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1. Introduction

It is well known that smooth m spheres embedded in smooth m+-2 manifolds
have the trivial normal bundles, provided m>3. This is a direct consequence
from the fact that SO, has the same homotopy type as the circle. The purpose
of the paper is to show the analogous Theorem for locally flatly embedded PL m
spheres of codimension two except for the case m=4.

Theorem A. Let f: S—W be a locally flat PL embedding of the m
sphere S into a PL m+2 manifold W. Suppose that W is orientable and m=2,4.
Then f has the trivial normal 2 cell bundle: That is to say, the embedding f is collared.

The assumption that I is orientable may be weakened by saying that a
regular neighborhood of f(.S) in W is orientable. If m>2, then normal prebund-
les for f are clearly orientable. We have, therefore,

Addendum. Ewvery locally flat PL embedding of the m sphere of codimension
two is collared, provided that m>5 or m=3.

ReMARK. The case m=4 is unknown for the author.
From Theorem A, we shall deduce:

Theorem B. The k(= 3)-th homotopy group r,(PR,) of the structural group
PR, of 2 prebundles is isomorphic to m(O,).
The following was proven in [3]:

Proposition 1.1. The structural group II1L, of PL 2 cell bundles has the
homotopy type of the orthogonal group O,.
So we have:

Corollary to Theorem B. 7z,(PR,, I1L,)=0 for k43 and n(PR,, I1L,)==
7y(PR,).

* During the preparation of this paper the author was partially supported by the Yukawa
Foundation.
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2. Applications

Let M and W be PL manifolds. Recall that a PL embedding f: M—W is
oriented, if M and W are oriented. Two oriented PL embeddings f: M—W
and g: M— W’ are equivalent if there is an orientation preserving PL homeo-
morphism &: W—W’ such that Af=g. The equivalence of oriented PL embed-
dings is clearly a proper equivalence relation. Let S, denote the standard
oriented PL k sphere. A PL m knot means a locally flat PL embedding
f: Sp»—>8,42. Then the PL homeomorphism class of S,,,,—f(S,,), called the
complement, is an invariant of the equivalence class of the knot.

By Theorem A we may sharpen Levine’s unknotting theorem in codimen-
sion two as follows.

Theorem C. (J. Levine, [5]) Suppose that m>5. A PL m knot is trivial
if the complement is a homotopy circle.

By Theorem 4.4 in [6] and by Corollary to Theorem B the following
existence theorem of a normal PL 2 cell bundle is derived from the obstruction
theory for reducing combinatorial prebundles into PL cell bundles. (In Part
ITI, we shall give the precise description of the obstruction theory.)

Theorem D. Let M be a PL m manifold. Suppose that M is compact
and H*(M, z(PR,))==0. Then any locally flat embedding f of M into a PL m--2
manifold W has a normal PL 2 cell bundle. More precisely, if K and L are
partitions of M and W such that f: K— L is simplicial and that F(K) is full in L,
then there is a normal PL cell bundle v(f) for f which is compatible with the dual
cell structures of K and L, for compatibility see [6].

By the universal coefficient theorem the assumption H*(M, z,(PR,))==0 is
always satisfied by such a manifold M that H (M) is torsion free and H (M)==0.

A PL manifold pair (W, M) is smoothable if W and M are smoothable so
that there are a smooth manifold pair (W, M) and a smooth triangulation A: W
— W such that A(M)=M. Suppose that M admits a normal PL 2 cell bundle
vin W. Since by Proposition 1.1 I1L, has the same homotopy type as 0,, the
normal bundle v triangulates a vector bundle. Therefore M has a normal PL
microbundle in W which triangulates a vector bundle. Thus, applying Theorem
D and Theorem 7.3 in [4] we have the following:

Corollary D.1 Let (W, M) be a locally flat PL (m-+2, m) manifold pair.
Suppose that M is closed and H*(M, n,(PR,))=0. If W is smoothable then the
pair (W, M) is smoothable.

It is well known that there is a non smoothable 5 connected PL 12 manifold
M which is piecewise linearly embeddable into the euclidean 14 space R™.

Hence we have the following example.

