

| Title        | On purely transcendental fields automorphic functions of several variable |  |  |  |  |
|--------------|---------------------------------------------------------------------------|--|--|--|--|
| Author(s)    | Shimura, Goro                                                             |  |  |  |  |
| Citation     | Osaka Journal of Mathematics. 1964, 1(1), p. 1–<br>14                     |  |  |  |  |
| Version Type | VoR                                                                       |  |  |  |  |
| URL          | https://doi.org/10.18910/4697                                             |  |  |  |  |
| rights       |                                                                           |  |  |  |  |
| Note         |                                                                           |  |  |  |  |

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Shimura, G. Osaka J. Math. 1 (1964), 1–14.

# ON PURELY TRANSCENDENTAL FIELDS OF AUTOMORPHIC FUNCTIONS OF SEVERAL VARIABLES

## GORO SHIMURA

(Received December 2, 1963)

The purpose of this paper is to give some examples of arithmetically defined discontinuous groups  $\Gamma$  operating on a complex ball

$$H^{\boldsymbol{r}} = \left\{ (\boldsymbol{z}_1, \cdots, \boldsymbol{z}_r) \in \boldsymbol{C}^{\boldsymbol{r}} \middle| |\boldsymbol{z}_1|^2 + \cdots + |\boldsymbol{z}_r|^2 < 1 \right\}$$

such that the field of all automorphic functions<sup>1)</sup> on  $H^r$  with respect to  $\Gamma$  is a purely transcendental extension of C of dimension r. To get such a  $\Gamma$ , we consider the field  $K=Q(\zeta)$  generated by a primitive *m*-th root of unity  $\zeta$ , and take a hermitian matrix S of size r+1 with entries in K such that S itself has exactly r positive and one negative characteristic roots while all the other conjugates of S over Q are definite. Let  $U_0(S)$  be the group of all complex matrices X such that  ${}^t\bar{X}SX=S$ . Let  $\Gamma$  be the subgroup of  $U_0(S)$  consisting of the matrices whose entries are algebraic integers in K. Since  $H^r$  is isomorphic to the quotient space of  $U_0(S)$  with respect to a maximal compact subgroup,  $\Gamma$  operates naturally on  $H^r$ . In our examples, the automorphic functions with respect to  $\Gamma$  give moduli of algebraic curves  $Y: y^m = p(x)$ , where p(x) is a polynomial in C[x]. Then the following table describes our examples.

|     | K            | r | S                                                         | $H^r/\Gamma$ | Y                       |
|-----|--------------|---|-----------------------------------------------------------|--------------|-------------------------|
| (1) | $Q(1^{1/3})$ | 2 | diag[1, 1, -1]                                            | non-compact  | $y^3 = p_4(x)$          |
| (2) | $Q(1^{1/3})$ | 3 | diag[1, 1, 1, -1]                                         | non-compact  | $y^3 = p_6(x)$          |
| (3) | $Q(1^{1/4})$ | 2 | diag [1, 1, $-1$ ]                                        | non-compact  | $y^4 = p_2(x) p_3(x)^2$ |
| (4) | $Q(1^{1/5})$ | 1 | diag [1, $(1-\sqrt{5})/2$ ]                               | compact      | $y^5 = p_3(x)$          |
| (5) | $Q(1^{1/5})$ | 2 | diag [1, 1, $(1-\sqrt{5})/2$ ]                            | compact      | $y^5 = p_5(x)$          |
| (6) | $Q(1^{1/7})$ | 1 | diag $\left[1, -\frac{\sin(3\pi/7)}{\sin(2\pi/7)}\right]$ | compact      | $y^7 = p_3(x)$          |

1) By an automorphic function, we always mean a *meromorphic* function which is invariant under the operation of the group in question.

Here  $1^{1/m}$  denotes a primitive *m*-th root of unity, diag  $[a_1, \dots, a_s]$  the diagonal matrix with diagonal elements  $a_1, \dots, a_s$ , and  $p_n(x)$  a polynomial of degree *n* and without multiple root.

**Theorem.** In these six cases, the field of all automorphic functions on  $H^r$  with respect to  $\Gamma$  is a purely transcendental extension of C of dimension r.

It would be worth while mentioning the following point. There was previously no known example of a discontinuous group  $\Gamma$  operating on a bounded symmetric domain D of dimension >1 such that  $D/\Gamma$  is compact and the field of all automorphic functions on D with respect to  $\Gamma$  is purely transcendental over C. The case (5) gives actually such a discontinuous group.

Picard [3] investigated the curve  $y^3 = p_4(x)$  and observed that moduli of such curves give automorphic functions on  $H^2$ . But it seems that he did not determine the whole field of automorphic functions.

To prove our theorem, we consider the canonically polarized jacobian variety J of the algebraic curve Y. It turns out that J belongs to an analytic family  $\Sigma$  treated in our previous paper [6]. In the above cases, if Y is a generic curve of the given type, J is a generic member of  $\Sigma$ . Now the moduli of Y are, roughly speaking, the same as the moduli of J. Then the main theorem of [6] shows that the moduli of Y are given by the automorphic functions with respect to a certain discontinuous group  $\Gamma$ . In order to determine the explicit form of  $\Gamma$ , we need some analysis of lattices in a vector space over K with a hermitian form, which was one of the subjects investigated in [7]. In the Appendix, we give a supplement to it.

