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1. Introduction

Recently, we have several papers concerning eigenvalue of the Laplacian
in a region with many obstacles. See Ozawa [7], [9], Figari-Orlandi-Teta
[4], etc. Associated diffusion problems are studied by Chavel-Feldaman [2],
Sznitman [13], etc. In the present paper the author considers the problem
studied in [9] extensively. The author recommends the readers to beign to
read this paper before attacking the preceding paper [9].

Let Ω be a bounded domain in R3 with smooth boundary γ. Fix α > 0 .
Fix jβG[l, 3). Let m = l , 2, ••• be a parameter. We put n=[mβ]. We remove
n balls of centers w(m)=(wlJ •••, wn)€ΞΩn with radius aim from Ω and we get
Ωw(m)=Ω\n—balls. Remark that Ωw(m) may not be connected. Let Ω° be a con-
nected component of Ωw(m). Let μk(Ω°) be the &-th eigenvalue of the Laplacian
in Ω° under the Dieichlet condition on dΩ°. We arrange all μk(Ω°) in line (all
ΩodΩw(m), k~\, 2, •••), then we have the j-th eigenvalue μj(w(m)) of the Lap-
lacian in Clw(m) under the Dirichlet condition.

We consider Ω as probability space by fixing a positive continuous function
V on Π satisfying

f V(x) dx - 1
Jo

so that P(x^A)=\ V(x)dx. Let Ω," be the product probability space. All
J A

configuration Ωn of the centers of balls w(m) can be considered as a probability
space Ωn by the statistical law stated above. Hereafter μj(w(m)) is considered as
a random variable on Ωn.

There are several papers concerning asymptotic behaviour of μj{w{m)) as
m tends to infinity. The first step is made by Kac [6] and Huruslov-Marchenko
[5], when β=l. The difficult case /3>1 was first examined by the author.
See [7]. Kac, Huruslov-Marchenko obtained convergence
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(1.1) μj(w(m))-μ?^0

in probability as m->oof where μ j is the j-th eigenvalue of the Schrodinger ope-

rator —A+4-πa V(x) in Ω under the Dirichlet condition on γ.

In the present time we have much information on the convergence (1.1).

We can treat the case /3>1. We can study an error estimate of (1.1) even if

β>\. The following result is one of the results in this paper. Rather im-

portant results are Theorems 2~7. The most important result in this paper is

Theorem 7 which is valid for β e [ l , 3).

Let IΩI be the three dimensional measure of Ω.

Theorem 1. Assume that V(x) = |Ω | ~\ Fix j. Assume that μjy which is

the j-th eigenvalue of the Laplacian in Ω under the Dirichlet condition on γ, is

simple. Fix β<=[l, 5/4).

Then,

tends in distribution to Gaussian random variable Π , °f mean 2?(Πy)=0 anά vari-

ance i?(Πy) given by

(4τrαO2([[ φ j ( y \

Here μ,, is the normalized eigenfucntion of the Laplacian in Ω associated with μjt

REMARK: Figari-Orlandi-Teta [4] examined the case β=l. Unfortunately

their proof has a gap. The reason why their proof has a gap is stated in §2.

The author here emphasizes that our main aim is not to correct proof of result

in [4] which is a very small part of this paper. To get these result we have to

develop our calculation in greater detail. These calculations include typical fun-

damental techniques which will be used in other problems concerning random

media, random Green function. Namely calculation involving Feynman dia-

gram (multiple product of Green's function) is developed.

Our standing point in this note is perturbative calculus (point interaction

approximation of Green's function) which is first studied by [8]. Based on

point interaction approximation we reduce our problem to a problem of estimat-

ing large number of multiple product of Grees's function. The reader who reads

§ 4 ^ 7 may find various new ideas and techniques to handle various type of

Feynman diagram.

The author here reemphasizes that our calculus (point interaction approxi-

mation) gives the deepest result in this direction, which might not be imagined

by Kac [6] in which he gave a negative opinion on perturbative calculus.

Asymptotic formulas for the eigenvalues of the Laplacian related to this note

are presented in Besson [1], Courtois [3] and Ozawa [9].
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The author expresses his hearty thanks to Professor Kohei Uchiyama who
pointed mistakes of the first version of this paper.

2. Rough sketch of proof of Theorem 1

Naive idea of our proof of Theorem 1 is construction of an approximate
Green function of — Δ + Tmβ~X(T= const>0) in Ωw(w) under the Dirichlet con-
dition on dΩ,w(m) by using the Green function of — A+Tmβ~1 in Ω under the
Dirichlet condition on j .

It should be noticed that Ωw(m) may not be connected. We can avoid this
technical complication by introducing the following Θι(tn) on w(m) which assures
that the only one connected component ω plays a role of Ωw(m) and that compo-
nents other than ω are neglaigible to study Theorem 1.
Oiim): Let £? be the family of all open balls of radius m~m. Then,

sup (the number of balls of radius a/m with the center w{ such that ball
3K

intersect K)
ogm)2.

We see that the following holds.

Lemma 2.1. We have

P(w(m)EΞan\ O,(m) holds)>l-m'N

for any N and any sufficiently large m depending on N.

REMARK. See the Appendix of this paper.
For a while we use the same notations as in 342 p of [9].
Let ω be a maximal component of Ωw(w) given by ω=ω1(w(m)) when

g(w(m))=l and ω=ωk{w{m)) when g(w(m))^2.
The eigenvalue problem of — A+Tmβ~1 in ω is transformed into the eigen-

value problem of the Green operator. Put Tmβ~1=X. Here T is a constant
which will be taken as a large fixed constant in Theorems 2^7. As m tends
to infinity, λ tends to infinity by this relation. Let G(x,y) be the Green func-
tion of — Δ + λ in Ω under the Dirichlet condition on 7. We have

(-Δ,+λ) G(x,y) = 8(x-y),

Notice that G(x,y) depends on m, β, T. Let G{x,y\ w(m)) be the Green func-
tion of — Δ + λ in ω under the Dirichlet condition on 9ω. We have

x9y\ w(m)) - 8(x-y),

G(x,y\ w{m)) = 0 ,
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Let G(Gw(m)} respectively) be the bounded linear operator on L2(Ω) (L2(ω),

respectively) defined by

(Gf)(x)=\aG(x,y)f(y)dy,

(x) = \ G(x,y; w(m))g{y) dy ,
Jω

respectively. Then, the eigenvalue problem of the Laplacian with respect to ω

is transformed into the eigenvalue problem of Gw(m). As a limit /w-^oo, we see

that μj(w{m))-\-X is approximated by the -th eigenvalue of the Schrϋdinger

operator with big potential —A-{-4 πa V(x) pmβ~1-\-\ in Ω under the Dirichlet

condition. Here p is defined to be exp (λ1/2 aim) which is approximately 1 asm

tends to infinity. Let A denote the Green operator of the above Schrodinger

operator with big potneitial. We want to compare Gw(m) and A. It should be

remarked that the Green operator Gw(m) and A act on different spaces L2(ω) and

In order to relate Gw(m) with A, we introduce the operators Hw(m) and Rw(m).

The following integral kernel was introduced in [9]. We abbreviate G(wiy w})

as Gjj. We put ra*=(log m)2, τ=4-πaplm.

h{x,y; w(m)) - G{x,y)-τ Σ G(x, wt) G{wiyy)

+ Σ (-r)s Σ ω G(x, wh) Gili2"'Gis_ίis G(wis,y).

Here the indices in Σ( 5) Γ u n o v e r a ^ 7Ί> '"yh satisfying \<ix, - ,is<n such that

i^φiμ when v=tμ. The sum Σ ω is called self-avoiding sum. A primitive form

of this integral kernel was introducted in [8]. We put

(Hw(m) f) (x) = \ h (x, y w (m)) f(y) dy , x <Ξ ω
J ω

and

We compare Gw(m) with Hw(mh Hw(m) with Hw(nύ and Hw(m) with A.

The following Theorems 2, 3, •••, 7 are main results of this paper which are

discussed in the later sections.

In Theorems 2 ~ 7 we assume that V=\fί\~ι.

Theorem 2. Fix / 3 e [ l , 3). Let Xω be te characteristic function of ω. Fix

an arbitrary £ > 0 . Then, there exists a constant T such that

P(w(m)<=Ωn] w(nί) satisfies Ox{m) and (2 .1))>1— m's

holds. Here

(2.1) \\(Ha(m)-Galm))
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REMARK: ||W/||_£(χ,r) denotes the norm of the bounded operator W from
the Banach space X to Y. Multiplication operator by the function u is denoted
by U'.

Theorem 3. Fix /3e[l, 3). Fix an arbitrary £>0. Then, there exists a
constant T such that

P{w(m)(=an\ w(m) satisfies O^m) and (2.2))>1 —m~2

holds. Here

(2.2) \\(Hw(m)-Gw(m)) (Xw )\\x(υ(Q),L*

It should be noticed that (2.2) can be replaced by

We need very delicate calculation to prove the following Theorem 4.

Theorem 4. Fix /3e[l, 3). Fix an arbitrary £>0. Then, there exists a
constant T such that

P{w(ni)<=:Ωn\ w(m) satisfies Oλ{m) and (2.3))>1— m~*

holds. Here

(2.3) \\Hw(m)f\\2,ωc<m>* min(ί/J |/ |L, λ3'4 UJ\f\\2).

for any f e L°°(Ω), where

Um = m - « J + 1 ) / 2 .

IMPORTANT REMARK. It should be noticed that we can say the following:

P(w(m)<=Ω,n\ w(m) satisfies O^m) and (2.4))>1—τw"ε

for any £>0. Here

(2.4) \\Xwc HwU\ΆL%ίϊ),L\ίϊ))<nfz λ3/4 Um ,

\\Xjj Hw{m)\\χ(L~(&),L^a))<mZz Um .

These are easily observed from our proof of Thoerem 4 in §7.
We make a comment on the work of Figari-Orlandi-Teta [4]. They ex-

amined a bound for \\H{$m)f\\2i<ac for fixed /. Here H^m) (Hw(m) in [4]) is a
similar operator as Hw(m). They conclude in Theorem 1 of [4] that Theorem 1
of this paper holds for β=l. However, there is a gap in their proof (pp. 480-
481 in [4]). It should be remarked that we can not derive spectral properties of
the operator Y by considering Yf for any fixed /. We treat probabilistic pro-
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blem. The exculsive small set in measure may depend on /. Thus, we need
some expression of the form

P{Y)f satisfies ••• for any | | / | | < 1 ) - ^ 1

to say about ||Y||. However the author thinks that their paper includes very
important development of study of spectral properties of random media, espe-
cially analysis concerning Theorems 5, 6 stands on their calculation.