ExampLE, There is an example of a closed 5 connected PL 12 manifold
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having a PL embedding into R*, but having no locally flat PL embedding.

Recall that two oriented PL embeddings f: M—W and g: M—W’ are
microequivalent if there exist neighborhoods U and U’ of f(M) and g(M) in
W and W’ respectively and a PL homeomorphism 4: U— U’ preserving orienta-
tions induced from those of W and W’ so that Af=g.

Let M be a closed oriented PL manifold. For any oriented proper embed-
ding f of M of codimension 2, H. Noguchi has defined an invariant X(f)&H?*(M)
under the microequivalence class of f, which is called the Euler class of f.

ReEMARK. In his paper [7], p. 120, the class X(f) is denoted by » and
called the Stiefel-Whitney class.
Finally we shall prove the following.

Theorem E. Let M be a closed oriented PL manifold. Suppose that
HY(M, ny(PR,))=0. Then two oriented locally flat PL embeddings f: M— W and
g: M—W' of M of codimension two are microequivalent if and only if X(f)=X(g).

3. Definitions and Lemmas

In the following we restrict ourselves in the PL category.

To prove Theorem A we need the following definition. Let {E, K, 3} be
an n prebundle. A collared non zero section of E is a pair (G, g) consisting of
an embedding G: |K| X J"*—0E and a non zero section g: K—8E such that
G(x,0)=g(x) for all x in |K|, and G(AXJ" " YCh(AX0d]J") for all pair (4, k)
in =.

Lemma 3.1(k) Let K be a k dimensional complex and let {E, K, 3} be an
n prebundle.

Suppose that E has a collared non zero section (G, g).

Then E collapses to G(| K | X J"™).

Proof. We prove Lemma 3.1 (k) by induction on the dimension &.

(0): Trivial.

(k)= (k+1): Assuming inductively that (k) is proven, we prove (k+1). Let
A be an arbitrary k-1 simplex of K. Since (G/dAXJ"™, g/6A) is a collared
non zero section of E/04, it follows from (k) that E/8A4 collapses to G(8A4 X J"™).
Hence E/0AU G(A XJ"™) is an n-+k cell on the boundary of the n+1+4k cell
E/A. 'Therefore E/A collapses to E/6AUG(AXJ"™"). Let K* denote the k
skeleton of K. By the above argument, E collapses to E/K*UG(| K| XJ"™).
By (k) E/K* collapses to G(| K*|xJ*™*). It follows that E collapses to G(| K |
X J"71), completing the induction.

Lemma 3.2 Let M be a closed m manifold and let N be a normal n pre-
bundle of an embedding f: M— W over a partition K of M such that N CInt W.
Suppose that N has a collared non zero section (G, g).
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Then the following three statements hold;
(1) There is an embedding F: MX J"—W such that F(MX]J"'XI)=N and
F(x, 0)=G(x) for all x in M X J"*, and
(2) any regular neighborhood of f(M) in W is homeomorphic to the product space
MXxJ*, and
(3) W-f(M) and W-g(M) are homeomorphic.

Proof. By the existence of a collar of 8N in W, see Corollary to Lemma 24
in [11], there is an embedding F,: M X J*—W such that F(MXJ"'XI)CN
and F(x, 0)=G(x) for all x in MxJ**. Since F,(MxJ"*XI) collapses to
G(M X J**), and since by Lemma 3.1 N also collapses to G(M X J"™), it follows
that they are regular neighborhoods of G(M X J*™*) mod aV-Int G(MXJ"™)
in W-Int V, where V denotes the submanifold F,(MXJ**x[—1,0]. By the
uniqueness of relative regular neighborhoods there is 2 homeomorphism F,: W—
W such that F,/V=id., and F,F,(MXJ*'xI)=N. Then F=F,F, is the
required embedding in (1).

Let U denote the image F(MXJ"). Then U is obviously a regular neigh-
borhood of g(M)in W. Since U collapses to F(M X J* *xI)=N, it follows that
U is a regular neighborhood of f(M) in W. By the uniqueness of regular neigh-
borhoods we have (2). To prove (3) we choose partitions K,, K, and L of
f(M), g(M) and W respectively such that K,, K, are full subcomplexes of L and
that N(K,’, L') and N(K,’, L') are contained in Int F(M X J"), where N(K;', L"),
i=1, 2 stand for derived neighborhoods of K;, i=1,2 in L. Thus we have
infinite sequences of derived neighborhoods.