In the present paper, we treated the moduli of Y only at *generic* points. It would be interesting to study the moduli of Y in more detail, for example, from the view-point of Igusa [2], who investigated the moduli of algebraic curves of genus two.

1. First we recall some results of [6]. Let F be a totally real algebraic number field of degree g, and K a totally imaginary quadratic extension of F. We denote by  $\rho$  the complex conjugation. Let  $\Phi$  be a representation of K by complex matrices of size h. We say that a triplet  $\mathcal{P} = (A, C, \theta)$  is a polarized abelian variety of type  $\{K, \Phi, \rho\}$  if the following conditions are satisfied.

(i) A is an abelian variety of dimension h, defined over C.

(ii)  $\theta$  is an isomorphism of K into  $\operatorname{End}_Q(A)$ ; and the representation of  $\theta(x)$  for  $x \in K$  by an analytic coordinate system of A is equivalent to  $\Phi$ .

2

(iii) C is a polarization of A; and the involution of  $\operatorname{End}_{Q}(A)$  determined by C coincides with  $\theta(x) \to \theta(x^{\rho})$  on  $\theta(K)$ .

Let  $\sigma_1, \dots, \sigma_g, \sigma_1\rho, \dots, \sigma_g\rho$  be all the isomorphisms of K into C, and let  $r_{\nu}$  (resp.  $s_{\nu}$ ) be the multiplicity of  $\sigma_{\nu}$  (resp.  $\sigma_{\nu}\rho$ ) in  $\Phi$ . In order to insure the existence of  $\mathcal{O}$  of type  $\{K, \Phi, \rho\}$ , the following relation should be satisfied [6, 2, 1]:

(1.1) 
$$h = g(r_{\nu} + s_{\nu}) \qquad (1 \leq \nu \leq g).$$

Hereafter we assume (1.1) and put u=h/g.

Let  $\mathcal{O} = (A, \mathcal{C}, \theta)$  be of type  $\{K, \Phi, \rho\}$ . Take a complex torus  $\mathcal{C}^h/D$ isomorphic to A, where D is a lattice in  $\mathcal{C}^h$ . We may choose the coordinate system of  $\mathcal{C}^h$  so that  $\theta(a)$  is represented by the matrix  $\Phi(a)$  on  $\mathcal{C}^h$ for every  $a \in K$ . Let  $K^u$  be the vector space of all *u*-dimensional row vectors with components in K. Then we find u vectors  $x_1, \dots, x_u$  in  $\mathcal{C}^h$ such that  $QD = \sum_{i=1}^u \Phi(K)x_i$ . For every  $a = (a_1, \dots, a_u)$  in  $K^u$ , put x(a) $= \sum_{i=1}^u \Phi(a_i)x_i$ . Then the mapping  $a \to x(a)$  is an isomorphism of  $K^u$ onto QD. Let L be the inverse image of D by this mapping.

Let E(x, y) be a Riemann form on  $C^{h}/D$  corresponding to a basic polar divisor in C. Then there exists an anti-hermitian form T(a, b) on  $K^{\mu}$  such that

(1.2) 
$$E(x(a), \pm x(b)) = Tr_{K/Q}(T(a, b)) \quad ((a, b) \in K^{u} \times K^{u}).$$

The structure  $\{K^{\mu}, T, L\}$  is uniquely determined by  $\mathcal{O}$  up to isomorphism. We say that  $\mathcal{O}$  is of type  $\{K, \Phi, \rho; T, L\}$ . We note that T can not be arbitrary; it must satisfy the following condition [6, p. 160, (25)]:

(1.3) The hermitian matrix  $\sqrt{-1} T^{\sigma_{\nu}}$  has the same signature as  $\begin{bmatrix} -1_{r\nu} & 0\\ 0 & 1_{s\nu} \end{bmatrix}$  for every  $\nu$ , where 1<sub>r</sub> denotes the identity matrix of degree r.

Let  $H_{\nu}$  be the space of all complex matrices z with  $r_{\nu}$  rows and  $s_{\nu}$  columns such that  $1 - t\bar{z}z$  is positive hermitian, and let

$$H = H_1 \times \cdots \times H_g$$
.

Then we get an analytic family  $\Sigma(K, \Phi, \rho; T, L) = \{\mathcal{O}_z | z \in H\}$  of polarized abelian varieties  $\mathcal{O}_z$  of type  $\{K, \Phi, \rho; T, L\}$  parametrized by the point z on H. Every  $\mathcal{O}$  of type  $\{K, \Phi, \rho; T, L\}$  is isomorphic to a member of  $\Sigma(K, \Phi, \rho; T, L)$ .

