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1. Introduction

Let = be a non-Desarguesian semi-field plane with an autotopism group
G and let #(z) denote the number of the orbits of G on the points not incident
with any side of the autotopism triangles.

In their paper [9], M.]J. Kallaher and R.A. Liebler have conjectured that
u(r)>5 and they have proved that the conjecture is true if G is solvable and
the order of z is not 25,

In this paper we treat semi-field planes of even order whose autotopism
groups are not necessarily solvable and prove the following.

Theorem 1. Let n be a non-Desarguesian semi-field plane of order 2'.
If r is not divisible by 4, then u(z)>5.

The proof requires the use of the Kallaher-Liebler’s theorem mentioned
above and the following lemma which we prove in section 3.

Lemma 2. Let = be a non-Desarguesian semi-field plane of order 2° with
a solvable autotopism group. Then u(zw)=>5.

2. Notations and preliminaries

Our notation is largely standard and taken from [3] and [6]. Let G be
a permutation group on Q. For X<G and ACQ, we define F(X)={acsQ|a’
=q for all x=€X}, X(A)={xeX|A'=A}, X,={keX|a"=a for all a=A}
and X*=X(A)/X,, the restriction of X on A. When X is a collineation group
of a projective plane, we denote by F(X) the set of fixed points and fixed lines
of X.

Lemma 2.1. Let G be a transitive permutation group on a finite set Q,
H a stabilizer of a point of Q) and M a nonempty subset of G. Then |F(M)|
= |Ne(M)| X |ecle(MYNH|/|H|. Here ccle(M)N H= {g*Mg|g™*Mg C H,
g2€G}.

Proof. Set W={(L, a)|Leccly(M), a=F(L)} and Wo={L|Leccl;(M),
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acF(L)}. By the transitivity of G, |W,|=|Ws| holds for every a, B€Q.
Counting the number of elements of W in two ways, we obtain |G: Ny(M)|
X |F(M)|=|G: H| X |eclg(M)NH|. Thus we have the lemma.

Lemma 2.2. Let PG(2,q) denote the Desarguesian projective plane of
order q where q=2" and n=1 (mod 2). Set Y=PSL(3, q) and X=[f)Y, where
[ is a field automorphism of Y of order n. Set G=Xp ¢ and N=GNY, where
P=[1, 0, 0], O=][0, 1, 0] and R=][O, O, 1].

(1) Let A be a noncyclic abelian p-subgroup of G of order p* for a prime p.
Then A is not semi-regular on the set of points contained in PG(2, q)-F(A4).

(ii) Let C be a cyclic subgroup of G of order q-1. Then CCN.

Proof. Since ANN=+1 and N=Z,_,XZ,_,, p is an odd prime. Let T
be the translation group with respect to the line g joining [1, 0, 0] and [0, 1, 0].
Deny (i) and let Q denote the set of points in F(A). Then, by Theorem 5.3.6
of [3], T=<LCy(x)|1=x€4>. By the semi-regularity of 4, C;(x) acts on Q
for each x&A— {1}. Hence T acts on .

Let A denote the set of points not incident with the line g. Clearly [0,
0, 1]eANQ. Since T is transitive on A, we have (1).

a00
Set D=CNN and let (0 b 0) be a generator of D. Then C[>D and
00c¢

C/ID=CN|IN<G|N=Z, and so |D|>(¢—1)/n. Set <h>=C¢; (D) and s=
|[<kE>|. Then mn=rXs for an integer r. It follows that da™!, ca”'eGF(2")*.
Hence |D|<2'—1. From this, 2’—1>|D| >(¢—1)/n. We can easily verify
that s=1. Therefore C(;, (D)=1, whence C<C;(D)=NC;,(D)=N. Thus
C<N.

In the rest of the paper we assume the following.

Hypothesis 2.3. Let = be a non-Desarguesian semi-field plane of order
2" coordinatized by a semi-field D with respect to the points U,=(0, 0), U,=
(0), Us=(c0) and let G be the autotopism group of = with respect to U,, U, U,.
Let I; be the line joining U; and U, for i, j, k with {i, j, R} ={1, 2, 3} and let
D(7) be the set of points of = not incident with l,, I, or l,, Let u(x) denote the
number of G-orbits on ®(x). Set K,=Gy, ;) for 1<i<3 and let N,, N, or N,
be the right, middle or left nucleus, respectively.

D may be considered as a right vector space over N, or N, and as a left
vector space over N, or N;. The multiplicative group N;* is isomorphic to
K, for each ¢ with 1<i<3 (Chapter 8 of [6]). Set I,=I,—{U,, U} for i, j,

with {7, j, R} = {1, 2, 3}.
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3. The proof of Lemma 2.

Throughout this section # is a projective plane satisfying the hypothesis
2.3 and the following.

Hypothesis 3.1. (i) The order of = is 25.
(ii) Setu=u(w). Then u<4.
(iii)  The autotopism group G is solvable.