Let A' denote the operator given by

A' = G+ Σ {-Aπap nlm)sJs G{VG)S.
s-l

Here p-exp (λ1/2α/τw) and / s = ( l - ( l / n ) ) (l-(2/w)) (l-((s-l)/fl)). It is easy
to see

(2.5) ||^-^ΊU(L2(Ω),L2(Ω))<C(log my m~β λ" 1.

Let | | | F | | | denote the Hilbert-Schmidt norm of the operator F on L\ίϊ).
We have the following

Theorem 5. Fix /3<Ξ[1,3). Fix an arbitrary £>0. Then, there exists
Γ > 1 such that

\ w(m) satisfies (2.6))>1— mΓ*

holds. Here

(2.6) | | | ^ w ( w ί ) - ^ Ί | | < m 2 - ^ 2 ) λ ^ .

REMARK. From (2.6) we get

(2.7) \\Hw(w)~Af\\χ(L^)tLHΩ))<m^-^ λ1 '2.

Theorem 6. Fix /3e[l, 3). Fix an arbitrary £>0. Fix f
Then, there exists T > 1 such that

n\ w(m) satisfies (2.

holds. Here

(2.8) \\(Hw(m)-A')f\\L2(Q)<tn**-wv m in( λV2||/| | 2,

for anyf&L°°(Ω).

Theorem 7. (L°°—L2 resolvent remainder estimate) Fix /3e[l, 3). Fix an
arbitrary £>0. Then, there exists a constant Γ > 1 such that P(w(m)^Ω!t; w(m)
satisfies O^m) and (2.9))>l-m" ε holds.

(2.9) \\{Gwim)Xω-XωA'Xω)f\\L2iω)

,m for any
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REMARK: Note that m(β"υ (the right hand side of (2.9))->0 as τw->oo, if we
take \=Tmβ~ι. This means that in some sense

for some δ>0 when /3e[l, 3). This can be thought as an asymptotic remain-
der estimate.

3. Preliminary facts and lemmas which are used to prove
Theorem 2

To prove Theorem 2 one need highly delicate calculation involving the
Green function. We list fundamental lemmas which are also useful in the later
section.

We put Φβ(λ, x,y)=\ x—y I ~Θ exp(—λ1/21 x—y |).

Lemma 3.1. The term

\\ Φ$(\,x,y)Φ9(\,y,z)dy\

does not exceed Cλ"1/2 Φ0(λ/8, x, z) when θ=ί and CΦ^λ/8, x, z) when 0=2.

Lemma 3.2. Assume that w(m) satisfies Ox{m). If u^C°°(ω)ΠC0(ω) sat-
isfies

(-A+\)u(x) = 0,

and

max \u(x)\<Mrί r=l, -,n
9J3rndω

Here Br is the ball of radius ajm with the center wr. Here Mr is zero when dBr Π

3ω=φ. Then,

\\u\\L2(ω)<C(alm) λ-^4( ± M2

r+ £ Mr Mq Φ0(λ/8, wrί wq)ψ2

holds for a constant C independent of w(m).

Proof. By the Hopf maximum principle we have

\u(x) I ^C(a/m) Σ Φ^λ, x, wr) Mr.

By Lemma 3.1 we get the desired result.

We put Qw(m) = Gw(m)-Hw(m). Fix /e=C~(Ω). Then, u=Qw(m)(Xj)(x)
satisfies the assumptions in Lemma 3.2. Therefore, u is estimated if we know
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an upper bound for Mr(r=ίy , n). Notice that

It is very useful to introduce the rearrangement of the Green function. For
s=0y we put

(/•/) (x) = (Gf) (x)-rG(x, wr) (Gf) K ) .

For s^ 1, we set I$

rf as the following term.

-T Σ(\) G(x, wr) GrhGilh-Gh_lis(Gf) K ) .

Here the indices iu •••,/, in Σ k ) r u n o v e r all zi> •• >4 satisfying iv=t=iμ if
and i v Φ r for 1;= 1, •••, ί. For s>2 we set 7^/ as the following term.

Here the indices iu ~-,is in Σ'ώ r u n o v e r aH î> # >̂ s satisfying ivΦiμ if
and ί jΦr and exactly one of /v (z^>2) is equal to r. We have the rearrange-
ment.

+ Σ (-T)1 (7;*) (x)+(-τ)"(zr g) (x),
5 = 2

where

- (Σί..)+Σίί )) G(χ, wh).- (Gg) ( « v ) .

We put /; =
and Krq=exρ (—X1/2\wr—wq\ 18). The following Lemma 3.3 is a fundamental
tool to obtain Theorems 2,3. Hereafter we use the notations
and we abbreviate ||λ||^Q as \\h\\p.

Lemma 3.3. Fix /eC°°(Ω). Assume that w(m) satisfies Ox(m). Then,
there exists a constant C independent of m such that (3.1) holds.

(3.1) llQ«;(m)(%ω/)llz.2(ω)<C((lθgm)/m) λ" V ^
* * = i

5=0 r=l

m* »

5 = 2 r = l
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ΈΈrs+tΣ
4 =0 /=0 r,q

φ

5 = 0 t=2 r,q

5=2 /=2 r.ί
rφ?

= T2M. £ {Zrfy {Zrf = m a x
1 θ5 Π 9ω

5 = 0

Proof. Note that

By Lemma 3.2 we get Lemma 3.3.

We put S(x,y)=G(x,y)-(ll4π)εxp(-\1/2\x-y\)l\x-y\. It is well
known that S(xy ̂ E C ^ Ω x Ω ) . Notice that S(#, x) has singularity on 8Ω.

The following Lemmas 3.4, 3.5, 3.6 are crucial to obtain a bound for 2 (^r)2

etc.

Lemma 3.4. Fix /3e[l,3). Assume that w(m) satisfies Oι{m). Then,
there exists a constant C independent of m such that (3.2) and (3.3) hold.

(3.2) max | G(x, wt)-G{wri w{) \ ̂ C(α/w) Φ2(λ/4, wiy wr)

(3.3) max \S(x,wr) G(wr> v>,)\ ^C(logm)2 Φ2(λ/4,eί . , wr).
x<=ΆB fl d ωx<=ΆBf

Lemma 3.5. We can replace w{ in (3.2), (3.3) by any

Lemma 3.6. Fix ξEϊ(0, 1], Under the same assumptions as in Lemma 3.4,
the right hand sides of (3.2) am/ (3.3) are estimated by Cm~^Φ1+ξ(\/4,whwr) and
Cmι~S(\og nίf Φ1+$(λ/4, ̂ ^ wr) respectively.

Proof of Lemmas 3.4, 3.5, 3.6 are given in Appendix of this paper.
The term Gili2"Gis_χis is included in Is

r. If we want to get a bound for
Σ (Is

r)
2, it is very helpful to estimate E{Gilh-Gis_lis GhV»GJt_ιJt). Here E

denotes the expectation on ίln. Let Giχi2" Gisιis be denoted by G / ( s ) for s>2
and Gjιj2-~Gjt_ιjt be denoted by GJ(t) for £>2. We abbreviate Gr(s) as G7 and
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G/(/) as Gjy if there occurs no fear of confusion. We put GIj=^GI Gj.
DEFINITION: Assume that I=I(s)^ily •••,/s (/=/(£)3/Ί, —Jt, respective-

ly) is self-avoiding. If there are exactly q-couples of (h(k),p(k)) (k=l> - , 5 )
such that im=jp{kh we say that (ily •••,/,) and (jly •••,;,) have q-intersections.
If ίμ has not a partner such that iμ—j,,, we say that iμ is single.

Lemma 3.7. Assume that s,t>2. Assume that I and J is of q-intersections.
Then,

and

hold for constants C, C independent of m, λ.

Proof. A part of the above result is given and proved in [11]. For the
sake of completeness we give a proof.

We assume that ih(k)—jptt) for Λ=l, •••,#. Here A(l), h(2)> ••• is a sequence
satisfying h(k)<h(k+l). Then, there is a permutation σ on (1, •••,5) such
that p(o (k))<p(σ(k-\-l))y k=l, - ,q—l. For the sake of simplicity we write
p(σ(k))asr{k).

We put G1{x,y)=G{x, y) and

Gt+ι(x,y)=\ Gk{x,z)V{z)G{z,y)dz, Λ = l , 2 , .

When ί ^ 2 , we define the contracted term Gj° (Gc/, respectively) by

Π

ΠGγ = Π GK/M-D-KM (wiK*)' W 'K* + D)
* = 1

Then, E(GJJ) does not exceed

observing

Q

We want to estimate JS(Gfβ Gc/). We have

(3.4) E{{GV)2)^C\C\-

by using Lemma 16 in [9]. We recall it.
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For A>1,

(3.5) max ( Gh{x,y)2 V(x) dx^C\C\-ψ-™2).
yea JQ

By (3.3) and (3.4) we get the desired result for q^>2.

The cases #=0, 1 are easy to treat. We get Lemma 3.7.

Lemma 3.8. Assume that s,t^2. Assume that I and J have q-intersec-

tions. Moreover, we assume that one of the following conditions (1), (2) holds:

(1) iχ φ jλ and ilf j λ are both single.

(2) iiΦji and ix is single and jλ is not single or iλ is not single andj\ is single.

Then,

holds.

Proof. We put Gfj=Ghh Gl7. First we treat the case (1). Then, Gfj

has the form Gioh Gu with ίo==;1. Therefore, Gfj can be thought as the form

G/(s+1) G/(ί). Here /(s+1) and J(t) is of (#+l)-hτterssctions. Then, we have

the desired result by Lemma 3.7. We treat the case (2). We assume that j\

is single. Then, Gfj has the from G l o i l Gu with io=jv The proof reduces to

the proof of the case (1). We complete our proof of Lemma 3.8.

We give general form of Lemmas 3.7, 3.8. We consider the term

(3.6) Φ / 7 = Π Φ**Kv wikj Π Φ*,Kv wjk+1),

where 0<θky ι?^<3/2, k=ί9 •••, s. Let us consider the following sum

where the indices / ( / , respectively) run over all self-avoiding sum. If the fixed

indices / and / have ^-intersections, we write it as #(/ fl 7 ) = ?

