co5  Cog

C31 1 C32 | €33 C34 C35 C36 (1 3)

C41 | Ca2 | C43 | C44 C45 C4s
Cs51 | Cs52 | €53 | €54 | G55  Cs6
Ce1 | Co2 | C63 | Co4 | Co5 | Co6 )

then, (according to a well-known theorem in algebra,) the quadratic form of Eq. (1.2)

is positive definite if the determinants of the matrices of successive orders as marked
out above (the principle minors) are all positive. For a cubic lattice which has three

independent elastic constants ¢;;, ¢15 and ¢44, the principle minors are
Ca4, C?w Cias 6116247 (¢t — 032)0247 (1 — e12)?(ens + 2512)é24~ (1.4)
For these to be positive, only the three following conditions are need to be fulfilled:
ci1 + 2¢12 >0, cgqg >0, ¢y —¢12 >0, (1.5)

which are connected to the bulk, shear and tetragonal moduli, respectively, and are re-
ferred to as spinodal, shear and Born criteria, respectively. By the same way, for a trigonal
lattice belonging to point groups 32, 3m or 3m which has six independent components

C11, €33, C44, C12, €13 and ci4 In the elastic tensor, the stability conditions are written as



10
follows,
c11 — ,Clgl > O, (Cll + 012)633 —_ 2C§3 > 0, (cll - 012)044 - 2034 > 0. (16)

For a tetragonal lattice belonging to 4mm, 42m, 422 or 4/mmm which has six independent

components c¢;i, €33, Ca4, Ces, C12 and ¢;3, the stability conditions are written as follows,
Ci1 — C190 > O, Cqq4 > 0, Cgg > 0, (Cll + 012)633 - 2623 > 0. (17)

If all conditions are fulfilled in each crystal class, the lattice is mechanically stable. These
conditions are also valid under hydrostatic pressure if elastic constants are estimated
in Eulerian coordinates. This exactly corresponds to applying strains to the cell after
equilibration at definite 7' and P condition in the Hook’s law. In the present thesis, the
crystal stability under high-pressure is discussed by means of these conditions from the
viewpoint of elasticity.

Some phase transitions that occurs when these stability conditions are broken on
cooling have been observed: e.g. sym-triazine (hexagonal-monoclinic transition at 198 K,
Dove et al. 1983) and HCN (tetragonal-orthorhombic transition at 170 K, Mackenzie and
Pawley 1979). These phase transitions are called ferroelastic. However, only a few case

which this concept can be applied is known in the pressure-induced structural transitions.

1.3 Historical survey of pressure-induced structural transitions

of oxide minerals

MgO and CaO

As well known, MgO and CaO have the rock-salt (NaCl) structure (cubic symmetry,
space group Fm3m and formula unit z = 4) at ambient condition. These phases are
called the Bl-type phase. It has been experimentally reported by Richet et al. (1988)
that CaO was thermodynamically stable in the CsCl-type structure called the B2-type

phase over 55 GPa at room temperature. On the other hand, the B2-type phase of MgO
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has never observed experimentally in spite of a search over a quite high-pressure, 200
GPa. The elasticity of alkaline-earth metal oxides MgO and CaO at high pressure and
temperature is of substantial physical and geological interest for several reasons. These
oxides have long been of interest as a typical case for understanding bonding in ionic
oxides and are also one of most fundamental materials for material sciences. MgO is
particularly important as the end-member of a hypothesized major lower mantle phase,
(Mg,Fe)O magnesiowiistite, because the most precise and informative observations of the
bulk of the Earth are from its elastic properties. Comparing seismological observations
of mantle anisotropy with the measured or predicted anisotropy of candidate mantle
minerals can elucidate the geometry of the Earth’s mantle flow. Although a great number
of experimental and theoretical studies about thermodynamical and elastic properties of
MgO have been performed even for recent years (Upadhyay and Kumar 1995, Chopelas
1996, Karki et al. 1997, Shinogeikin and Bass 1999), the temperature and pressure ranges
studied by these experiments have all been limited to narrow area near ambient condition
and the quantum mechanical method can be calculate only zero temperature (static)
situation. Moreover there is no systematic comprehension including each elastic constant
of these materials at high pressure and temperature considered to be extremely important.

The elasticity of solids yields the substantial insight into the nature of bonding.
Especially, deviations from the following high-pressure Cauchy relation (Brazhkin and

Lyapin 1997) of elastic moduli,
c1g — €y — 2P =0, (1-8)

are a direct measure of the importance of noncentral forces in crystals (Grimsditch et al.
1986, Ercolessi et al. 1988) where P represents pressure value. Values of c44/c12 ratio at
ambient condition were reported as 1.6 (Sinogeikin and Bass 1999) and 1.3 (Oda et al.

1992) for MgO and CaO, respectively and decrease with increase atomic number. This
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systematic change seems to relate the differences of bonding nature of these materials.
The very recent high pressure measurement of the elasticity of MgO up to 18.6 GPa
(Sinogeikin and Bass 1999) showed that the deviation increases with pressure in qualitative
concordance with a theoretical study using the pseudopotential method (Karki et al.
1997), which could not include temperature effect.

Another interesting physical property about elasticity is the acoustic wave velocity
and its temperature and pressure dependence. Sinogeikin and Bass (1999) reported that
an anisotropy of the elastic wave of MgO decreases with pressure. Karki et al. (1997)
reported that this anisotropy increased again after once it vanished. We will discuss a
physical meaning of this behavior.

Recently Matsui (1998) investigated temperature and pressure dependence of elas-
ticity of MgO and CaO using the breathing shell model with empirically determined po-
tentials. Although the deviation from the Cauchy relation was reproduced successfully,
this model significantly overestimated the compressibility of MgO at high-pressure. It
may be considered that the empirical procedure and restriction of the too simple fixed

form of potential function cause this failure.

GeO,

GeQ, has polymorphic relationships similar to the geologically important 5i0;. Two
stable polymorphs of GeQ, are experimentally known; one of them is the a-quartz-type
structure (trigonal symmetry, P3,21, z = 3) which contains fourfold-coordinated germa-
nium ions, and the other is the rutile-type structure (tetragonal symmetry, P4,/mnm,
z = 2) which contains sixfold-coordinated germanium ions. Phase-equilibrium studies of
GeO; polymorphs (Hill and Chang 1968, Akaogi et al. 1993) show that the rutile-type
structure is stable under ambient conditions (see Appendix B). Although the stable re-

gion is over 1280 K, the quartz-type polymorph can exist at ambient condition. In the
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quartz-type structure, the GeO, tetrahedra, linked to each other by sharing the corner
oxygen ions, construct the three-dimensional framework. In general, a compressibility
mechanism of the framework structure can approximately be explained by cooperative
tilting of tetrahedra (Hazen and Finger 1982). This concept was supported by high pres-
sure experimental results for SiO; and GeO, (Jorgensen 1978; Yamanaka and Ogata 1991)
and an ab initio molecular orbital calculation for the HgSi;O7 molecule (Newton et al.
1980). The bulk modulus of a-quartz calculated by Newton et al. (1980) agrees well
with the experimental value in spite of assuming rigid regular SiO,4 tetrahedra in their
calculations. However under more compression, the distortion of tetrahedra comes to be
negligible. It was reported that oxygen atoms tended to arrange themselves in body-
centered cubic (bcc) sublattice (Sowa 1988) or in closest packed layer parallel to (1 2
0) (Hazen et al. 1989). The amorphization of the quartz-type structures is likely to be
plastic lattice deformation (Yamanaka et al. 1997).

In general, crystalline states have higher density than amorphous states, like
quenched glasses from their melts. It is often observed experimentally that low-density
glasses transforms to crystal forms under high pressure by modes of crystallization. How-
ever many materials that crystalline states transform to denser amorphous states have
been discovered under their compression processes. A group of a-quartz and its related
structures is one of the famous examples of pressure-induced amorphization transition.
Hemley et al. (1988) reported the pressure-induced amorphization of Si0,, a-quartz, and
a-cristbalite at about 22 GPa. Yamanaka et al. (1992), Wolf et al. (1992), and Kawasaki
et al. (1994) reported that the amorphization pressure of quartz-type GeO, was 6.5—7
GPa at room temperature by both of X-ray diffraction and spectroscopic measurements.
Itie et al. (1989) and Kawasaki (1996) investigated the pressure-induced amorphization of
quartz-type GeO, by the extended X-ray absorption fine structure (EXAFS) method and

reported an increase of the coordination number of cations with amorphization. This in-
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crease of the cation coordination is the most remarkable property of the pressure-induced
amorphization; because of this structural change, differing from rapid cooled glass, the
pressure-induced amorphous state has a higher density than the low pressure crystalline
state.

Kingma et al. (1993) reported in their electron and optical microscopy study of
amorphous Si0; quenched from high pressure that mixed phases of amorphous and crys-
talline lamellae existed, and proposed that nonhydrostatic stresses played an important
role in the amorphization process. Gillet et al. (1995) showed in their experimental study
on the high-pressure behavior of a-AlPO, that the stresses were of a fundamental im-
portance in the crystal-to-amorphous phase transition of this material. Moreover, Wolf
et al. (1992) observed the small rutile-type structured cluster (crystallite) in the amor-
phous GeO, by means of the electron microscope and implied that the quartz-to-rutile
transformation could occur microscopically even under the thermally underactive room
temperature. However the mechanism of the quartz-to-rutile or the amorphous-to-rutile
transition have never become clear.

Comprehension of the mechanisms of the amorphization processes is an important
and interesting theme from not only crystal chemical but also of glassy industrial points
of view. However, experimental results of amorphization mechanisms under pressure are
limited because the amorphous phase is a macroscopically disordered state. Atomic level
computer simulation techniques can be very important complementary to experiments.
Especially, molecular dynamics (MD) calculation method can provide much significant
information for the atomistic structural property and the dynamical mechanism of the
transition.

Previous theoretical studies of a-quartz by Tse and Klug (1991) and Binggeli et
al. (1994) proposed that the amorphization transition of a-quartz under high pressure,

together with the inhibition of thermal activation, resulted from a mechanical instability
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of the crystal lattice. Tse and Klug stated that the relevant instability was the bulk in-
stability, but Binggeli et al. contradictorily reported that the shear instability caused the
transition. Chaplot and Sikka (1993) and Watson and Parker (1995) calculated by quasi-
harmonic lattice dynamical calculations that a zone-boundary phonon softening occurred
prior to the amorphization transition, and concluded that shear stresses may make an
important contribution to the instabilization of the quartz structure. Badro et al. (1996),
moreover, reported in their MD study of a-quartz that the mean transition pressure could
be effectively lowered under uniaxial nonhydrostatic conditions, and structural changes
under shear stressed conditions are also interesting.

Although studies of the origin of amorphization in quartz-type GeO, and the
amorphous structure attract great interest because of their isostructural relation with
silica, no MD simulation of GeO; polymorphs has ever been studied for their dynamic
and atomistic implication in high-pressure transformations. In this study, we investi-
gated that pressure-induced structural changes of quartz-type GeO, under hydrostatic
and nonhydrostatic compression in more detail. We report structural properties of the
high-pressure state, especially the mechanism of increased coordination number at tran-
sition to amorphization and an abrupt collapse in volume of the quartz-type structure at
7.4 GPa. Moreover, effects of shear stress to the amorphization, and a new prediction of
a possible quartz-to-rutile phase transition mechanism under nonhydrostatic conditions
are reported. This transition may be related to the result of the electron microscope
observation of pressure-induced amorphous GeO, by Wolf et al. (1992).

In general, based on systematics of AX,-type compounds, it has been believed that
rutile structure may directly transform into an eightfold-coordinated fluorite structure as
found in some fluoride. Many experimental attempts have been made to find a further high
pressure polymorph of GeO,. The crystal structure of a post-rutile phase has attracted a

great deal of interest. A few types of structure have been proposed as a possible structure
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from high pressure experiments. Hexagonal FeaN-type GeO, was synthesized above 1000
°C and 25 GPa using static compression (Liu et al. 1978). A certain orthorhombic
crystal was reported at 1000 °C and 28 GPa (Ming and Manghnani 1983). The in situ X-
ray diffraction experiment (Tsuchida and Yagi 1989) and theoretical calculations (Cohen
1992; Matsui and Tsuneyuki 1992) reported a transition of SiO; stishovite to CaCly-type
phase. A pressure-induced rutile-to-CaCl, transition of GeO;y was predicted by Tsuchiya
et al. (1998) by MD calculations. Furthermore, by recent in-situ Raman spectroscopic
measurements of Si0, and GeO, by Kingma et al. (1995) and Haines et al. (1998),
respectively, it was found that the B;, optic phonon mode of the rutile-type phase softened

up to the transition pressure and then became a hard A; mode of CaCly-type phase.

MgGeOs;

MgGeO3; has similar polymorphic relationships to the geologically extremely important
MgSiOs which is a hypothetical major component of the Earth’s mantle (see Appendix
B). Four polymorphs of MgGeOs have been known from previous experimental stud-
ies. The two pyroxene-type polymorphs, namely high-pressure-clinoenstatite-type (mon-
oclinic, space group C2/c) and the orthoenstatite-type (orthorhombic, Pbca) phase, are
low-pressure polymorphs. Ozima and Akimoto (1983) stated that the clino-type form is
stable at higher pressure and lower temperature than ortho-type form, in their study of
high pressure and temperature experiment. Yamanaka et al. (1985) studied detail crystal
structures of the clino- and the ortho-type form of MgGeOj3 by the single-crystal x-ray
diffraction technique and noted that the C'2/c and the Pbca structure contained a crys-
tarographically unique corner-linked tetrahedra chain and two type chains, respectively.
In the C2/c high-pressure-clinoenstatite-type structure, germanium and magnesium ions
sit in 8f and 4e site in the Wyckoff notation, respectively. Oxygen anion occupies at

8f site. As the same as the general pyroxene-type structure, oxygen ions are arranged



17

into the distorted cubic-closed-packed (ccp) state, and fourfold- and sixfold-coordination
cation sites in the ccp oxygen lattice are occupied by germanium and magnesium ions, re-
spectively. High-pressure-clinoenstatite-type MgGeQOj3 has attention since it was reported
that unquenchable high density clinoenstatite of MgSiOs might also have the same struc-
ture (Angel et al. 1992).

The ilmenite-type (rhombohedral, R3) and the LiNbO3-type (rhombohedral, R3c)
phase are high-pressure polymorphs of MgGeQOs, in which structures both magnesium
and germanium ions are surrounded by six oxygen ions. The ilmenite-type structure
was investigated by Kirfel et al. (1978). The oxygen ions configuration in this structure
is the almost complete hexagonal-close packing (hcp). Ito and Matsui (1979) found a
rhombohedral phase of MgGeO; which was 1.8 % denser than the ilmenite-type phase.
Later this phase was assigned the lithium niobate structure (Lienenweber et al. 1994).
This structure also contains octahedral-coordinated magnesium and germanium cations.
Difference between the ilmenite-type and the LiNbOs-type structure is only the way of
cation distribution. The MgOs and GeOg octahedra layers which are normal to ¢ axis are
found in the ilmenite-type structure whereas the Mg octahedron and the Ge octahedron
locate alternately in the (001) plane of the LiNbOj structure..

