

Title	Perturbation and degeneration of evolutional equations in Banach spaces
Author(s)	Nagumo, Mitio
Citation	Osaka Mathematical Journal. 1963, 15(1), p. 1-10
Version Type	VoR
URL	https://doi.org/10.18910/4659
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Nagumo, M.
Osaka Math. J.
15 (1963), 1-10.

PERTURBATION AND DEGENERATION OF EVOLUTATIONAL EQUATIONS IN BANACH SPACES

Dedicated to Professor K. Shoda on his sixtieth birthday

By

MITIO NAGUMO

§ 1. Completely well posed evolutional equations

Let E be a Banach space and E_1 be another Banach space such that $E \subset E_1$ and the embedding of E into E_1 is continuous. Let $A(t)$ be a continuous linear mapping of E into E_1 for every fixed t in the real interval $[a, b]$ such that $A(t)u$ is a continuous function on $[a, b]$ into E_1 for every fixed $u \in E$. Then we can easily see, $A(t)u(t)$ is continuous on $[a, b]$ into E_1 , if $u(t)$ is continuous on $[a, b]$ into E .

As an E -solution in $[a, b]$ of the evolutional equation

$$(0) \quad \partial_t u = A(t)u + f(t) \quad \left(\partial_t = \frac{d}{dt} \right),$$

where $f(t)$ is an E -continuous function on $[a, b]$ ¹⁾, we understand an E -continuous function $u=u(t)$ on $[a, b]$ such that the strong derivative $\partial_t u = \lim_{h \rightarrow 0} h^{-1} \{u(t+h) - u(t)\}$ exists in E_1 for $t \in [a, b]$ and the equation (0) is fulfilled in E_1 for $t \in [a, b]$.

The equation (0) is said to be E -well posed (or simply well posed) in $[a, b]$ when for any $\varphi \in E$ there exists one and only one E -solution $u=u(t)$ of (0) with the initial value $u(a)=\varphi$. We say that the equation (0) is completely E -well posed in $[a, b]$ when (0) is E -well posed for any closed subinterval of $[a, b]$ and the solution $u=u(t, s, \varphi)$ of (0) with the initial value $u(s)=\varphi$ ($a \leq s \leq b$) is a continuous function of (t, s, φ) for $a \leq s \leq t \leq b$, $\varphi \in E$. If (0) is (completely) E -well posed in $[a, b]$ then the associated homogeneous equation

$$(1) \quad \partial_t u = A(t)u$$

1) $f(t)$ is said to be E -continuous on $[a, b]$ when $f(t)$ is continuous on $[a, b]$ into E .

is also (completely) E -well posed in $[a, b]$. When (1) is completely well posed in $[a, b]$ then the solution of (1) with the initial condition $u(s)=\varphi$ ($s \in [a, b]$) can be written in the form

$$(2) \quad u = U(t, s)\varphi,$$

where $U(t, s)$ is a continuous linear operator on E into E for $a \leq s \leq t \leq b$ with the following properties :

- 1) $U(t, s)\varphi$ is continuous on $a \leq s \leq t \leq b$, $\varphi \in E$ into E ,
- 2) $U(s, s)=1$ (identity) for $s \in [a, b]$
- 3) $U(t, \sigma)U(\sigma, s)=U(t, s)$ for $a \leq s \leq \sigma \leq t \leq b$,
- 4) $\partial_t U(t, s)\varphi=A(t)U(t, s)\varphi$ in E_1 for $a \leq s \leq t \leq b$, $\varphi \in E$.

Such an operator $U(t, s)$ is called the *fundamental solution* of (1).

Especially when $A(t)$ does not depend on t : $A(t)=A$, (1) is completely E -well posed in any finite interval $[a, b]$, if and only if (1) is simply E -well posed in some finite interval. For, the fundamental solution of (1) has the form $U=U(t-s)$. In this case, restricting the domain of A to such a set of u that $Au \in E$, A is the infinitesimal generator of the one-parameter semi-group $\{U(t)\}_{t \geq 0}$, since $U(t+s)=U(s)U(t)$ for $s, t \geq 0$. Conversely, if A is the infinitesimal generator of a one-parameter semi-group $\{U(t)\}_{t \geq 0}$, then extending the domain of A on E in such a way that the range of A will be contained in E_1 as given in Remark 1, we obtain a completely E -well posed equation (1) with $A(t)=A$, for any finite interval, with the fundamental solution $U(t-s)=\exp((t-s)A)$.