Now we let every element of  $M_u(K)$  operate on  $K^u$  on the right, and define a group  $\Gamma(T, L)$  by

$$\Gamma(T, L) = \left\{ X \in GL_{u}(K) \middle| T(aX, bX) = T(a, b), LX = L \right\}$$

Then  $\Gamma(T, L)$  gives a properly discontinuous group of transformations on H [6, 2.7]. In [6, Th. 3], we get meromorphic functions  $f_1, \dots, f_{\kappa}$  on H and an analytic subset W of H of codimension one, such that  $Q(f_1(z), \dots, f_{\kappa}(z))$  is the field of moduli of  $\mathcal{O}_z$  for every  $z \in H - W$ . As remarked in [6, p. 172], if  $H/\Gamma(T, L)$  is compact,  $C(f_1, \dots, f_{\kappa})$  is the field of all automorphic functions on H with respect to  $\Gamma(T, L)$ . Even if  $H/\Gamma(T, L)$  is not compact, the last statement is true in view of [6, Th. 4] and a recent result of Baily and Borel on the compactification of  $H/\Gamma(T, L)$ .

**Proposition 1.** Let  $\mathcal{O}$  be of type  $\{K, \Phi, \rho; T, L\}$  and  $k_0$  the field of moduli of  $\mathcal{O}$ . If  $\dim_{\mathbf{Q}} k_0 = \sum_{\nu=1}^{\mathbf{g}} r_{\nu} s_{\nu}$ , then  $\mathbf{Q}(f_1, \dots, f_{\kappa})$  is isomorphic to  $k_0$ .

This follows from [6, Theorem 4, (iii)] and [5, Prop. 3.5 and p. 305, Remark].

2. Let *m* and *n* be positive integers. Let *Y* be an algebraic curve defined by  $y^m = p(x)$ , where p(x) is a polynomial in C[x], of degree *n* and without multiple root. If *d* is the greatest common divisor of *m* and *n*, the genus *h* of *Y* is given by

$$h = \frac{1}{2} \Big[ (m-1)(n-1) - (d-1) \Big].$$

The vector space of differential forms of the first kind on Y is spanned by the  $x^a dx/y^b$  with integers a and b satisfying  $0 \le a < n$ , 0 < b < m,  $bn-am-m-d \ge 0$ .

If *m* divides n+1, take a complex number *c* so that  $p(c) \neq 0$ , and put v=1/(x-c), n+1=me. Then we get  $(v^e y)^m = v \cdot v^n p(v^{-1}+c)$ . This shows that *Y* is birationally equivalent to the curve  $y^m = q(x)$  with a polynomial q(x) in C[x] of degree n+1 and without multiple root.

Hereafter we assume that m does not divide n+1, h>1, and m is an odd prime number. Let J be the jacobian variety of Y, and  $\varphi$  a canonical mapping of Y into J. We fix a primitive m-th root of unity  $\zeta$ . Let  $\zeta_0$  be the birational correspondence of Y with itself given by  $(x, y) \rightarrow (x, \zeta y)$ . Denote by  $\theta(\zeta)$  the automorphism of J corresponding to  $\zeta_0$ . We see that  $\zeta \rightarrow \theta(\zeta)$  can be extended naturally to an isomorphim  $\theta$ of  $Q(\zeta)$  into  $\operatorname{End}_Q(J)$ . Let C be the canonical polarization of J, and  $\rho$ the automorphism of  $Q(\zeta)$  such that  $\zeta^{\rho} = \zeta^{-1}$ . The involution of  $\operatorname{End}_Q(J)$ determined by C gives the automorphism  $\theta(a) \rightarrow \theta(a^{\rho})$  on  $\theta(Q(\zeta))$ . In this way we get a polarized abelian variety of type  $\{Q(\zeta), \Phi, \rho\}$  in the sense of §1, for a certain representation  $\Phi$  of degree h. In view of the explicit form of differential forms of the first kind given above, we see that, for every integer b such that 0 < b < m, the matrix  $\Phi(\zeta)$  has  $\zeta^{-b}$  as a characteristic root with multiplicity [(bn-d)/m], where  $[\alpha]$  denotes the largest non-negative integer  $\leq \alpha$ .

3. Let  $Y^*$  be another curve defined by  $y^m = p^*(x)$  for a polynomial  $p^*(x)$  in C[x] of degree *n* and without multiple root. From  $Y^*$ , we obtain a polarized abelian variety  $\mathcal{O}^* = (J^*, \mathcal{C}^*, \theta^*)$  of type  $\{Q(\zeta), \Phi, \rho\}$  in the same way as above; we note that the representation  $\Phi$  is the same for fixed *m* and *n*. Let  $\zeta_0^*$  be the birational correspondence of  $Y^*$  with itself given by  $(x, y) \rightarrow (x, \zeta y)$ .

**Proposition 2.**  $\mathcal{O}$  is isomorphic to  $\mathcal{O}^*$  if and only if there exists a birational mapping  $\lambda$  of Y to Y<sup>\*</sup> such that  $\lambda \zeta_0 = \zeta_0^* \lambda$ .