Lemma 3.2. |K,|=1, 3 or 7 for every t< {1, 2, 3} and u=3 or 4.

Proof. Since # is non-Desarguesian, D is not a field. Hence, N, is
isomorphic to GF(2), GF(4) or GF(8) for t={l, 2, 3}. By Theorem 8.2 of
[6], |IK,|=1,3 or7.

By Corollary 4.1.1 of [9] and Hypothesis 3.1 (ii), u=3 or 4.

Lemma 3.3. If G is transitive on 1, for some t< {1, 2, 3}, then the fol-
lowing hold.

(i) GIK,<TL(1, 2% and G|K, contains an element of order 9.

(ii) Let m be an arbitrary line through U, such that m=1;, I, for {t,j, k} =
{1,2,3}. Set A=mnl,. Then G,=G, |G: G4|=3*-7 and the number of
G 4-orbits on m-{U,, A} is equal to u.

(iii) Let Ay, A, +-+, A, be the orbits stated in (ii). Set x,=|A,|, 1<s<u,
and assume that x,<x,<--<x,. Then |G| is divisible by x, for every s and

6% |K,| is divisible by |G ,|. Furthermore éxs:()&
s=1

Proof. By Lemma 2.1 of [9], G is a transitive linear group on D. Hence
it follows from a Huppert’s theorem ([7]) that G/K,<TL(1, 2%. If G/K,
contains no element of order 9, then its Sylow 3-subgroup is an elementary
abelian 3-subgroup of order at most 9. By the stiucture of T'L(1, 2°), G/K,
is not a transitive linear group, a contradiction. Thus G/K, contains an ele-
ment of order 9 and (i) holds.

Let m, A be as in (ii). Since G fixes U, and /,, we have G,,=G,. Clearly
|G: G4|=|A4%|=|1,|=25—1=3%.7. As any point of ®(z) lies on a line of
[U]—{l;, 1}, ®(x)Nm(=m—{U,, A}) is a union of u G ,-orbits, hence (ii)
holds.

Since G/K,<TL(1, 2%, G4/K,<Z;. Hence 6x |K,| is divisible by |G,]|.
Clearly x,=|A,| divides |G4| and 2xs=|A1UA2U"' UA,l=]|1|=25—1
=3%.7.Thus (iii) holds.

Lemma 3.4. Suppose u=4. Then there exists i€ {1, 2, 3} having the
Jfollowing properties:
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(i) G is transitive on I,

(ii) K zs isomorphic to Z, and G has a normal Sylow 7-subgroup and

(i) |G: G4 =63, G4/K; is isomorphic to Z; and Cg;(K,)=K; for each
Ael,.

Proof. By Lemma 6.1 of [9], there exists ;& {1, 2, 3} such that G is transi-
tive on ;. Assume that K;#+Z,, Then K;<Z, by Lemma 3.2. Let m, A4,
%, be as in Lemma 3.3. We have «x_ l 6|K;|=6 or 18 and x;+x,+x;+x,=63,
hence |K;|=3, |G4|=18 and (x,, x,, x5, x,)=(9, 18, 18, 18).

Let 2 be an involution in G,. Then 2 is a Baer involution and so |F(z)
N(m—{U;, A})| =7 because me F(z). If F(2)N A=, then |A| =%|G4|. In
particular F(2)NA,=¢ for s>2 and so |F(2)NA,|=7. Since G,/K;~=Z;
and 2 K;, Cg,(2)F<2>. Hence an element of C; (=) of order 3 acts on F(2)
N A, and fixes at least one point on it. It follows that [A;|<3%|G,|=3, a
contradiction. Therefore we have K;~=Z, and so G has a normal Sylow 7-
subgroup by Lemma 3.3. Thus (ii) holds.

Let m (=U;A4), A,, »; for t=i be as in Lemma 3.3 (ii). Since G,>K;
~Z7, and K; acts semi-regularly on m-{U;, A}, 7 l |A;| ==, for all s€ {1, 2, 3,
4}. Moreover, by Lemma 3.3, x,-+x,+x;,+x,=63. Hence (%, x, x; x,)=
(7, 7, 7, 42) (7, 14, 21, 21) or (14, 14, 14, 21) and so |G,|=42. Thus G4/K;
=~Z; by the similar argument as in the proof of Lemma 3.3 (iii). Let y be an
element of Cg (K;) and assume that the order of y is 2 or 3. Since G,4/K;=
Zs and K;=Z,, y is contained in the center of G,. Hence G, acts on F(y)
and therefore A, is contained in F(y) for each s with [{y>| V' x,. As above, (x,,
Xy %3, x)=(7, 7, 7, 42), (7, 14, 21, 21) or (14, 14, 14, 21) and hence |F(y)N
m|>2142=23. Since F(y)NP(z)=*¢, y is a planar collineation, Therefore
y=1, a contradiction. Thus C¢,(K;)=K;.

Lemma 3.5. Suppose u=4 and let notations be as in Lemma 3.4. Then,
for some s€ {1, 2, 3} — {i} O(G) has no orbit of length 7 on I..