We can easily obtain the following :

Theorem 1. *If the homogeneous equation (1) is completely E -well posed in $[a, b]$, and $f(t)$ is E -continuous on $[a, b]$, then the inhomogeneous equation (0) is also completely E -well posed in $[a, b]$ and any solution of (0) satisfies*

$$u(t) = U(t, s)u(s) + \int_s^t U(t, \sigma)f(\sigma)d\sigma \quad \text{for } a \leq s \leq t \leq b$$

with the fundamental solution $U(t, s)$ of (1).

REMARK 1. Let $A(t)$ be a pre-closed linear operator in E for every t , and let there exists a closed operator A_0 with a domain in E such that for the adjoint operators $A^*(t)$ and A_0^* of $A(t)$ and A_0 resp. we have

$$\|A^*(t)u'\| \leq \|A_0^*u'\| + \|u'\| \quad \text{for } u' \in \mathcal{D}^* = \mathcal{D}(A_0^*).$$

Then, defining a new norm of $u \in E$ by

$$|||u||| = \sup_{u' \in \mathcal{D}^*} |\langle u, u' \rangle| (\|A_0^* u'\| + \|u'\|)^{-1},$$

we get $|||u||| \leq \|u\|$. Hence, denoting by E_1 the completion of E with respect to the new norm, we obtain that the injection of E into E_1 is continuous and the extension of $A(t)$ on E is continuous on E into E_1 . Cf [1].

On the other hand, if there exists a closed operator A_0 with a domain \mathcal{D} dense in E such that

$$\|A(t)u\| \leq \|A_0 u\| + \|u\| \quad \text{for } u \in \mathcal{D},$$

then defining a new norm of $u \in \mathcal{D}$ by

$$|||u||| = \|A_0 u\| + \|u\|$$

the vector space \mathcal{D} becomes a Banach space E_0 with the new norm, such that the injection of E_0 into E is continuous and $A(t)$ is continuous on E_0 into E for every $t \in [a, b]$.

§ 2. Stability of solutions of evolutional equations containing a parameter

Now we consider an evolutional equation containing a parameter $\varepsilon \geq 0$:

$$(1)_\varepsilon \quad \partial_t u = A_\varepsilon(t)u + f_\varepsilon(t).$$

Let $u = u_0(t)$ be an E -solution of $(1)_0$ in $[a, b]$ for $\varepsilon = 0$. $u = u_0(t)$ is said to be *completely E -stable* in $[a, b]$ with respect to the equation $(1)_\varepsilon$ for $\varepsilon \rightarrow 0$, when the following condition is fulfilled : For any $\delta > 0$ there exists $\eta(\delta) > 0$ such that, if $0 < \varepsilon < \eta(\delta)$, any E -solution $u = u_\varepsilon(t)$ of $(1)_\varepsilon$ on $[a, b]$ for any $s \in [a, b]$ with $\|u_\varepsilon(s) - u_0(s)\| < \eta(\delta)$ satisfies the inequality

$$\|u_\varepsilon(t) - u_0(t)\| < \delta \quad \text{for } s \leq t \leq b.$$

Lemma 1. *Let the equation $(1)_\varepsilon$ be completely E -well posed in $[a, b]$ for $\varepsilon > 0$. If an E -solution $u = u_0(t)$ of $(1)_0$ is completely E -stable in $[a, b]$ for $\varepsilon \rightarrow 0$ with respect to $(1)_\varepsilon$, then the fundamental solution $U_\varepsilon(t, s)$ of the associated homogeneous equation of $(1)_\varepsilon$, for sufficiently small $\varepsilon > 0$, with some constant C satisfies the inequality*

$$(2) \quad \|U_\varepsilon(t, s)\| \leq C \quad \text{for } a \leq s \leq t \leq b.$$