The 'if' part is obvious. Let  $\varphi^*$  be a canonical mapping of  $Y^*$  to  $J^*$ . Suppose that there exists an isomorphism  $\mu$  of  $\mathcal{O}$  to  $\mathcal{O}^*$ . By Torelli's theorem, there exists a birational mapping  $\lambda$  of Y to  $Y^*$  such that  $\varphi^*\lambda = \pm \mu \mathcal{P} + \boldsymbol{a}$ , where  $\boldsymbol{a}$  is a point of  $J^*$ . Since  $\mu\theta(\zeta) = \theta^*(\zeta)\mu$ , we see easily that  $\lambda^{-1}\zeta_0^*\lambda$  and  $\zeta_0$  correspond to the same automorphism  $\theta(\zeta)$  of J. By our assumption h > 1, we must have  $\lambda^{-1}\zeta_0^*\lambda = \zeta_0$ . Our proposition is thereby proved.

**Proposition 3.** Let  $k_0$  be the composite of  $Q(\zeta)$  and the field of moduli of  $\mathcal{O}$ . Then  $k_0$  is the subfield of C which is uniquely determined by the following properties.

 $(M_1)$  If k is a field of definition for Y and  $\zeta_0$ , then  $k \supseteq k_0$ . If furthermore  $\sigma$  is an isomorphism of k into C, over  $Q(\zeta)$ , then  $\sigma$  is the identity mapping on  $k_0$  if and only if there exists a birational mapping  $\lambda$  of Y to  $Y^{\sigma}$  such that  $\lambda \zeta_0 = \zeta_0^{\sigma} \lambda$ .

 $(M_2)$   $k_0 \supset Q(\zeta).$ 

This follows immediately from Prop. 2 and the definition of the field of moduli of  $\mathcal{O}$  [4, p. 110].

**Proposition 4.** Let  $\lambda$  be a birational mapping of Y to Y\* such that  $\lambda\zeta_0 = \zeta_0^*\lambda$ , and let  $\lambda(x, y) = (u, v)$ . Then u, v are rational expressions of x, y of the following form.

(I) If m divides  $n, u = (ax+b)/(cx+d), v = ey/(cx+d)^{n/m}$ .

(II) If m does not divide n, u=ax+b, v=ey.

Here a, b, c, d, e are complex numbers.

Let  $u = \sum_{i=0}^{m-1} r_i(x) y^i$ ,  $v = \sum_{i=0}^{m-1} s_i(x) y^i$  with  $r_i(x)$  and  $s_i(x)$  in C(x). Since  $\lambda \zeta_0 = \zeta_0^* \lambda$ , we have  $\sum_{i=0}^{m-1} r_i(x) \zeta_i y^i = \sum_{i=0}^{m-1} r_i(x) y^i$ ,  $\sum_{i=0}^{m-1} s_i(x) \zeta_i y^i$ 

 $=\zeta \sum_{i=0}^{m-1} s_i(x)y^i$ , so that  $u = r_0(x)$ ,  $v = s_1(x)y$ . Since  $\lambda$  is one-to-one,  $r_0$  must be linear fractional:  $r_0(x) = (ax+b)/(cx+d)$ . Write  $s_1(x)$  as  $s_1(x) = s(x)/t(x)$  with polynomials s(x) and t(x) which are relatively prime. Then we get

$$s(x)^{m}(cx+d)^{n}p(x) = t(x)^{m}(cx+d)^{n}p^{*}((ax+b)/(cx+d))$$

We see that  $(cx+d)^n p^*((ax+b)/(cx+d))$  is a polynomial in x of degree n or n-1, without multiple root. It follows that s(x) is a constant. Recall that we excluded the case m|n+1. Then we get easily our assertions.

Suppose that *m* divides *n*. We see easily that the transformation of (I) of Prop. 4 always gives a birational mapping of *Y* to another curve  $v^m = p^*(u)$  with a polynomial  $p^*(u)$  of degree *n* or n-1, without multiple root. If a/c is not a root of p(x),  $p^*(u)$  is of degree *n*.

If m does not divide n, it is clear that the transformation of (II) of Prop. 4 gives a birational mapping of Y to a curve of the same type.

4. Let q be a polynomial in C[x] of degree  $\leq n$ , other than 0, and let  $q(x) = \sum_{i=0}^{n} q_i x^i$ . Let  $P^n$  be the projective space of dimension n. Denote by [q] the point  $(q_0, \dots, q_n)$  in  $P^n$ . Let  $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$  be a generic point of  $GL_2(C)$  over  $Q(q_0, \dots, q_n)$  and let  $q^{\alpha}$  be the polynomial determined by

$$q^{\alpha}(x) = (cx+d)^{n}q((ax+b)/(cx+d)).$$

We denote by W(q) the locus of  $[q^{\alpha}]$  over  $Q(q_0, \dots, q_n)$ . It can be easily seen that W(q) is a variety determined only by q, and independent of the choice of  $\alpha$ . By Prop. 4 and by a standard argument, we get

**Proposition 5.** Suppose that *m* divides *n*. Let *Y* and *Y*<sup>\*</sup> be as in §§ 2, 3. Then  $W(p) = W(p^*)$  if and only if there exists a birational mapping  $\lambda$  of *Y* to *Y*<sup>\*</sup> such that  $\lambda \zeta_0 = \zeta_0^* \lambda$ .

From this and Prop. 3, we obtain

**Proposition 6.** Suppose that m divides n. Let c be the Chow point of W(p). Then  $Q(\zeta, c)$  is the field  $k_0$  of Prop. 3.