According to an in-situ high-pressure X-ray observation using a diamond-anvil-
cell (DAC) (Nagai et al. 1995), high-pressure-clino-type MgGeOs transformed to a high-
pressure phase at ca. 23 GPa under room temperature. The diffraction pattern of the
high pressure phase showed that the product after the transition had a different structure
from the ilmenite-type and the LiNbOs-type structure. The crystal structure has never
been analyzed experimentally because of significant broadening of diffraction peaks after

the transition.
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Chapter 2

Methods of calculation

2.1 Molecular dynamics

2.1.1 Periodic boundary conditions

Wher using periodic boundary conditions (PBC), particles are enclosed in a box, and
this box is replicated to infinity by rigid translation in all the three Cartesian directions,
completely filling the space. If one of our particles is located at position r in the box, we

assume that this particle really represents an infinite set of particles located at
r+4a+mb+nc, (£,mn=—o0,00), (2.1)

where £, m,n are integer numbers, and a, b, ¢ are the vectors corresponding to the edges of
the box. All these “image” particles move together, and in fact only one of them is repre-
sented in calculations. Apparently, the number of interacting pairs increases enormously
as an effect of PBC. By the minimum image criterion, this complexity is reduced to the
minimum level. It is supposed that when separated by a distance equal or larger than a
cutoff distance R,, two particles do not interact with each other. It is also supposed that
an MD basic box whose size is larger than 2R, along each Cartesian direction is chosen.
When these conditions are satisfied, it is obvious that it at most one among all the pairs
formed by a particle : in the box and the set of all the periodic images of another particle

7 will interact.
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2.1.2 The Velret time integration algorithm

In molecular dynamics, the Verlet algorithm (Verlet 1967) is used as time integration
algorithm. The basic idea is to write two third-order Taylor expansions for the positions

r(t), one forward and one backward in time:

r(t+ At) = r(t)+ v(H)At+ (1/2)a(t)A? + (1/6)b(t) A + O(ALY),

r(t — At) = r(t) — v(H)At + (1/2)a(t)A? — (1/6)b(t) At + O(AtY), (2.2)

where v, a and b are the velocities, the accelerations, and the third derivatives of r with

respect to ¢, respectively. Adding the two expressions gives
r(t + At) = 2r(t) — r(t — At) + a(t) A2 + O(At?Y). (2.3)

This is the basic form of the Verlet algorithm. Since we are integrating Newton’s equa-
tions, a(t) is just the force divided by the mass, and the force is in turn a function of the

positions r(?):
a(t) = —(1/m)VV (r(t)). (2.4)

This algorithm is simple to implement, accurate and stable, explaining its large popularity
among molecular dynamics simulators. The velocities are computed from the positions

by using

_ r(t + At) — r(t — At)

v(t) s : (2.5)

An even better implementation of the same basic algorithm is the velocity Verlet scheme,
where positions, velocities and accelerations at time ¢ 4+ At are obtained from the same

quantities at time ¢ in the following way;

r(t4+ At) = r(t) +v(t)At + (1/2)a(t) At

v(t+At2) = v(t)+ (1/2)a(t)At,
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at+ At) = —(1/m)VV (x(t + At)),

v(t+ At) = v(t+ At/2) + (1/2)a(t + At)At. (2.6)

2.1.3 Temperature

The average potential energy V is obtained by averaging its instantaneous value, which
is usually obtained straightforwardly at the same time as the force computation is made.
For instance, in the case of two-body interactions,
N N
V(t) = ;;qb(lri(t) —r;()), (2.7)
where N is the number of particles. Using the instantaneous particle velocity, the instan-

taneous kinetic energy is given by

N
K(t) = %Zmi[vi(t)]2. (2.8)

The instantaneous temperature T'(t) is directly related to the kinetic energy by the well-
known equipartition formula, assigning an kinetic energy kgT'/2 per degree of freedom:

K(t) = gNkBT(t). (2.9)

An estimate of the average temperature is obtained by averaging its instantaneous value.

2.1.4 Pressure

The measurement of the pressure in a molecular dynamics simulation is based on the

Clausius virial function

N
W(ry,...,on) =D _r;- FIoT (2.10)
=1

where FTOT is the total force acting on atom 7. Its statistical average (W) will be obtained,

as an average over the molecular dynamics trajectory:

(W) = lim Lr dr > ry(r) - muti(7), (2.11)

t—=oo t Jo i1
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where use has been made of Newton’s law. By integrating by parts,

(W) = — lim l/t dr 3 milis (7). (2.12)

This is twice of the average kinetic energy, therefore by the equipartition law of statistical

mechanics,

(W) = —DNkgT, (2.13)

where D, N and kg are the dimensionality of the system (2 or 3), the number of particles,
and the Boltzmann constant, respectively.

The total force acting on a particle as composed of two contributions:
FI°T = F, + FEXT, (2.14)

where F; is the internal force (arising from the interatomic interactions), and FFX7 is the
external force exerted by the container’s walls. If the particles are enclosed in a paral-
lelepiped container of sides L,, L,, L,, volume V = LzLyLz, and with the coordinates
origin on one of its corners, the part (WEXT) due to the container can be evaluated using

the definition (2.10):

(WEXYy = [ (-PL,L,) + L,(-PL,L,) + L.,(—PL,L,) = —~DPYV, (2.15)

EXT
Fd?

where —PLyLz is, for instance, the external force applied by the yz wall along the

z directions to particles located at = Lz, etc. Eq. (2.13) can then be written as

N
<§: r;- F,-> — DPV = —DNkpT (2.16)
=1
or
1 N
PV = NkBT+B<Zr,~-FZ->. (2.17)
=1

This result is known as the virial equation. All the quantities except the pressure P are

easily accessible in a simulation, and therefore Eq. (2.17) constitutes a way to measure P.
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In the case of pairwise interactions via a potential ¢(r), Eq. (2.17) becomes

PV = NkgT — = <22r” %

T g>1

> . (2.18)

rij
This expression has the additional advantage over Eq. (2.17) to be naturally suited to
be used when periodic boundary conditions are present: it is sufficient to take them into
account in the definition of r;;.

Parrinello and Rahman (1980, 1981) developed a variant where the shape of the
parallelepiped box can vary as well as the volume. This is achieved by introducing h-
matrix having nine new degrees of freedom instead of one: the components of the three
vectors spanning the MD basic cell. Each of them is a new dynamical variable, evolving
accordingly to equation of motion derived from an appropriate Lagrangian. This scheme
allows to simulate the constant enthalpy-isobaric ensemble (N H P) and to study structural
phase transitions as a function of pressure. And the af component of pressure tensor is

consequently noted as follows,

Py =Vl

Zmzvmvzﬂ + <ZZ /T‘ij>7'ija7'ijﬁ>} : (2.19)

T 3>t

Another very important ensemble is the canonical ensemble (NVT). In a method
developed by Nosé (1984) and Hoover (1985), this is achieved by introducing a time-
dependent frictional term, whose time evolution is driven by the imbalance between the
instantaneous kinetic energy and the average kinetic energy (3N/2)kgT. These methods
are generally called the extended Lagrangiar method. By combining these methods,
the most practical isothermal-isobaric ensemble (NTP) can be simulated. In the MD
calculations in the present thesis, for controls of temperature and pressure, the scaling

algorithm which is a simplified version of these extended Lagrangian methods is employed.
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2.1.5 Running coordination number

One of most practical ways to analyze the local structure from the calculated particle
distribution is the so-called running coordination number N;;(r) which is the coordination
number as a function of distance. This function is calculated as follows,
1 m
Nz’j(rm) = ﬁ Z nz’j(rn)? (220)
t pn=1
where N; and ny;(r,) are the number of particles of i species and the number of the
particle pairs of ¢ and j species existing in the spherical shell centered at particles 7 and

having the radius r, — Ar/2 <r, <r, + Ar/2.

2.1.6 QEq method

Standard approaches to interatomic potentials for minerals and oxides use fixed charges,
three-body potentials or valence terms, which may not be appropriate for describing phase
transitions, where the coordination environment and structure may change dramatically.
Electrostatics plays an essential role in determining the structure and properties of miner-
als. Since the charges may depend on the distances, angles and coordination environment,
it should be considered that the charge must be allowed to readjust to the instantaneous
geometric configuration of the atoms.

The electrostatic energy Ee of a set of interacting atoms with charges g; is given
by the sum of the atomic energies F;, and the electrostatic interaction between all pairs
of atoms J;;(rij; ¢, 45),

Ee = Z Ei(g) + Z 2; Ji(rijs 4. 45)- (2.21)
; i >i
The local atomic energy E; can be expressed approximately to second order as E;i(g;) =
E;(0)+x%; +1/2J2¢? (Mortier et al. 1986, Rappé and Goddard 1991). Here, the expan-

sion coefficients x? and J2 correspond physically to the electronegativity and hardness



24

of the isolated atom, and are obtained from valence-averaged atomic ionization potential
(IP) and electron affinity (EA) as x? = (IP; + EA;)/2 and J2 = (IP; — EA;). Applying

this expression of the atomic energy, the electrostatic energy is written as

Ees = FEo + Z @xi + 2> 4iqiJij(ri;). (2.22)

i g2
Based on the electronegativity equalization principle (Sanderson. 1951), it is required that
the electronegativity x; of each atom must be equal on all ions in equilibrium state. This
principle was explained from the density functional viewpoint and applied to the classical
system (Parr et al. 1978). From the definition that x; = 0F/0g;, x; is described as a

function of the charges on all of atoms in the system containing N atoms,

Xi(a @, av) = x4 + 3 Jii(rig)g;- (2.23)
J

Rappeé and Goddard took J;;(r;;) to be the Coulomb integral between Slater orbitals

centered on each atomic site,

1
Jij(rij) = /dridrj|¢ni(ri)|2—mt¢m<ri)l2- (2.24)
|vi — x; — x5
Here, ¢ is the Slater 1s-like orbital given by
b, (1) = Asr™TeT6T, (2.25)

and is characterized by a principal quantum number n; and an exponent (;. This function
has the asymptotic behavior as

1/r asr — o0
r) = . 2.26
Jii(r) {JO asr — 0 (2:26)

Thus, J;; describes simple Coulomb for large separations, but it is shielded for short dis-
tances. In the present study, to save calculational time, this shielded Coulomb interaction

was simplified by the function having the same asymptotic behavior,

tanh(Gi;ri;)

Ti5

Jij(rij) = (2.27)
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and (;; related to the shielding distance was represented by [1/(2]2) + 1/(2J%)] -

N first-order equations with respect to the charges ¢; are derived from the elec-
tronegativity equalization condition x; = x2 = ---xw, and the total charge neutrality
condition 3_; ¢; = 0. The charges are determined by solving the equations set. This alge-
braic procedure is equivalent to the electrostatic energy minimization with respect to the
charges subject to the constraint of the total charge neutrality condition. Since the aver-
age electronegativity can be related to the chemical potential of valence electron system
Mi as X; = —[4;, the electronegativity equalization condition corresponds to the chemical
potential equalization condition. The way to calculate the effective charges of ions and
their fluctuation using this procedure is called the charge-equilibration (QEq) method by
Rappé and Goddard. MD calculations using the QEq method (QEg-MD) were recently
executed by Rick et al. (1994) and Demiralp et al. (1999). This method is a functional
many-body potential approach in the ionic approximation. In QEq-MD, as the atomic
charges were renewed at each calculation step, the interatomic potential can respond to
changes of environment (P, T, atomic configuration, etc.). Therefore the deviation from
the Cauchy relation in cubic systems can be successfully reproduced by this method. In
this study, the original QEq-MD code has been written and is applied for monoxides. To
extend for periodic system, Ewald method (Ewald 1921) was applied. The simultaneous
equation was solved by the LU decomposition.

However, using this procedure to estimate charges, computational time increases
in proportion to N2 order to solve the equations set. This difficulty prevents from applying
QEq method to larger particle systems. As one of more sophisticated techniques, a dy-
namical model using the extended Lagrangian method should be developed (see Appendix

C).



2.2 Ab initio calculation

2.2.1 LMTO

In FP-LMTO method, electronic states are described by linear-muffin-tin-orbitals (LMTO).
The crystal space is partitioned into muffin-tin-spheres (MTS) centered at every atomic
position and the interstitial region, which is named for the region outside the MTS. Here,
the overlap of MTS’s is not considered. In the interstitial region, the electronic state is

described by the Hankel functions, which are the solutions of the Helmholtz’s equation:
(A=) f(r) =0, (2.28)

in which the region is set at atomic position R + t, where R is the position of the atom
in the unit cell and t is the translation vector. The Hankel functions are taken with some
fixed energy ¢ = 2. Inside the MTS, the radial part of the electronic state is described
by the linear combination of @grr(rg — t, €,r;) and its energy derivative §Z>RL(1'R —t,em1),
where ¢ is the solution of the one-electron Schrodinger (or Dirac) equation inside MTS
with the spherically symmetric part of the potential for the energy €,m which is taken
with the center of interest, I denotes the combined index for Im, and rg = r — R.
The coefficients of the linear combination are determined with the condition of smooth
augmentation to the Hankel function, K,r(rg — t), at the boundary of MTS centered at
R + t. Inside any other MTS centered at R’ + t’, the electronic states are also described
by linear combination of ¢ and gﬁ, and the coeflicients are determined as follows. The
tail of the Hankel function is expanded in terms of Bessel functions, which are also the

solutions of Eq. (2.28):
Ke(rr—t) =Y Ju(rr—t)Sru pro(t’ — t, &), (2.29)
L/

where Sgip/ gy is the structure constants in direct space. The coefficients of ¢ and c/>

centered at R’ -4t/ are determined with the condition of smooth angmentation to the each



27

Bessel functions in Eq. (2.29). Here, the following definitions are used:

i(kw)Ht!
KNZ(T‘) —mh[(lﬂ“), (230)
Ja(r) = %%%Q—E!j,(nr), (2.31)

where h; = j,—in; are the spherical Hankel functions and j;, n; are the spherical Bessel and
Neumann functions, respectively, and w is the MTS radius. The phase factor of spherical
harmonics Y, to be used is defined after Condon and Shortley (1951), and fr = ‘Yz fi,

where fis K, J, ¢, $ and so on. The expression for the structure constant is

_ 871'(2[” — ].)” " I N =1
SR’L’,RL(tH/{) = %;(21,_1)!!(21_1)”CLL'(KW> (K,C()) (KZLO )
xKn(Jt — R+ R))(—)" Y (t — R + R), (2.32)
where CF;, is Gaunt coefficients:
Cfy = [ diY(®)Y7 ()Y (F) (2.33)

The last step is to perform the Bloch sum of the LMTO’s centered at different
sites, and finally obtained as in the form

XlI:RL(r) = @fRL(rR)(SRRI + Z (I)iR/L;(I'R/)S};/L,’RL(K,) fOI‘ |I' - R,I < 3R/(2.34)
LI

= Z e’ktRﬂL (rp—t) for r at the interstitial region 2.35)

where sp is the MTS radius for the atom included in the sublattice ‘R’ and
Sk ro(s) =Y € Spri pr(t, &) (2.36)
t£0
The functions ®%;; (rg) and ®’/;(rr) are the linear combination of ¢gr and brr, in
which the functions match smoothly to Hankel and Bessel functions at the MTS boundary
respectively as described above.
In the present calculations, lattice Fourier transformation is performed to get

the numerical values of the Hankel functions in the interstitial region. To improve the
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convergence with respect to the number of reciprocal lattice vectors, the solution of the

following equation is used instead of the Hankel function K, (r):

4r (& z 262 1,11 gr? [ (26)? .
(—A — &Y f(r) = (") ((21—) o rle= @V iYL (1), (2.37)

where the Gaussian damping parameter is defined by the following relation,

() 7Y
(C;'cut/Qé.lZ)16_(G°“"/2E-12)2

= const. (2.38)

In Eq. (2.38), the right hand side is set as 0.5 in the present work and G.,; is the absolute
value of maximum reciprocal lattice vector to be used, which is defined by numerical and

computational conditions.

2.2.2 Hamiltonian and overlap matrix

With the LMTO basis set defined in Eq. (2.34) and (2.35), the wave functions ¢, (r)
for valence electrons, where A denotes the bands, are represented as linear combinations
of LMTO’s with the coefficients AX}; obtained from the variational principle. For the
one-electron Hamiltonian given by LDA, they are found from the generalized eigenvalue

problem:

)y [< Xorp| — A+ VM (x) + VM) xkp > —ein < XSmpXare >] Alrr
sRL

= Z (H}:'R’L',RRL - 6k>\01f:’R'L’,nRL)Al/:;\%L =0, (2.39)
sRL

where VMT(r) and VNMT(y) stand for the spherical and the nonspherical parts of poten-
tial, respectively.
2.2.3 Density and potential

The valence density is calculated as follows:

n'() =23 % A AR X o (B) X R (X)- (2.40)
kA kRL x'R'L’
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The electronic density inside MTS is expressed as

ﬁR(r) = zL:ﬁRL(T)ilYL(f')y (241)

where the core electron density is included in L = 0 term. The electronic density in the

interstitial region is expressed as

fi = %:ﬁ(G)eiG’r. (2.42)

The Hartree potential is calculated by solving Poisson’s equation for the total
g q

charge density p. The auxiliary charge I' is introduced to compensate the multipole

moments of charge densities in MTS under the following condition:
/0 " [ﬁLR + \/47rn%(r)51,0 — FRL(T‘)] r2dr = 0, (2.43)

where nf¥(r) denotes the nuclear charge density. If Eq. (2.43) is fulfilled, the densities
inside MTS can not produce an electrostatic field outside its own sphere. The influence
of the charges in the given MTS on the rest of the crystal is completely described by the
field produced by the I', which is added to the p to be canceled out. Poisson’s equation
for 7 + I is solved by Fourier transformation. The auxiliary density I' must be localized
inside MTS and be smooth enough to ensure a fast convergence of the Fourier series. The

Gaussian type auxiliary density is used in the present calculations,
FRL(r) = dRLT‘le_(ERLT)2 ilYL(f‘), (244)
where the damping constant ¢ is also defined by Eq. (2.38) with the following condition:

Gorbit. S Gdens' (245)

cut cut

and the coeflicient dgy, is defined by the condition Eq. (2.43).