Proof. Suppose false. Let P be a Sylow 7-subgroup of G. By Lemma
3.4 (ii), |P|=7% and P is a normal subgroup of G. Let s€{1,2,3}—{i} and
let Q, be a P-orbit of length 7 on /.. Then there exists another P-orbit of
length 7, say £,, on [, because 72} | [,—Q,|.

Let O be a Sylow 3-subgroup of O(G). By Lemmas 3.3 and 3.4, K;=~=
Z, and a Sylow 3-subgroup of G/K; is isomorphic to that of a Sylow 3-sub-
group of T'L(1,25). Hence Q=<a, b|a’=b’=1, b'ab=a*) for suitable a, b in
0. We note that Q'=[0Q, O]=<a*).

Since |Q,|=1Q,]=7<9, @® acts trivially on Q,UQ,, hence |F(a®)NI[>
24 ||+ Q| =16. Ass(e {1, 2,3} — {i}) is arbitrary, @® is planar and more-
over we have F(a®)=m, by Theorem 3.7 of [6], which implies that a®=1. This
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is a contradiction. Thus we have the lemma.

Lemma 3.6. u=3.

Proof. Assume that ##3. Then, by Lemma 3.2, u=4 and we can apply
Lemmas 3.4 and 3.5. Let notations be as in them.

Let P be a Sylow 7-subgroup of G and T the set of P-orbits on I,. Set
H=O0O(G). Since P is a normal subgroup of H by Lemma 3.4 (ii), H induces
a permutation group on I'. Since P>K; and K; is semi-regular on I, every
P-orbit in T has length 7 or 72. If an orbit in I" has length 7%, T' contains
exactly two P-orbits of length 7, which are also H-orbits of length 7, contrary
to Lemma 3.5. Therefore each P-orbit in T' has length 7 and so |T"|=09.

If H acts transitively on T', G is transitive on I, and therefore G/K,<
TL(1, 25) by Lemma 3.3 (i). It follows that T'L(1, 28)>G,K,/K,~G,/G,
NK,=~G,. Therefore an involuticn in G, centralizes a Sylow 7-subgroup of
G, by the structure of T'L(1, 2%), contrary to Lemma 3.4 (iii). Hence H is
not transitive on T

Let O be a Sylow 3-subgroup of H. Then |Q|=27 and [Q, Q]=0'=Z,
as in the proof of Lemma 3.5. Since H=PQ, I'’=TI?. On the other hand H
is not transitive on I'. Hence QT is abelian and therefore Q' acts trivially on
I'. We note that G/Cy(P)<Z; or G/C;(P)<GL(2, 7) according as P=Z,, or
Z,X Zy, respectively. Hence Q' is contained in Cy(P). Since Q' acts trivially
on T" and each orbit AET is of length 7, F(Q')NA=%¢. Therefore Q'<
K, because [P, O']=1. In particular Q' is semi-regular on I;, where {j}=
{1, 2, 3} —{, s}. Hence QK, is transitive on I, By Lemma 3.3(i), G/K;
=TL(1, 2°) and K;~=Z;,. Let z be an involution in G,. Then [z, P]<K;
NK,;=1 and so xC; (K;), contrary to Lemma 3.4 (iii). This we have u=3.

Lemma 3.7. Assume that there exists a line | through U; with 1=l 1,
where {i,j, k} ={1, 2, 3}, such that G, acts transitively on |—{U;, IN1}. Then
the following hold.

(i) G, is transitive on 1, for t=j, k.

(ii) G has two or three orbits on ;.

Proof. Let A, A,€1l;and set Bj=U,A4,Nland B,=U,;4,NI. By assump-
tion, there exists an element xG, such that B,*=B,. Since U;4,NI=25,
=B*=U,;A,"N1and 4,, A" €1, it follows that 4,"=A4,. Hence G, is transitive
on I;. Similarly G, is transitive on I,. Thus (i) holds.

Let d be the number of G-orbits on ;. Clearly d is at most 3. If d=1,
G acts transitively on ®(x), contrary to #=3. 'Thus (ii) holds.

Lemma 3.8. Let I be the line satisfying the assumption in Lemma 3.7.
If 72| |G| and 7°X |G|, then K, =Z, and |G| |2-3-7.
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Proof. By Lemmas 3.2,3.3 (i) and 3.7 (i), K; and K, are isomorphic to
Z,; otherwise 72 V' |G|. Set A=INI. Then G;=G, and so G;/K;=G,/K,.
Since G/K;<GL(6,2), G,/K; is isomorphic to a subgroup of L, where

1 Ay ag

L= 0 M )az, v, 4,E€GF(2), MEGL(5, 2)} .

Since L/O,(L)=GL(5, 2), a Sylow 3-subgroup of L is an elementary abelian
group of order 9. On the other hand, by Lemmas 3.3 and 3.7 (i), G|, contains
an element of order 9. Therefore K;~Z,.