Let  $p(x) = \sum_{i=0}^{n} p_i x^i$ . If  $p_0, \dots, p_n$  are algebraically independent over Q, we see easily that Q(c) is the field of all quotients of homogeneous invariants, in the classical sense, of the binary form  $\sum_{i=0}^{n} p_i x^i y^{n-i}$ . In particular, if n=5, it is known that every invariant is a polynomial of certain invariants A, B, C, R of degree 4, 8, 12, 18; and  $R^2$  is a poly-

nomial of A, B, C [1]. Then it is clear that  $Q(c) = Q(B/A^2, C/A^3)$ . If n=6, by the same argument, the classical result [1] shows that Q(c) is a purely transcendental extension of Q of dimension 3 (cf. also [2]).

In the next place, suppose that *m* does not divide *n*. Choosing a suitable transformation of the type (II) of Prop. 4, we can transform *Y* to the curve  $Y': y^m = x^n + x^{n-2} + \sum_{i=0}^{n-3} p_i x^{n-3-i}$ . Suppose that the  $p_i$  are algebraically independent over *Q*. Then, by Prop. 4, we see that  $Q(\zeta, p_0^2, p_1, p_2^2, p_3, \cdots)$  is the field  $k_0$  of Prop. 3.

5. Let us now consider the curve  $Y: y^m = p(x)$  in the special case m=n=5. Then h=6, and

$$y^{-2}dx$$
,  $y^{-3}dx$ ,  $xy^{-3}dx$ ,  $y^{-4}dx$ ,  $xy^{-4}dx$ ,  $x^2y^{-4}dx$ 

form a basis of the vector space of differential forms of the first kind. Let  $(J, \mathcal{C}, \theta)$  be as in §2. Define an isomorphism  $\theta'$  of  $\mathbf{Q}(\zeta)$  into  $\operatorname{End}_{\mathbf{Q}}(J)$ so that  $\theta'(\zeta) = \theta(\zeta^3)$ . Hereafter we consider  $\mathfrak{O}' = (J, \mathcal{C}, \theta')$  instead of  $\mathfrak{O}$ .  $\mathfrak{O}'$ is of type  $\{\mathbf{Q}(\zeta), \Phi', \rho\}$ , for a representation  $\Phi'$  such that  $\Phi'(\zeta)$  is the diagonal matrix with diagonal elements  $\zeta, \zeta, \zeta^{-1}, \zeta^3, \zeta^3, \zeta^3$ . It is easy to verify that  $\mathfrak{O}$  and  $\mathfrak{O}'$  have the same field of moduli. Let  $K = \mathbf{Q}(\zeta)$ ,  $\zeta = e^{2\pi i/5}$ , and let  $\sigma_{\nu}$ , for  $\nu = 1, 2$ , be the automorphism of K such that  $\zeta^{\sigma_{\nu}} = \zeta^{\nu}$ . With the notation  $r_{\nu}$  and  $s_{\nu}$  of §1, we have  $r_1 = 2, s_1 = 1, r_2 = 0, s_2 = 3$ . Define an anti-hermitian form T and a lattice L in  $K^3$  as in §1, for the present  $\mathfrak{O}'$ . The family  $\Sigma(K, \Phi', \rho; T, L)$  is parametrized by the point in a domain

(5.1) 
$$H = \left\{ (z, w) \in C^2 \middle| |z|^2 + |w|^2 < 1 \right\}.$$

In view of (1.3),  $\sqrt{-1} T^{\sigma_2}$  is positive definite. Hence  $H/\Gamma(T, L)$  is compact.

Now take  $p(x) = \sum_{i=0}^{5} p_i x^i$  so that the  $p_i$  are algebraically independent over Q. Let  $k_0$  be the field of moduli of  $\mathcal{O}'$ . By [8, 1.7],  $k_0$  contains  $K = Q(\zeta)$ . The consideration of §4 shows that  $k_0$  is a purely transcendental extension of  $Q(\zeta)$  of dimension 2. By Prop. 1,  $Q(f_1, \dots, f_{\kappa})$  is a purely transcendental extension of  $Q(\zeta)$  of dimension 2.

6. Our next task is to determine T and L explicitly. Let  $C^{h}/D$  and E be as in §1. In our case of  $\mathcal{O}'=(J, \mathcal{C}, \theta')$ , it is essential that J is a jacobian variety. Since every jacobian variety is self-dual, we have

$$D = \left\{ x \in C^h \middle| E(x, D) \subset Z \right\},\$$

so that by (1, 2),

(6.1) 
$$L = \left\{ a \in K^{3} \middle| Tr_{K/Q}(T(a, L)) \subset \mathbf{Z} \right\}$$

Put  $\eta = \zeta^2 - \zeta^{-2}$ ,  $S = \eta^{-1}T$ ,  $\mathfrak{r} = \mathbb{Z}[\zeta]$ . We see that  $\theta(\mathfrak{r}) \subset \operatorname{End}(J)$ , and hence L is an  $\mathfrak{r}$ -lattice in  $K^3$ . Since  $\eta^3\mathfrak{r}$  is the different of K with respect to Q, and since  $\eta^4\mathfrak{r} = 5\mathfrak{r}$ , we have

$$L = \left\{ a \in K^{3} \middle| S(a, L) \subset 5^{-1} \mathfrak{r} \right\}.$$