The Hartree potential in MTS is written as

VH(r) = 3 VEL(ri'Ya(®), (2.46)
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where
~ 8 1 g
H —_ 424
Var(r) = A+ 1 L’T":l—/o e pre(z)dz
SR
—H"l/ ' ppr(z)dz
+r! S 4r V(GG —1sk -1 (Gsp)[R(G) + T(G)]|  (2.47)
G
and
pro(z) = fipp(r) + VArnR (r)é,. (2.48)
In the interstitial region,
~ 81 iGor
VE(r) = EG: Ei[n(G) + T(G))e'S™. (2.49)
In MTS, the exchange-correlation potential within LDA is written as
Z 05 (r)YL(E) (2.50)

For r > 0.03Z'/3aq, where Z is the atomic number and ag is Bohr radius, the numerical

integration is performed to obtain the L component:

b2 (r) = / div*efar(r)] (#YL(8) . (2.51)
For r < 0.03Z'/3ay, a Taylor expansion is performed: the spherical (MT) part of the

density is taken as a large part and the non-spherical (NMT) part as a small part:

5 T S (o (7)),

L'>0

Oho(r)/Vam = oM (r)] +

"rc ze A 1 xc A A "
05550(r) = v M ()AL (r) + 3 S v DM () Ag (r)Ape (r)Clr,
L'L">0

(2.52)

where v and v*®" are the first and second derivative of v with respect to the density.
In the interstitial region, the exchange-correlation potential is represented as a
Fourier sum. The coefficients are determined via a three-dimensional numerical integra-

tion over the unit cell:

5 / drv™[7(r)]e G (2.53)

cell
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2.2.4 Total energy

The total energy is divided into following parts:
Etot = Ekin + EH + Exc~ (254)

The kinetic energy part is written as

Fyn = kaAka+EfiR€iR
Z / drpp(r)Va(r) = 7" ZV Q) [ dre =97, (2.55)

G
where fi is the weight of k-points sampling and f;g is an occupation number for i-th
core level, ¢g.

Coulomb energy part is written as

_ 1 s (NTH
Ba = 53 /MTsdrpR<r)vR (r)
1 H (v i(G'-G)r
+3 () }G;V (G)/]NT dre . (2.56)

G
For r > 0.03Z'3ay and in the interstitial region, the exchange-correlation energy
is calculated in usual procedures. For r < 0.037'3qq, this energy is evaluated by the

Taylor expansion up to the second order.
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2.3 Determination of interatomic potentials

2.3.1 Ab initio energy surfaces

Nowadays one of most sophisticated way simulating static behavior of materials in solid-
state physics is density functional theory (DFT). Dependence of the total energy of two
alkaline earth oxides on cell parameters and atomic positions were obtained by the follow-
ing technique on the basis of DFT within the local density approximation (LDA) (Kohn
and Sham 1965). The gradient corrected (GC) exchange-correlation potential (Perdew et
al. 1996) was adopted. The ab initio full-potential linear muffin-tin-orbital (FP-LMTO)
method (Weyrich 1988) and a multiple-k MTO basis set (Methfessel et al. 1989) were
adopted, where x? is the kinetic energy of the envelope function. Three-x for valence
electrons were used: x? = —0.1, —1.0 and —2.5 Ry were used for 2s, 2p and 3d states for
Mg and O, 3s, 3p and 3d states for Ca, respectively. The core states were recalculated at
each self-consistent iteration with relativistic effects.

Densities, potentials and the envelope functions inside the muffin-tin spheres
(MTS) were expanded up to [ = 8. Densities and potentials at the interstitial region
were expanded in the Fourier series with the reciprocal lattice vectors G. About 14600
G and 12100 vectors for MgO and CaO were used, respectively. The envelope functions
at the interstitial region were also expanded in G: s, p and d states were expanded in
about 300, 6060 and 1000 G vectors for both MgO and CaQO. The tetrahedron method
improved by Blochl et al. (1994) were used for k points sampling. In the irreducible
Brillouin zone, 16 k points were used. All of these parameters were settled for the total
energy convergence within 0.5 mRy per atom and for charge density within 1.0 x 107°
e/a.u.. Throughout all FP-LMTO calculations in this study, the MTS radii were settled
in 1.7653 and 1.6346 for Mg and O in MgO, 2.2721 and 1.7278 a.u. for Ca and O atoms
in CaO, respectively. |

First, the total energies of alkaline earth oxide crystals with the rock-salt (B1)
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structure were calculated with various cell parameters with the cubic symmetry. Next,
the total energy variations were calculated in terms of cation displacements and lattice
deformations with respect to typical cases of long wave-length limits of the optic (as shown
in Fig. 2.1) and acoustic phonons (¢, €4) in the frozen phonon approximation, respectively.
The cell deformations are considerably important to model elastic properties because the
responses to them can be related to elastic constants and bulk sound velocities. Kamiya
(1996) quite largely underestimated the B1-B2 (CsCl) transition pressure of MgO. This
failure may be caused by no information about the cell deformations included in the
parameterization procedure.

Multiple exponential functions were employed for interatomic potentials of the

non-Coulombic contribution part between i-th and j-th ions following Kamiya (1996).
ij(ri) = D Asjgexp(=ri; [ pija), (2.57)
]

where A;;; and p;;; are specific parameters for each ion pair. This representation of the

Fig.2.1 The calculated atomic dis-
placement pattern for constructing
potential energy surfaces of the Bl
structure.  The large and small
spheres indicate anions and cations,
respectively. This pattern corre-
sponds to a typical displacement of
optic phonons.
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repulsion term corresponds to an expansion to a series of exponential functions and in a
special case that [ = 1, this term is equivalent to the repulsive part of Eq. (1.1). Because
of flexibility by multiple terms from the restriction by the fixed functional form, ab initio
potential surfaces can be precisely reproduced in the wide volume range. If a sufficiently
large number of exponentials are included in Eq. (2.57), p;;;s can be fixed. Using these
representations of the potential function, total lattice energy of a crystal Uy, is described

as a summation of the intra-atomic QEq energy and the interatomic energy,
1
Un = ZX?% + 5 Z (Ji59:9; + @ii(ris)) - (2.58)
3 2,7

x; and Jj} are specific parameters for each atom and f;; and rY; are ones for each ion
pair. These parameters are determined by a least squares fitting procedure to the total
energy calculated by the ab-initio method (U,) by minimizing the following optimization
function W.

W =Y w,(Ua(s) — Un(s))?, (2.59)

where w; is a weight factor and index s indicates a structure. Although a lot of parameter
must be determined comparing to the simple form of Eq. (1.1), this never raise serious
difficulty because the repulsive part comes to be a linear optimization problem by fixed
pi;g- In this study, p;; s were set to 1/0.75(1 +1) (I =1,---,n), where n was the number
of terms included in Eq. (2.57). Dependence of n on convergence was examined and it
was found that n = 5 was enough to obtain satisfied results as shown in the following
section. At the beginning of the fitting procedure, x{ and J2 were assumed to the values
calculated by Perdew et al. (1992) using the DFT method with GC. In this procedure,
no repulsive interaction between magnesium cations was included since the jonic size of
magnesium was small in comparison with other ions and then it can be regarded that
their interaction was negligible. The optimized parameter are listed in Table IIT and IV.

Fig. 2.2 for MgO and Fig. 2.3 for CaO show energy surfaces of FP-LMTO with variation
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of volume, normal (e;), shear (e4) deformations and atomic displacement (u) with fitted

results of the model potential function represented by Eq. (2.58).

TABLE III Optimized QEq parameters for MgO and CaO. Unit of the values is given in eV.

atom Y% eV J%eV
0 19.459 23.347
Mg 1667 12.780
Ca 1.124 12.017

TABLE IV Optimized repulsive parameters A;;; in Eq. (2.57) of each atom pair. Unit of the values

is given in kJ/mol.

atom pair =1 2 3 4 5
0-0 —3.84852x10%  9.04233x10° —2.20293x10°>  2.03867x10° —4.80861x10°
Mg-O 1.17346x10* —2.11399x10°  1.31867x10% —3.69644x10°  4.02780x10°
Ca-O 1.33794x10% —1.53944x10*  4.83265x10%* —9.52680x10°  1.50253x10°

Ca-Ca 4.87585x10% —2.67395x10°

4.19283%x10% —2.64784x107

5.92496 x 107
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Figure 2.2 The optimized results of potential parameters to ab
initio energy surfaces of MgO. The energy variation as a function
of volume (a), strain €; (b), ¢4 (¢) and atomic displacement u (d).
The filled circles are the calculated values of FP-LMTO and the
curves are fitted results. The numbers in b-d are cell parameters
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Figure 2.3 The optimized results of potential parameters to ab
initio energy surfaces of CaO. The energy variation as a function
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The filled circles are the calculated values of FP-LMTO and the
curves are fitted results. The numbers in b-d are cell parameters
at zero strains given in unit a.u.
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2.3.2 Empirical techniques

MD calculation using the ab initio potential can give reliable results. In the present
thesis, the interatomic potentials of GeO, and MgGeOs were, however, constructed by
empirical ways written in this section owing to the limitation that ab initio calculations of
these complicated structures still has computational difficulty. The functional form of the
interatomic potentials employed in this study is expressed by Eq. (2.60) as a conventional

Born-Mayer type partially ionic pairwise interaction model,

Vii(rij) = 24 4 £(B, + B;)exp [ (2.60)

]

A; + Aj — T _ C,C]
B; + B; ’

Tij
where the terms represent Coulomb, van der Waals (Mayer 1933) and Gilbert-type repul-
sion (Gilbert 1968) energy, respectively. The term r;; is the interatomic distance between
i-th and j-th ion, f is a standard force constant 4.184 kJ/mol. The effective charge g,
the repulsive radius A, the softness parameter B and the van der Waals coefficient C
are the energy parameters. These parameters were empirically optimized to reproduce
the crystal structures, bulk moduli and thermal expansivities of GeO, and MgGeOs poly-
morphs. The potential parameters used in the present study are listed in Table V for GeO,
and Table VI for MgGeQs polymorphs. The static lattice energy minimization (WMIN)
method (Busing and Matsui 1984) was applied to optimize the energy parameters from
the observed crystal structure by minimizing the static total lattice energy expressed as
Ur(rij) = 3i Xjsi V(rij). For GeO,, a relation gge = 2go was assumed to conserve the
total charge neutrality. The oxide GeO, has approximately similar structural and physical
properties as Si0O,. The interatomic force between the germanium and the oxygen ion
may be similar to that between the silicon and the oxygen ion. When starting to fit these
parameters, each parameter was, therefore, referred to a SiO; potential model (TTAM)
proposed by Tsuneyuki et al. (1988), which was derived from the ab initio Hartree-Fock

calculations. For MgGeQs3, a relation qg. + quz = 390 was assumed to conserve the total
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TABLE V Potential parameters for GeOs polymorphs.

atom q/le| A/A B/A C/ A’kJV/2mol 172
Ge 2.0 0.8680 0.034 47.876
O —-1.0 2.0330 0.172 144.243

TABLE VI Potential parameters for MgGeOgs polymorphs.

atom ¢q/je|] A/A B/A C/ A’kJV/2mol 112
0 —1.298 1.7936 0.14 54.01

Ge 2.329 0.8603 0.04 —

Mg 1.565 0.8820 0.04 -

charge neutrality. Moreover the van der Waals coefficient C' is applied only for oxygen.

2.4 Computational details in MD calculation

MD calculations were carried out in the isothermal-isobaric (NTP) condition to estimate
pressure and temperature dependence of volume and investigate pressure-induced transi-
tions. The scaling algorithms of particle velocities and basic cell parameters (Matsui and
Kawamura 1987) were adopted to retain constant temperature T’ and pressure P (actually
constant stress), respectively. To reproduce bulk situation, the three-dimensional peri-
odic boundary condition was imposed. Here the Ewald sum method (Ewald 1921) was
imposed with 230 reciprocal lattice vectors to converge the calculation of the Coulomb
interaction efficiently. Newton’s equation of motion was integrated numerically by Verlet
algorithm with setting a time interval to 2.0 fs. To include the quantum contribution to
the structural and thermodynamic properties, quantum corrections developed by Matsui
(1989) were included. For MgO and CaO, ionic charges recalculated at every step using

QEq method were treated as one of variables such as positions in the dynamical system.
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An MD basic cell with 64 unit cells (4a; x 4a; X 4as, containing 256 cations and 256 oxy-
gen anions) was taken for MgO and Ca0O. MD basic cells with 100 unit cells (5a x 5a x 4c,
containing 300 germanium and 600 oxygen ions) and 150 unit cells (5a x 5a x 6¢, con-
taining 300 germanium and 600 oxygen ions) were taken for quartz and rutile-type GeO,.
For MgGeQOs polymorphs, MD basic cells with 16 unit cells (2a x 2a x 4c, containing 128
magnesium, 128 germanium and 384 oxygen ions) for the clinopyroxene-type structure,
with 8 (1a x 2a x 4c, containing 128 magnesium, 128 germanium and 384 oxygen ions) for
the orthopyroxene-type and 32 (4a x 4a x 2¢, containing 192 magnesium, 192 germanium
and 576 oxygen ions) for both of the ilmenite-type and the LiNbOs-type were taken. It
was confirmed that these cell sizes gave no size effect to calculated results. In each run,
the execution with a sufficiently long period of 3 x 10? steps {6 ps), reached an equilibrium
state of the system under the desired P and T condition. After this procedure, in the
typical case, the further subsequent period of 1 x 10* steps (20 ps) was carried out and
the average of this data were regarded as calculated results.

The adiabatic elastic stiffness constants c;; were calculated on the basis of the
so-called Hook’s law o; = ¢;;¢;, which is a stress-strain linear response relation. In this
procedure, a corresponding positive and negative strain of ¢ = +0.01 were given to equi-
librated cells in the constant-cell adiabatic (NVE) condition after equilibration at each
pressure and temperature. Shear modulus G is evaluated by the so-called Voigt-Reuss-
Hill average, G = 1/2(Gy + Gr) where Gy and Gr are the Voigt average and the Reuss

average, respectively.

2.5 Reproduction at ambient condition

Firstly, the calculated results of cell parameters, elastic moduli and thermal expansiv-
ities of MgO and CaQ at ambient pressure are listed in Table VII with corresponding

experimental results. The calculated lattice constants agree quite well with observed ones
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within the deviations of 1.4%. The calculated bulk moduli and shear moduli also agree
within the deviations of 8%, where bulk moduli and their derivatives were estimated by
fourth-order least-square fits of calculated volume to the Birch-Murnaghan equation of
state and shear moduli and their pressure derivatives were evaluated by second-order poly-
nomtial fits. The calculated elastic constants agree within 11%. The calculated thermal
expansivities agree within 11%. These results indicate that the ab initio calculations are
significantly plausible and the obtained energy surfaces have enough accuracy to applied
to construct model effective potentials. Moreover, the new calculation method used in the
present thesis can reproduce not only crystal structure but also several physical properties
quite accurately. Especially, the deviations from the Cauchy relation evaluated by Eq.
(1.8) are successfully reproduced. According to the experimental result of the resonance
method by Oda et al. (1992), the thermal expansivity of CaO is smaller than that of MgO
in spite of its larger compressibility. It intuitively seems curious since in oxides having
the same crystal structure, the harder material generally has smaller thermal expansivity
and vice versa. It is unlikely that CaO has a large region of negative thermal expansion
at quite low temperatures as well as predictions about Si and AlAs by Pavone (1991). A
very recent high—temperaﬁure X-ray diffraction measurement by Fiquet et al. (1999) gives
a larger thermal expansion coefficient value of CaO. The present result is in concordance
with the latter result.