Lemma 3.9. (Easy going Lemma) Fix β e [ l , 3). Under the above as-

sumption on (3.6), we have

when X=Tmβ'1 for sufficiently large fixed T and m-^ooy where ρ(s,i)=3-\-

Lemma 3.10. (Easy going Lemma II). Fix /3e[l, 3). Under the above
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assumption on (3.6), we have

Proof of Lemma 3.9. First we consider the case where / and / have q-
intersections (q>2).
We assume that th(k)=jp(k) for k—ίy ~,q. We define r(k) as in the proof of
Lemma 3.7. We abbreviate α;f as / and V(wt) dw{ as Jw{. We put

The contracted term is defined by

ΦΓ = Π«

* = 1

Φ7 = Π Φ(«rω....i«rC*+i)-i)(</r(*)*ir(*+l))

The inequalities
(3.7) maxlί Φ^x9y)dy

and

(3.8) ί
Φ$(x,

Q

1/2
-l\I(2β)/2

are easy to get, where L(*) = —(*/2)+(3/2). We have £(Φ / / )^C / (Cλ" 1 ) J Γ £(Φ?β

Φ7),

Σ L(θk)

* (ί) l

We see that

where

does not exceed

Π ^ ,

= max I )IIL2(Q- )
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The HausdorfF-Young inequality implies

Λ0H-l)-2

(3.9) JHk<( Π ||()ll

where

Summing up these facts we get

where

N = (h(q)-h(ί)) (3/2)-

Therefore, we have

(3.10) EiΦrj^

where

F = (3/2) ( i + ί ) _ 3 _

Σ ^+ Σ **

The case q=\ is easy to treat. We get (3.10) for q>\. For q=0 we have

E(ΦIf)<C'(C\-γ, where

Thus, it does not exceed

Now we want to show Lemma 3.9. The second inequality in Lemma

3.9 is prvoed. We have

E( Σ Φ
f ( / n / ) «

for q>\. Since λ(3/2)(ί~υ w " ^ < l , if λ-=Γmβ '1 and m->oo, we get the desired

result.

Proof of Lemma 3.10. If q> 1, then

Therefore,
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On the other hand,

t ( / Σ _ / ( φ o Φ / / ) '

Thus, we get the desired result.

As a corollary of Lemma 3.10 we get the following:

Lemma 3.11. Consider the following sum over the indices I(s),J(t). Then,
there exists T in λ such that

P( Σ Φ0(λ, w,v * O G 7 / <m 2 ε (^/Cλ) s + / λ1/2)
I,J * J1

>\-m~z

holds for any fixed 8 > 0.

Lemma 3.12. Fix θ>—2. We assume that w(m) satisfies Ox(m). Then,
there exists a constant C independent of m such that

(3.11) sup Σ Φi-β(λ, wr, *)^C(log m)2(λ"(2+β)/2

holds. When 0=1, we can replace ω in (3.11) by Ω.

Proof. See [11; Lemmas 1,2].

4. Facts which imply Theorem 2

We state propositions about estimates of Σ (^)2> Σ I$r 11 ̂ r?> e t c

Throughout this section we assume that )8e[l, 3). Propositions 4.1'—'4.11 are
proved in the section 5. The very important remark is given below Propostion
4.11.

We put Xj=fω.

Proposition 4.1. Fix / G C ° ° ( Ω ) . Assume that w(m) satisfies O^m). Fix
£>0. Then, there exists a constant C independent of f, m such that

Σ {I°rf^C mXm-i+m*-2 λ"1) \\f\\Lm

holds when we take sufficiently large T.

Proposition 4.2. Fix f<=C°°(p). Fix s>l. Fix £>0. Then, there exists
and C>0 such that

P( Σ (Γr)

holds, where
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?m,λ — λ 2 m~ljt-mβ~2 \-{-m~β~ι λ 7 / 2 .

Proposition 4.3. Wefixf(=C°°{CΪ). Fix £>0. Put

Then, there exists Γ > 1 and C > 0 such that

holds.

Proposition 4.4. We fix /<= C°°(Ω).

Σ •?"? Iq Krq = J22
r.q
r*q

for s>l. Fix any 6>0. Then, there exists Γ > 1 and C > 0

where

tmΛ

Proposition 4.5. We fix / e C~(Ω). We put

fors,t>ί. Fix any £>0. Then, there exists T > 1 and C>0 such that

holds, where

^-2 λ+«T2 X^+m-1 λ2.

Proposition 4.6. We fix feC"(Ω). ^ x ε>0. Then, there exists T>\
and 0 0 ίwcΛ ίAαί

P( Σ (Ir)2<m2%mβIC'\)2s m-β λ3 | |C/. |

Proposition 4.7. IFe fix / E C " ( Ω ) . FW ε>0. TAe», there exist Γ>1
0 0 racΛ

holds for s,t>2, where
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Proposition 4.8. We fix /<Ξ C"(Ω). ίY* £>0. Then, there exist T>\and
C > 0 such that

Proposition 4.9. We fix / G C " ( Ω ) . Fix £>0. Then, there exists T>\
and C > 0 such that

holds for s>\,t>2, where

Proposition 4.10. We fix f^C°°(Ω). If we take sufficiently large T, then

holds for any 6>0.

As a consequence of Proposition 4.10 we get the following.

Proposition 4. 11. If we take sufficiently large Ty then

holds for any £>0.

IMPORTANT REMARK. In each Propositions 4.1'—4.11 we said that for fixed/

(4.1) P(an event for the/holds)> \-nΓz.

Observing the proofs of the above Propositions 4.1~4.11 we know that

P(the same event in (4.1) holds for any f^X>\—m~z

is valid for some set X. We can take X in Propositions 4.1, 4.5, 4.6, 4.7, 4.9 as
L2(Ω). We can take X in Propostions 4.1~4.11 as L~(Ω). The reason why
we can take X is easy to explain. The reader may find that / appeares as in
the form Gf(w{) and so on.

Proof of Theorem 2. Note that (logm)2=m2(loglo8m)/lo8M <m* for any
£>0 as m-+oo. Notice that s, t in Propositions 4.1 -—'4.11 run over [1, (logm)2].
Therefore, we get
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from Lemma 3.3, Propositions 4.1^4.11 and the important remark below Prop-
osition 4.11. Here we used

5. Proof of Propositions 4.1^4.11

The following situation frequently happen in this section. We assume
that w(m) satisfies Oι{m) and we take an expectation of a random variable 31
over Ω*. Then, we get an inequality of the type

This abuse of calculation which does not touch with conditional probability
and conditional expectation with respect to £?1(;ra)cΩΛ can be justifed observing
Lemma 2.1.

Proof of Proposition 4.1. Fix/cΞ C~(Ω). Put/„=%„/. Recall that I°r(Xωf)
A where

β=-τS{x,w,)(Gfu)(wr).

Let B* be the ball of radius 2ajm with the center «?,. Put Dr=(B*)cf)ω
and Φ2(λ/8, wr,y)=Φ(r,y). Then,

(5.1) Σmax(/J) 2

r xeθJB

Φ(r,y)\fω(y)\dyγ
Dr

observing | G(x,y)—G(wr,y) \ <Cm~ι Φ(r,y), y^Dr. We have

(5.2)r max

Here we have used

max ί *G(xyy)2dy<Cm-1.
χέBr jBr

By Ox{m) we have

Therefore,

(5.3) Σ (S.^Cm-Xlogw*)2 ||/J
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We want to estimate the second term in the right hand side of (5.1). It
does not exceed

(5.4) C m-2 Σ Tξ ^ Φ1+ί(λ/8, wr> y)fω(y)2 dy ,

Ts = ( Φs-«(V8ι wr,y)dy<Ct<+oo
JDr

for any ^>0. Notice that \y—wr \ >2a/m for y^Dr. Therefore

(5.5) (5.4)<C m-2(max Σ Φi+e(V8, tor9y)) \\f\\l,ω .

By the above facts and Lemma 3.9 we get

for any £>0.

Second we have

(5.7) Σ max (β)2 < C m-2(log m)4 Σ Ur,

where

Ur =, max S(x, wr)\G(XB*rQ) (wr)
2

by using Lemmas 3.4, 3.5. Since \x—wr\=a\m, we have \S(x,wr)\ <C{mja)
by the property of the Green function G{x,y). We get a similar estimate for
(5.7). We complete our proof of Proposition 4.1.

Proof of Proposition 4.2. (1) The case $ = 1 : First we treat the case s=l.
We introduce delicate techniques of estimating Σ (^r)2 Namely, we use both
Tri, Sri in estimation. Hereafter we put

9 = IIG/JU.

And we put

Tri = {\ognif m~ι Φ{r,wt)3

Sri = (log rrif m-W+t Φ(3/2)-5(λ/8, wr> tp,) 3

(ξ>0). Then,

by Lemma 3.6. Therefore

Σ / 7 ' l \ 2 < : - ' 'V^ O2 I ^ 1 ΓΠ /7Π|
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We have

(5.8) P( Σ S*ri<m' Σ E(S2

ri))>l-m-'.

We know that

)432,

We know that

Σ E(Tri Trj)<C(log my m3""2 λ"1 ΞP
r,i,j

observing z'Φj. We complete our proof of Proposition 4.2 in the case s=\.
(2) The case s>2: We put

Tri = Tril GKS) y SrI = Sril GI(s).

We have

where

K2 = ?pιTyiιTrh Gί(s) Gj(s),

where the indices in K2 run over r,I,J satisfying conditions ίΊΦjΊ and (1) or
(2) in Lemma 3.8 with respect to /,/. And

K z = 23*^^ SrJι Gu ,

where the indices in K3 run over all r, I,J satisfying iiΦjΊ and r, I,J which do
not satisfy (1) and (2) in Lemma 3.8.

We have

( S2

riι V(wr) dwr<C(log my m-(1"2*> 2F2.
JΩ

Thus, E(KX)<Cmβ(\og m)A m"(1"2^ ( Σ E(GfJ)) £F2. Every term in Kx has the

property that its index satisfies ix=jι. Thus,

Σ E(GU)< Σ
IJ 9^1

Note that /3e[l, 3). If we take sufficiently large T, then the series converges
and we get
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J,J

holds.

Summing up these facts we get

(5.9) PiK.KC mβ-1+2\mβIC\)2s λ2 mΓβ

Next we want to show

P(K2<m2*+β-2 X(mβIC\)2s

By Lemma 3.1 we have

JQ Trh TτiΛ V(wr) dwr<C(log m)*m-* Φ^λ/8, «,„ w,) S2.

Therefore,

E(K2)^C'(log tnym?" ( g Φ, <?,ω Gm) £F2.

We see that the term Φx Gj Gj has a similar form as Giχjl Gu. Thus,
£(Φ2 Gj Gj)<{C\-ι)2s+ι-W2)^-W holds. Here q>0. Thus, E(K2)<C'tnβ-2

We want to show

(5.10) P(K3<C(mβIC'\)2s m2^'1

We have E(Sril S,h)<C(log w)4m-(1"2^ ff2. Therefore,

(5.11) £(^ 3 )<(log i f i ) ^ ^ 1 - ^ ^ ( g E{GU)) SF2.

Here the indices / and / in K3 have at least 2-intersections. Then, we have

in (

if we take sufficiently large T. We get (5.10).
Summing up these facts we get Proposition 4.2.

Proof of Propositoin 4.3. Assume that w(m) satisfies O^tn). Then, we see
that /? does not exceed

(5.12) C'\G(X.tfm)(x)\ UsΈr

observing
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Therefore Xλ does not exceed C(w"4+;/r2 λ^log rrίf) Σ Ktq \\f\\l. By lemma
3.9, we have 'Φ?