From this relation we can derive the structure of S and L as follows. Let  $\{e_1, e_2, e_3\}$  be a basis of  $K^3$ , and  $S_0$  a hermitian form on  $K^3$  represented by the diagonal matrix with diagonal elements 1, 1,  $(1-\sqrt{5})/2$  with respect to  $\{e_i\}$ . Then  $S_0$  and S have the same signature at every infinite place of  $Q(\sqrt{5})$ . Let  $a=5^{-1/2}r$ ,  $L_0=ae_1+ae_2+ae_3$ . Then  $L_0$  is an r-lattice in  $K^3$ , and we have

$$L_{\scriptscriptstyle 0} = \left\{ a \in K^{\scriptscriptstyle 3} \middle| S_{\scriptscriptstyle 0}(a, L_{\scriptscriptstyle 0}) \subset 5^{\scriptscriptstyle -1} \mathfrak{r} \right\}.$$

By Prop. 8 of Appendix, there exists a K-linear automorphism  $\tau$  of  $K^3$  such that  $S_0(x\tau, y\tau) = S(x, y)$ . Therefore we may put  $S = S_0$  without loss of generality. By Prop. 6 of Appendix, L and  $L_0$  are  $\mu_0$ -maximal r-lattices and  $\mu_0(L) = \mu_0(L_0) = 5^{-1}r$ . By Prop. 5 of Appendix, L and  $L_0$  belong to the same genus with respect to  $U(S_0)$ . Now  $Q(\zeta)$  has the class number 1. Hence by [7, 5, 24, (i)], there exists an element  $\alpha$  of  $U(S_0)$  such that  $L_0\alpha = L$ . Therefore taking a suitable coordinate system, we may identify  $\Gamma(T, L)$  with the group

$$\Big\{ au \in GL(K^3) \Big| S_0(x au, y au) = S_0(x, y), \ L_0 au = L_0 \Big\}$$

Combining this and the result of  $\S5$ , we get the assertion of our main theorem in the case (5).

7. We can treat the remaining cases by the same procedure, except the case (3). Let Y be the curve defined by  $y^4 = p(x)q(x)^2$ , where p and q are polynomials without multiple root, and deg (p)=2, deg (q)=3; we assume that p and q have no common root. The genus of Y is 3, and  $y^{-1}dx$ ,  $q(x)y^{-3}dx$ ,  $xq(x)y^{-3}dx$  form a basis of differential forms of the first kind. As in §2, from this Y we get  $\mathcal{O} = (J, \mathcal{C}, \theta)$  of type  $\{Q(i), \Phi, \rho\}$ , where  $\Phi(i)$  is the diagonal natrix with diagonal elements i, i, -i. Define T and L as in §1. Then  $\Sigma(\mathbf{Q}(i), \Phi, \rho; T, L)$  is again parametrized by H of (5.1). Let  $p(x) = \sum_{\lambda=0}^{2} p_{\lambda} x^{\lambda}$ ,  $q(x) = \sum_{\mu=0}^{3} q_{\mu} x^{\mu}$ , and let  $k_0$  be the field of moduli of  $\mathcal{O}$ . Suppose that the  $p_{\lambda}$  and  $q_{\mu}$  are algebraically independent over Q. Then we see easily that  $Q(i) \subset k_0 \subset Q(i, p_{\lambda}, q_{\mu})$ , dim<sub>Q</sub>  $k_0 = 2$ . By virtue of Castelnuovo's theorem (cf. [9]), this, together with Prop. 1, shows that the field of automorphic functions on H with respect to  $\Gamma(T, L)$  is purely transcendental over C.

To determine T and L, we employ the same argument as in §6. In this case, 2 is the only prime ramified in Q(i). Therefore, the present situation is somewhat different from §6. But the consideration in the last part of Appendix is sufficient to determine T and L explicitly from the relation similar to (6.1). Thus we get the whole result of our theorem.

### Appendix

Let F be an algebraic number field of finite degree, and K a quadratic extension of F. We denote by g and r the ring of integers in F and in K respectively, and by  $\rho$  the non-trivial automorphism of K over F. Let V be a vector space over K of dimension n, and S(x, y) a nondegenerate hermitian form:  $V \times V \rightarrow K$ , with respect to  $\rho$ . For every r-lattice L in V, we denote by  $\mu(L)$  (resp.  $\mu_0(L)$ ) the ideal in F (resp. K) generated by the elements S(x, x) (resp. S(x, y)) for all  $x \in L$  (resp.  $x \in L$ ,  $y \in L$ ). L is called maximal (resp.  $\mu_0$ -maximal) if there is no r-lattice M in V, other than L, such that  $L \subseteq M$  and  $\mu(L) = \mu(M)$  (resp.  $\mu_0(L) = \mu_0(M)$ ). For every prime ideal  $\mathfrak{p}$  of F, let  $\mathfrak{g}_{\mathfrak{p}}$  and  $F_{\mathfrak{p}}$  denote the completions of g and F with respect to  $\mathfrak{p}$ . Then we put  $K_{\mathfrak{p}} = K \otimes_F F_{\mathfrak{p}}$ ,  $\mathfrak{r}_{\mathfrak{p}} = \mathfrak{r}_{\mathfrak{gp}}$ ,  $V_{\mathfrak{p}} = V \otimes_F F_{\mathfrak{p}}$ ;  $\rho$  and S can be extended naturally to  $K_{\mathfrak{p}}$  and  $V_{\mathfrak{p}}$ . We can define similarly  $\mu$ ,  $\mu_0$ , the maximality, and the  $\mu_0$ -maximality for  $r_p$ lattices in  $V_{\mathfrak{p}}$ . In [7] we investigated maximal lattices. Here we supply some results on  $\mu_0$ -maximal lattices which are necessary for the proof of our theorem.