The flexibility of the multiple exponential terms (Eq. (2.57)) enables to reproduce
the volume compressibility of MgO under the very wide pressure range from ambient to
230 GPa. In fact, several previous calculations using empirical potentials could never
reproduce the compression curve accurately at very high pressure because the functional
form was too simple. Although the empirical optimization of a lot of potential parameters
is a laborious task, using ab initio energy surfaces, little difficulty is needed to determine

them and more accurate potentials can be constructed.
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The simulated structural parameters for two structures of GeQO,, at ambient
conditions, are given in Table VIII together with the observed values. No symmetrical
constraints are applied on six lattice constants or the atomic position in MD simula-
tion. Crystal symmetries solely depend on the nature of the interatomic potential model.
There are, nevertheless, no significant differences between simulated values and experi-
mental values. All the calculated cell parameters are in extremely good agreement with
those observed for quartz- and rutile-type. In particular the differences in quartz-type
cell parameters between experimental and calculated values are within 0.005 A. The
Ge-O interatomic distances, the O-Ge-O and the Ge-O-Ge bonding angles can also be
reproduced fairly well. The largest error is that one of two Ge-O distances is subtly
underestimated or that the Ge-O-Ge angle is overestimated by ~4° in quartz-type. It
is noted that this ionic interatomic potential can passably reproduce the Ge-O bond in
quartz, including not a little covalency. Bulk moduli and their derivatives were estimated
by third-order least-square fits of calculated volume to the Birch-Murnaghan equation
of state. The calculated bulk moduli and thermal expansivities also agree considerably
well with the experimental values. The calculated elastic constants of the quartz-type
structure at ambient condition agree on the whole with the experimental results recently
reported by Grimsditch et al. (1998). These results indicate that the ¢/a axial ratio
of quartz-type increases with pressure, namely the crystal is stiffer in the ¢ direction in
spite that ¢/a > 1. This result is in agreement with experimental results (Glinnemann
et al. 1992; Kawasaki et al. 1994). However, there are somewhat large errors between
calculated and observed values of rutile-type GeO, although the trend of the variation of
the c/a ratio as a function of pressure is correctly reproduced. The calculated enthalpies,
expressed by H = U,y + Ugin + PV, where Uy and Uy, are the total potential energy
and the kinetic energy given by time averages of values in Eq. (2.7) and Eq. (2.8), re-

spectively, are also listed in Table VIII. The experimental energetical relation is correctly
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reproduced.

MD calculations of four MgGeOs polymorphs, which have the high-pressure-
clinoenstatite, the orthoenstatite, the ilmenite and the LiNbOs-type phase, were carried
out. The calculated results (lattice constants, densities p, bulk moduli K, their pressure
derivatives K and thermal expansivities o) at 0.1 MPa and 300 K are shown in Table
IX with previous experimental observed values for comparison. The calculated densities
of each polymorph at ambient condition agree quite well with experimental data and the
largest discrepancy is only 0.07 g/cm® underestimation for the LiNbOjs-type phase. Bulk
moduli and their derivatives were estimated by third-order least-square fits of calculated
volume to the Birch-Murnaghan equation of state. The calculated K| values tends to
be somewhat overestimated for three polymorphs. The calculated thermal expansivi-
ties are somewhat larger than observed ones and the largest discrepancy is 22% for the
high-pressure-clino-type phase. No experimental data about the elastic and the thermo-
dynamic properties of the LiNbOs-type phase have ever reported in experimental studies.
The bulk modulus and the thermal expansivity of the LiNbOs-type phase are predicted
somewhat larger and smaller than those of the ilmenite-type phase are, respectively. This
result seems to be reasonable since the LiNbOs-type phase is high-pressure phase of the
ilmenite-type phase. In spite that the form of the interatomic potential is fairly simple, it
had a high ability to reproduce all of four polymorphs transferably and then the calculated
results using this interatomic potential are very convincing.

The significance of the LiNbOs-type phase is that it implies the possible existence
of a perovskite-type phase of MgGeOs. Leinenweber et al. (1994) reported first in their
in situ x-ray diffraction study, that an unquenchable perovskite-type polymorph was ob-
served at 17.9 GPa. The calculation of perovskite-type MgGeOs was carried out using
observed cell data by Leinenweber et al. and reported atomic positions in Mg-perovskite

as the initial structural parameters of MD calculation. The perovskite-type structure was
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preserved even at 0 GPa and the LiNbOj;-perovskite transition did not appear. Although
the quenchable character differs from the experimental result, this result strongly suggests
that the perovskite-form is likely to be stable even for MgGeOs. The calculated structure

data are also shown in Table IX.

2.6 Summary

e Methods of calculations and computational procedures are reported in de-
tail. The newly developed QEq-MD method and the traditional empirical
MD method successfully reproduce the several crystal structures at ambient

condition.

e By QEq-MD with the interatomic potentials derived from first-principle cal-
culations, the elastic properties of MgO and CaO including the deviations
from the Cauchy relation are quite accurately reproduced, in spite that the
potentials are determined with no optimization to experimentally observed

data.

o By the traditional MD method with empirical pair potentials, the number of
polymorphs of GeO, and MgGeO; are reproduced in spite of simplicity of the

mode] potentials.



TABLE VII Calculated and observed structural and physical properties of Bl
structured MgO and CaO. The cell parameters a, the bulk moduli K, shear
moduli G and the thermal expansivities o at ambient condition are indicated.
Observed cell lengths are from Fiquet et al. (1999). Observed bulk moduli and
their derivatives are from MgO: Duffy et al. (1995); CaO: Richet et al. (1988).
Observed shear moduli, their derivatives and elastic constants are from MgO:
Sinogeikin and Bass (1999); CaO: Oda et al. (1992). Observed o are from the
first array: Fiquet et al. (1999); the second array of MgO: Isaak et al. (1989);
Ca0: Oda et al. (1992).

Material MgO Ca0
Space group Fm3m Fm3m
Obs QEq-MD Obs QEq-MD
Cell length
a/A 4210 4.268 4.813 4.774
Bulk modulus
Ky / GPa 157 159.9 111 118.0
K} 4.3 3.5 4.2 4.7
K| —0.022 —0.003 - —0.060
Shear modulus
Gy / GPa 130.2 122.9 81.2 83.9
G§ 2.4 1.8 - 1.7
G} —-0.04 -0.012 - —0.016
Elastic constant
¢11 / GPa 297.9 296.0 219.2 228.0
C44 154.4 138.9 80.0 73.3
€12 95.8 85.3 56.3 50.8
caa/cC12 1.61 1.63 1.42 1.44
Thermal expansivity
a /107% K1 3.09 3.40 4.05 4.47

3.12 3.04
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TABLE VIII Calculated and observed structural and physical properties of
the two GeO, polymorphs at ambient condition. Observed structural data are
from Qz-type: Smith and Isaacs (1964); Rt-type: Hazen and Finger (1981).
Observed Ky and K} are from Qgz-type: Glinnemann et al. (1992); Rt-type:
Hazen and Finger (1981). Observed a are derived from Qz-type: Murthy
(1962); Rt-type: Rao et al. (1968). Observed c;; are from Qz-type: Grimsditch
et al. (1998); Rt-type: Wang and Simmons (1973).

Phase Qz-type Rt-type
Space group P3521 P4y /mnm
Obs Calc Obs Calc

Cell length

a/A 4.987 4.990 4.396 4421

c 5.652 5.647 2.863 2.830
Interatomic distance

Ge-O / A 1.737 1.744 1.871 1.879

Ge-O’ 1.741 1.681 1.903 1.890
Bond angle

O-Ge-O’ / degree 113.1 113.3 80.2 82.3

0-Ge-O” 106.3 105.5 90.0 90.0

0’-Ge-0” 110.4 110.4 90.0 90.0

0-Ge-O” 107.7 109.0 90.0 90.0

Ge-O-Ge’ 130.1 134.1 130.1 130.6
Bulk modulus

Ko / GPa 39.2 28.8 258 258.7

K} 3.8 4.6 7.0 4.7
Elastic constant

c11 / GPa 64 55.1 337.2 381.3

€33 118 123.0 599.4 482.2

Ca4 37 26.2 161.5 153.8

Ces - - 258.4 155.1

12 22 18.1 188.2 151.6

c13 32 22.2 187.4 165.0

Ci4 2 —4.2 - -
Thermal expansivity

a /107% K1 2.49 2.65 2.03 2.37
Enthalpy

H /kImol™? —~ ~3593.3 - —3631.2




TABLE IX Calculated and observed structural and physical properties of the MgGeOs
polymorphs at ambient condition. Observed structural data are from HPCEn and OEn-
type: Yamanaka et al. (1985); Ilm-type: Kirfel et al. (1978); LiNbOs-type: Ito and Matsui
(1979); Pv-type (17.9 GPa): Leinenweber et al. (1994). Observed Ko and K}, are from
HPCEn-type: Nagai (1995); OEn-type: Ross and Navrotsky (1988); llm-type: Ashida et
al. (1985); Pv-type: Leinenweber et al. (1994). Observed « are derived from HPCEn and
OEn-type: Yamanaka et al. (1985); Ilm-type: Ashida et al. (1985). Observed lattice cell
lengths of the Pv-type polymorph are at 17.9 GPa. Observed density and bulk modulus
of the Pv-type polymorph are the expected values at 0 GPa from fitted Birch-Murnaghan
equation of state.

Phase HPCEn OEn Iim LiNbO3 Pv
Space group C2/¢ Pbca R3 R3c Pbnm
Cell length
a/ A Calc 9.668 19.01 4.949 4.968 4.951
Obs 9.605  18.829 4.933 4.987  (4.832)
b Calc 8.814 8.877 4.949 4.968 5.138
Obs 8.940 8.952 4.933 4987  (5.031)
¢ Calc 5.18 5.402  13.702 13.396 7.363
Obs ' 5.16 5.347  13.734 13.09  (7.022)
Cell angle
o / deg Calc 90.0 90.0 90.0 90.0 90.0
Obs 90 90 90 90 (90)
B Calc 99.6 90.0 90.0 90.0 90.0
Obs 100.95 90 90 90 (90)
Y Calc 90.0 90.0 120.0 120.0 90.0
Obs 90 90 120 120 (90)
Density
po g/cm® Calc 4.423 4.224 4.968 5.043 5.14
Obs 4.424 4.271 4.981 5.113 (5.12)
Bulk modulus '
Ky / GPa Calc 128.7 95.8 213.5 237.6 253.2
Obs 127 115 195 - (213)
K Calc 6.2 8.4 5.6 5.3 4.4
Obs 4 4 3.6 - -
Thermal expansivity
a /1075 K1 Calc 4.42 4.89 3.71 3.48 3.82

Obs 3.61 4.06 2.2 - -
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Chapter 3

Pressure-induced transitions

under hydrostatic condition

3.1 Transitions with coordination change

3.1.1 Calculated P-V relations

Firstly, calculated equations of state of MgO and CaQ are shown in Fig. 3.1 and 3.2 with
corresponding experimental results, respectively. These results shows that both EOS
of Bl (NaCl-type) phases calculated by QEq-MD with multiple exponential repulsion
potentials are in quite accurately agreement with not only those of FP-LMTO but also
those of the experimental results in wide pressure range. The calculated EOS of MgO
is especially most accurate in the previous MD works and no transition occurred in the
calculated pressure range as well as the observation. On the other hand, the B1 phase
of Ca0 transformed into the B2 (CsCl-type) phase with abrupt volume reduction as the
same as observations. The thermodynamical phase boundary at 300 K approximately
estimated from the pressure variation of AH was about 40 GPa, which is in fairly good
agreement with the observed one (~55 GPa). In spite that the interatomic potential of
Ca0O was optimized only for the Bl structure, not only the EOS of the B2 phase but also
the thermodynamical phase boundary were reproduced fairly accurately. These potentials
were determined without the fitiing procedure to the experimentally observed data. Note
that the construction techniques of the interatomic potentials using the present thesis are

significantly efficient for the classical MD simulation.
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Figure 3.1 The equations of state
of MgO. The solid and dotted curves
are calculated results of QEq-MD at
300 K and FP-LMTO, respectively.
The circle is the experimental result
at room temperature under static
compression (Mao and Bell 1988,
Dufty et al. 1995).

Figure 3.2 The equations of state
of CaQ polymorphs. The solid and
dashed curves are calculated results
of QEq-MD at 300 K and 1000
K, respectively. The dotted curve
of the Bl-type phase is the calcu-
lated result of FP-LMTO. The ex-
perimental result at room tempera-
ture under static compression plot-
ted by the circle is from Richet et al.
(1988).
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The transition pressure of Bl-type CaO under hydrostatic compression is 130 GPa,
which is largely overestimated comparing to the thermodynamical phase boundary. Upon
decompression of CaQ, the back transition from the B2 to the B1 phase occurs at 0 GPa
with abrupt volume increase, which is largely underestimated. Namely, there is a very
large pressure hysteresis between the calculated B1-B2 transition. In these transitions,
the discontinuous volume changes are associated with first-order transition. In general, it
is recognized that MD method of an ideal defect-free crystal under homogeneous pressure
over/underestimates its transition pressure because of computational limitations of MD
method for sluggish nature of the transition. Therefore, at a glance, the large hysteresis
is not intuitively curious result in the case of first-order structural transitions.

At 1000 K, the transition pressure of CaO from Bl to B2 lowers about 10 GPa
as shown in Fig. 3.2. The back transition pressure increases about 5 GPa. These results
mean that thermal energy activates the B1-B2 transition and makes the pressure hysteresis
small. However, the experimentally observed hysteresis is only 10 GPa even at 300 K
(the circles in Fig. 3.2). It is unlikely that temperature effect is a dominant factor for
the transition kinetics in the perfect crystal. We can easily associate that the effects of
extrinsic factors such as lattice defects, impurity, grain boundary and temperature and
pressure homogeneity are important to study the transition kinetics. It is however noted
that these factors are not essential for the B1-B2 transition since the transition itself can
be reproduced even in the perfect crystal. This means that an intrinsic transition pathway
with no mediation of the extrinsic factor exists between the B1 and B2 structures. It has,
however, never been elucidated why they transform at 130 and 0 GPa. It can be considered
that the calculated large supercompression/decompression is needed as thermodynamical
driving force for the transition or that the energy barrier for the transition itself changes
to zero at the calculated transition pressure. The latter case can be called as “mechanical

instability.”
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One of features of QEq-MD method is that the charges of the individual atoms
depend on their instantaneous environment. This leads to slightly different charges for
the B1 and B2 phases, which change with temperatures and pressures as shown in Table

X. Charges increase with pressure and decrease with temperature.

TABLE X Cation charges for different temperatures and pressures for Bl
phase of MgO and Bl and B2 phases of CaQ. Unit of values is given in e.

P / GPa MgO-B1 Ca0-B1 Ca0-B2
300 K 1000 K 300 K 1000 K 300K 1000 K

0 1.348 1.334 1251 1.233 - -
40 1.483 1.470 1376 1.366 1.342 1.330
80 1.581  1.567 1.459 1.450 1.404 1.396
120 1.659  1.646  1.526 - 1.443  1.436
160 1.726  1.713 — — 1.490  1.483
200 1.785  1.771 - — 1.507  1.500
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Next, calculated results of high-pressure transitions of quartz and enstatite are indicated.
The calculated equations of state for two polymorphs of GeO, at 300 K are shown in Fig.
3.3 with experimental results for comparison. These calculated EOS agree well with the
experimental data. Although the compressibility of quartz is somewhat overestimated
compared with experimental results, the empirically determined interatomic potential for
GeQ, can reproduce the trend of compression of GeO, polymorphs accurately. Fig. 3.3
shows that quartz undergoes a discontinuous volume reduction resulting from a transition
to a denser state at 7.4 GPa, which is the almost same pressure of the experimentally
observed amorphization transition, 6.5—7 GPa (Wolf et al. 1992, Yamanaka et al. 1992).
No further discrete volume change occur under more compression to 100 GPa, and no back

transition to quartz was found upon release of pressure to 0 GPa as well as observations.

Figure 3.3 The equations of state
of GeOs polymorphs. Present re-
sults of Qz- and Rt-type are shown
by the filled circle and diamond, re-
spectively. Experimental values for
Qz-type plotted by the open circle
and triangle are from Glinnemann
et al. (1992) and Kawasaki et al.
(1994), respectively. The experi-
ment value for Rt-type plotted by

Volume / cmmol™!

the open diamond is from Hazen and

0 10 20 30 Finger (1981).