Proof. Let $u = u_0(t)$ be completely stable in $[a, b]$ for $\varepsilon \rightarrow 0$ with respect to $(1)_\varepsilon$, and $u = u_\varepsilon(t)$ and $u = v_\varepsilon(t)$ be solutions of $(1)_\varepsilon$ such that

$u_\varepsilon(s) = v_0(s)$ and $\|v_\varepsilon(s) - u_\varepsilon(s)\| < \eta(\delta)$ resp. Then, if $0 < \varepsilon < \eta(\delta)$ we must have

$$\|u_\varepsilon(t) - v_\varepsilon(t)\| \leq \|u_\varepsilon(t) - u_0(t)\| + \|v_\varepsilon(t) - u_0(t)\| < 2\delta \quad \text{for } s \leq t \leq b.$$

Hence for any $w \in E$ with $\|w\| < \eta(\delta)$ holds the inequality $\|U_\varepsilon(t, s)w\| < 2\delta$ for $a \leq s \leq t \leq b$. This asserts Lemma 1.

In order to give our sufficient conditions for the complete stability of a solution, we shall prepare a definition of quasi-regularity of solutions. An E -solution $u = u_0(t)$ of

$$(0) \quad \partial_t u = A_0(t)u + f(t)$$

is said to be *quasi-regular* in $[a, b]$ with respect to an operator $A_1(t)$, when for any $\delta > 0$ there exists an E -continuous $v_\delta(t)$ on $[a, b]$ such that $\partial_t v_\delta(t) - A_0(t)v_\delta(t) - f(t)$ and $A_1(t)v_\delta(t)$ are bounded and E -continuous on $[a, b]$ and the inequalities

$$\|v_\delta(t) - u_0(t)\| < \delta \quad \text{and} \quad \|\partial_t v_\delta(t) - A_0 v_\delta(t) - f(t)\| < \delta$$

hold for $a \leq t \leq b$.

Especially if $A_0(t) = A_1(t) = A$ and A is the infinitesimal generator of a 1-parameter semi-group and $f(t)$ is E -continuous on $[a, b]$, then an E -solution of (0) is quasi-regular in $[a, b]$ with respect to A . Indeed in this case we have to set $v_\delta(t) = (1 - \lambda_\delta^{-1}A)^{-1}u_0(t)$ with sufficiently large $\lambda_\delta > 0$.

Now we assume that (1) _{ε} is completely E -well posed in $[a, b]$ for $\varepsilon \geq 0$ and the operator $A_\varepsilon(t)$ have the form:

$$(3) \quad A_\varepsilon(t) = A_0(t) + \varepsilon A_1(t) \quad (\varepsilon \geq 0).$$

Further let $f_\varepsilon(t)$ be E -continuous on $[a, b]$ and converge to $f_0(t)$ uniformly on $[a, b]$ as $\varepsilon \rightarrow 0$. Then we have:

Theorem 2. *Let $u = u_0(t)$ be an E -solution of (1) _{ε} for $\varepsilon = 0$ in a finite closed interval $[a, b]$ and be quasi-regular with respect to $A_1(t)$ in $[a, b]$. In order that $u = u_0(t)$ be completely E -stable in $[a, b]$ with respect to (1) _{ε} , it is necessary and sufficient that for sufficiently small $\varepsilon > 0$, the fundamental solution $U_\varepsilon(t, s)$ of the associated homogeneous equation of (1) _{ε} is uniformly bounded for $a \leq s \leq t \leq b$.*

Proof. As the necessity of the condition is already given by Lemma 1, we have only to prove the sufficiency.