Therefore we get Proposition 4.3.

Proof of Proposition 4.4. We have to get a bound for

(5.13) ΈIs,Kr,

to estimate X2. Since \Pq\ <3!m~1(\og nif Φ2(q, h) Gt, we have

(5.13) = Σ3 + Σ3
'ril V4,

We have E(Krt Φ2(q, h) G^CiCX-y*1 when r φ / , and ^ C ' ί C λ " 1 ) 1 " ^ when
Z!=r and ^CXCλ"1)5-*1^ when ί v = r for y>2. The third inequality (5.13) is
proved by the following way. We have

J Krq Φ2(q, f.) V(wq) dwq\ <\-w Φ0(λ/20, r, i\

and

Thus,

Φ0(r, i.γdw.y5Φ1/2(λ/20, i;.,, ίv+1)

E{KrqΦ2{q,H)Gt)

<Cλ "5/4

Summing up these facts we get

E((5.Ώ))<C&m-\log mf (mβIC'X)s (m2β X~ι+mβ λ 1 / 2).

Therefore, we get the desired Proposition 4.4.

Proof of Proposition 4.5. We assume that w{m) satisfies O^m). We have

I /? I < C(log mf ΞFΣm-* Φ/+#(r, h) G / ω ,

where Φ6(r, ί\)=Φδ(λ/8, wr, wh). We have
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where

Σ »-* (log my ff2 Φ1+β(r, i,) Φ ^ ϊ J i ) G/7 Xr4
r,q,I,J
rSJ.qSI

2 (the same term as above)
r.q.I.J
r$J.q<Eΐ

2 (the same term as above)
r.q,I,J
r^J.qξl

Xi4) = Σ (the same term as above) .
r.q.I.J
r€Ξj,q<=I

It should be remarked that we can take distinct θ for X{k) (k=l, * ,4).
Part l=Estimation of X(1). Hereafter we put dwr=V(wr)dwr. For the

indices of terms in X{1) we take 0 = 1 . We have

2(r> h) Φ2(q,jι) Krq dwr dwq <C\~ι Φ0(λ/20, i^j,).

By Lemma 3.11 we get

P( I -£{1) I <tn*XmηC'\γ+t m2*-2 λ"1/2 | | G / J | i ) > 1-7/Γ*.

Part 2=Estimation of Xi4\ Terms in X^ up to m"2β(log mf £F2 factor
are represented as

(5.14) Krq Φ1+Θ(r, ίγ) Φ1+Θ(<l>h) G, Gj \ i0m<jp>-r,

where I\ip,J\jP' is self-avoiding indices, respeatively.
We have three cases Z(l), Z(2), Z(3).

Z(2): i1 = qj1φr or i]φqj1 = r
Z(3): i^qj^r.

First we consider the case Z(l). In this case the following (f, £')-technique
is very useful. We assume that p<s,p'<t. Other cases can be treated by
similar way as follows. Apply the Holder inequality

(5.15) \\\

< ( { J/(Γ, # S»r 3™,)m ( JJ 5 ( ^ ?)5' A"r ^ ) 1 / £ '
to /(r, q) = Krt Φ1 + 9(r, ί,) Φ1 + #(ί,j,), ^(r, ?) = G,,.,, G,i j>+ι Gi#/_lΓ G r ; / + ι . Here
(?> ζ') is a pair satisfying

(5.16) Γ ' + d r 1 = 1, f'<3, 3/2<?, (1+5) ?<3 .

Note that we can take (ξ, ξ') when θ<\. Then, the factors of the right hand
side of (5.15) are estimated by \-e/©+d+») φo(χ/2O, ^J,) and CΦ1.,(\l2β,it.u

i ί + )) Φi_P(λ/20, Js-i,jp>+1), where p=(3/? ' )- l
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From now on we use the abbreviation

GI[kis\p] for G ^ ^ ^ ^ p i v ^ v O ^ G , . . , , .

We also use Gj[k, t\p'}. By (£, f ̂ -technique we have

2?((5.14))<CΈ(Φ0(λ/20, πJJ Gr[l,s\p] G,[l, t\p']).

By the easy going Lemma II we get

(5.17) £(the sum of all terms of the type Z(l)

in J7 ( 4 ) < C m\mβlCf X)5+t {β2nΓ2 λ5/2)

putting θ-*l and ξ-^Zβ. By SUM Z(l) we denote the sumof all terms of
the type Z(l).

Next we consider the case Z(3). The term Krq Φ1+β(r, q)2 Gqi2 GrJ2 appears.
We take θ such that it satisfies 0<l/2 for these indices in Z(3). We have

J j Krq Φι+β(r, qf Gqii Grhdw,Jwq I <C\-w Φβ(λ/20, i,,j2).

Thus, £((5.14)) does not exceed

C\-«-» £(Φ0(λ/20, iujx) Giti3-Gis_ιis G w ) .

By the easy going Lemma II we have for any ξ >0

(5.18) £(SUM Z(3) in X^)<Cm\mβiσxγ+t λ " ^ \5/2m-2θ S*2.

Note that we can take θ as close as 1/2.
Finally we examine the case Z(2). Without loss of generalities we study

the terms

Krq Φ 1 + β(r, q) Φ 1 + β(?,;0 Gqi2 Gt2h- Gis_lis

X G V 2 G v _ l Γ Grjp,+l --GJt_lJt.

We have \Krq \ <C. We use the (f, ̂ ')-technique for the pair (Φ1+Θ(r, q), GJp^ir

Grjp'+ι w^h (5.16) on measure dwr and we see that £((5.14)) does not exceed

E{ΦUi>h) Gtii-Gis_lis G,[\, 11 p']).

By the easy going Lemma I we get

(5.19) £(SUMZ(2) in X^)<Cm2\m^C'\)s+t EF2m~2 λ5/2

for any S>0 letting θ-*l and ?->3/2.
Summing up the above facts, we get

E(SVM X^)<Cm2\mβiσ\)s+t S\m-2 X^+m'1 λ2).

Part 3-Estimation of X(2\ X™. We study X«\ Terms in X{2) up to
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m~2Θ(\og m)4 £F2 factor are represented by

Krq Φ1 +,(r, ix) Φ1+θ{Qjι) GI GJI ip-q

where I\ip and / is self-avoiding, respectively.
We have two cases W{\), W(2).

W(ί): HΦq
W(2): i^q.

We now consider the case W(l). We see that

KrqΦ1+#(r, H) dwr

Then, we use (£, ^)-technique for the pair (Φ0(λ/20, q, iλ) Φ1 +β(?jΊ), Gip_ιq Gqifi+1)
with (5.16) on measure dwqy which implies

(5.20) £((5 14))<£(Φ0(λ/20, i,,j,) Gr[ί,p\s] Gj).

By the easy going Lemma II we get

(5.21) £(SUM W{\) in -£<2>)

< C m2\mβICfX)s+t ff

for any £>0, Θ<1. We can put θ as close as 1.
The case W(2) is easily investigated. We have | Krq \ < C and

Then,

E((5.U))<C\-«-M»E(ΦUq>h)Gti2- Gh_lisGj)

Therefore, we get

(5.22) £(SUM W{2) in

We can let 0->l.

Summing up (5.21) and (5.22) we get the following.

(5.23) £(SUM X^) < C m2\m^C'\)s+t SF2 Xmβ'2

for any S>0.

We combine the above results in Part 1, 2, 3 and we get Proposition 4.5.

Proof of Proposition 4.6 is given below our proof of Proposition 4.7.

Proof of Proposition 4.7. Since there is universal constant C > 0 such
that \x—wh\ >C\wr—wh\ for x^dBrf)dω, we can get

max I G(x, wiχ) \<Cθtn° Φ ^ λ / 8 , r, iλ).
d-B, n d«
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Thus, we have

17ί I < C ffm (log nίf Σ Φ, -e(ry i,) G[.

We have

I Σ 7; /{κ r q i

where

37(2) = Σ (the same term as above)
r.tf././
rφ/.βe/

^(3) __ 2] (the same term as above)

VΊ(4) = Σ (the same term as above).
r.q.ί.f

Part l=Estimation of Jl(1). In this case θ=0. Terms in 32(1) up to factor
w2β(log rrif 32 are represented as

(5.24) KrqGrir-Gip_irGfip+i. Gis_iis

x G « V " G V - n Gas+r Gh-xit

We use (£, Π-technique for the pair ( ^ G r ί l G f i l > G ί # . l Γ Grip+1 Gjp,_lQ Gqjp,J
with (5.16) on the measure dwr dwr As a result we have

£((5.24))<Cλ"< 3-^ £(Φ0(λ/20, ̂ ,70 G7[l, s\p] Gj[\,t\p']).

We put £>3/2 as close as 3/2.
By the easy going Lemma II we get

(5.25) £(SUM m(1)) < Cm*(tnβIC'\γ+t £F2 λ3/2.

Part 2=Estimation of 32(4). Terms in 57(4) up to factor m2θ(log tnf £F2 are
represented as

(5.26) Krq ΦUr, h) Φi-.(g, Λ) Gt Gj

with ip=r, i tl=q, jp'=q, >=»•• There are three cases.

= q or i2 =

We consider the case (F(l)). In this case the term

Krq Φ^{r, iλ) Ghr GritxΦι^q,j1) Gh, Gth

appears. The case (Y(l)) is divided into three cases (Y(4)), (Y(5)) and (Y(6)).
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(Y(5)): i^jjΊΦr or i^qj^r
(Y(6)): fcqj&r.

For the case (Y(4)) we take 0<l/2. We have

i^r , qf G\q Grh Gqjz dwr dwq

<Cλ-1/2Φo(λ/2O,*3,j3).

Thus, E((5.26))<C\-^2E(Φ0{i3yj3)Ghi4-GhJ4'-). By the easy going Lemma
II we have

(5.27) £(SUM (Y(4)))<C m2'(log m)2 (

It should be noticed that the distinct number of indices in SUM (Y(4)) is at
most (mβ)s+t-\ We put 0>l/2 as close as 1/2 in (5.27).

We study the case (Y(5)). For these indices we put θ>0. The term

(5.28) ΦUr,q)GirGrί3Gi3it-

xΦi-β(ϊ.ii) Ghq G,,yG ; / _.,y G / / ί / + I

with jg'=r appears. The (ξ, £')-technique for the pair (Φ1_«(r, q) Gqr Grh Φx.t

(ϊ» Λ). Ghi G«h Gip'-ί'
 Grjp'+1)

ίs u s e d a n d w e β e t

£((5.28))

<^(Φo(ii, h) Φi-rUi'h) Gj[3,t\p'] Ghit G , v V ) .