For a subgroup X of G, X denotes the homomorphic image of X in G/K,.
Since K;+K, and GXGL(6, 2), K;x K, is a Sylow 7-subgroup of G ans so
K;x K, has two subgroups <@> and <b> of order 7 which fix nonzero vectors
on I, Set H=0O(G). By Lemmas 3.3(i) and 3.7 (i), G/K,<TL(1, 2°) for
te {j, K}, so that |G: H|<2. Since GIK, for t€ {j, k}, H normalizes K;,
K, <a> and <b>. As K, acts semi-regularly on [;, we have K,+<a>, <b> for
te {j, k}. Without loss of generality, we can assume that <ab>=K,. Let
g€H. Then g-'ag=a? and g-bg=>b’ for some p, ¢ with 1<p, ¢<6, so we
have g labg=a’b’cK,=<aby. Hence p=gq. From this, H|Cz(<a)>x<bD)
<O(AU(Z))=Z. Since Coy (<8 X <BY)=<a>x<BD, we have |H]| |3|<a
X {b>| =3-7% and therefore |H | ‘ 32.7%. Thus we obtain |G| [2-32'72.

Lemma 3.9. Let ic {1, 2, 3} and set {i, j, k}={1, 2, 3}. Then the fol-
lowing hold.

(1) For every lineme[U;]—{l;, 1}, G,, has three orbits on m— {U;, mN[;}.

(ii) G acts transitively on I; and G/K;<TL(1, 2°.

Proof. Deny (i). Then, since u=u(z)=3, there exists a line /€[U]
satisfying the assumption of Lemma 3.7. Let {Q, Q, -+, Q,} be the set of
G-orbits on /; and set b,=|Q,| for 1<s<p. By Lemma 3.7 (ii), p=2 or 3.

Assume p=3. Set b=max{b, b, b}, b=|Q,| and let A=Q, Since
u=3, G, is transitive on m— {U;, A}, where m=AU,. Therefore 63 | |G,].
Hence 63b| |G| because |G|=b|G,|. By Lemmas 3.2, 3.3 (i) and 3.7 (1),
we have |G| |2+3*7” and so b|2-3-7. Since 3b>b,+b,+b,=63, it follows
that 21<b<<63, hence b=21 or 42 and 33-721 |G|, contrary to Lemma 3.8.
Thus p=+3.

Assume p=2. Let A=Q,, BUQ, and set g=AU,;, h=BU,. Since u=3,
without loss of generality we may assume that G, is transitive on g— {U;, 4}
and that G has two orbits on hA— {U;, B}, say Ty, T',. Similarly as in the last
paragraph we obtain the following:

by, bZ( IGl, 1G] | 2+3*7 b+b, = 63 .



SeMI-FIELD PLANES oF EVEN ORDER 651

Hence {b,, b} ={21, 42}, {14, 49} or {9, 54}. We note that |G: G,|=|G:
Gal=by, |G: G,|=|G: G| =b,and 63 | | G,|.

If {b, b}=1{21, 42}, |G|=|G,|b, and 21 |b1. Hence 33-72| |G|, con-
trary to Lemma 3.8.

If {b,, b}={14, 49}, |G: G,|=14 because 72} |G|. Hence |G: G,|
=49. By Lemma 3.8, |G| | 2-32-7% Therefore |G,| | 18. Since h— {U;, B}
is a union of Gj-orbits Ty, T, we have |Ty|+|T,|=63 and |Ty|, |Ty| |18.
This is a contradiction.

If {b, b}=1{9, 54}, we have |G: G4|=9 as 3 ¥ |G|. Hence 3'| |G|
and so 72 ¥ |G| by Lemma 3.8. Therefore |G|=2-3*-7. From this, |G|
= |G| =21. Hence |T}], [T, |21. However, |T;|+4 |T,]|=63, a contradic-
tion. Thus we have (i), and (ii) follows immediately from (1).

By Lemma 3.9, we can apply Lemma 3.3 for every t€ {1, 2, 3} and ob-
tain the following.

Lemma 3.10. Let notations be as in Lemma 3.3. Then the following hold.
(i) 37 |IGI, |G| |23 7 and 37 ¥ |G|.
(ii) 3% 72 X x, for all s€ {1, 2, 3}.

Proof. By Lemmas 3.2 and 3.3 (i) (ii), we have (i). By Lemma 3.3 (ii)
(iii), |G4|=|G]|/63 and xs, |G4]. Hence x, | 2-3%.7. Thus we have (ii).

Lemma 3.11. Let notations be as in Lemma 3.3 and assume that 21 Ixz.
Then the following hold.

(i) K, =K,=K,~=Z, and G|K, is isomorphic to a subgroup of T'L(1, 2°)
of index at most 2 for each t< {1, 2, 3}.

(ii) Let Q be a Sylow 3-subgroup of G. Then |Q|=3* and Q=<a, b|
a®=b=1, b 'ab=a*> for suitable a, b in Q. Moreover, for any element v of
order 3 in Q—Z(Q), F(v) is a subplane of order 4.

