<table>
<thead>
<tr>
<th>Title</th>
<th>Multimedia Delivery over Wireless Networks Using Cross-layer Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>金, 鍾玉</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>none</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/46669</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
近年、ブロードバンド無線ネットワークの発展・普及に伴い、音声や映像配信などの高品質マルチメディアサービスへの要求が高まっている。しかし、一般的に無線ネットワークでは有線ネットワークに比べて、高齢率で通信エラーが発生する。加えて、無線電波は障害物や干渉やフェージングなどで著しい変動を起こす。これらはネットワーク環境の頻繁な変動を引き起こしている。また、マルチメディアサービスは時間制約の厳しいサービス品質（Quality of Service: QoS）を要求する。異なるプロトコルレイヤーに存在するこれらの特性や、無線マルチメディア伝送は重要な技術課題である。

そこで、効率的なマルチメディア伝送を実現するアプローチとして、プロトコルレイヤ間の非効率的動作の改善が可能となるクロスレイヤ適応が考えられる。このアプローチは2つに分類されている。1番目はマルチメディアアプリケーションを時間的に変動する無線ネットワークに適応するCross-layer Application Adaptation (CAA)である。アプリケーション層で適応が行われるため、様々なマルチメディアサービスに応用できるが、変動を続ける無線状態に適応する構造は難しい。2番目は逆にネットワークの変化をマルチメディアのQoSを要件に応じて適応するCross-layer Network Adaptation (CNA)である。ネットワークの変動に素早く適応できるが、様々なマルチメディアサービスを受容するためにはより複雑なネットワークの構造が必要になる。

これらの背景から、本研究では具体的なマルチメディアアプリケーションを対象に、これらのアプローチを適用した2つのCNA方式と1つのCAA方式を提案する。まず、WLANにおいて高品質映像配信を実現するため、MAC層でビデオフレーム単位でチャネルアクセスを行うプロトコルを提案する。提案方式はビデオパケットのタイムスタンプ情報を基に、適切な動作を行うことによってビデオフレームの遅延向上を実現する。次に、パケットのトラフィック状況に応じてRate Adaptation（RA）手法を適切に選択を行う。パケットのQoSを適切に選択することで、ネットワークの変動に対する適応にビデオパケットをスケジューリングする方式を提案する。この方式はネットワークの変動を予測するモデルと、これに基づいて最適なスケジューリングを行うスケジューラの2つで構成されており、ネットワーク適応により映像の品質向上が実現できる。
論文審査の結果の要旨

本論文は、ブロードバンド無線ネットワークにおいて高品質マルチメディア伝送を実現するためのクロスレイヤープローチに関する研究成果をまとめたものである。その主要な成果は以下の通りである。

(1)無線ネットワークとマルチメディアサービスの各特徴を示し、効率的なマルチメディア伝送を実現するためにプロトコルレイヤ間の非効率的動作を改善するクロスレイヤ適応技術の重要性を示している。

(2)CNA (Cross-layer Network Adaptation) アプローチとして、マルチメディアアプリケーションのQoS (Quality of Service) 要素に応じてネットワークを適応させるMAC (Media Access Protocol) プロトコルを提案している。本方式により、メディアフレームの遅延特性の向上、従来のプロトコルとの互換性および実装の容易性を実現している。

(3)ネットワーク適応に関して、パケットのトラフィックタイプに応じて適切なQoSクラスに最も適応するRA (Rate Adaptation) 手法を適用する方式を提案している。本方式により、電波伝送中でもサービス品質を保証できるとともに、End-to-End間のQoS保証を実現できることを明らかにしている。

(4)CAA (Cross-layer Application Adaptation) アプローチについては、ネットワークの時間的変動に対して適応的にビデオパケットのスケジューリングを行う方式を提案している。この方式により、ネットワークの変動を予測するモジュールと、予測に基づいて最適なスケジューリングを行うスケジューラの2つで全体を構成することができ、映像品質の向上を達成している。

以上のように、本論文は今後の情報ネットワーク時代を支えるブロードバンド無線ネットワークにおける高品質なマルチメディア伝送技術に関して有効な研究成果を上げており、情報ネットワーク学に寄与するところが大きい。よって、本論文は博士（情報科学）の学位論文として価値あるものと認める。