By Lemma 3.10 we get

(5.29) £(SUM Y(5))^C w2 (log mf (wp/C'λ)s+< S2 λ9/2m"2p .

We can let 0-^0.

We study ((Y(6)). The following inequality is very useful.

(5.30) dm

for (f, ξ', n satisfying

? - i + ( ? ' ) - l + ( n - 1 = i , f , r , r > o .
We examine the terms

(5.31) iCrί Φ^^r, ix) Φi-fah) Ghr Grir-Gh9 GtV

with ip=qy p>3, jp'=r, p'>3.
Assume that p>4, p">4 . Then, we use inequality

(5.32) for dm = dwr dwq,

/ = Krq Oi_e(r, iλ) Φi-fah)

g = Gip_ιq Gqip+1 Gip,_χr Grip,+1

h = Giχr Grh Ghq Gqh ,
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where 0>O and (f, ξ\ ξ") satisfying

(5.33) £>3, (1-θ) ξ<3, ζ' = Γ<3 .

As a result we get

By the easy going Lemma II we obtain

£(SUM (Y(6)) with^,/>'>4 in 37(4>)

£C'(tnβIC'\y+i S2 λ9/2 wΓ2'+2t

for any £>0 letting 0->O, £'-»3.
We continue to study ((Y(6)). Assume that ρ=39p'=3. Then, we use

(ξ, ^-technique for the pair {G^Φ^r^Φ^q.j^G^G^G^G^) with
(£, | ; ) satisfying (5.16) and we get

£((5.26))

ji) Φi-pft, J4) ΦI-P(/I, ίι)

By the easy going Lemma II we get

£(SUM (Y(6)) with/),p' = 3 in

<C(m^/C'λ)s+' ff2 λ9/2 ffi-2"+28

for any f >0. We have similar estimates for other cases. Thus,

£(SUM (Y(6))) ̂  C\mβIC λ) s + / £P λ9/2 ίM"2p+28.

Summing up the above facts we get

(5.34) £(SUM (Y(l)))

< C m2*(mηC λ) s+'(λ4 m'-^+λ9/2 OT-2^) 3^

for any θ>0.
We make a comment on the terms of the type (Y(2)). Without loss of

generalities we assume that ii=r,j2^q. We examine the terms

Φi-β(ϊ.ii) Ghh-Git,_lt G ί V + ι

with iv=q,]μ=r. In any case we can apply (ξ, ξ'), (ξ, ξ', ^"J-techniques and we
get the same bound for £(SUM (Y(2))) as £ (SUM (Y(l))).

We study the terms of type (Y(3)). We can use the techniques developed
above and we get a same bound for £(SUM (Y(3)) as £(SUM (Y(l))). There-
fore,
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(5.35) £(SUM m(4))< C m2* ζF2(tnβIC λ)s+'(λ4 m ^ + λ 9 ' 2 m~2β).

Part 3=Estimation of 3Z(2). Terms in m(2) up to factor (log nif m2θ 32 are
represented as (5.36)=Krq Φ^θ(r, iλ) Φ^fati Gu w i t h **='> *v=ϊ» > = ϊ W e

have two cases.

First we consider the case (X(l)). We have (X(1))=(X(3))+(X(4)), where

(X(4)): ip=r for j»>3.

For the case ((X(3)) we put θ>0 as (9~0. We have

Γrf G r (3 Φ^/r,-?) Grq3wr Φ0(λ/20, q, /,).

Then, we use the Schwartz inequality for the pair (Φ0(λ/20, ^, ί3) Gqj, Gjp,_χt

G*h'*ι) a n d w e § e t

£((5.36))

<;Cλ-^>-^) £(Φ0(ί 3)j1) GWt-G,..ιt.

xGhh-Φ1/2(jp>-ujp>+1)-Git_lit).

By the easy going Lemma II we get

for any £ > 0 observing the fact that the number of distinct indices is at most

For the case (X(4)) we put θ>0. We use the (ξ, ξ', ξ")-technique for the

triple

ip_ιr Grip+ι,

with (ξ, ξ', ξ") satisfying (5.30) on the measure dwrdwq and we get

E({536))<CX~lWEiΦ^^j,) Gj[2,ρ\s] G/[l,jf>'|*])

for any £ '>0 letting £->3, ξ'=ξ"-+3, p-*0. Thus,

^(SUM (X(4)))<C m2\mβIC'\y+t £F2 X3m-β

for any £>0. Therefore F(SUM (X(l))) has the same bound.
Next we study (X(2)). We examine the case q$Ξ(ip_ly ip+ϊ). We have

Krq &i-θ(ry h) Gip_ir Grip+1 dwr

f4 Φo(?, h) Φi/2(Vi> ip+i)
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by the Schwartz inequality. Then, we use (ξ, ξ', f")-technique for the triple

(Φo(?, *Ί) Φi-«(?,ii), <?,-„_,„ Ggh+U G,y_i? GJ/+1) on the measure 3wq. Thus,

£((5.36))

-xGj[\,p'\t\).

By the easy going Lemma II we get the same bound for Z?(SUM (X(2)), q^
(ip-uh+i)) a s £(SUM(X(1))). For the case q(=(ip_lyip+1) we get the same
result.

Summing up the above facts we get

(5.37) £(SUM m{2))<C m2*ΞF2(m*IC'\)s+f X3 m~β .

Summing up (5.25), (5.35) and (5.37) we get

E{ Σ m(k))<m2\mβICf\)s+t EF2 P(λ, m),

where

P(λ, m) - λ4 mι-2β+X9/2

We proved Proposition 4.7.

Proof of Proposition 4.6. We have

() U,h) ι (̂ ii) ,

We examine the term

Φ,V/, h) Gili2~Gip_ir Grip+1-Git_ιh

xΦUrJJ GW"Gj/_ιrGrJ/+ι'"Gjβ_1

By using the (ξ, ξ'9 ^^-technique with (5.30) for the triple

(Φ!_β(r, h) Φ!_β(r,ii), Gip,χr Grip+1, Gjp,_ir Grj

we get

Uh,h) G,[l,p\s] Gj[l,p'\s]).

when iιΦjλ. When /1==/1, we take θ>lβ as close as 1/2. Then,

Thus, by the easy going Lemma II we get

E( Σ (lsr)2)<nf* SP(mβIC'x
r

for any £>0 letting θ->0 and f-*3, p->0, 0->l/2
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Proof of Proposition 4.8. We know (5.12). Thus, we have to get a bound
for Σ ϊg Krq to estimate Σ It ϊsq Krq. We see that

\Ίs

q\<L3m* Σ ΦUq, h) Gili2'Gip_ιq Gqip+1-

The term

(5.38) K^ΦUQ.^GJ

is classified as (i), (ii).

(i): r^I
(ii): r $ / .

First we consider the case (i). We put θ=0. Then, by the Schwartz ine-
quality for the pair (Krq Φ^β(q, h), Gip_iq Gqip+1) on the measure dwq implies

(5.39) £((5.38))

* E(Φ0(r, π) G^'-Φ^i,-!, iP+i)-)

Next we consider the case (ii). Using | Φ0(r, h) \ < C we get

Summing up (5.12), (5.39), (5.40) we get

<Cm2\mβIC'X)s (tnβ+X3/2) (nΓ\log mf λ"1/2) £F | | / |U .

We get Proposition 4.8.

Proof of Proposition 4.9. We have

where

£ ( 1 ) = Σ (log my m*'-° S2 Krq Φ1+«(r, ί̂  Φ^^h) Gu
r.q.I.J

S(2) = Σ (the same term as above)

<S(3) = Σ (the same term as above)
r.q.I.J

S(4) = Σ (the same term as above).
rcf/ϊe/

Part l=Estimation of S(1). Terms in S(1) up to factor (log m)4mθ/~θSF2

are represented as

(5.41) Krq Φ1+β(r, ix) Gr Φx-^s.ii) Ghh-Gip,_iq G , y / + ι .

For these indices we take θ<\ and ^ ' = 0 . We use ( |, |')-technique for the pair
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(Kι/q* Φ1+Θ(r, h) Φi-eiqjΊ), K\f Gjp,_iq Gqj/+1) with (5.16) on the measure dwr dwq

and we get

2?((5.41))<Cλ-1+*' E(Φjii,h) G, Gj[ί,p'\i\)

for any ε > 0 letting θ-*ί, £-»3/2, p-^ O. By the easy going Lemma II we get

£(SUM SW)<,mtχmηC\γ+t SF2m*'1 λI/2.

Part 2=Estimation of Sw. Terms in Sw up to (log m)4 OT '" £F2 are
represented as

(5-42) £ , f Φ1+β(r, ij Φ^iq, y,) G, Gy

with i v=q, jp'=q, jμ,=r. There are six cases.

First we consider the case (D(l)). We put (9=0, (9'>0 in this case. Then,
the term

Krt Φί+β(r, q) G,,.2 <ίw( 9 , r) Grq Gqh-

is estimated. We have

J i^rϊ Φ1+β(r, j) Φ ^ ^ Ϊ , r) Gr, Jw, < C.

Thus,

Therefore,

(5.43) £(SUM ( D i l ^ ^ i f i ^ / C X ) ^ ' ff2 λ3 m"^

for any £>0.
We consider the case (D(2)). We put θ=0, θ'>0 for these indices.

Integration by the measure dwr implies

(5.44) £((5.42))<£(G ί (2 Φo(?,y2) G v . l 4 Gt)/+r ) .

We use (ξ, ξf)-technique for (5.44) and we get

^((5.42))^λ-^5(Φ0(ιV,y,) G}[2,p'\t] Ghh-).

Therefore, we get

(5.45)

for any £>0.
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We study the case ((D(3)). We take θ=l and θ'>0 for these indices. By
(£, £')-technique for the pair (Φ1+β(r, q)y Gjμ_ir G r i μ + 1) on the measure dwr and
we get

ΈKSAZnέEiΦ^qJi) Gj[l,v\t] Gqi2Gί2l,...).

Note thsLijpf=q for p'>2yp'Φv. We use (ξ, ^-technique with (5.16) on the
measure dwq and we see that E((5.42)) does not exceed

where G/[l, v, p' \ t] is given by

Gjij2 'Φι-7(j*-i>Jw) ' φi-pUp'-i>Jp'+i)'''GJt-iit>

if p'>v+\ and

Gj1j2'"Φi-p(j^-i,jv+2)'"Gjt_1jt ,

if p'=p+l9 .... Here p and p->0 as f->3/2, θ'-+0. Therefore,

for any 6>0.

We consider the case (D(4)). We examine the term

Krq Φ1+β(rvz1).. G l v_ l 9 G ί < V f l

We have

J Krq Φ1+9(r, iλ) Φi-e'iq, r) Gqt 3wr <CΦ0(q, i\) .