Proof. By Lemma 3.3, x, divides |G| and |G: G,|=3?%-7, so that 3%- 7% '
|G|. It follows from Lemma 3.10 (i) that |G|=3%-7% or 2:33-72. Therefore
(1) holds.

By (i), the order of a Sylow 3-subgroup Q of G is 3>. Hence Q is of the
form stated in (ii) by the structure of T'L(1, 25). We note that Q has exactly
two conjugacy classes of subgroups of order 3. Let ve(Q—Z(Q) such that
{vp=Z;. 'Then, as an element in T'L(1, 2°), v fixes three nonzero elements,
that is, |F(v) N 1,| =3 for all t& {1, 2, 3}. Hence F(v) is a subplane of order 4.

Lemma 3.12. Let notations be as in Lemma 3.3. Then (x,, x, %)=
(7, 14, 42), K,=Z; and G|K,=TL(1, 2°) for each t< {1, 2, 3}.

Proof. By Lemmas 3.3 (iii) and 3.10, we have x, <x,<x, x4 x,+x;—63
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and 3, 7 ¥ x, %] |G| | 2347 for s& {1, 2, 3}. Hence (x, 2, 1)=(21, 21,
21) or (7, 14, 42). On the other hand K,~=K,~K;~Z, by Lemma 3.11 (i).

Assume that (%), x, x;)=(21, 21, 21). Let A, be as defined in Lemma
3.3. Let P,eA, and let @, be the G-orbit containing P, for s {-1, 2, 3}.
Clearly |®,]=63x,. Let v be the element as defined in Lemma 3.11 (ii) and
let¢ PeF(v)N®. Then Pe®, for some s {1, 2, 3}. Therefore |Gp|=
|Gl]|®,] ,2-33-72/63-21———2, contrary to v&G,. Thus (%, %, x3)=(7, 14, 42)
and so G|K,=T'L(1, 2°) for all t {1, 2, 3}.

Lemma 3.13. Let A, be as in Lemma 3.3. Then the following hold.

(i) Let PeA,. Then Gp=<x)>=Z; and a Sylow 7-subgroup of G acts on
F()N1, for all te {1, 2, 3}.

(ii) F(x°) is a subplane of = of order 2° for c=2, 3.

Proof. Similarly as in the proof of Lemma 3.12, we obtain |G,|=|G]|/
|P¢|=2-3%7%/63-7=6. Since Gp,<G,, G,NK,=1 and G,/K,—=Z;, we have
Gp=GpK,/K,<Z;. Hence Gp=Z;. Set<{xp>=Gp. Clearly &* is an involution
in Gp and so by the property of T'L(1, 2f), #* centralizes the Sylow 7-subgroup
of G/K, for all t&{l1, 2, 3}. Let S be the Sylow 7-subgroup of G. Then

[+3, S1< rB]K =1 and therefore S centralizes x*. Hence S acts on F(x*)N 1,
t=1

for all te {1, 2, 3}. Thus (i) holds.
By Theorem 4.3 of [6], F(x®) is a subplane of z of order 2° and by Lemmas
3.11 (ii) and 3.12, F(?) is a subplane of order 22

If we coordinatize z by choosing (0, 0) as U, (0) as U,, (o) as U, (1, 1)
as P which was defined in Lemma 3.13, then we get a semi-field F. In gen-
eral, F is not always isomorphic to D and since = is non-Desarguesian, F is
not a field. Thus # is a semi-field plane coordinatized by F and it also satis-
fies Hypothesis 2.3.

Lemma 3.14. Set Fi={d|deF, (d, 0)=F)}, F,={d|dF, (0, d)e
F(*)} and Fy={d|d<F, (d, 0)F(x®}. Then F,=F,~GF(8) and Fy=GF(4).

Proof. Since F(x) contains (0, 0), (0), (o) and (1, 1), it also contains (1).
By Lemma 3.13 and the definition of the coordinatization of =, we have the
lemma.

Lemma 3.15. Let N,, N, or N, be the right, middle or left nucleus, re-
spectively. Then N,=N,=N,—~GF(8).

Proof. By Lemmas 3.12, we have N,~GF(8) for all t={l, 2, 3}. Fur-
thermore, the multiplicative group N,*={d|(d, 0)=(1, 0)¥} for t=1, 2 and
N*={d|(0, d)(0, 1)%s} by the proof of Theorems 7.9 and 8.2 of [6]. Since
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K, and K, are semi-regular on I; and (1, 0)eF(x%), it follows from Lemma
3.13 that N;=N,=F,. Similarly N;=F,. By Lemma 3.14, we have N,=
N,=N,;=GF(8).

Lemma 3.16. Set N=N,=N,=N;, and F;*={6>.

(i) NN does not contain 0 and F is a right and left vector space over N with
a basis {1, 6}.

(ii) For any EEF, (£0)0=E(6%).

Proof. (i) follows immediately from Lemmas 3.14 and 3.15.