Pressure / GPa
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Figure 3.4 The calculated volume
variations of HPCEn-type and Ilm-
type MgGeOg as a function of pres-
sure. The filled and open circles
show volumes of the HPCEn-type
phase at 300 and 650 K, respec-
tively. The filled triangle is it of the
Iim-type phase at 300 K. Crosses are
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Fig. 3.4 shows calculated pressure dependence of volume of the high-pressure-
clinoenstatite-type MgGeOs at 300 and 650 K and the ilmenite-type polymorph at 300 K
under hydrostatic conditions. This figure indicates that the pressure-induced transition
of the high-pressure-clino-type form to an intermediate density state between clinopyrox-
ene and ilmenite appears at 32 GPa (300 K) and 29 GPa (650 K) with abrupt volume
reduction of ca. 5%. No subsequent transition occurred on more compression up to 60
GPa. A back transition to the high-pressure-clino occurred on decompression to ambient
pressure. The calculated high-pressure state can not be identified as any of experimentally
reported phases and then is called “X,” in the thesis. This transition is interesting in
the following respect. By the previous high-pressure in situ X-ray experiment of MgGeQOs
under room temperature using the diamond-anvil cell, it was observed that high-pressure-
clinoenstatite transformed to an undetermined phase at ca. 23 GPa (Nagai 1995). The

observed high-pressure state was also unquenchable to ambient pressure as well as X,
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though the transition pressure was somewhat lower. The structure of X; and its transi-
tion mechanism are worth investigating since the experimentally observed unknown phase
is likely to have some relations to Xj.

At 650 K, the transition pressure to X; decreased about 3 GPa and the direct
transition to the ilmenite-type phase also never appeared. It is noted that the transition
pressure decreases with increasing temperature. This result suggests that temperature

activates the transition as well as the case of the B1-B2 transition.



3.1.2 Structural changes with transitions

In Fig. 3.5, the schematic picture of the atomic configurational changes at the B1-B2
transition of CaO is depicted. From this figure, it is clear that the transition can be
performed by only a thombohedral distortion of lattices along [1 1 1] and with no atomic
diffusion. Then the crystallographic lattice orientation relations between the two phases

in the transition can be represented as
[1 00 ]Bl - [1 1 0]}32, [1 10 ]Bl — [1 0 0]32 and [1 11 ]Bl — [1 1 1]52.

The ion packing changes from face-centered cubic (fcc) in Bl to simple cubic (sc) in B2.
In spite of the high-pressure structure, the B2 structure has no longer the closed-packing
of 1ons. This indicates that the hard-sphere model in which ions are treated as rigid-body
is not valid and the coordination increase is dominant for volume reduction in the B1-B2

transition.

Figure 3.5 The schematic picture of the structural change in the B1-B2 transition.
a and b show the B1 and B2-type structure, respectively. Thin lines are unit cells of
each lattice and thick lines in a indicate the B2-type cell. In these figures, The large
and small spheres mean oxygen ions and cations, respectively.



56

A snapshot of the high-pressure structure of quartz-type GeO; obtained after very long
structural relaxation of 131000 steps (262 ps) at 7.4 GPa and 300 K is shown in Fig.
3.6. This structure seems to be poorly crystallized. Nevertheless, during the long cal-
culation of the extremely large number of iterations, this structure was unlikely to re-
lax to other crystal structures. As seen from Fig. 3.6, the disordered structure seems
to be attributed to the cation configuration. The oxygen anions arrangement seems
fairly ordered. (Moreover, the quartz periodicity along c direction was preserved in the
transition.) The running coordination numbers shown in Fig. 3.7 were calculated from
Eq. (2.20) to investigate the local structure and the particle distribution in the high-

pressure state. It can be seen that the fourfold Ge-O coordination in quartz increases to

Figure 3.6 The snapshot of the calcu-
lated pressure-induced structure of Qz
at 7.4 GPa. This figure is a projec-
tion along the quartz a axis. The small
and the large spheres indicate germa-
nium and oxygen atoms, respectively.
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the intermediate coordination number about 5.3 (solid lines in Fig. 3.7). This indicates
that some fourfold-coordinated germanium ions moved to highly sixfold-coordinated sites
with the transition. The EXAFS measurement by Itie et al. (1989) and Kawasaki (1996)
also indicated the coordination increase of germaniun ion with the amorphization transi-
tion. The coincidences of the transition pressure, the cation coordination change, and the
quenchable character are quite interesting since these results suggest that the calculated
transition of quartz has a strong relation to the experimentally observed pressure-induced
amorphization transition.

The O-O RCNs (dashed lines in Fig. 3.7) indicate that the O-O coordination
becomes more regular with the transition and almost 12-fold, which is characteristic of
a face-centered cubic (fcc) sublattice. The formation of the oxygen fcc sublattice with
the transition is similar to the result of Binggeli et al. (1994), although they reported
that a body-centered-cubic (bcc) sublattice appeared with the transformation, in which
the O-O coordination should be eightfold. It is noted that octahedral cation sites form
near tetrahedral sites in the fcc cell (Fig. 3.8). The change in cation coordination from
the fourfold to the sixfold site in the fcc cell needs only a subtle displacement of cation
with no atomic diffusion process. The mechanism of the structural changes containing
the increase cation coordination with pressure-induced transition can be understood by
the following sequential processes. (1) Transformation of oxygen packing to the fcc ar-
rangement by some instability of the quartz-type framework. (2) Partial displacements
of germanium ions to newly formed sixfold-coordinated sites in the oxygen fcc sublattice.
It was reported by the high-pressure X-ray measurement (Sowa 1988) that oxygen atoms
tended to arrange themselves in the bce sublattice upon compression of quartz. It can be
therefore considered that the calculated transition corresponds to the discrete change of
compression mechanism of the oxygen sublattice. The bec lattice can be connect to the

fce lattice by the tetrahedral elongation to fulfill o’ = 1/2a.
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Figure 3.7 Running coordination
numbers (RCNs) of Ge-O (solid line)
and O-O (dashed line) pairs in the Qz-
type structure at 6 GPa (a), the high-
pressure structure at 7.4 GPa (b) and
at 70 GPa (c¢). The Ge-O and O-O co-
ordinations increases with pressure.

Figure 3.8 The schematic picture of
a half of the fcc lattice.  The cir-
cle is oxygen ion. The diamond and
triangle are the fourfold- and sixfold-
coordination cation sites in the bet cell,
respectively. Thick lines indicate cor-
responding tetrahedral and octahedral
coordination polyhedra.
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From the viewpoint of regularity of the oxygen arrangement, the structure ob-
tained after the transition should not be regarded as amorphous phase. These states
may be related to an intermediate crystalline phase just before amorphization of SiO,
previously discovered by Kingma et al. (1993) or a local structure of the amorphous
phase. In the latter case, the “amorphous” character must originate in disorder of a much
larger-scale structure.

The subsequent increase in coordination number of germanium ions depends not
on the calculated duration but on pressure. Almost all cations finally displaced to the
sixfold-coordination site and the oxygen sublattice became more regularly at 70 GPa (Fig.
3.7c). This structure may be recognized as the crystalline structure of alternating a-PbO,
slabs proposed by Binggeli et al. However, this state was never denser than the rutile-type
phase and returned to the intermediate coordination state on decompression. Therefore,
it is unreasonable to recognize the state at 70 GPa as a high-pressure stable phase. During
further compression up to 100 GPa, no transition to the other structure appeared. This
result indicates that the calculated high-pressure structure is comparatively stable with
respect to pressurization, and consistent with the previous observatioh. Yamanaka et
al. (1992) reported that after amorphization transition, any crystallization seemed to be
prohibited kinetically or to progress very slowly even if more compression up to 30 GPa

was applied.

The structure of X; which is the calculated high-pressure state of high-pressure-clinoenstatite-
type MgGeOQj is shown in Fig. 3.9. The impressive structural property of X; is that the
oxygen packing manner changes from ccp toward the hcp by the slips of the oxygen
dense planes every other layer (see Fig. 5.5). The ccp stacking direction in high-pressure-
clinoenstatite which is along [1 0 0] in high-pressure-clinoenstatite, and hcp-like stacking

direction in X; are shown by gray and black arrows, respectively. By this modification,
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the germanium coordination number in X; shown in Fig. 3.10 increases from fourfold to
sixfold and consequently, the two types of the spacing between oxygen dense planes in
the clinopyroxene become almost equal in X;. It is considered that the first-order volume
reduction results from the germanium coordination increase. However, the intermediate
oxygen packing in X, seems mechanically not so stable since large void bands and adja-

cent cation densely packed bands along [1 1 0] must make the lattice severely distorted.

It can be considered that this is the origin of the unquenchable nature of X;.

Figure 3.9 The snapshot of the cal-
culated structure of the high-pressure
phase X;. The large circle indicates
oxygen anion, and the small gray and
white circles are germanium and mag-
nesium cations, respectively. Arrows
mean stacking orientations of the dense
plane of oxygen ions; the ccp stacking
in CPx (gray) and near the hcp stacking
(black). The figure is projection along
[0 0 1] of the HPCEn-type structure.

Figure 3.10 Running coordination
numbers {(RCNs) of Ge-O (solid line),
Mg-O (dashed line) and O-O (dotted
line) pairs in X;. The value of Ge-O
coordination in X; increases to 6-fold.
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3.2 Transition without coordination change

To investigate the post rutile transitions of GeO,, MD calculation was carried out with
increasing pressure to 125 GPa at 300 and 1000 K. The calculated variations of the
lattice parameters shown in Fig. 3.11 indicate that a pressure-induced transition from the
tetragonal rutile-type to a new orthorhombic structure takes place at ca. 80 GPa without
discontinuous volume change. The calculated high-pressure phase has the CaCl,-type
structure (Pnnm). As shown in Fig. 3.12, this rutile-to-CaCl, transition is described
by small orthorhombic distortion of the lattice accompanied by a slight rotation of the
columns of octahedra with no coordination change of ions. In other word, the optic By,

phonon mode corresponding to the libration of the columns of octahedra about their

4 Figure 3.11 Pressure dependence
: of the lattice parameters of the Rt-
type polymorph of GeO, at 300 K
filled figures) and 1000 K (open
< :
< 4. ones). In a, the circles and triangles
0 indicate a and newly formed b axis,
4&\ respectively. In b, ¢ axis is depicted.
o
5 4,
0
a
0
© ] 1 | |
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twofold axes along c¢ direction condenses in the CaCl, phase. During decompression,
therefore, the CaCly-type phase fully returns to rutile with no pressure hysteresis. And
the high-pressure phase is unquenchable. These results indicate that the rutile-to-CaCl,
transition is the second-order transition and the calculated transition pressure is exactly
thermodynamical phase boundary. As shown in Fig. 3.11, at 1000 K, the transition
pressure increases about 10 GPa. This means the Clapeyron slope (d7'/dP of the phase
boundary) is positive.

In general, based on systematics of AX,-type compounds, it has been believed that
rutile structure may directly transform into an eightfold-coordinated fluorite structure as
found in some fluoride. However, the calculated results demonstrate that GeO, will exist
in the CaCly-type structure at high pressure before the fluorite-type transition. It is inter-
esting in respect of correspondence to the in situ X-ray diffraction experiment (Tsuchida
and Yagi 1989) and theoretical calculations (Cohen 1992; Matsui and Tsuneyuki 1992).
Furthermore, by recent in-situ Raman spectroscopic measurements of Si0, and GeO, by
Kingma et al. (1995) and Haines et al. (1998), respectively, it was found that the B,
optic phonon mode of the rutile-type phase softened up to the transition pressure and
then became a hard A; mode of CaCl,-type phase.

In the rutile-type structure, oxygen ion occupies the position (z,z,0) and z =
0.302 at ambient pressure. If z = 0.25, the oxygen packing would form an ideal body-
center-cubic sublattice. The pressure variation of the oxygen atomic position 2 schemat-
ically displayed in Fig. 3.13 decreased with pressure up to 0.299. Whereas in the CaCl,-
type structure, the oxygen position is (z,y,0) and z further decreased but y increased with
pressure. From viewpoint of the variation of the oxygen packing, the compression mech-
anism of the rutile-type structure can be regarded as a change toward the bcc sublattice.
In contrast, that of the CaCl,-type structure is a change toward the hexagonal-closed-

packing (hcp). This result seems to be reasonable since, in general, hep is denser than
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Figure 3.12 The schematic picture of the transition mechanism from
the Rt-type structure to the CaCly-type structure: (a) Rutile structure
(P42/mnm) and (b) CaCl, structure (Pnnm).
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Figure 3.13 The diagram of the pressure variation of the oxygen atomic
position (z,y,0) in Rt-type and CaCl,-type phases.
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bee packing.

Comparison with another post-rutile transition

On the other hand, it has been known by a high-pressure experimental study (Yagi et
al. 1979) that MnF, which is the rutile-type structure at ambient condition undergoes
a first-order pressure-induced structural transition to a cubic fluorite-type phase at 3
GPa differing from the case of GeOy and SiO;. The fluorite-type structure has a cubic
symmetry and a space group F'm3m. In this structure, the configurations of cations
and anions form the face-centered cubic (fcc) and the simple cubic packing, respectively,
and the coordination number of cations increases from six to eight. MD calculations of
MnF, were carried out using a potential model previously proposed by Cormack et al.
(1989), of which validity was reported in their paper. In Fig. 3.14, the variations of the
volume and the lattice parameters of rutile-type MnF2 with pressure at 300 and 600 K
are described. At 7 GPa and 300 K, the rutile-type phase transformed to a high-pressure
structure that could be identified as the fluorite-type structure. It can be confirmed
that this model potentials for MnF; could reproduce the observed phase relations to the
fluorite-type structure although the transition pressure was overestimated about 4 GPa.
In the case of MnF,, the post-rutile transition occurred with a sadden volume reduction,
and the transition pressure decreased with heating. These results indicate that differing
from GeOj, the rutile-to-fluorite transition has the first-order character and suggest that
the transition has a negative Clapeyron slope. Moreover, upon decompression to zero
pressure, a reverse transition had never occurred. Therefore, the calculated fluorite-type
phase is quenchable. It is quite interesting that these results are fully consistent with

experimental observations.
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Figure 3.14 Pressure dependence
of the volume at 300 K (a) and
the lattice parameters (b) of the
Rt-type polymorph of MnF, at 300
K (filled figures) and 600 K (open
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and the volume changes under both
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depicted. In b, the results on only
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The calculated atomic displacement with the transition is schematically shown in
Fig. 3.15. In this transition, manganese cations did not move from their position in the
rutile-type cell as well as the rutile-CaCl; transition, but the migration of fluorine anions
is quite different from that in the rutile-CaCl, transition. The waving arrangement of
fluorine anions in the (0 0 1) plane of the rutile-type structure was spread out on a

straight line by the transition, as shown by thick lines in figure. It is appropriate that
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the migration of fluorine anions is described by the anion packing change rather than
the rigid rotation of coordination polyhedra. From viewpoints of the ion packing, the
bct-sublattice of cations in the rutile-type structure changed into fcc-sublattice that is
a supergroup of bct lattice, with only cell elongation. The packing of fluorine anions
changed from the intermediate rutile-type packing to the simple cubic packing with the
transition. These results seems reasonable since the denser packings realized with the
transition. Consequently, a axis of the rutile-type phase corresponds one of three lattice
orientation of the fluorite-type structure (¢’ in Fig. 3.15) with a relation of cell length
a = 2c. Then the (1 0 0) and the (0 0 1) plane of the rutile-type structure change to the
(1 0 0) and the (1 1 0) plane of the fluorite-type, respectively. Through the transition,

there was no atomic diffusion.

a. Rutile b. Fluorite

Figure 3.15 The schematic picture of the atomic configuration change in
the rutile-to-fluorite transition. a and b (=a) plotted in a are the crystal-
lographic lattice orientations of the rutile-type structure, and a’, ¢’ (=a’)
and ¢’ (=a') plotted in b are those of the fluorite-type structure. The large

and small circles indicate fluorine and manganese ions, respectively.
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3.3 Summary and discussion

e By newly developed QEq-MD method and traditional empirical MD method,
the several observed pressure-induced structural transitions are successfully
reproduced. The compression mechanisms and the structural changes with the
transitions are described in detail. Especially, it is considerably interesting that
QEqg-MD can reproduce the equations of state of MgO and CaO in very wide
pressure range. This is owing to the large flexibility of the multiple exponential
repulsion potentials, which never cause serious increase in difficulty in the

optimization of parameters if using ab initio energy surface.

e The calculated systems can be recognized as pure infinite single crystals.
Therefore some transitions occur with large pressure hysteresis. In the case
of the transitions accompanied by coordination change, first-orderly discrete
volume changes and pressure hysteresis exist, and the oxygen packing manner
dramatically changes with the transitions. In the case of the transitions with-
out coordination change, no discrete volume change and no pressure hysteresis
exist. The oxygen packing manner hardly changes with the transitions and

the transitions have second-order type features.

e In both cases, the calculated transitions occur by only deformation of lattices
without atomic diffusion processes. This is owing to limited kinetics in the
perfect crystals. Therefore some topotactic relationships exists between the

high- and low-pressure structure.
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The properties of the transitions are summarized as the following table.

transition type lattice packing coordination
cation anion cation anion

B1-B2 ist-order C—C fcc—rsc fecc—sc 6—8 6—8
(sluggish) _

Qz-OFCC  1st-order H—TC - f.w.—fee (bet) 4—5.5 227
(sluggish)

HPCEn-X; 1st-order M-—M - fcc—hep-like  4—6 (Ge) 3,44
(sluggish) - 6—6 (Mg)

Rt-Fl 1st-order T—C bet—fee bet-like—sc 6—8 3—4
(sluggish)

Rt-CaCl, 2nd-order T—O bct—ybco  bet-like-—shep 6—6 3—3

OFCC:calculated high-pressure state of Qz containing the oxygen fcc sublattice,
f.w..framework
C:cubic, T:tetragonal, O:orthorhombiec, H:hexagonal, M:monoclinic, TC:triclinic

In these six cases of pressure-induced transitions, the first-order transitions occur with co-
ordination increase and reconstruction of anion packing. The second-order transition has
no reconstructive changes of ions and their coordinations. This suggests that the anion
packing change is inevitable for pressure-induced polymorphic transition with coordina-
tion change. For other example, in the ilmenite (hcp)-perovskite (fec-like) transition of
MgSi0O3, magnesium ion changes from 6-fold to 8-fold state. In ionic materials, the anion
packing is generally one of most dominant factors to influence density. Crystal struc-
tures of many minerals can be understood by combination of the anion sublattice and the
cation distribution in it. From the crystallographic point of view, fcc and hep is known
as denser packings than sc and bct since these are the closest configuration of a stack
of hard spheres, and high-pressure phases are likely to have denser ion packings than
low-pressure phases have. (In the rutile-fluorite transition, the cation packing changes
to closest.) However, the fact that the B2 structure has the looser anion packing than
low-pressure phase clearly indicates a failure of the hard sphere model at high-pressure

transitions. From this, it is likely to the coordination increase is more important for
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increase in density at high-pressure transition.