Therefore,

E{(5A2))^E(Gili2-Gh_lQ G . ^ Φ ^ , ?) G f Λ )

Therefore, we get

for any £>0.
Let us examine the case ((D(5)). We have

Krq Φ1+i(r, ij Φ^'{q, r) G,h 3wr

Then, we employ (ξ, ξ', |")-technique for the triple (Φ0{q, h) Φi
G,ί»+1, G,t,_ιt G1i/+ι) and we get

E((5.42))^λ-^>+«'E(Φ0(iuj2) G,[l, v\s] Gj[2,p'|ί])

Thus, we get £(SUM (D(5)))<m2t(mβ/C'λ) s+' ff2 λ3m"p.
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Finally we study the case ((D(6)). We use (ξ, £')-technique for the pair
(Krq Φ1+β(r, z'j), Gjμmmir G>, μ+1) on the measure dwr and we see that E((5.42)) does
not exceed

+*'E(Φ0(q, ix) Gι Φ.MqJi) Gj[l9 μ\ί\).

Then, we use (ξ, ξ\ ^-technique for the triple (Φ0{q, ίx) Φ^e'fajΊ), G^_χq Gqh+ι,
(/-factor in G/[l, μ \ t]) and we get

Summing up the above facts we get

Part 3=Estimation of c5(2). Terms in £ ( 2 ) up to factor (log m)4m*-*' 32

are represented as

(5.46) Krq Φι+Θ(r, h) G; Φ^iίJi) GJ

with ip=q,jp,=q (p'>2). Note that r $ / . We have two cases.

First we study the case (Γ(l)). We take (9= 1, θ'>0. Since r<£J, we have

E((5.46))<λ-^2£Φ0(?, H) Φ^'ClJi) GrJ).

By {ξ» ζ', ?")-technique for the triple

(Φo(ί> h) Φi-Λq,jι), Gip_1<t Gtip+ι, Gh,_ιf GgjyJ

we get

E((5.46))

^X-VKiΦJ&Ji) GiίhP\s] G,[l9p'\t]).

Thus,

£(SUM {Γ(l)))<m2*(m°IC'xy+t £F2 λ2^-1

for any £>0 letting (9'->0.
We study the case (Γ(2)). We have terms of the form

Krq Φ1+Θ(r, q) Gr

ίI 2 Φ1_θ/(9,yi) Gj

with jp'=q(p'>2). We put 0 = 1 , 0'>O. We see that

r, ^) 3wr < C λ " 1 / 2 .

Thus, E((5.46)) does not exceed

^yoG/G^ )
h,}ι) Gj\\,p'\t] G,.2i3 ) .
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Here we used (ξ, £')-technique. Therefore, we get the same bound for £(SUM
(Γ(2))) as #(SUM (Γ(l))). Summing up these facts we see

Part 4=Estimation of S(3\ Terms in cS(3) up to factor (log m)Am9"9' 32 are
represented as

(5.47) Krq Φ1+β(r, i,) Φ^qJJ Gr Gj

with jv=r,jp'=q (p'>2). We have two cases.

We study the case (Λ(l)). For this case we examine the term Krq Φ}+β(r, ίΊ
«'(?> r) Grh . We have two subcases (Λ(3)), (Λ(4)) of (Λ(l)).

We consider the case (Λ(3)). Then,

Krq Φ1+Θ{r, ij Φ^q, r) Grq Gqh dwr dwq

Thus, £(SUM (A(3)))<m2*(rnβIC'\)s+t EF2 λ2^"1 putting θ=l, θ'=0. We con-
sider the case (Λ(4)). We put 0<1, (9'>0. By (ξ, ?')-technique for the pair

(Krq Φ1+Θ(r, /j), Φ^βiq, r) GrJ2)

on the measure dwr we obtain

£((5.47))^C£(Φ0(?, ix) G, ΦU9,h) Ghh- ) .

Here ; v = ? . Thus, we get the same bound for .E(SUM (Λ(4))) as £(SUM
(Λ(3))). Therefore,

The same estimate for 2? (SUM (Λ(2))) is given which is left to the readers as an
exercise.

CONCLUSION. We get

(5.48)

Therefore, we get Proposition 4.9.

Proof of Proposition 4.10. We have

max I (Zr(Xj)) (*) I <m
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We have

We can take sufficiently large T to get the desired result.

6. Summary of the techniques developed in 5

Calculation of multiple product of Green's function in this note is closely

related to calculus using Feynman diagram in physist's literature. See for ex-

ample Zaiman [14].

The author here makes a comment on distinction between our calculation

and physicist's calculation. The large distinction between them lies in the fol-

lowing point. We use θ, 0'-parameters as in the proof of Propositions 4.5, 4.7,

4.9. Parameters of such kind, which correspond to management and modera-

tion of accumulated singularity of Green's function, can not be seen in phy-

sicist's literature as far as the author knows. The usage of these parameters is

a very delicate mathematical technique. Without it we can not make any rigorous

mathematical argument when we want to show the important result (Theorem

7). The author thinks that this tehcnique developed in §5 will be a fundamental

technique for a variety of problems concerning random media with many random-

ly distributed obstacles. The author also thinks that (ξ, £'), (ξ> ξf, £")-techniques

will be useful for other problems.

7. Facts which are used to prove Theorem 4

We assume that w(m) satisfies Oι(m). We consider Gb(s) given by

(7.1) ®(s) = ( ( Σ G(x, toh) GI(s)γ dx.
Jω I

Then, \\Hw(m)f\\2>ωo does not exceed

(log m) (IIG/JIΪ..H- Σ

Here we used the inequality with

with N=(log m)2. Note that GI(s) = 1 when j = 1.

We have the following Propositions 7.1, 7.2 which are proved in the section

8. And we easily see that Theorem 4 follow from Propositions 7.1, 7.2.

Proposition 7.1. Fix £>0. Then, there exists T>\ and 0 0 such that

P(®(s)<C'(mβ!C\)2stn32 zm§k hold for any 1 <*<(log mf)>\-nΓz.

Here zm^m-ι-*X2+m-2\+m-vw-2X7ί2+m^^^

Proposition 7.2. Fix any £>0. Then,
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P(\\GfJ\2tωc<Cm2*+«-W2& for any

8. Proof of Propositions 7.1, 7.2

We have the following

Lemma 8.1. Assume that w(m) satisfies O^m). Then,

(8.1) max f G(xy wt)
2 dx<Cm~\\og m)4

i Jω

holds for a constant C independent of m.

Proof. See Lemma 12 in Ozawa [9] observing (8.1)= U\ in [9].

Lemma 8.2. Assume that w{m) satisfies 0x{m). We put H^{x\ |w, — x\
>4tn~p/3}. Then,

max I G(x, wtf dx< C m(β"5)/2(log mf

holds for a constant C independent of m.

Proof. We modify the proof of Ozawa [9; Lemma 12]. Note that we
have only to estimate

Σ ( * * } G( wr,x)2 (4am-\log m)2)3

in [9; 351 p].

Lemma 8.3. Assume that w(m) satisfies Oλ{m). Then,

<C m(β"5)/2()og m)8 Φ0(λ/4, tvo Wj).

Proof. Note that G(x, wt)G(x, w,)< CΦ0(λ/4, wif Wj)XG*(x, w{; λ/4)G*
(Λ:, wy;λ/4). Here <3*(#,;y; λ/4) is the Green function of — Δ+(λ/4) in R\
Therefore (8.2) does not exceed

Φ0(λ/4, wiy wj) max ί G*(^, w, λ/4)2 ^

by L2 inequality. Then, the proof of Lemma 8.3 is reduced to the proof of
similar inequality in Lemma 8.2. We have the desired result.

Lemma 8.4. Assume that w(ni) satisfies Ox{m). Then,

(8.3) I ,/ G(x, wi) dx<Cm~2(log mf .

Here BY is the hall of radius 4m~β/3 with the center w{.

Proof. Note that

(log m)2

U {x\ \x-wr\<C'm-\\ogm)2}
r-i
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covers ωc. Therefore we get (8.3) observing

G(wiy x) dx<C"

Now we are in a line to prove Proposition 7.1. We devide ©($) into some
terms. We put

Then, <B(j)=Σ P ί l Λ G / /=i l

1+f<

2+F3> where

^ G / ; , £=1,2,3.

Here the indices I, J in 2 α ) satisfies the following subset of I, J: When Λ=l,
h=Λ. When ft=2, z ^ , I ^ - ^ J <9m-p/3. When ft=3, ^Φ Ί, I ^ - ^ J

We have the following Lemmas 8.5, 8.6.

Lemma 8.5. Fix £>0. Then,

P{Fl<Crm2z-l-^\\m^C\)2s holds for 2<*<(logw)2)

> l - m - s .

Proof. We assume that w{n>) satisfies Oι(m). Then,

P ^ m a x P ^ C m - ^ l o g rrtf

by Lemma 8.1. Therefore we get

By Lemma 3.7 we get the desired result.

Lemma 8.6. Fix £>0. Then, a similar estimate as in Lemma 8.5 holds
forF2.

Proof. We have to estimate

(8.4) Σ Gυ XDij,

where Di~{(wiv wh); \wiχ—wh\ <9m~βίz} and XD.. is the characteristic func-
tion of the set Z>, 7 .

First we treat the sum of all terms L{ in (8.4) where / and / in (8.4) have at
least 1-intersection. Then, E(L^<C\mβjCX)2s m"β λ2. Next we treat the sum
of all terms L2 in (8.4) whose indices / and/ have no intersection. Then, E(L2)
< (mβ/C\)2s X21 Di} I. We have | D{j \ < C m~β. Summing up these facts we get
the desired result.

We consider i^. We devide Phh into two parts. We put KilJ1=B'i'1\jBYl
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and

•P&=( G(X,wh)G(X,v>h)dx,

k=0,1, where U(a)=ωcΠKiιh, Uω=af\Kiιfι. We put

We have the following

Lemma 8.7. Fix S>0. Then,

P(F4<C'm3*(m-2\+m-MW-2X7'2 holds

for 2^ί<(log m)2)>\—m-*.

Proof. Let G*(#, y λ/4) be the Green function of — Δ+(λ/4) in R3. We
consider PJJ^ when |wh—wh\ > 9 tn~m. By Lemma 8.4 we get

(8.5) Pί )y1^CG*(w ί l,wy i;λ4)max L , G(x%tok)dx

^C'm-2(log mγG*(toh, toh; λ/4).

Here we have used the fact that

max <?(*, wh)^C*G*(zo{l, w y ; λ/4).