For any $\delta > 0$ there exists an E -continuous $v_\delta(t)$ on $[a, b]$ such that

$h_\delta(t) = \partial_t v_\delta(t) - A_0(t)v_\delta(t) - f_0(t)$ and $A_1(t)v_\delta(t)$ are E -continuous on $[a, b]$ with the conditions

$$(4) \quad \|v_\delta(t) - u_0(t)\| < \delta \quad \text{and} \quad \|h_\delta(t)\| < \delta \quad \text{for } a \leq t \leq b.$$

Then we get

$$\partial_t(u_\varepsilon - v_\delta) = A_\varepsilon(t)(u_\varepsilon - v_\delta) + \varepsilon A_1(t)v_\delta + g_{\varepsilon, \delta}(t),$$

where $g_{\varepsilon, \delta}(t) = f_\varepsilon(t) - f_0(t) + h_\delta(t)$. Hence, by Theorem 1,

$$\begin{aligned} u_\varepsilon(t) - v_\delta(t) &= U_\varepsilon(t, s)\{u_\varepsilon(s) - v_\delta(s)\} \\ &+ \int_s^t U_\varepsilon(t, \sigma)\{\varepsilon A_1(\sigma)v_\delta(\sigma) + g_{\varepsilon, \delta}(\sigma)\} d\sigma \quad \text{for } a \leq s \leq t \leq b. \end{aligned}$$

Thus by (2) we have

$$\|u_\varepsilon(t) - v_\delta(t)\| \leq C\{\|u_\varepsilon(s) - v_\delta(s)\| + \int_s^t (\varepsilon \|A_1(\sigma)v_\delta(\sigma)\| + \|g_{\varepsilon, \delta}(\sigma)\|) d\sigma\}.$$

There exist positive constants $\zeta(\varepsilon)$ and B_δ such that $\zeta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$, $\|f_\varepsilon(t) - f_0(t)\| < \zeta(\varepsilon)$ for $a \leq t \leq b$ and $\|A_1(t)v_\delta(t)\| \leq B_\delta$ for $a \leq t \leq b$. Thus, by (4), we get

$$\begin{aligned} \|u_\varepsilon(t) - u_0(t)\| &\leq C\{\|u_\varepsilon(s) - u_0(s)\| + \delta + (b-a)(\varepsilon B_\delta + \zeta(\varepsilon) + \delta)\}, \\ &\quad \text{for } a \leq s \leq t \leq b. \end{aligned}$$

First taking $\delta > 0$ sufficiently small and then letting $\varepsilon \rightarrow 0$, we complete the proof.

REMARK 2. The sufficiency of the condition in Theorem 2 remains valid even for the case of infinite interval (a, ∞) ($b = \infty$), if we add to it the condition

$$\int_a^t \|U_\varepsilon(t, s)\| ds \leq C \quad \text{for } a \leq t < \infty \quad \text{with some constant } C.$$

§ 3. Degeneration of evolutional equations

Let us consider the evolutional equation of the singular form in the parameter ε :

$$(1)_\varepsilon \quad \varepsilon \partial_t u = A_\varepsilon(t)u + f_\varepsilon(t) \quad \text{with } \varepsilon > 0$$

and the degenerated equation

$$(1)_0 \quad A_0(t)u + f_0(t) = 0$$

We assume that $A_\varepsilon(t)$ and $f_\varepsilon(t)$ have the forms

$$(2) \quad \begin{aligned} A_\varepsilon(t) &= A_0(t) + \varepsilon A_1(t), \\ f_\varepsilon(t) &= f_0(t) + \varepsilon f_1(t) + \varepsilon h_\varepsilon(t), \end{aligned}$$

where $f_0(t)$, $f_1(t)$ and $h_\varepsilon(t)$ are E -continuous on $[a, b]$ and $h_\varepsilon(t) \rightarrow 0$ uniformly on $[a, b]$ as $\varepsilon \rightarrow 0$.

A solution $u=u_0(t)$ of the degenerated equation $(1)_0$ is said to be *completely E -stable* in $[a, b]$ with respect to $(1)_\varepsilon$ for $\varepsilon \rightarrow 0$, when the following condition is fulfilled: For any $\varepsilon > 0$ there exists some $\eta(\delta) > 0$ such that, if $0 < \varepsilon < \eta(\delta)$, any E -solution $u_\varepsilon(t)$ of $(1)_\varepsilon$ in $[s, b]$ for any $s \in [a, b]$ with