Set E=a+-b0 for a, b N. Then (£60)0=((a+5b0)0)0=(abd+(b0)0)0=(a0)0
+((60)0)0=0a6*+(b6%)0=0ab?+b@® because a, & N=N, and <8)>=F,*. Hence
(£0)0=a6*+-(60)6°=E(6%). Thus (ii) holds.

Lemma 3.17. 4= N.

Proof. Let & nEF and set £=a-}+b0, n=c+df for a, b, ¢, dN. Then,
(En)0 = ((a+b0) (c+d8)) = (ac)0+ ((60)c)0 -+ (a(d6))0 + ((b0) (d6))6. Similarly
E(n8)=a(cO)+(b0) (c0)+a((d6)0)+(80) ((d6)0). Since ac N=N; and c&N=
N,, we have (ac)0=a(c), ((b0)c)0=(b0) (cf) and (a(df))0=a((d)f). Since
deN=N,, ((b0) (d8))6=(((b8)d)0)0 and by Lemma 3.16, ((b6)d)0)6 =((b6)d)6?,
so that ((b0) (d0))0 = ((60)d)6>= (b6) (d6?)=(b09) ((d0)0) as d&N=N,=N,.
Hence (£%)0=£&(»0) and so §&€N;=N.

Proof of Lemma 2.

By Lemmas 3.16 (i) and 3.17, we obtain a contradiction and so the lemma
holds.

4. The proof of Theorem 1

Throughout this section z is a semi-field plane satisfying Hypothesis 2.3
and the following.

Hypothesis 4.1. 70 (mod 4) and u(z)<4.

Lemma 4.2. (i) G is not solvable.
(ii) w(z)=2, 3 or 4.
(ili) There exists i€ {1, 2, 3} such that G is transitive on I,.

Proof. By Theorem of [8], Theorem 6.3 of [9] and the lemma proved
in §3, we have (i).

It follows from Kallaher’s theorem [8] that #(z)==1 and so (ii) holds.

If u(w)=2 or 3, we have (iii) by a similar argument as in the proof of Lemma
3.7. If u=4, we can apply Lemma 6.1 of [9] and (iii) follows.
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Lemma 4.3. Let S be a Sylow 2-subgroup of G and set nwy=F(S), H=
G(m,), G=G|O(G). Then the following hold.

(i) S=+1and S is semi-regular on w—r,.

(i) m, s a Baer subplane of .

(i) G'=PSL(2, q) for some even q. Moreover H=O(G)Ny(S) and |G:
H|=g+1.

Proof. By the Feit-Thompson theorem [2] and Lemma 4.1 (i), the order
of G is even and so S==1. Let 2 be an involution in the center of S. Then
F(z) is a Bear subplane of order 2/ and S¥® is a collineation group. By
Hypothesis 4.1, 2/ is not an integer. Therefore S¥®=1. Hence (i) and
(ii) hold.

By Lemma 4.2 (ii), G=H and clearly H>S. Hence H is a strongly embed-
ded subgroup of G. By a Bender’s theorem [1] and by Corollary 3.2 of [4],
(iii) holds.

Lemma 4.4. Set A=n,N1; and T={A¢|g=G}. Then the following hold.
(i) 7,-=A,UPA’ and A*NA’=¢ for distinct A* and A’ in T.

(ii) Set N=O(G). Then G(A)=H>N=Gy and G is doubly transitive
on T

Proof. By Lemma 4.3 (iii), H=N+N(S). Since G(7,)<G(A) and H is
a maximal subgroup of G, we have H=G(A). Hence G is doubly transitive on
I" (See [1] §3). Since N is a normal subgroup of G and N<G(A), N is con-
tained in G and so N=G. by Lemma 4.3 (iv). Thus (ii) holds.

Clearly A¢C; for all g€ G, hence [;= U A? by Lemma 4.2 (iii). Suppose

ATEeT

A*+A’ and A"NA’#+¢ and set g=xy~'. Then A®=+A and A*NA=+¢. By
Lemma 4.3 (i), S and S¢ fix AN A pointwise. By (ii), G=<, S, §%, G(4)
NG(A*)>. Hence G fixes AN A as a set, contrary to Lemma 4.2 (iii). Thus
(1) holds.

Lemma 4.5. ¢*=2"and |A|=qg—1, |T'|=q+1.

Proof. By Lemmas 4.3 (iii) and 4.4 (ii), |T'|=|G: H|=q+1 and by
Lemma 4.4 (i) |T'|=|1;|/|A]|=(2"—1)/|A]. On the other hand |A|=2"—1
since 7, is a Baer subplane of . Hence ¢?=2" and |A|=¢g—1.

Lemma 4.6. =(=F(S)) is a Desarguesian projective plane of order q and
the number of N g(S)-orbits on D(z) N\ =, is one or three.