Now F4^Fβ+JFV+jP8, where

fe=6, 7, 8. Here the indices I, J in Σ ( 6 ) run over all I, J satisfying | ZU^—W^ \ >
9 tn~β/3

y /i4= 7i and i} and jΊ are both single. The indices / , / in Σ ( 7 ) ( Σ ( 8 ) , re-
spectively) run over all I,J satisfying Izo^—w^l >9τa"β/3 and exactly one of ίλ

jΊ has a pair (both ix andjΊ have a partner, respectively).
By (8.5) and Lemma 3.8 (case (1)) we get

It should be noticed that G*(zoil9 wjiy λ/4) is not equal to Giχjl. However the
estimate is quite similar to the case GiVl. By (8.5) and Lemma 3.8 (case (2))
we get the same estimates of E(F7) as in E(F6). We have

F8<C'?n-2+M» (log nίf Σ ( 8 ) Gu ,

since Iw^—WyJ > 9 m~β/3 in this case. In this case / and J have at least 2-
intersections. Thus, we get

GI7< C m2*-
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using Lemma 3.7. Summing up these facts we get the estimate of Fs. We
proved Lemma 8.7.

Lemma 8.8. Fix £>0. Then,

holds for any 2<*<(log rnf)>\—nΓz.

Proof. We assume that w(ni) satisfies Oι(m). By Lemma 8.3 we have ^x

<Cm^-5>/2(logτw)8Φ0(λ/8, toivtoh). We know that Φ0(λ/4, wiv wh)<Cfχ-1/2

Φ^λ/lό, wiχ, wh). Thus,

(8.6) F5<C'(log mγnP-***2 X~U2 Σ ( 3 ) Φi Ga .

Note that Φ1 has a similar form as Giιh. Recall that \wiχ—wh\ > 9 m"β/3. We
know that Σ Φi Gu in (8.6) is divided into three parts. Σ ( 6 \ Σ ( 7 ) , Σ ( 8 ) in the
proof of Lemma 8.7. We can apply the similar argument as in the proof of
lemma 8.7 to the sum in (8.6) and we get the desired result.

Summing up Lemmas 8.5, 8.6, 8.7, 8.8 we get the following

Lemma 8.9. Fix £>0. Then,

holds for any 2 < s < (log nίf) >\—nΓ*y

where vWtX is

m-1'* \2+nΓ2 Λ+m-MW-2 λ ^ + m ^ - ^ λ ^ + T / Γ 5 " 3 λ 3 ) .

We have the following

Lemma 8.10. Fix £>0. Then,

Where pmtλ=m^-^2(X1/2+m^ λ2).

Proof. In this case G7/ = l. Thus, we expand ©(1) as

We have

We can devide Σ Pij as Ff+Ff+Ff+Ff. Here Ff is the term which is ob-

tained by replacing GrJ in Fj by 1. For the case s = 1 we have the same estimates

of Ff and Ff as in Lemma 8.5, 8.6. For Ff we have Ff<Ff and we get

E(Ff)< C (mβ/Cx)2tn-2(log nCf X .

We have
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F5*<C'm<*-5>/2(log mf Σ ( 3 ) Φ0(λ/16, wiy Wj)

which is estimated by Lemma 3.9. Thus,

P(Ff<m%\^+m^ λ2) m ^ 5 V / C λ ) 2 ) > l - ^ " 8 .

Summing up these facts we get the desired result.

Summing up Lemmas 8.9, 8.10 we get Proposition 7.1.

Proof of Proposition 7.2. We assume that Oι(m) holds. Then, ωc is
contained in

(log m)2

U {x; \x—wr\ <Cm'\\og mf} .
r = l

Thus, I ωc I < C wβ"3(log mf. We then get the desired result.

9. The Hilbert-Schmidt norm of Hw(m)—A'

We treat a modification of calculations presented in [9]. It is suggested by
Figari-Olrlandi-Teta [4].

We put Gω(x,y)=G(x,y),

G(s+1)(x, y) = ( Gω{x, to) V(w) G{wy y) dw,
JQ

s=ϊy 2, •••. We put p(x,y; w{m)) as the integral kernel of the operator Hw(m)—
Ar. We want to calculate

(9.1) ( ( p(xfy;w(m))2V(x)V(y)dxdy
JQ JQ

instead of estimating

(9.2) f ( p(x,y;w(m)Ydxdy.
JQ JQ

It is sufficient to calculate a bound for (9.1) to get an estimate of (9.2), since
), F > 0 o n Π ,

We see that (9.1) is equal to

where O(s, t) is defined by

(9.3) / , / , ( G(s+t+2)(x, x) V(x) dx
JQ

-n-'J, Σ ω j a Gu+2){y, wh) G / ω G(wh, y) V(y) dy

-n-'J. Σ ω JQ G(s+Λ(y, wh) Gm G(wu,y) V(y) dy

'+« Σ G(2)K, toh) Gω(wis, wSl) Gm Gm



FLUCTUATION OF SPECTRA 57

for syt>2. We have the same formula for s, t>\ using the notational conven-
tions G/d) = l, Here we used the fact that the indices i19 •••, ίs, j u ••-,;* in Σω>
Σ ω πin over self-avoiding sum.

We have

(9.4) E(Q{s, t)) = (Js+i-JJt) \a G(s+t+2)(x, x) V(x) dx

+n-<°+» E(Σ* Gφ>lv wh) Gω(wis, Wjt) Ga).

Here Σ * is the sum of terms whose indices I, J have at least one intersection.
We know that/ s + ί — JsJt=—st m"^+ =O((log m)4m~β). Thus, the first term
in the right hand side of (9.4) does not exceed O((log m)Am^(C\-l)s^^2)). We
have

(9.5) E(Gω(wiv wh) Gω(wis) wjt) Gυ)

= £ ( G K , wiχ) G(wis> wisj G(tojo, wh) G(wjt9 wjtj Gu).

Here the indices iQ9 iv •••, is+njΌ, ~ ,jt+ι in (9.5) satisfies io"=jo and is+ι=jt+i and
it is of q-\-2 intersections when (ily •••,/,) and (jly ~ 9jt)

 n a v e ? intersections.
Therefore, we see that

E(Σ* )< Σ K Γ '

by Lemma 3.7.
Summing up these facts we get Έ(9.2))<C m~βX1. We complete our

proof of Theorem 5.

10. Proof of Theorem 6

Fix/(ΞL2(Ω). Put (BwM-A')f=g. Then,

E«g, Vgy) =^-Aπp n\my+* E(Rf(sy t)),

where Rf{s, t) is given by

«-(s+<) g G^K, «yi) G/y(G/) («J (Gf) (zvh)

Therefore, E(Bf(s, ή) is equal to

(10.1) UJt-J«,) <G(VG

(to,,))
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Here Σ * is the sum of terms whose indices /, J have at least one intersec-
tion. The first term in (10.1) is O((log m)4m'-β(Cχ)-s-t-2 \\f\\l) observing JJt-
Js+t=O(m-β(logmY). We know

We have

Therefore, the second term in (10.1) does not exceed (mβICn\)s+t m~βπάn(\

ll/lll, λ"1/2 H/lli).

Summing up these facts we get

E«g, F£»<min (m^X | | / | | | , m"^" 1 ' 2 \\f\\l).

We get the desired result.

11. Spectral properties I

We want to deduce spectral properties of Gw(m). Let \{p{w{ni)) (/=1, 2, 3)

and λ^4) be the j'-th eigenvalue of the operators Gw(m) (i=l), Hw(m)(i=2)> Hw(m)

(ί=3),i4(ί=4).
By the spectral theory of operators applied to Theorems 3.5, (2.4), (2.5)

we see that the measure of the set w{m) satisfying (11.1), (H 2) and (11.3) tends
to 1 as m-*oo. Here

(11.1) I Xγ\w(m))-Xf\w(m)) | <nfi< m«-V'*

(11.2) I \f\w(m))-Xf\w(m)) \ <m2* λ3/4 Um

(11.3) I λ f (w(m))-χW I Km2*-*™ X1'2.

Here we used Hu(m)-XωHw(jn) % ω = ( l - % ω ) ^ ( m ) % ω +fl w W ( l - X ω ) and the fact

that the adjoint operator of HuM(l—%ω) is equal to (1—%ω) Hu(my and

for 5= J H w ( m ) ( l - κ ω ) .
We put Jί(m)=m<β-5>"+X3'4 Um+m-f"2 λ1/2. If w(m) satisfies <?x(») we say

that winή^Θ^tn). We say that w(m)^Jί if w(m)eΘi(m) and (11.1), (11.2) and
(11.3) holds for w{tn).

Hereafter we assume that V^\Ω\~λ. We consider the case λ=7m p ~ 1 .
Then, λ$ 1)(α>(»0)=(μ, (α>(m))+7WJ-1)-1 and Xf={μj(V; nή+Tm^1)-1 with μj

(V; m)=μj+4πaP m'"11Ω | -1.
Assume that w{m)^M. Then,
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(11.4) IμMm))-μj(V; tn)\ <1Cj m
5^'"1) Jί(m).

Here Cj may depend on j .
It is easy to check the following Lemma 11.1 observing

m2{fi-v 3ί(m) = tn2v-v (m

3^-3>/4+

Lemma 11.1. There exists £ '>0 such that m2^'l) Jί(m)==O(mβ-1-5z/) for
£ e [ l , 3/2) andnt*-1* Jί(m)=O(m'^)for /3e[l, 5/4).

As a corollary we get the following.

Proopsition 11.2. Fix β<= [1, 3/2). Then, there exists δ(β)>0 such that

lim P(w(m); I m ^ - ^ V y ^ ^ -

holds for any S>0.
REMARK: We can take 8(β) as (3/2)-y8.
The following result is crucial to study fluctuation of μj(w(m)) around its

mean.

Proposition 11.3. Fix /?e [1,5/4). Assume that μj is simple. Then, the
measure of the set w{m) satisfying

min (I μj(w(m))-μj+1(w(m)) \, | μ ; M™))-μ/-iH*0) I ) > C 0 > 0

tends to 1 as m tends to infinity.

Proof. Note that μj{V\ m) is simple. Write μk(w(m)) as μk(V; m)+(μk

(w(m))—μk(V; m)). If μk(w(tn))—μk(V\ m)=o(l) for any fixed k, then μj(w(m))
and μk{w{w)) are separated as m-»oo. By (11.4) and Lemma 11.1 we see that
the measure of the set w(m) satisfying

\μk{w(m))-μk(V-m)\<m-*'

tends to 1 as m tends to infinity.

Let ψjtW(m) be the normalized eigenfunction of HwM associated with λ$3)

(w(m)). Then, we have the following.

Proposition 11.4. Under the same assumption as in Proposition 11.3 we see
that the measure of the set w(m) satisfying

UJ.M-9>J\\2 = O{nί*-ι>+*-<*> λ-1") = O(m " 5 0 .