UDN(K,', L") D--+DN(K;®, L»)>... =1, 2 such that for any neighbor-
hoods V,, V, of f(M), g(M) in W respectively there is an integer p so that
NK 2, L'P)CV, for i=1, 2.

By virtue of the regular neighborhood annulus theorem in [1], p. 725, there
are homeomorphisms

h,: U-f(M)—0U X [0, oo) and h,: U-g(M)—3U X [0, o) such that &,(x)=(x, 0)
for all x in 0U and for i=1, 2.

Thus we have the required homeomorphism h: W-f(M)—W-g(M) by
setting //W-Int U=id. and h/U-f(M)=h,h,.

This completes the proof of Lemma 3.2.

4. The proof of Theorems

In the section, we shall prove Theorems A, B and E.
Proof of Theorem A. Since W is orientable, f has an oriented normal pre-
bundle N over S=09A,,,,. Let 4 be an m simplex of .S and let B denote both

the complex S— 4 and the cell S-Int 4. By Corollary 4.2 in [6], N/B and N/A4
are trivial prebundles. Hence we have trivializations A,: B X(J? 0)—N/B and
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hy: AX(J?, 0)—>NJA so that h,"'h,/0AXJ*: 0AX(]J? 0)—>0A4X(J% 0) is an
orientation preserving 2 prebundle isomorphism.

In case m=1; Since =,(PR,)=~n,0,)=Z,, for all » and the non trivial
element is the class of orientation reversing homeomorphisms of (J”, 0) onto
itself, it follows that %,”h,/dA X J? is extendable to an isomorphism £,: A X(J?, 0)
—AX(J? 0).

Hence the required isomorphism %: SX(J? 0)—/N is obtained by setting
h/|BX(J?, 0)=h, and h/A X (J?, 0)=h,h,, completing the proof in case m=1.

In case m=3,; (The proof is essentially given in [7], p. 124.)

We consider the restriction &'=h,*h,/0AX 3]

Since 4’ induces the identity map of H,(04 X0]J*)+H,(0AX0]*)=2+Z, it
follows from the Theorem 13.2 in [0] that 4’ is isotopic to the identity or 7. But
T may not be extended to a homeomorphism of 84 X J? fixing 04X O. There-
fore A’ is isotopic to the identity.

So we may extend A, 'h,/0A X J? to a homeomorphism of 9(4 X J?) fixing
04 x0.

By the join extension, we have a homeomorphism %, of 4 X J? fixing AXO
such that £,/04 X J*=h,h,[0A X J*.

Thus we have the required isomorphism
h: SX(J? 0)— N

by setting #/B X J*=h, and h|A X J*=h,h,, completing the proof in case m=3.

In case m>5; Firstly we show that IV has a collared non zero section. For
N|B we have a collared non zero section (G, g,) by setting g,(x)=h, (x, 0, 1) for
all x in B and G\(x, u)=h, (%, u, 1) for all (x, %) in BX J. Let X and Y denote
the m-+1 sphere 8(A4 X J?) and the m—1 sphere 4. Then the embedding X 0?:
Y — X has a trivial normal prebundle Y X J?. Put g’=h,'g,/Y and G'=h,'G,/
YXJ. Then(G',g')is a collared non zero section of Y’ X J°.. By Lemma 3.2 there
is an embedding f: ¥’ X J*—>X such that X-g'(Y) is homeomorphic to X-Y X0,
and that f(Y X Jx I)=Y X J*and f(x, 0)=G"(x) for all x in Y X J. Since X-Y X0
is a homotopy circle and since m-1>4, applying the argument due to J. Levine in
[5], and then using the existence theorem of a compatible collar, see Lemma 24
in [11], we have a collared non zero section (G,, g,) of N/A4 such that G,/YXJ
=G"'. Thus the required collared non zero section (G, g) of N is well defined
by setting (G, &)/(A ], A)=(h,G,, hyg) and (G, ){(BXJ, B=(G,, &,).