In the case of the reproduced first-order transitions (B1-B2, Rt-F1 transition), it
can be considered that the calculated large supercompression/decompression is needed
as thermodynamical driving force for the transition or that the energy barrier for the
transition itself changes to zero at the calculated tramsition pressure. The latter case
can be called as “mechanical lattice instability.” The elastic properties will be discussed
on the basis of the concept of elastic stability conditions of the ideal lattice in the next

chapter.
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Chapter 4

Elastic instability at transition

4.1 Born’s elastic stability condition

Mechanical stability of cubic lattice is represented by Eq. (1.5) based on the elastic lattice
theory. In Fig. 4.1a, the pressure and temperature dependence of elastic constants of the
B1 phase of CaO are described. The figure demonstrates that at 300 K, the modulus c44
related to shear stability decreases with pressure and vanishes at ca. 130 GPa (indicated
by an arrow). This pressure is the same as the calculated B1-B2 transition pressure (ca.
130 GPa) shown in Fig. 3.2. This result indicates that c44 softens up with increase pres-
sure and the Bl-type lattice becomes elastically unstable at the transition pressure. In
Fig. 4.1b, the pressure and temperature dependence of elastic constants of the B2 phase
of CaQ are described. This figure means that at the back transition pressure (ca. 0
GPa) in Fig. 3.2, the value of ¢y of the B2 lattice vanishes. Namely, the B2-type lattice
becomes elastically unstable at this pressure. From these results, it can be considered
that in MD calculations, the B1-B2 transitions occur with the elastic shear instabilities
without thermal environmental change. In Fig. 4.1c, the pressure and temperature depen-
dence of elastic constants of the Bl phase of MgO are described with the recent Brillouin
scattering result. Pressure derivatives of ¢;; and c12 were reproduced quite accurately,
although the value of ¢4y was somewhat underestimated. Even though there is the small

underestimation, this result indicates that to the contrary to CaQ, all stability conditions
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are fulfilled in the calculated pressure range for MgO. It is reasonable since no high-
pressure transition has occurred (Fig. 3.1) in this pressure range in agreement with the
experimental result.

As shown in Fig. 4.1ab, although at 1000 K, the pressures at which the stability
condition vanishes change toward the observed transition pressure so that the hysteresis
decreases, the temperature effect on cyy is not so large as to change the pressure at which
the stability condition vanishes dramatically. This indicates that in the real system,
therefore, more complicated factors (lattice defect, impurity, grain boundary, temperature
and pressure heterogeneity and so on) which may significantly contribute the kinetics of
the transition, should narrow the hysteresis of the transition down. However even if in
the ideal static lattice, the instability must occur at the pressure when ¢44 = 0 because of
elastic instability. These critical pressures can therefore be considered as spinodal points
of the transition and an upper or lower limit of the transition pressure. This concept
is consistent with the structural changes at the B1-B2 transition shown in Fig. 3.5. It
can be considered that the B1-B2 transition is fundamentally driven by instability in ce4
rather than by thermal activation.

These results suggest that we can regard the decrease in ¢y as a precursor phe-
nomenon of the mechanical instability of the B1 lattice. In comparison with alkali halides
and other alkaline-earth oxides, the B1-B2 transition is also expected for MgO. The tran-
sition pressure is of interest from the geophysical point of view. From Fig. 4.1c, the
pressure-induced elastic instability in Bl-type MgO hardly appears in the Earth’s pres-
sure range. By second-order extrapolation, ¢y decreases to zero at ca. 540 GPa even
under 2000 K. Considering this pressure as the upper limit of the transition pressure,
the thermodynamical phase boundary of the Bl and B2 phases may lie at lower pressure
than 540 GPa. Previous first-principle total energy calculations predicted it was at 451
(pseudopotential: Karki et al. 1997) and 510 GPa (LAPW: Mehl and Cohen 1988).
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The high-pressure Cauchy relation for hydrostatic conditions (Eq. (1.8)) will be
fulfilled when interatomic forces are purely central. Fig. 4.2 shows the deviations from the
Cauchy relation of Bl-type MgO and B1 and B2-type CaO, and these results indicate the
presence of highly noncentral forces in all cases. Moreover the deviations increase with
increasing pressure, indicating that noncentral nature of the bonding becomes greater
at high pressures. This trend agrees with the experimental result of MgO of Sinogeikin
and Bass (1999) although QEq-MD underestimates pressure dependence as well as the
previous pseudopotential calculations (Karki et al. 1997). The differences between the
experimental and calculated values of the Cauchy violation are due primary to ¢, being
underestimated in the QEq-MD (Fig. 4.1¢). Noncentral nature of the bonding is smaller
in CaO than in MgO, and it is smaller in B1 than in B2. It moreover becomes smaller at
high-temperature except B2-type CaO at low-pressure.

These materials can not be thought of as materials composed of rigid ions. Cal-
culated band structures indicate that Bl-type MgO and CaO remain wide-gap insulator
to pressure beyond those in the mantle (Appendix D). It seems that covalent and metallic
bonding are not important in these materials. The relevant many-body force is strain-

induced variations in the Madelung potentials.

Figure 4.2 Deviations from the Cauchy
relation as a function of pressure. The solid
lines are at 300 K. The dashed lines are at
2000 K (MgO) and 1000 K (Ca0). The dot-
ted line is the experimental result of Sino-
geikin and Bass (1999).
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Next, the mechanical stability of quartz is presented. According to Born and Huang
(1954), the mechanical stability of a trigonal lattice can be estimated from their stability
conditions Eq. (1.6). In this thesis, we call the first, second and third moduli in Eq. (1.6)
By, B, and Bj, respectively. The lattice is elastically stable if all of these conditions
of elastic moduli are satisfied under a given pressure and temperature. The six elastic
moduli of quartz were calculated under compression from ambient to 7 GPa that was
slightly lower than that of the transition pressure. Ounly the value of ¢4y had a negative

correlation to pressure.
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Figure 4.3 The calculated Born’s pa-
rameters of the quartz-type lattice with
pressure. The By, By and Bj values are
shown in (a), (b) and (c) by solid cir-
cles, respectively. Each value estimated
from experimental measurements is also

B; / (100 GPa) 2

plotted by an open circle.
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The variations of three moduli as a function pressure are indicated in Fig. 4.3.
Experimental values calculated from data of Grimsditch et al. (1998) at ambient pressure
are also plotted. Both B; and B, parameters increase regularly with pressure and are pos-
itive in all pressure range up to the transition. Therefore, values of these two parameters
satisfy stability conditions, and these modes are not involved in instability in the quartz-
type lattice. However Bs, which indicates the shear stability of the lattice, decreases with
pressure and vanishes at ca. 7 GPa which is near the transition pressure, as a result of
decrease of ¢4y with pressure. This indicates that the lattice shear instability is induced
by pressure and it causes the volume collapse with the transition. This calculated result is
similar to the case of Si0; a-quartz (Binggeli et al. 1994). It is considered that the amor-
phization transition is an observable phenomenon of elastic instability under a thermally
underactive state, and this process is different from the mode of the thermodynamical
nucleation and growth.

Tse and Klug (1991) reported the sudden decrease in the modulus B, as a function
of time at the critical pressure. For a trigonal structure, B, can be related to the stability
of the volume compressibility which is given by (c11 + ¢12 — 4egz + 2¢33)/ Ba. This result
indicates that a discontinuous volume reduction occurred at the first-order transformation
because the decrease in B; to zero corresponds to the divergence in compressibility. The
violation of the condition B, > 0 displayed here should be considered as the result of the

transformation rather than its cause.

The rutile-to-CaCl; phase transition lowers its crystallographic symmetry from tetragonal
to orthorhombic system and the rutile-to-fluorite transition rise it to cubic system. In
both cases, we can expect that transitions must be accompanied by elastic instabilities
related to tetragonal instability since cell angles are invariant with transition. Calculated

elastic constants and their variation as a function of pressure are plotted in Fig. 4.4. On
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the basis of the Born’s elastic theory, the tetragonal stability was described by the first

condition in Eq. (1.7) relating its tetragonal shear modulus,
Ci1 — Ci12 > 0. (41)

The pressure variations of this modulus of rutile-type GeOs and MnF, at ambient and
high temperatufe are shown in filled and open circles in Fig. 4.5a and b, respectively.
In both cases, the modulus ¢;; — ¢;5 softens up with increasing pressure and becomes
zero at the transition pressure. These results mean that the pressure-induced transitions
calculated in this study originate the tetragonal elastic instability. After the transition
to the CaCl,-type phase, this modulus turned to increase continuously from zero (Fig.
4.5a). On the other hand, in the case of MnF,, this modulus discontinuously increased at
the transition to the fluorite-type phase. Other stability conditions of tetragonal lattices
increase on compression and then are always fulfilled. These results indicate that both
the rutile-to-CaCl, and the rutile-to-fluorite transition are followed by elastic instability
of the tetragonal modulus as expected and the orthorhombic or cubic structure becomes
elastically stable with increasing pressure after the transition.

Upon decompression, in the case of CaCly-type GeO,, the modulus went on the
fully same line as the case of compression. The tetragonal modulus decreased with de-
creasing pressure and then vanished at the same pressure as the case of compression. At
this pressure, the CaCl,-type phase became unstable and reversed to the rutile-type struc-
ture. And then the modulus increased with decreasing pressure. From these results, it
can be considered that the reversible character of the rutile-CaCl, transition is explained
by no gap between the unstable pressures of both the low- and high-pressure phases. On
the other hands, the modulus was always positive (diamond in Fig. 4.5b) in fluorite-type

MnF, although it decreased under decompression. Fluorite is still stable elastically at the
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pressure which rutile becomes unstable. This explains no back transition under decom-
pression and the first-order nature of the rutile-fluorite transition.

The rutile-to-CaCl; transition can be connected to the ferroelastic phase transi-
tion, in that the transition involves the creation of a reversible spontaneous strain (Dove
1993). In general, the ferroelastic transition is accompanied by the combination of elastic
constants that falls to zero at transition temperature or pressure. The gradient of one of
the transverse acoustic modes at zero wave vector falls to zero, since the long wave length
limit of acoustic branches can be related to elastic constants. In the case of GeQ,, as
reported by the high-pressure Raman spectroscopic measurement of Haines et al. (1998),
the optic mode softening also accompanies the transition because the soft optic By, mode
corresponds to the libration of the columns of octahedra about their twofold axes along
¢ direction, which condenses in the CaCl, phase as noted in the previous section. The
calculated mean square displacement of germanium and oxygen ions at 300 K decreased
from 0.007, 0.008 A? at ambient pressure to 0.005, 0.007 A% at 75 GPa, respectively. The
change about oxygen ion is 16% smaller than it about germanium ion. The large fluctu-
ating behavior of oxygen ion may result from the Bj, softening optic mode prior to the
transition.

Another quite interesting result is temperature dependence of the tetragonal mod-
uli in Eqg. (4.1). As shown in Fig. 4.5, temperature dependence of the tetragonal moduli
of rutile-type GeO, and MnF, is exactly opposite. Namely, it is positive and negative
correlation for GeO, and MnF,, respectively. The positive temperature derivative of the
moduli of GeO; is in concordance with the ultrasonic measurement reported by Wang
and Simmons (1973). This result indicates that in the rutile-type structure, if the value
of ¢11 — ¢12 becomes larger at higher temperature, the transition pressure must increase,
and vice versa. According to a review of Akaogi (1993), many of pressure-induced tran-

sitions of minerals with increase in cation coordination number show negative Clapeyron
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slopes, whereas the transition without cation coordination change has positive one. The
result in this study also satisfies this empirical relation as shown in Fig. 3.11 and 3.14. It
can, therefore, be considered that the temperature dependence of the tetragonal moduli
directly explain the temperature dependence of the transition pressures and the sign of
the Clapeyron slopes. This result implies the following significantly interesting assump-
tion. In a large number of rutile-type materials, it has been known from high-pressure
experiments that many of them transform to the CaCl; form or the fluorite form. We
can predict their high-pressure phases by only measurement of temperature dependence

of elastic constants at ambient pressure without high-pressure experiments.
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4.2 Time evolution of physical quantities

Next, time evolution of several observable quantities during the transition processes is
focused on and interpreted from the viewpoint of elastic instability. In Fig. 4.6, the time
evolution of Bl-type CaO under compression from 125 to 130 GPa at 300 K is described.
A sharp exothermic peak with respect to emission of latent heat is observed at ca. 7 ps
after the pressure increases to 130 GPa. These results and the evolution of cell lengths
mean that the transition begins at the time when the exothermic reaction occurs and has
the first-order character. Compared with these quantities, the cell angles seem to change
slowly. It is noted that they begin to deviate from the cubic angle 90° and become to be
wobbly at ca. 3 ps before the exothermic peak with the transition. This prior behavior
of the cell angles can be connected to the elastic instability resulting from the softening
of the shear modulus.

In Fig. 4.7, the time evolution of rutile-type MnF; under compression from 6.5
to 7 GPa at 300 K is described. An exothermic peak accompanied by the rutile-to-
fluorite transition is observed at 18 ps in the evolution of temperature. A peak concerning
pressure reduction with the discrete volume reduction is observed at the transition in the
evolution of pressure. It seems that these results mean that the transition has the first-
order character and is achieved extremely quickly in the MD calculation. However the
evolution of cell lengths indicates that the orthorhombic cell deformation begins gradually
at 3 ps before the exothermic peak. This prior deformation can be connected to the

tetragonal elastic instability and derives the large volume change with thermal reaction.
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In Fig. 4.8, the time evolution of quartz-type GeO; under compression from 7 to
7.4 GPa at 300 K is described. The evolution of the cell lengths of @ and b indicate that the
transition begins at ca. 8 ps after the pressure increases to 7.4 GPa. A slight disturbance
concerning pressure reduction with the volume reduction with the transition is observed at
the transition in the evolution of pressure. However, no temperature fluctuation resulting
from the transition is observed in the evolution of temperature. In spite that the transition
results from the shear instability, the time evolution of the cell angles shows that their
deviations from the hexagonal cell begin at ca. 1 ps later than those of other quantities.
Because of this result, Tse and Klug (1991) misread so that the transition originates in
the instability in bulk modulus. The changes of all quantities finish at ca. 3 ps after the
transition begins. This duration is longer than the former two cases. It is likely that no
observation of the latent heat originates in this slow transition process.