Proof. Fix j . By the eigenfunction expansion we have

(11.5) H(fl.(-)-λS4))9»illi

= Σ \μtWm))-\<,*>\> \<ψkMmhφj>\2

= \\{HnM-A') ^ | | i+O((log mfm-2" λ"2)

observing (2.5). By Theorem 6 we have
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Since we assume /3e[l, 5/4) we see that there exists a constant co>O such that
|λ(

Λ

3)(zc;(m))—λ(/}| >^ow~2(β~1} holds for any k(k^j). which is a conclusion of
(11.4) and Proposition 11.3. Therefore,

Σ \ y f \ 12 ^^ ί~^ Λ*J4(/3—i)/i i c\

Thus,

We get the desired result.

12. Spectral properties II

In this section we prove the following result which is a generalization of
Figari-Orlandi-Teta's result for /3>1.

Theorem 12.1. Fix β e [1, 3/2). The random variable

A(w(m)) = mι-W (XfY\φjy (Hw(m)-Af) Ψj)L2

tends in distribution to Gaussian random variable Πy °f mean E(Jlj) = 0 and vari-
ance E{J\j) in Theorem 1..

Proof of Theorem 12.1 is divided into two parts. The first part is the
following.

Proposition 12.2. We take sufficiently large T and we fix it. Then, the
random variable given by U*(w(m))=mβ/2(φjy (Hw(m)—Af) ψj)L

2 has mean E(U*( ))
— 0 and variance

ι2—(A<pj A<pjy

where S>(m)=m2-3β(log m)6+m(1-3/3>/2(log jw)8+»f-1(log m)*.

Proof. See Proposition 6 in [9] which is a generalization of the result in
Figari-Orlandi-Teta [4].

As a corollary we have the following.

Proposition 12.3. The random variable A(w(m)) have mean zero and vari-

ance

E(A( )2) = {Aπapf IΩI"'(J Q <P,W dx- | Ω | - )

+O((λ^)- 4 w 2 - 2 β 3>(m)).

The second part of our proof of Theorem 12.1 is the following result. We put
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Proposition 12.4. We have

= {Aπapf |ΩI -'(|ΩI - 1 - ί Ψj{wγ da)+O {wΓ^log rnf).

As a corollary we have

Proposition 12.5.

£((Λ(.)+Θ/.)) 2 ) = O(fiΓ'(log nif+(\f)-*m2-2* S>(m)).

REMARK. The right hand side of the above equation is O(m~ β(log m)6+

Proof of Proposition 12.5. We have

E(Θj( Y) = {Aπapf | Ω | - ^ φ j ( w γ d x - \ £ l \ - 1 ) .

Thus, we get the desired result.

Proposition 12.6. Fix /3e[l, 3/2). Then, the random variable Λ( ) tends
in distribution to Gaussian random variable Πy of Theorem 1.

Proof. We know that £((Λ( ) + θ / ))2)-^0 for 0 e [ l , 3/2). Thus, we get
the desired result.

Proof of Proposition 12.4. For the sake of simplicity we write <pj as φ and

μj as μ. We have E«φ, (H^-A') φ»=0. Thus, £(Λ( ) θ / ) ) = « 1 " α V 2 )

W4))-2((*)i+(*)2), where

(*)1 = (4πap) rt-1'2
V = l

and

(*)2 = -(4πap) n-W ± E((φ, A' φ) φ{w,f).
V = l

There are two cases (i), (ii) in the indices / in Hw(m) and v.
(i) ih=v for some h and ik^rv for other
(ii) i19 •••, /g in / and z; are all distinct.
We fix v. We write

(12.1)

where Σi,v(Σ2,v; respectively) represents sum of terms in the left hand side of
(12.1) whose indices iu ,is run over the case (i), ((ii), respectively). Put
E(φ(>γ)=E4. Then,

(12.2)v
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= -(4πaplm) (X+μ)~2 E,

+{4πaplm) (λ+/.)" 3 21Ω | "L £4(w-

Each term in (12.2)v. comes from

(12.3) E((Gφ) K )

Note that the number of pairs such that the case (i) holds in (12.3) is k(n—1)
(n—(k— 1)). Therefore, we have (12.2)v.
As a conclusion we get

(12.4) ± (10.6),

= -4πaP m>-χ\+μ+4πap w""1 |Ω I -1)"2

using λ = T m ί " 1 .
Next we consider E(φ(w^)2 (Σ2,n—{<P> A' φ))). It is easy to see that

(12.5) Σ E(φ(w,f Σ2,v) = Σ E((φ, Gφ) φ{w,f)

+ Σ Σ (-4πaplm)s (\+μ)-^ |Ω | -(•-«

χ(n-l)-(n-s)E(φ(.γγ

» 1 f i η \ γ= nfiE{φ{. f){φ,

On the other hand

(12.6) Σ % ( « , % ^ V)) = Σ

+^ α Σ° 2 (-^r«P nί1-1)* (X+μ)-<'+1>|ΩI - / .
5 = 1

Comparing the terms Jt+1 and/ s in (12.5), (12.6), we have

(12.7) ±E(φ(wJ(Σ^-(φ,A'φ)))

= 4πap m"-1(\+μ+4πap m"'11Ω | - 1)" 2 E(φ( )2) | Ω | -1

+O(ffΓ2<>+ι(log m)4)

noticing Js+ι—Js= —m~β ί-fθ((log m)* m~2β). Notice that we used X= Tmβ~x.
Summing up (12.4) and (12.6) we get E(A( ) Θj('))=(4πap)2(-Ei+

\£l\-z)+O(m-β(logmf).

13. Fluctuation of spectra

We are now in a position to prove Theorem 1.
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Fix /3<=[1, 13/9). By (11.1) and (11.2) we see that the measure of the set
w(m) satisfying

(13.1) I Xγ\w(m))-\f\w(m)) \ + \ \f{w{m))-χf\w{m)) \

tends to 1 as m tends to infinity. The following result is a direct consequence
of Theorem 12.1 and which tells that

has non trivial distribution as m tends to infinity.

Proposition 13.1. Fix /3e [1, 5/4). By Sw(m) we denote the random variable

mi-θ/2)(λC4))-2 ( λ(.3 ) (^(nι))-\f).

Then, £w(m) tends in distribution to Gaussian random varίabole Πy °f mean 0 and

variance 2?(Πy) in Theorem 1.

Proof. Note that β e [1,5/4). Then, Proposition 11.3 holds. For the
sake of simplicity we write φi as φ and -tyjiW{m) as ψ ^ y . We have

(13.2) (Xγ)(p(m))-Xγ>)-(φ9 {Hw{m)-A') φ)

= (<p, (Hw(m)-Af) φ) ((φ, ψwM)ll-l)

+ (Ψw(m)—<P, (Hw(m)—A') φ)L2 (φ, ψw(m))i2 .

By Proposition 11.4 and Theorem 6 we see that the measure of the set w(nί)
such that the first term in the right hand side of (13.2) does not exceed

(13.3) m3S-(β/2) χ-l/4 W2t+2tf-l)-(fl^) λ"l/4

tends to 1 as m tends to infinity for any £>0. We see that (13.3) does not exceed

mi-(3β/2)-s for s o m e § > Q w h e n yQe [1, 5/4). And we know from Proposition 12.3
that (λ(/3)(α>(m))—λ(/}) m{2m~ι has limit distribution as m tends to infinity. We
get Proposition 13.1 observing Proposition 12.3.

Summing up Proposition 13.1, (1.31) we get Theorem 1.

14. Comment

We consider the case V{x)=\Ω\~ι. If LA norm of the j th normalized
eigenfunction and the j + 1 th or the j — 1 th normalized eigenfunction are dis-
tinct, then we know that a phenomena of transition of fluctuation of spectre
occurs, that is, we do not have Theorem 1 for β>2. See [11]. It is very
intersting to give complete statistical properties of μj(w(m)) for any /3^[1, 3).

15. On the previous literature of the author

In [9] there is a lack of terms of I}g in rearrangement of Hw(m)g.
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The formula (36) in [9] is not correct. Mistake lies in the same reason as
in important remark below Theorem 4 in the present paper. We can use
Hubert-Schmidt norm to get the correct estimate which is given in section 8
of this note.

Appendix

Proof of Lemma 2.1. We will show that the measure of the set w(nί) such
that Oι(m) does not hold is less than m"N for any N. If O^tri) does not hold,
then there exists a ball of radius m~β/3 with center ηm^Ω such that the number
of / e (1, , mβ) satisfying | w{—ηm \ < 2m~β/3 exceeds (log rrίf. Then, there exists
a ball of radius m"β/3(log m) ~k with center η% such that the number of i e (1, , mβ)
satisfying !«?,•—η%\ <m~β/3(log m)~k exceed C(log mf~~Zk for k>0. We used
Dirichlet's Schbfachverfahren.

We count the probability such that wik(k=ί, •••, M) for some ily ~->iM

 a r e

in B(δ; η) for some -ηEΞCl with S<1. It does not exceed (m^)M(4τrδ/3 lΩI) 3^"^.
Thus, P(Ox{tn) does not hold)<(mβ)M(C'm"β/3(log m)-ι/ψM-l) with M=
C(log mf-z\ if we take £=1/4.

Proof of Lemmas 3.4, 3.5, 3.6. Recall the notations in Lemma 3.2. In
general Br and B{ may have an intersection. We put Cone(5r\J3»)— {y~θwr+
(l — θ)x;x^dBr\Biyθ^[Q,l]}. By a simple geometrical observation wτe see
that there exists a constant C independent of wrywi9 m such that \wτ—v)i\<i

Cdist(Cone(5 r\
β. )» wi) h o l d s W e s e e t h a t t h e l e f t h a n d s i d e o f (3 2 ) d o e s n o t

exceed

where F= Cone (Br\^i) a n d C?(F) denote the usual Holder space. Thus, we
get Lemma 3.6 for (3.2).

We want to show Lemma 3.6 for (3.3). Take r such that dBrΓ\dωφφ.
Then, dist(α;r, 9ω|Ί 9Ω)>(α/m). By a simple geometrical observation using
@i(m), we prove the following: Fix r and i. Then, there exists a constant C">1
independent of m, r, i such that we can take &>*(r, i) e 9ω Π 9Ω satisfying

dist(«v, w*(r, ί))<C'(log m)2 dist(wr> dΩ\Br)

where

5r,, = U {0

Take «>(r) e 8Ω\β r such that dist (ror, «>(r))=dist (n>r, dΩ\Br). Then,

mf\wr-w*{r, i) \ "> |<7(wr, «;,.)-G(a>*(r, ί), w,)
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< C(log rrίf {ajrnψ'1 \ wr—w*{ry t) | ~* x

We see that

(A.2) ||G( , ̂ cS(sc,,, ))<CΦ1+e(λ/4, wiy wr)

holds. By a simple observation on the boundary behaviour of Green's function
we have

(A.3) max | S(x, wr) | dist(^r, ti)(r))<C .

by (A.I), (A.2) and (A.3) we get Lemma 3.6 for (3.3).
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