Let  $\delta$  be the different of K with respect to F. By [7, 2.11], for every r-lattice L in V, we have

(A. 1) 
$$\mu(L)\mathfrak{r} \subset \mu_0(L) \subset \mu'(L)\mathfrak{d}^{-1},$$

(A. 2) 
$$Tr_{K/F}(\mu_0(L)) \subset \mu(L).$$

Therefore, if  $\mathfrak{P}$  is unramified in K, we have  $\mu_0(L)\mathfrak{p} = \mu(L)\mathfrak{r}\mathfrak{p}$ , and hence there is no distinction between maximality and  $\mu_0$ -maximality for the  $\mathfrak{r}\mathfrak{p}$ -lattices in  $V\mathfrak{p}$ . If V is one-dimensional, it is clear that every  $\mathfrak{r}$ -lattice L is maximal and  $\mu_0$ -maximal, and  $\mu_0(L) = \mu'(L)\mathfrak{r}$ .

**Proposition 1.** Let L be a  $\mu_0$ -maximal  $\mathfrak{r}_p$ -lattice in  $V_p$  such that  $\mu_0(L) = \mu(L)\mathfrak{d}_p^{-1}$ . Then L is maximal.

Let *M* be an  $\mathfrak{r}_{\mathfrak{p}}$ -lattice such that  $L \subset M$  and  $\mu(M) = \mu(L)$ . Then  $\mu_0(L) \subset \mu_0(M) \subset \mu(M) \, \mathfrak{d}_{\mathfrak{p}}^{-1} = \mu(L) \, \mathfrak{d}_{\mathfrak{p}}^{-1} = \mu_0(L)$ , so that  $\mu_0(L) = \mu_0(M)$ . Since *L* is  $\mu_0$ -maximal, we get L = M; this shows that *L* is maximal.

**Proposition 2.** If  $\mathfrak{p}$  does not divide 2, every maximal  $\mathfrak{r}_{\mathfrak{p}}$ -lattice in  $V_{\mathfrak{p}}$  is  $\mu_0$ -maximal.

By our assumption, for every ideal  $a_p$  in  $K_p$ , we have

(A. 3) 
$$Tr_{K\mathfrak{p}/F\mathfrak{p}}(\mathfrak{a}\mathfrak{p}) = \mathfrak{a}\mathfrak{p}\bigcap F\mathfrak{p}.$$

Hence, from (A. 1) and (A. 2), we obtain, for every  $r_{p}$ -lattice L in  $V_{p}$ ,

(A. 4) 
$$Tr_{K\mathfrak{y}/F\mathfrak{y}}(\mu_0(L)) = \mu_0(L) \cap F\mathfrak{y} = \mu(L) \,.$$

Then our assertion is obvious.

**Proposition 3.** Suppose that n=2,  $\mathfrak{p}$  does not divide 2, and S is anisotropic in  $V_{\mathfrak{p}}$ . Then every  $\mu_0$ -maximal  $\mathfrak{r}_{\mathfrak{p}}$ -lattice in  $V_{\mathfrak{p}}$  is maximal.

If  $\mathfrak{p}$  is unramified in K, there is no problem; so we assume that  $\mathfrak{p}$  is ramified in K. Let L be a  $\mu_0$ -maximal  $\mathfrak{r}_p$ -lattice in  $V_{\mathfrak{p}}$ . Since  $\mathfrak{p}$  does not divide 2, the relation (A. 1) implies that  $\mu_0(L) = \mu(L)\mathfrak{r}_{\mathfrak{p}}$  or  $\mu_0(L) = \mu(L)\mathfrak{d}_{\mathfrak{p}}^{-1}$ . If  $\mu_0(L) = \mu(L)\mathfrak{d}_{\mathfrak{p}}^{-1}$ , L is maximal by virtue of Prop. 1. Assume that  $\mu_0(L) = \mu(L)\mathfrak{r}_{\mathfrak{p}}$ . Then there exists an element x of L such that  $\mu_0(L) = (S(x, x))$ . Put  $L' = \{y \in L | S(x, y) = 0\}$ . We can easily verify that  $L = \mathfrak{r}_{\mathfrak{p}} x + L'$ . Since V is two-dimensional, we have  $L' = \mathfrak{r}_{\mathfrak{p}} y$  for some y. Since L is  $\mu_0$ -maximal and  $\mathfrak{p}$  is ramified in K, we must have  $(S(y, y)) = \mu_0(L)$ . Now put  $M = \{u \in V | S(u, u) \in \mu(L)\}$ . By [7, 4.5], M is a maximal  $\mathfrak{r}_{\mathfrak{p}}$ -lattice in  $V_{\mathfrak{p}}$ . We have clearly  $L \subset M$ . Let  $u = ax + by \in M$  with a, b in  $K_{\mathfrak{p}}$ . Then