In Fig. 4.9, the time evolution of rutile-type GeO, under compression from 75 to
80 GPa at 300 K is described. From the evolution of the cell lengths, it is clear that the
transition begins as soon as pressure increases to 80 GPa. This behavior with no time
difference is different from the former three cases. Moreover, no peak concerning latent
heat is observed on the evolution of temperature. These results mean that the transition
has the second-order character. It is noted that quite large symmetric fluctuations of
a and b lengths whose amplitude reaches 0.02 A, appears during the transition in the
evolution of the cell lengths. This behavior can be connected to the elastic instability
resulting from the softening of the tetragonal modulus.

In Fig. 4.10, the time evolution of high-pressure-clinoenstatite-type GeO, under
compression from 31 to 32 GPa at 300 K is described. An exothermic peak accompanied
by the HPCEn-to-X; transition is observed at about 3 ps in the evolution of temperature.
A peak concerning pressure reduction with the discrete volume reduction is observed at the

transition in the evolution of pressure. The time evolution of cell angles indicates that the
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decrease in v begins gradually at 2 ps before the exothermic peak. This prior shear
deformation corresponds to the slip of oxygen dense planes to hcp shown in Chap. 3,
which is the key mechanism in the HPCEn-to-X, transition. Although the elastic stability
condition for high-pressure-clinoenstatite has never calculated, this indicates that the

transition may result from the shear elastic instability.
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4.3 Elastic anisotropy

By applying Newton’s equation of motion (00;;/0z;) = p(9%u;/dt?), substituting Hook’s

law, and utilizing Gauss’ theorem, we obtain the so-called Christoffel equation

CijkIT Ny — pV252k = 0, (42)

where ¢z, p, V, n and & are the adiabatic elastic constant tensor, density, elastic
wave velocity, the propagation vector of elastic wave and Kronecker delta, respectively.
This equation is on the basis of the long-wave approximation used by Born to develop the
elastic constants from lattice theory, and the acoustic phonon velocity can be calculated by
this eigenequation. The lattice elastic instability reflects this velocity such that stability
conditions secure real value of it. Fig. 4.11 shows three elastic wave velocities in Bl-
type CaO depending on the crystallographic orientation at several pressure conditions.
This figure demonstrates that the wave velocities have some dispersion depending on the
propagation direction even in the cubic crystal. The compressional (P) wave velocity is
fastest along [1 0 0] and increases with pressure, whereas shear (S) wave velocities are
slowest between [1 0 0] and [1 1 0] and decrease with pressure. The decrease in S wave
velocities in these directions originates in decrease in ¢4y at high-pressure. This result can
be considered as another reflection of the lattice shear softening.

The dispersive behavior of wave velocities is related to elastic anisotropy. In the
case of the cubic crystal, the anisotropic factor A of the elastic wave velocity can be

derived from Eq. (4.2) and is represented as

_ 2¢44 T 012

C11

A ~ 1. (4.3)

If A =0, the lattice is fully isotropic in elasticity. The anisotropy may be connected with
the anharmonicity of vibraion potentials of the atoms. Especially, the fact that the P

wave velocity is slowest along [1 1 1] indicates that the vibration potential of atoms is



86

a. 0 GPa b. 60 GPa c. 120 Gpra

le

-
P12
:
~
5 8
P
]

0
[+]
-ai,
-4 4

0 P 0 P o
100 110 111 001 100 110 111 001 100 110 111 001

Propagation direction

Figure 4.11 The anisotropic elastic wave velocities of Bl-type CaO calculated from
Eq. (4.2) at 0 (a), 60 (b) and 120 GPa (c). The solid and dashed line are at 300 and
1000 K, Vp, Vi1 and Vs, indicate wave velocities of a compressional (longitudinal)
and two polarized shear waves, respectively. These are mutually orthogonal.
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Figure 4.12 The anisotropic elastic wave velocities of Bl-type MgO calculated from
Eq. (4.2) at 0 (a), 20 (b) and 240 GPa (c). The solid and dashed line are at 300
and 2000 K, respectively. Vp, Vs; and Vsp indicate wave velocities of a compres-
sional (longitudinal) and two polarized shear waves, respectively. These are mutually
orthogonal.
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flatter along this direction compared to other directions. The estimated A of CaQ at 300
K decreases from —18% at ambient pressure to —-84% at 130 GPa, which means that the
anisotropy at 130 GPa becomes 4.6 times larger than it at ambient pressure. From this
result, it is assumed that the atomic vibration strongly elongates along [1 1 1] at high
pressures. This dynamical picture is completely consistent with the structural changes
at the B1-B2 transition shown in Fig. 3.5. As shown by the dashed lines in Fig. 4.11,
temperature functions as decreasing anisotropy although its effect seems not to be large.

The calculated elastic wave velocities of MgO at 300 and 2000 K are shown in
Fig. 4.12. Although the P wave velocity along {1 0 0] increases with pressure as well as
Ca0, S wave velocities along [1 0 0] are insensitive to pressure owing to insensitivity of
cas. It is noted that in contrast to CaO, the P wave is fastest along [1 1 1] (positive A) at
0 GPa (Fig. 4.12a). With increase pressure under 300 K, anisotropy decreases and almost
vanishes at 20 GPa (Fig. 4.12b). Upon further compression, the A changes to negative
and its magnitude becomes large (Fig. 4.12¢). This interesting result is in agreement with
the very recent high-pressure Brillouin scattering measurement by Sinogeikin and Bass
(1999). They reported that the acoustic anisotropy decreased with pressure, with MgO
becoming isotropic at ca. 21.5 GPa. The result also agree well with the pseudopotential
calculation by Karki et al. (1997). The change of sign of A can be connected to the
variation of the anharmonicity of the atomic vibrations. We can expect that at ambient
pressure, MgO has also macroscopically different dynamical or mechanical properties (e.g.
rheology, deformation) from CaO.

Fig. 4.12 indicates that temperature effect enlarges A at 0 GPa, whereas it reduces
A at 240 GPa. Temperature effect on elasticity reverses itself with pressure, although it
becomes smaller with pressure. Namely, with increasing temperature, the anisotropy in-
creases in the positive A region and decreases in the negative A region. The pressure

variation of A are shown in Fig. 4.13. These results have potentially important impli-
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cation for the interpretation of seismological observations of the anisotropy in terms of
flow in the upper and lower mantle (Tanimoto and Anderson 1984, Dziewonski and An-
derson 1981). Karki et al. stated from their static calculations that MgO itself was not
relevant for interpreting observation of upper mantle anisotropy since MgO is relatively
isotropic in the upper mantle pressure region (~25 GPa). However, the present results
indicate in this pressure region, anisotropy considerably depends on not only pressure but
also temperature such that |dA/dP| becomes larger at high temperature. Therefore, the
anisotropy of MgO is considerably large under high temperature and low pressure condi-
tion. These means MgQO is not unsuitable for a possible candidate of the upper mantle
anisotropy. However, it is unlikely that MgO is the origin of the lower mantle isotropy
since the anisotropy rapidly increases under lower mantle pressure (25~135 GPa) even at
2000 K. Anyway, these results clearly demonstrate that the anisotropy of minerals under

mantle conditions may differ qualitatively from that an ambient conditions.

Anisotropic factor A

0 40 80 120 160 200 240
Pressure / GPa

Figure 4.13 The pressure variation of the anisotropic fac-
tor of MgO. The filled and open circles are at 300 and 2000
K, respectively.
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In Fig. 4.14, orientation depending wave velocities of rutile-type GeQ, are indi-
cated. The anisotropy is relatively small at ambient pressure and grows up to the positive
direction with pressure. Especially it along [1 1 0] has largest pressure dependence and
the S, wave velocity along [1 1 0] decreases toward zero with respect to the transition to
the CaCly-type phase. Reduction of velocity of this wave may include condensation of
the By, libration of the octahedra columns. Elastic instability can also be connected to
anomaly of the shear wave velocity in the case of rutile. In addition, the P wave is fastest
along [1 1 0] under high pressure although it is fastest along [1 0 0] at ambient pressure.

This change of the elastic property with pressure is also interesting.

a. 0 Gpra b. 75 GrPa
12 : : : 12

Velocity / kms !

0 P s 0 P .
100 110 111 001 100 100 110 111 001 100

Propagation direction

Figure 4.14 The anisotropic elastic wave velocities of rutile-type GeO, calculated
from Eq. (4.2) at 0 (a) and 75 GPa (b). Vp, V51 and Vs, indicate wave velocities of
a compressional (londitudinal) and two polarized shear waves, respectively.

Isotropic wave velocities of MgO
Temperature and pressure dependence of density and isotropic wave velocities of MgO is

substantially important for direct comparison with the seismological observations of the
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Earth’s lower mantle. Isotropic wave velocities which correspond to velocities in isotropic

aggregate of crystals can be evaluated using density p, bulk K and shear G moduli as

vp = K+ (43)G and vS:\/g (4.4)
\ p p’ '

where vp and vg are isotropic P and S wave velocities, respectively. In Fig. 4.15, the

follows,

calculated density and velocities of MgQO are shown as a function of depth of the Earth
compared with the seismologically derived ones of the lower mantle (Dziewonski and An-
derson 1981) and the experimentally observed velocities at ambient condition (Sinogeikin
and Bass 1999). This figure indicates that the velocities at ambient condition agree well
with the experimental results, and the temperature dependence of the gradient of the
velocities seems not to be negligible up to about 1500 km depth. The gradients of the
calculated quantities at 2000 K which is the typical geotherm assumed in the lower mantle
agree quite well with the seismological observations although absolute values are smaller.
This discrepancy may result from existence of heavy Fe ion. If substituting Mg of 10%

for Fe, density will become about 1.1 times larger.
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4.4 Summary and discussion

o On the basis of the elastic lattice theory, elastic stability conditions are cal-
culated. It is likely that the pressure-induced transitions appeared in the
MD calculations of perfect defect-free crystals must be accompanied by elastic
instability. The calculated time evolution of physical quantities can be inter-
preted by corresponding instability. Elastic instability can be considered as
the limit of metastability in supercompression/decompression. This indicates
that the energy barrier for the transition itself decreases toward zero at the

calculated transition pressure. It can be called the spinodal.

e The successful reproductions of the B1-B2 and the rutile-fluorite transition
with no atomic diffusion indicate that elastic instability is fundamentally im-
portant mechanisms of the transitions aithough other thermodynamical factors
(defect, impurity, temperature and pressure heterogeneity, etc.) clearly con-
tribute to decrease the hysteresis. If under thermally underactive condition,
the pressure-induced elastic instability must be observed in the real system.
The pressure-induced amorphization of quartz is considered as one of the ex-

amples.

o The second-order rutile-CaCl, transition is also accompanied by the elastic
instability. It may be a typical case that the elastic instability is actually
observable, and can be connected with the pressure-induced ferroelastic tran-
sition.

e The elastic anisotropy strongly depends on pressure even in cubic crystals.
The growth of the anisotropy with pressure leads to anomaly of the shear

wave velocity. This shear wave anomaly corresponds to elastic instability.

The anisotropy may be related to the anharmonic thermal vibration of atoms
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and then the atomic pathway in the transition. By means of MD method,
mechanism of high-pressure transitions can be studied from not only structural

but also dynamical points of view.
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Chapter 5

Effect of nonhydrostaticity on elas-

ticity and transitions

5.1 Effect of nonhydrostaticity on transitions

TABLE XI Calculated structures in several hydrostatic and nonhydrostatic runs with RCNs
of Ge-O and O-O pairs. The pressures at 0 GPa correspond to a system decompressed from
7 GPa with the indicated shear stress. In the second column, shear stresses given as three
figures in parentheses represent the o4, o5 and g component of the stress, respectively. The
last column lists the system’s phase in the corresponding pressure condition, where O-FCC
means the structure having oxygen fcc sublattice.

P o Ge-O 0-0 Phase
(GPa) (GPa) coordination coordination

7.4 (0,0,0) 5.3 12 O-FCC
70 (0,0,0) 6 12 0-FCC
6 (2,0,0) 53 12 O-FCC
(~2,0,0) 5.3 12 0-FCC
(0,2,0) 5.3 12 O-FCC
(0,~2,0) 5.6 12 0-FCC
(0,0,2) 5.3 12 O-FCC
(0,0,2) 5.4 12 O-FCC

0 (0,0,6) 6 11.4 Rt+defects

It is desirable to eliminate, to reduce or to control the pressure anisotropy and inhomo-
geneity in high-pressure experiment. However, these are quite difficult from technological
aspects. Therefore effect of nonhydrostaticity on the transition has been hardly studied
experimentally in spite of its importance. The nonhydrostaticity related to elastic insta-
bility is likely to affect the corresponding transition. By means of the constant stress

MD, each component in the stress tensor calculated from Eq. (2.19), can be controlled
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independently at an arbitrary value. Firstly, nonhydrostatic effect on the transition of
quartz is discussed. Badro et al. (1996) studied the transition of quartz under uniaxial
nonhydrostatic conditions using MD method, whereas effect of shear stressed condition
is more interesting since the shear instability causes the transition of quartz. The results
calculated under several shear stressed conditions are listed in Table XI. When shear
stress reached 2 GPa, regardless of any shear stress component, the transition of quartz
appeared. This result indicates that the transition pressure can be effectively lowered
under shear nonhydrostatic conditions. Here any shear stress can cause instability since
three types of orientation exist in structural modification with respect to the threefold
axis of the quartz lattice. In the case of quartz and CaO, it can be considered that shear
stress lowers the transition pressure since the shear elastic instability causes their transi-

tions.

0.01 -

-0.01}-

® ‘ o
=
-1
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-3 -2 -1 0 1 2 3
Gl/GPa

Figure 5.1 o, dependence of the difference between
z and y coordinates of the oxygen atom position Az.
The circle, triangle and square indicate the result at
0, 30 and 60 GPa, respectively.

Since the rutile-to-CaCl, transition originates from tetragonal elastic instability,

uniaxal stress is likely to affect the transition. The CaCl, structure is described by the
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rotation of GeOg octahedra column around the twofold axis of the rutile structure as noted
in Chap. 3. This can be characterized by the difference between z and y coordinates of the
oxygen atom position Az, which is zerc in the rutile structure. In Fig. 5.1, the relation
between added o, and corresponding Az at several pressures are plotted. This figure shows
that Az linearly correlates to oy and the orthorhombic distortion must be accompanied by
rotation of the octahedra column. The transition can therefore occur even at zero pressure
by uniaxial stress, and the effect of nonhydrostaticity on the transition becomes larger
under higher pressure. This indicates that uniaxial nonhydrostatic conditions effectively
lowers the transition pressure of the rutile-CaCl, transition. Moreover this transition is
quite sensitive to uniaxial nonhydrostaticity.

Haines et al. (1998) estimated the transition pressure at 26.7 GPa, which is quite
lower pressure than the calculated result, 80 GPa (Chap. 3). They used helium as a
pressure-transmitting medium to keep hydrostaticity under high pressure. Helium is con-
sidered as good hydrostatic medium since it remains a very weak solid up to 120 GPa
after solidification at 11 GPa (Loubeyre 1996). In spite of that, since the transition is con-
siderably sensitive to hydrostaticity, it is no wonder that they would have underestimated
the transition pressure. However, the discrepancy of the transition pressures is too large
to be attributed to nonhydrostaticity in the experiment. This rather originates from the
lack of quantitative reproducibility of the used interatomic potential for their elasticity
of rutile-type GeO,. The calculated tetragonal modulus at ambient condition, 230 GPa
is quite larger than the observed value, 149 GPa. As noted in Chap. 2, the interatomic
potential of GeO, was determined by the traditional empirical procedure. By this proce-
dure, it is difficult to construct the effective potential having not only qualitative but also
quantitative reproducibility of elastic constants. It is clear that the more sophisticated
way using ab initio calculations as well as for alkaline-earth oxides is necessary. Although

such approach is in principle desirable, there are computational difficulties left for the low
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symmetric structures.
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5.2 Stress-induced transitions

Structural changes in a-quartz under uniaxially stressed nonhydrostaic compression was
simulated by Badro et al. (1996), who reported that a new crystalline phase, where
all silicon atoms were in fivefold-coordination, appeared under a positive uniaxial stress
along the c axis. However behaviors under shear stressed compression is more interesting
because of the shear instabilization of quartz with pressure. An interesting result was
observed in the case of decompression on imposition of positive and negative o from 7
GPa. The quartz-type structure transformed to a particular structure that is quite sim-
ilar to the rutile-type structure (Table XI). A snapshot of this structure and calculated
RCNs of Ge-O and O-O pairs in the structure are shown in Fig. 5.2 and Fig. 5.3, respec-
tively. The germanium coordination and the anion-anion coordination is 6- and 11-fold,

respectively, which is characteristic of the rutile structure. This structure contains the

Figure 5.2 Snapshots of the cal-
culated rutile-like structure at am-
bient condition after decompression
with positive o,y from 7 GPa (b).
This figure is a projection along the
quartz a axis and extremely simi-
lar to the rutile-type structure. The

small and the large spheres indicate
germanium and oxygen atoms, re-
spectively.
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corner-linked GeQOg octahedra and the edge-sharing octahedra chain as well as the ru-
tile structure. However, the broader RCN of the O-O pair indicates that the oxygen
arrangement is somewhat disorder and this rutile-like structure shows some error in the
periodicity of corner-linkage and cannot therefore be recognized as the perfect rutile-type
crystal. No transition from this structure occurred on eliminating the stress. This is fully
quenchable as to pressure and stress.