Secondly we prove that NNV is actually trivial.

Again by Lemma 3.2 there is an embedding F: S X J?>— W such that F(S X J?)
=N and F(x, 0)=G(x) for all x in SXJ. We will change the homeomorphism
into an isomorphism. Let a and b denote interior points of A and B respectively.
Then h(bx8J*)NF(SxJx1)=F(bxJx1). Consider the intersection of (b X
8J?) and F(aX9J?). Since 141—(m-+1)=1—m<0, by the general position
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argument, see Chapter 6 of [11], we may assume that A(bX8]J*) N F(SX JX1UaX
0J*)=F(bxJx1), and moreover for a sufficiently small regular neighborhood C
of ain Int 4, h(bX0J?)NF(SXJX1UCX8J?)=F(bxJX1).

Let D denote the k+1 cell SX9J*-Int (SXJX1UCX9J?), and let L denote
the 1 cell 5X(9J*-Int JX1).

Then F*h,(L) and L are two arcs in D, and F *h|0L=id..

Since m+1—1=m>2, by Corollary 1 to Lemma 9 in [11] we may also
assume that F 7'h,[b X9 J’=id.. Moreover by the uniqueness of regular neighbor-
hoods of 5X9J? in SX3J? we may assume that F A (BX9J?)=BXdJ?. Then
the homeomorphism F~'A,/BX03J*is clearly extendable to a homeomorphism
H: §X9J*-S8%03J?. Thus the homeomorphism FH: SX3J/*-0N is an iso-
morphism of the associated 1 sphere prebundle N of N. Therefore by 3.1 in
[6], N is trivial, completing the proof.

Proof of Theorem B. Combining Addendum to Theorem A and the
Theorem 4.6 in [6], we conclude that =,,_,(PR,) consists of only one element
for m>5 and m=3.

Hence #,,(PR,)=~0=r,(0,) for m>4 and m=2. Since z(PR,)=Z,=70,),
it remains to prove that z,(PR,)=x,(0,).

By Proposition 1.1 and by the Proposition 3.1, (ii) in [6], we have 7z,(IIL,)
=~7,0,) and 7,(PR,)=n,(dPR,), where PR, stands for the structural group of 1
sphere 9J*(=S") prebundles.

Since each element of 7,(0PR,) is represented by a homeomorphism % of
Ix S* onto itself fixing 97X .S*, we associate to each element {4} of z,(0PR,) the
homotopy class w{k} of the map

p.h(xe): (1,81)—(S", e), where e=(0,1), p,: IXS'—S"* and (Xe): [>IX S’
stand for the maps (x, y) =y and x—(x, €)
for x in I and y in S, respectively. Then the function w: z,(0PR,) —=,(S) is
clearly a well defined homomorphism such that a diagram

7(PR,) = =,(0PR,)
z w
m(I1L,) == 7,(0,) = 7=,(S") commutes, where 7

stands for the homomorphism induced from the inclusion map. Hence w is
surjective. It remains to prove that w is injective. Notice that for {4} in
7,(0PR,), w{h} coincides with the winding number of % which is defined in [0],
p. 313. Therefore by the Theorem 7.2 in [0], if w{k}=w{g}, then homeomor-
phisms % and g of IxS* fixing 0IxS" are isotopic keeping 8/xS"* fixed.

Hence {h}={g}, completing the proof.

Proof of Theorem E.
Suppose that X(f)=X(g). Since I1L, is homotopy equivalent to 0,, it should
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be noted that the isomorphism class of every orientable 2 cell bundle x is com-
pletely determined by the Euler class X(x).

Let K, L and L’ denote partitions of M, W and W' respectively such that

f: K—L and g: K—L' are simplicial and f(K) and g(K) are full in L and L’
respectively. By Theorem D, there are normal cell bundles v(f) and v(g) for f

and

respectively.

that

g which are compatible with the dual cell structures of K, L and K, L’
It follows from the definitions of X(f) and X(g) see [7], p. 120,
X(f)=X(v(f)) and X(g)=%X(v(g)). Hence X((f))=X(v(g)-

Therefore v(f) and v(g) are isomorphic. Thus fand g are microequivalent.

This completes the proof of Theorem E.
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