Proof. Let A be a G-orbit on ®(z) and supopse ANm,=+ . Let
PeANn, Then G,>S. Hence |A|=|G: Gp|=1 (mod 2) and moreover
Ng(S) is transitive on ANz, by Theorem 3.5 of [11]. Since |®|=1 (mod 2)
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and u=u(z)<4, the number of G-orbits A on & such that AN=z,#+¢ is one
or three. Hence the number of Ng(S)-orbits on 7z, @ is one or three.

Since the order of =, is 2”2 and 2/* is not an integer, the autotopism
group of z, is of odd order. By Theorem 6.3 of [9] and Theorem of [8], 7, is
a Desarguesian plane of order q.

By Lemma 4.3, |G: G(z,)| =¢+1. We set {z|gEG}={ny, =, -, @,}.
Then the following lemma holds.

Lemma 4.7. Set N=0O(G). Then
(i) N., acts faithfully on =, and |N, | |(q—1)(r/2) for all s, t (s=+t) and
(i) N, is a normal subgroup of N and [N,, N,]=1 for all s, t (s=t).

Proof. By Lemma 4.4 (ii), N acts on =, and so N, is a normal subgroup
of N. By Lemma4.3 (ii), 7, and =, are Baer subplanes of =, so that N, NN,
=1. Hence N, acts faithfully on =, and [N,, N,]<N,NN,=1. Moreover
| Ng| | (g—1)(r/2) since =, is a Desarguesian plane of order g.

Lemma 4.8. Assume N, =+1 and let P be a minimal normal subgroup of
N,, and let p be ¢ prime dividing the order of P. Then a Sylow p-subgroup of
N, i cyclic and P is a normal subgroup of N. Moreover P is isomorphic to Z,.

Proof. Let Q be a Sylow p-subgroup of N,. Since F(Q)=m, Q is
semi-regular on z,—=, for t#0. By Lemma 2.2 (i) and Theorem 5.4.10 of
[3], O is cyclic. Hence, by Lemma 4.7 (ii), we have the lemma.

Lemma 4.9. Let P be as in Lemma 4.8. Then the following hold.
(i) Set L=<P%|geG). Then L is a normal subgroup of G and is an ele-
mentary abelian p-group.

(ii) pANrand |L|<p

Proof. (i) follows immediately from Lemma 4.8. Clearly LN. Set
X=N,,. Since XNL=P and L/P=LX/X<N/X=N", |L/P| is at most p°.
Moreover |L/P|<p* if ptr. Therefore it suffices to show pf7r. Assume
p ’ r. Since H normalizes X, P is a normal subgroup of H and so L contains
at least g+1 subgroups of order p. Hence ¢+1Z(p*—1)/(p—1)=p*+p*+p
+1. On the other hand p I /2 and ¢=2"? so that (r/2)’+(r|2)*+r[24+1>2""
+1. From this »=6 or 10 and p=r/2. But pf'q—1 for r=6 or 10. There-
fore, |L/P|<p and so g+ 1<(p*—1)/(p—1)=p+1<6, a contradiction. Thus
pAT[2.

Lemma 4.10. N, =1.

Proof. Assume N, #1 and let P, L be as in Lemma 4.8, 4.9, respectively.
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If |Cs(L)] is even, all Sylow 2-subgroups of G are contained in Cg(L) by
Lemma 4.3 (iii). Hence {(S¢|g&G)> acts on F(P) (==,), which is contrary
to G(w,)=H. 'Therefore |Cy(L)| is odd. In particular S is isomorphic to a
subgtoup of G/C(L).

By Lemmas 4.3 and 4.9, (G/C4(L))'<SL(3, p) and |G/Cy(L): (G|C(L))’|
is odd. Hence S is isomorphic to a subgroup of SL(3, p). Since a Sylow |
2-subgroup of SL(3, p) is semi-dihedral or wreathed, S is an elementary abelian
group of order 4 and so ¢=2% Hence r=4=0 (mod 4), a contradiction.

Lemma 4.11. Let G denote the last term of the derived series of G. Set
M=G®™. Then M=PSL(2, q).

Proof. Let X be a subgroup of G generated by all Sylow 2-subgroups
of G. By Lemma 4.3 (iii), X<M and |M/X]| is odd. It follows from the
Feit-Thompson theorem that M=M®<X and hence X=M. By Lemmas
4.4 (ii) and 4.10, [S, N]J<NNG,=N,=1, so that N centralizes X (=M)
and M NN=Z(M), M|Z(M)=PSL (2, q). By a property of PSL (2, q), M~
PSL (2, g).

Lemma 4.12. (i) Let t{1, 2,3}, P, and let X be a subgroup of
Gp. Then |F(X)N1,|=2°+1 for an integer a>1.

(ii) M is transitive on I, and |Mp|=q for P<1,. Here i is the integer
defined in Lemma 4.2 (iii).

Proof. Let A be the full collineation group of = and set T\=Aqy,,,
T,=A4w,,), Ts=Aw,,y- Since U, is a translation point and /, is a translation
line, T\=T,=T;=~=E and XT, is a transitive linear group on /,. Since (XT)),
=X, we have (i) by Lemma 2.1.