$$\|u_\varepsilon(s) - u_0(s)\| < \eta(\delta)$$

satisfies the inequality

$$\|u_\varepsilon(t) - u_0(t)\| < \delta \quad \text{for } s \leq t \leq b.$$

Theorem 3. *Assume that $(1)_\varepsilon$ is completely E -well posed in a finite closed interval $[a, b]$ for $\varepsilon > 0$ and $A_\varepsilon(t)$ and $f_\varepsilon(t)$ have the forms (2). Let $u=u_0(t)$ be a E -solution of $(1)_0$ on $[a, b]$ such that $u_0(t)$, $\partial_t u_0(t)$ and $A_1(t)u_0(t)$ are E -continuous on $[a, b]$. In order that $u=u_0(t)$ is completely stable in $[a, b]$ for $\varepsilon \rightarrow 0$ with respect to $(1)_\varepsilon$ with any E -continuous $f_1(t)$ on $[a, b]$, it is necessary and sufficient that the fundamental solution $U_\varepsilon(t, s)$ of $\partial_t u = \varepsilon^{-1}A_\varepsilon(t)u$ satisfies the following conditions:*

1) *There exists a constant C such that*

$$\|U_\varepsilon(t, s)\| \leq C \quad \text{for } a \leq s \leq t \leq b \text{ and sufficiently small } \varepsilon > 0.$$

2) *For any α, β, t , and $v \in E$ such that $a \leq \alpha < \beta \leq t \leq b$,*

$$\int_a^\beta U_\varepsilon(t, s)v ds \rightarrow 0 \quad \text{uniformly on } t \in [\beta, b] \text{ as } \varepsilon \rightarrow 0.$$

Proof. The necessity of 1) is obtained in the same way as in the proof of Lemma 1.

To prove the necessity of 2), setting $f_1(t) = \varphi(t) - A_1(t)u_0(t)$ with an arbitrary E -continuous $\varphi(t)$ on $[a, b]$, we get from $(1)_\varepsilon$, $(1)_0$ and (2)

$$\partial_t(u_\varepsilon - u_0) = \varepsilon^{-1}A_\varepsilon(t)(u_\varepsilon - u_0) + \varphi(t) + h_\varepsilon(t).$$

Hence for $a \leq s \leq t \leq b$

$$\begin{aligned} u_\varepsilon(t) - u_0(t) &= U_\varepsilon(t, s)\{u_\varepsilon(s) - u_0(s)\} \\ &\quad + \int_s^t U_\varepsilon(t, \sigma)\{\varphi(\sigma) + h_\varepsilon(\sigma)\} d\sigma. \end{aligned}$$

By 1) we have if $0 < \varepsilon < \eta(\delta)$, as $\eta(\delta) \leq \delta$,

$$\|U_\varepsilon(t, s)\{u_\varepsilon(s) - u_0(s)\}\| \leq C\delta$$

and

$$\left\| \int_s^t U_\varepsilon(t, \sigma) h_\varepsilon(\sigma) d\sigma \right\| \leq (b-a) C \zeta(\varepsilon)$$

for $a \leq s \leq t \leq b$, where $\zeta(\delta) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Hence we have only to show that

$$\left\| \int_s^t U_\varepsilon(t, \sigma) \varphi(\sigma) d\sigma \right\| \rightarrow 0 \text{ uniformly on } a \leq s \leq t \leq b$$

as $\varepsilon \rightarrow 0$ for any E -continuous $\varphi(t)$ on $[a, b]$ " implies 2). Put $\varphi(\sigma) = \psi(\sigma)v$ with any $v \in E$ and a continuous real valued function $\psi(\sigma)$ on $[a, b]$ such that $0 \leq \psi(\sigma) \leq 1$, $\psi(\sigma) = 1$ for $\alpha + \delta \leq \sigma \leq \beta$, $\psi(\sigma) = 0$ for $a \leq \sigma \leq \alpha$ and for $\beta + \delta \leq \sigma \leq b$. Then by 1)

$$\left\| \int_s^t U_\varepsilon(t, \sigma) \varphi(\sigma) d\sigma - \int_\alpha^\beta U_\varepsilon(t, \sigma) v d\sigma \right\| \leq 2\delta C \|v\|.$$

Therefore we obtain 2), as δ can be taken arbitrarily small.