In Fig 5.4, the formation process of GeOg octahedron is extracted. The forma-
tion process of GeOg octahedron in this transition is different from the transitions under
the hydrostatic and other nonhydrostatic conditions given above, namely the fcc oxygen
sublattice is not formed. It is, however, noted that this transformation process contains
only no atomic diffusion. Although it is generally believed that the quartz-to-rutile tran-
sition is the so-called reconstructive transition accompanied by atomic diffusions, if the
transition is subjected to the path shown above, the main part of the quartz-to-rutile
transition can be achieved with smaller displacement of ions than is associated with the
word “reconstructive”. However, to construct the perfect rutile-type structure from this
half-finished stage, other processes are needed.

Another interesting point of these calculations is a special crystallographic orien-

tation relation between the original quartz-type lattice and the newly appeared rutile-like
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structure. Fig. 5.2 shows projections to a normal plane to the quartz-type a axis. There-

fore, a topotaxial relation such that (100)q, // (001)g, exists between two structure.

(a) (b)

>

(c)

Figure 5.4 The schematic pictures of the formation of the distorted
GeOg octahedron from quartz-type GeO, network by shear stress oy .
The quartz-type network of GeOy tetrahedra at ambient pressure (a),
the deformed network by application of o5y (b) and the same network
as b except for the bold line indicating a newly formed octahedron (c).
The quartz-type lattice vectors indicated in a shows that the a direction
of quartz corresponds to the chain direction of GeOg octahedra which is
¢ direction of the rutile-type.

We can interpret that the calculated path of displacements of ions in this transition
indicates a possible mechanism of nucleation of the rutile-type phase at the quartz-to-rutile
transition. Wolf et al. (1992), using the high-resolution electron microscope, observed that
the rutile-type structured crystallite existed in a recovered sample of pressure-induced
amorphous GeQ;. Their observation implies that the quartz-to-rutile transition is not
always prohibited under thermally underactive condition such as room temperature. If
generating some internal stresses during compression and decompression, the proposed

quartz-to-rutile transition process might take place in the real system. Once the transition
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occurs 1n a locally stress concentrated part of a sample, stresses around this part may be
released. Therefore the crystallite of the rutile-type phase can not grow up to an X-ray
coherent size. Only one stress component was applied in each run of the present study.
The value of stress needed for the transformation would change under more complicated

nonhydrostatic conditions.

As discussed in Chap. 3, the calculated high-pressure state of high-pressure-clinoenstatite-
type MgGeQOj;, X; has the incomplete oxygen packing between fcc and hep. If the black
arrow in Fig. 3.9 becomes perpendicular to the (1 0 0) plane of the HPCEn lattice, the
oxygen packing becomes hcp. From the figure, this modification is expected by the slips

of the oxygen dense planes every other layer (Fig. 5.5). Such lattice deformation can be

A jr
g A l
[100] B [001] l . l

- O
l———>[010] T—*n*oo]

Figure 5.5 The schematic picture of the transition mechanism of the oxy-
gen packing from ccp (a) to hep (b). The crystallographic orientation of
HPCEn and Ilm are described in a and b, respectively. Arrows in b indi-
cates the cation diffusion path in the calculated X;-to-Xy transition.
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achieved by external shear stress 4. Over o4 = 14 GPa, the shear-induced transition
from X, to a quenchable state occurred at 300 K and 32 GPa with oxygen packing change
to hep as expected. In this process, cooperative diffusions of some cations to adjacent
void space occurred. The cation diffusion path is shown in Fig. 5.5b. The result that
the stress needed for the transition is comparably large may originate in the high energy
barrier of the diffusion.

The calculated product could not identified with any known structure and then
this structure is called X, whose structure is shown in Fig. 5.6. However, this structure is
quite interesting with respect to similarity to the known corundum, ilmenite and LiNbO;
structures and its quenchable character. The comparison of the X, with other sesquioxide
ABOjg structures is shown in Fig. 5.7. The basic structure contains the almost ideal hep
oxygen sublattice with cations defining octahedral layers. The occupancy of each layer
is identical in the corundum structure (R3c) (Fig. 5.7b). When two different ions form
a ternary ABQjs structure such as that of the ilmenite structure (R3), they order in

alternate layers (Fig. 5.7¢c). A different pattern of occupancy of octahedral sites in an hep

Figure 5.6 The structure of the cal-
culated shear-induced products under
o4 applied conditions. The large circle
indicates oxygen anion, and the small
gray and white circles are germanium
and magnesium cations, respectively.
The arrow means stacking orientations
of the dense plane of oxygen ions; the
hcp packing. The cation-oxygen bonds
are drawn for guides to eye. These fig-
ures are projections along [0 0 1] of the
HPCEn-type structure.
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Figure 5.7 The comparison of the

structure of X, (a) with other sesquiox-

ordered (corundum) (R3c) (b) and the
two ordered subfamilies of structures:
ilmenite (R3) (c) and lithium niobate
(R3c) (d). The horizontal lines rep-

-O—T01@—4

®
, ide ABOj3 structures showing the dis-
Q
@

O=2@-=¢& resent the close-packed oxygen planes.
X, (AABB; ABBA) The cations occupy the octahedral holes
(a) in them.

O

O O1—TO0®

-O—O

Q
®

Q

=n O=2@=-5 O=2 @-s
@ ~Al,0, Ilmenite (ABBA) LiNbO, (ABAB)
(b) (e) (@)

oxygen array is the lithium niobate structure (R3c) (Fig. 5.7d). Although X, has the
hcp oxygen packing, the cation ordering pattern in it is not the same as the other two
ABOs; structure. X, is also be quenchable up to ambient pressure as well as ilmenite and
LiNbO;. The large void bands and adjacent cation densely packed bands which cause
to severely distort the oxygen lattice in X; vanish by the cations diffusion. It can be
considered that this is the origin of the quenchable nature of X,.

In spite of the mistake in the cation distribution in X,, the transition to X, 1s
quite interesting concerning the following respect. If X is forcibly recognized as corundum

or ilmenite, the crystallographic orientation relation between high-pressure-clinoenstatite
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and X, can be represented as
[1 00 ]HPCEn - [0 0 l]nm and [0 10 ]HPCEn — [1* 0 0]11m.

Therefore, (0 0 0 1)y and (1 0 1 0)py, are parallel to (1 0 0)gpcpa and (0 1 0)upcEn,
respectively. This relation is in completely agreement with an observation in a meteorite
by Tomioka and Fujino (1999). They discovered the same crystallographic orientation
relation between silicate clinoenstatite and akimotoite in the shock-metamorphosed Ten-
ham chondrite, where akimotoite is a mineralogical name of a kind of iron-bearing silicate
ilmenite. Actually, the shock-metamorphic rock must have undergone a large stress field
and high temperature. Tomioka and Fujino inferred that peak temperature generated by
shock events in Tenham was higher than 2000°C. In Table XII, the calculated result of
the temperature effect on the pressure and stress needed for the X;-to-X, transition. This
table indicates thermal energy significantly reduces the transition pressure and stress,
and the needed nonhydrostaticity decreases with heating. This may result from thermal
energy activates the cation motion for the diffusion. Therefore, it is not curious that the
clinoenstatite transforms to ilmenite along this mechanism at high temperature. Although
X3 has no complete cation distribution, the successive clinoenstatite-X;-X, transition is

likely to be strongly related to the observed clinoenstyatite-to-akimotoite transition.

TABLE XII Calculated products under o4 applied nonhy-
drostatic runs at several temperature and pressure condi-
tions. X, indicates the new shear-induced structure.

T (K) P (GPa) o4 (GPa) o04/P product

300 32 12 0.375 X1
14 0.438 X2

650 30 8 0.267 X1
10 0.333 X2

1000 27 4 0.148 X1

6 0.222 X3
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Conclusions

In this thesis, it has been shown that the compressional mechanisms and pressure-induced
structural transitions of several oxide minerals are correctly reproduced by means of com-
putational methods based on molecular dynamics.

To calculate elastic properties of cubic crystals accurately, new computation tech-
niques QEq-MD have been developed. And to construct model interatomic potentials
having high reliability in the wide pressure range, sophisticated techniques using energy
surfaces of FP-LMTO based on density-functional theory have been applied for alkaline-
earth oxides. Quite high efficiency of these techniques has been shown. Interatomic
potentials for other materials can reproduce crystal structures of many polymorphs al-
though they were simple empirical two-body potentials.

The elastic stability conditions have been calculated on the basis of Born’s stability
conditions. It is remarkable that the elastic instability performs a fundamental role in
the B1-B2, pressure-induced amorphization, rutile-CaCl, and rutile-fluorite transitions
although in fact, thermodynamical factors contribute their kinetics. Moreover it has
been shown that the dynamics of the transitions such as the transition pressures can be
sensitively influenced by nonhydrostaticity imposed stresses related to instability.

It has been shown that the transitions which do not reproduce on hydrostatic com-
pression appear under sher stressed conditions. The structural relations between low- and
high-pressure phases seems to be comparably simple even in the case of the reconstruc-

tive transitions. We can consider that the changes of oxygen packing with coordination
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increase are important in high-pressure structural transitions and stresses which help the

slip of atom dense planes sensitively influence the dynamics of the transitions.
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Appendix A

Summary of the Earth’s interior

seismic discontinuity

10-50 km,
1.5-2.5 GPa

400 km
15 GPa

660 km

25 GPa

2900 km

130 GPa

5200 km
300 GPa

6400 km
360 GPa

phase

CRUST
olivine, pyroxene, plagioclase,
quartz, carbonates, hydrous
phases

U

UPPER MANTLE
pyroxene, olivine, garnet,
MgAl;Si04-based spinel,

amphibole

Y

TRANSITION ZONE
(Mg, Fe),SiOy4 spinel,
garnet, minor phases

y

LOWER MANTLE
(Mg,Fe)SiOs, CaSiO3
perovskite,
(Mg,Fe)O magesiowiistite,
Si0, stishovite, minor phases

Y

OUTER CORE
liquid Fe, Ni alloy with
light element

Y

INNER CORE
solid Fe, Ni alloy with
light element

chemical discontinuity
Si-rich

Mohorovicic

discontinuity (Moho)

Mg, Fe-rich

Definite chemical
discontinuity

Fe alloy
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Appendix B

Phase diagrams

Experimentally constructed T-P phase equilibrium diagrams of GeOs; and MgGeQO; are
represented. Those of MgO and CaO are not represented since no observations about

phase diagrams of MgO and CaO exist.

G802 .

— Akaogi et al. (1993)
----- Hill and Chang (1968)
2000 """ Jackson (1976) -
M~ A
~ //
:
b g
)
o 1600 .
% Rutile
[}
B
1400 p- 7]
Quartz
1 1 L
1200 5 0.5 1 1.5 2

Pressure / GPa

Figure B.1 The phase diagram of GeO; extracted from several experimental results.
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MgGeOs; :

1200

1000

800

Temperature / °C

600

Pressure / GPa

CEn : clinoenstatite-~type
OEn : orthoenstatite-type
PEn : protoenstatite-type
Ilm : ilmenite-type

Figure B.2 The phase diagram of MgGeOj3 extracted from Ozima and Akimoto (1983).
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Appendix C

Dynamical fluctuating charge model

QEg-MD method needs computational time in proportin to N® order. To avoid this
difficulty, the following dynamical fluctuation model proposed by Rick et al. (1994) may be
useful within the molecular dynamics. The way to treat the charge neutrality constraint is
to use the method of undetermined multipliers to enforce the constraint. The Lagrangian
is
N1 N1
L= ; §mﬂ*§ + XZ: §Mq(ii2 —U(r,q) — )\;%‘, (C.1)

where m; is the mass of i-th atom and M; is a fictitious charge “mass,” which has an unit
of energy time?/charge?, the \ are Lagrange multipliers and U is total potential energy.

The nuclear degrees of freedom evolve according to Newton’s equation

o U
miT; = Br. (C.2)

and the set of charges evolve in time according to

_0U(r,q)

Mg = “on A=—xi— A (C3)

where X is given by the charge neutrality constraint 32 ¢; = 0 and y; is the electroneg-
ativity of atom 7 defined by Eq. (2.23). It should be noted that if the total charge is a

constant of the motion, then
N

Y g=0. (C.4)

3

Substitution of Eq. (C.3) into the above equation yields,

1 N
)\ = —-N;Xi, (C5)
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where A is equal to the negative of the average of the system’s total electronegativity.

Substitution of Eq. (C.5) into the equation of motion for the charges gives
1N
Migi = —+ 206 = x3)- (C.6)
i

The force on the charge is simply the difference between the average electronegativity
and the instantaneous electronegativity at a site. For example, if the electronegativity is
greater than the average, then the force acts to decrease the charge until the electronega-
tivities are all equal. This can be done by simply using the extended Lagrangian method
to derive the equations of motion for Hamiltonians which depend on auxiliary degrees of
freedom (Parrinello and Rahman 1980, 1981).

The charge mass M,, a fictitious quantity, should be chosen to be small enough
to guarantee that the charges readjust very rapidly to changes in the nuclear degrees of
freedom. This is equivalent to the Born-Oppenheimer adiabatic separation between the
electronic and nuclear degrees of freedom. The charge kinetic energies should remain at
low temperature, since they are to be near the values which minimize the electrostatic
energy. This can be achieved by Nosé’s thermostat. A simplified version of this method

using the scaling method can be also easily achieved.
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Appendix D

Pressure dependence of band gaps in MgO
and CaO

Pressure effect on the electronic properties has been long interesting. In Table XIII energy

gaps for Bl-type MgO and CaO at several pressures calculated by FP-LMTO method are

listed. The energy gap increases with pressure in MgQ, whereas it decreases with pressure

in Ca0. However, as well-known, the local-density approximation largely underestimates

energy gap about 40% owing to underestimation of the exchange potential for occupied

bands and increase in their eigenvalues. There is no guarantee that even position of band

gap is reproduced correctly (Kotani 1994).

Pressure Direct gap Indirect gap
Method (GPa) r X L r-x
MgO
Exp*® 0 7.833
FPLMTO-GGA 2.7 4.73 10.39 8.55
(This study) 104.4 8.55 11.08 11.23
222.9 11.29 11.26  12.89 9.21
FLAPW-LDA®? 0 4.68 9.78  8.50
TBLMTO-EXX¢ 0 7.7 17.56  12.56
Hartree-Fock? 0 25.3 17.0 214
CaO
Exp® 0 7.09
FPLMTO-GGA 0.2 5.25 4.38 8.83 3.97
(This study) 69.0 7.40 3.88 10.89 3.61
160.5 7.53 329 12.17 3.22
FLAPW-LDA® 1 5.20 3.82 8.59 3.58
TBLMTO-EXX¢ 0 7.72 9.32 114 9.08
Hartree-Fock? 0 15.8 199 219 18.7

TABLE XIII Energy gaps
at high-symmetry points
MgO and
CaO at several pressures.
TBLMTO-EXX  stands
for tight-binding LMTO
method with the exact

exchange potential. Unit

for Bl-type

of the wvalues of energy
gaps is given in eV.

@ Whited et al. (1973)
5 Mehl et al. (1988)

¢ Kotani (1994)

¢ Pandey et al. (1991)
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