Let {A, -+, A,} be the set of M-orbits on ;. Since G is transitive on I
and GD> M, |A|=--=]|A,|=1 (mod 2). Let P€A, and set M,=CS with
C<Z,, and |Ny(S): Mp|=k. As M=PSL (2, q), k ' g—1 and F(M;)N A,
=+ ¢ for each ve {1, ---, m}.

Assume C=+1. Then |N,(C)|=2(¢g—1) as M=PSL (2, g). By Lemma
21, |[FC)Nn 1| =mx Wzka and applying (i), we have 2mk=2°—1
for an integer a>1, a contrgdiction. Thus C=1 and |Mp|=q. Therefore
|PM|=|M: Mp|=¢*—1 and (ii) follows.

Lemma 4.13. Letje{1,2, 3} —{i} and P€1l,. Then q||M,|.

Proof. By Lemma 4.3 (i), it suffices to consider the case that |M,|=1
(mod 2). As M==PSL (2,q), M<Z,.,. Since |l;|=¢*—1>|P¥|=|M:M,|
and PM N F(S)=¢, we have Mp~Z ., and |[,—P"|=|F(S)N!;|=¢+1. Hence

F(S)N1;=F(M)N1, Therefore lF(MP)|=q+1+&1|+71)IZ<i=q+3 by Lem-
4



SEMI-FIELD PLANES oF EvVEN ORDER 657

mma 2.1. Applying Lemma 4.12 (i), g+3=2°+1 for an integer a>1. This
is a contradiction.

Lemma 4.14. M is transitive on I, and M, is a Sylow 2-subgroup of M
for each j= {1, 2, 3} and P<1,.

Proof. By Lemma 4.12 (ii), we may assume je& {1, 2, 3} —{i}. First
we argue that F(M)N I;=¢. Set A=F(M)N I, and assume A%¢. Let =, be
as defined in Lemma 4.6 and set N,(S)=DS with D=Z,_,. By Lemma
4.12 (ii), D*=D and =,NF(D)DA. Since =, is a Desarguesian plane of
order g, F(D)D=yN!; by Lemma 2.2 (ii). Therefore, by Lemmas 2.1 and
4.13, |FD)NI;|=|A|+2(g—1—|A|)=2(qg—1)—|A|. Applying Lemma 4.12
(i), |A]=2"—1 and 2(¢—1)— |A|=2%—1 for integers a, b>1, hence 2¢=2°
+2%. However, as |A|<|zyNI|=¢—1<|F(D)NI;|=2"—1, we have 2°<gq
<2%. This is a contradiction. Thus F(M)NI[;=¢.

Let {A,, -+, A,} be the set of M-orbits on I, By Lemma 4.3, |A,| ‘ ¢—1
for each t. Assume |M,|=q for some P=l;, We may assume PEA, and
Mp>S. Set Mp=CS with 1+=C<Z, ;. By a similar argument as in the last
paragraph F(S)N1;CF(C)N!{; and so F(C)NA,;#+¢ for each ¢&. Hence |F(C)
NA,|=2x|F(S)NA,| by Lemma 2.1. Hence |F(C)NI;|=2x|F(S)NI|
=2(¢—1) and so |F(C)NI;|=2q, contrary to Lemma 4.12 (i). Thus |Mp|
=q and M is transitive on /;.

Let X be the full collineation group of # and set 4=X ), B=Xw, vy
and T=AB. Since U, is a translation point and /, is a tianslation line, 4
and B are elementary abelian normal 2-subgroups of X of order ¢*. Hence T
is a normal 2-subgroup of X.

Lemma 4.15. (i) T is a nonabelian normal 2-subgroup of X.
(ii) Cr(x)=1 for any element x(==1) of M of odd order.

Proof. If T is abelian, T,=1 for Pe:l, because 4 acts transitively on
the set of points not incident with the line /;. Hence |T'|=|T: Tp|=¢+¢*
+1—(¢*+1)=¢* and so T=A=B, a contiadiction. Thus (i) holds.

Assume C;(x)=1 and let ¢ be an involution in Cr(x). Then, there exist
element ,e 4 and t,&B such that t=¢¢,, By Lemma 4.14, F(X)={U,, U,
U,, I, 1,, I} and so ¢ acts on {U,, U, U;}. Since F(X)={U,, 1}, it follows
that (U,)'el, and (U;)!=U;. Hence we have (U,)!=U, and (U,))=U, and so
F(t,)=F(tt)> {U, U,}. Therefore t,& Xy, ;)< Xy, which implies t€ X, ;).
However, as (U,)’=U,, this is a contradiction. Thus C (x)=1.

Proof of Theorem 1.

Since 3l |M|=|PSL(2, q)|, there exists an element x=M of order 3.
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By Lemma 4.15 (ii), C(x)=1. Applying Theorem 8.2 of [5] to the group
MT, T is an abelian 2-group, which is contrary to Lemma 4.15 (i). Thus we
have the theorem.
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