To prove the sufficiency of 2) with 1), we have only to show that by these conditions

$$\left\| \int_s^t U_\varepsilon(t, \sigma) \varphi(\sigma) d\sigma \right\| \rightarrow 0 \text{ uniformly for } a \leq s \leq t \leq b \text{ as } \varepsilon \rightarrow 0.$$

Divide the interval $[a, b]$ into a finite number of consecutive intervals $[\tau_{\nu-1}, \tau_\nu]$ ($\nu = 1, \dots, N$) in such a way that $\tau_\nu - \tau_{\nu-1} < \delta$ and $\|\varphi(\sigma) - \varphi(\tau_\nu)\| < \delta$ for $\sigma \in [\tau_{\nu-1}, \tau_\nu]$. Then

$$\begin{aligned} & \left\| \int_s^t U_\varepsilon(t, \sigma) \varphi(\sigma) d\sigma - \sum_{s < \tau_\nu \leq t} \int_{\tau_{\nu-1}}^{\tau_\nu} U_\varepsilon(t, \sigma) \varphi(\tau_\nu) d\sigma \right\| \\ & < C(b-a)\delta + 2C\delta \text{ Max } \|\varphi(\sigma)\|. \end{aligned}$$

Thus by 2), taking δ sufficiently small and letting $\varepsilon \rightarrow 0$, we attain to the desired conclusion. Q. E. D.

When $f_\varepsilon(t)$ has the form, instead of (2),

$$(3) \quad f_\varepsilon(t) = f_0(t) + h_\varepsilon(t),$$

where $f_0(t)$ and $h_\varepsilon(t)$ have the same meanings as before, we cannot easily have necessary and sufficient conditions for the complete stability of $u_0(t)$, but only sufficient conditions, while we can relax the conditions on $u_0(t)$ somewhat.

Theorem 4. *Let $u = u_0(t)$ be an E -continuous solution of (1)₀ on $[a, b]$ such that for any $\delta > 0$ there exists an E -continuous $v_\delta(t)$ on $[a, b]$ with*

bounded and E -continuous $\partial_t v_\delta(t)$, $A_0(t)v_\delta(t)$ and $A_1(t)v_\delta(t)$ on $[a, b]$ satisfying the conditions

$$\|v_\delta(t) - u_0(t)\| < \delta \quad \text{and} \quad \|A_0 v_\delta(t) + f_0(t)\| < \delta \quad \text{for } t \in [a, b].$$

Assume that the fundamental solution $U_\varepsilon(t, s)$ of $\partial_t u = \varepsilon^{-1} A_\varepsilon(t)u$, satisfies for sufficiently small $\varepsilon > 0$, the conditions with some constant C :

- 1) $\|U_\varepsilon(t, s)\| \leq C \quad \text{for } a \leq s \leq t \leq b,$
- 2)' $\int_a^t \|U_\varepsilon(t, s)\| ds \leq \varepsilon C \quad \text{for } a \leq t \leq b.$

Then $u = u_0(t)$ is completely E -stable in $[a, b]$ with respect to (1) _{ε} for $\varepsilon \rightarrow 0$.

Proof will be left to the reader.

REMARK 3. The sufficiency of the conditions 1) and 2)' in Theorem 4 remains valid even for the case of infinite interval (a, ∞) ($b = \infty$).

§ 4. Degeneration of evolutional equation when $A_\varepsilon(t) = A$

Consider the evolutional equation of singular form in ε :

$$(1)_\varepsilon \quad \varepsilon \partial_t u = Au + f_\varepsilon(t) \quad (\varepsilon > 0),$$

where A is the infinitesimal generator of a one parameter semi-group in a *reflexive* Banach space E . As it has been stated in § 1, the operator A can be extended to a continuous linear operator on E into E_1 , and the equation (1) _{ε} becomes completely E -well posed in any finite interval. The fundamental solution of the associated homogeneous equation has the form

$$U_\varepsilon(t, s) = \exp(\varepsilon^{-1}(t-s)A),$$

as $\exp(tA)$ ($t \geq 0$) is the transformation generated by A .

Theorem 5. Let $u = u_0(t)$ be an E -solution in a finite closed interval $[a, b]$ of the degenerated equation

$$Au + f_0(t) = 0$$

with E -continuous $\partial_t u_0(t)$ on $[a, b]$.

In order that $u_0(t)$ be completely E -stable in $[a, b]$ with respect to (1) _{ε} for $\varepsilon \rightarrow 0$, where f_ε has the form (2) with any E -continuous f_1 , it is necessary and sufficient that the following conditions are fulfilled:

- 1) With some constant C , $\|\exp(tA)\| \leq C$ for $0 \leq t < \infty$.
- 2) $Av = 0$ with $v \in \mathcal{D}(A)$ implies $v = 0$,

where $\mathcal{D}(A)$ denotes the proper domain of A before the extension of A on E .

Proof. From Theorem 3 we get easily the necessity of 1), as $U_\varepsilon(t, s) = \exp(\varepsilon^{-1}(t-s)A)$.

By the mean ergodic theorem in a reflexive Banach space, we obtain from 1) a projective operator P on E into E such that :

$$(3) \quad \lim_{\tau \rightarrow \infty} \tau^{-1} \int_0^\tau \exp(tA) v dt = Pv \quad \text{for any } v \in E, \text{ }^{(2)}$$

$$(4) \quad P \exp(tA) = \exp(tA)P = P^2 = P,$$

and

$$(5) \quad P(E) = \{u \in \mathcal{D}(A); Au = 0\}$$

Thus, for $\alpha \leq \alpha < \beta \leq t \leq b$ and any $v \in E$, setting

$\tau(\varepsilon) = \varepsilon^{-1}(\beta - \alpha)$ we have by (4)

$$\begin{aligned} & \int_\alpha^\beta U_\varepsilon(t, s) v ds - (\beta - \alpha) Pv \\ &= \int_\alpha^\beta \exp(\varepsilon^{-1}(t-s)A) v ds - (\beta - \alpha) Pv \\ &= (\beta - \alpha) \exp(\varepsilon^{-1}(t - \beta)A) \{ \tau(\varepsilon)^{-1} \int_0^\tau \exp(\sigma A) v d\sigma - Pv \}, \end{aligned}$$

hence by (3) and 1), we have

$$\left\| \int_\alpha^\beta U_\varepsilon(t, s) v ds - (\beta - \alpha) Pv \right\| \rightarrow 0 \text{ uniformly for } \beta \leq t \leq b,$$

as $\tau(\varepsilon) \rightarrow \infty$ for $\varepsilon \rightarrow 0$.

Hence the condition 2) in Theorem 3 with 1) is equivalent to :

$$Pv = 0 \quad \text{for every } v \in E.$$

Therefore, by (5) the condition 2) with 1) is equivalent to the condition 2) with 1) in Theorem 3. Q. E. D.

REMARK 4. The sufficiency of the conditions in Theorem 5 remains valid even for the case $b = \infty$, if we replace 2) by

$$\int_0^\infty \|\exp(tA)\| dt < \infty.$$

2) Here the \lim means the strong limit in E .

OSAKA UNIVERSITY

(Received March 5, 1963)

References

- [1] M. Nagumo: *Re-topologization of functional space in order that a set of operators will be continuous*, Proc. Japan Acad. **37** (1961), 550-552.
- [2] M. Nagumo: *Singular perturbation of Cauchy problem of partial differential equations with constant coefficients*, Proc. Japan Acad. **35** (1959), 449-454.
- [3] H. Kumano-go: *Singular perturbation of Cauchy problem of partial differential equations with constant coefficients II*, Proc. Japan Acad. **35** (1959), 541-546.
- [4] K. Yosida: *Mean ergodic theorem in Banach spaces*, Proc. Imp. Acad. Japan (1938), 292-294.
- [5] E. Hille and R. S. Phillips: *Functional analysis and semi-groups*, Amer. Math. Soc. Colloq. Publ. **31**, Providence, 1957.