$$aa^{\rho}S(x, x)+bb^{\rho}S(y, y)\in \mu(L)=(S(x, x)).$$

Put  $c = S(x, x)^{-1}S(y, y)$ . Then c is a unit in  $g_{\mathfrak{p}}$ , and  $aa^{\mathfrak{p}} + bb^{\mathfrak{p}}c \in g_{\mathfrak{p}}$ . Let  $\pi$  be a prime element of  $\mathfrak{r}_{\mathfrak{p}}$ . Assume that  $u \notin L$ . Then  $\pi^{e}a$  and  $\pi^{e}b$  are units in  $\mathfrak{r}_{\mathfrak{p}}$  with a positive integer e, and

$$(\pi^e a)(\pi^e a)^{\circ} + (\pi^e b)(\pi^e b)^{\circ} c \equiv 0 \qquad \operatorname{mod}(\pi\pi^{\circ})^e \mathfrak{g}_{\mathfrak{p}}.$$

It follows that -c is the norm of an element in  $K_{\mathfrak{p}}$ . But this is a contradiction, since S is anisotropic in  $V_{\mathfrak{p}}$ . Therefore  $u \in L$ , and hence M=L. This proves our proposition.

**Proposition 4.** Suppose that  $\mathfrak{p}$  does not decompose in K. When  $\mathfrak{p}$  divides 2, suppose further that  $\mathfrak{p}$  is unramified in K. Let L be a  $\mu_0$ -

maximal  $\mathfrak{r}_{\mathfrak{p}}$ -lattice in  $V_{\mathfrak{p}}$ . Put  $\mathfrak{b} = \mu_0(L)$ . Then there exists a Witt decomposition  $V_{\mathfrak{p}} = \sum_{i=1}^{m} (K_{\mathfrak{p}}x_i + K_{\mathfrak{p}}y_i) + W$  (cf. [7, 4.3]) such that  $L = \sum_{i=1}^{m} (\mathfrak{r}_{\mathfrak{p}}x_i + \mathfrak{b}y_i) + M$ , where M is a maximal  $\mathfrak{r}_{\mathfrak{p}}$ -lattice in W given by  $M = \{z \in W | S(z, z) \in \mu(L)\}$ . Conversely, let  $\mathfrak{b}$  be an ideal in  $K_{\mathfrak{p}}$ , and  $V_{\mathfrak{p}} = \sum_{i=1}^{m} (K_{\mathfrak{p}}x_i + K_{\mathfrak{p}}y_i) + W$  be a Witt decomposition. Let

$$M = \left\{ z \in W \middle| S(z, z) \in \mathfrak{b} \cap F_{\mathfrak{p}} 
ight\}, \quad L = \sum_{i=1}^{m} (\mathfrak{r}_{\mathfrak{p}} x_i + \mathfrak{b} y_i) + M$$

Then L is a  $\mu_0$ -maximal  $r_p$ -lattice in  $V_p$ .

The converse part can be proved in a straightforward way. The proof of the direct part is similar to the proof of [7, 4, 7]; so here we only sketch a proof. Assume that S is isotropic in  $V_{\mathfrak{p}}$ . Then we can find an element x in  $V_{\mathfrak{p}}$  such that S(x, x)=0 and  $\mathfrak{r}_{\mathfrak{p}}=\{a \in K_{\mathfrak{p}} | ax \in L\}$ . Put  $\mathfrak{a}=S(x, L)$ . We get easily  $\mu_0(\mathfrak{a}^{-1}\mathfrak{b}x+L)=\mu_0(L)$ , so that  $\mathfrak{a}^{-1}\mathfrak{b}x+L=L$ by virtue of the  $\mu_0$ -maximality of L. We have therefore  $L \supset \mathfrak{a}^{-1}\mathfrak{b}x$ , and hence  $\mathfrak{a}^{-1}\mathfrak{b} \subset \mathfrak{r}_{\mathfrak{p}}$ . It follows that  $S(x, L)=\mathfrak{b}$ . Therefore we find an element  $u \in L$  such that  $\mathfrak{b}=(S(x, u))$ . Our assumption implies  $\mu(L)=Tr_{K\mathfrak{p}/F\mathfrak{p}}(\mathfrak{b})$  $=Tr_{K\mathfrak{p}/F\mathfrak{p}}(S(x, u)\mathfrak{r}_{\mathfrak{p}})$ . Using this fact, we can find an element  $\lambda$  of  $\mathfrak{r}_{\mathfrak{p}}$  such that  $S(x+\lambda u, x+\lambda u)=0$ . Put  $y=x+\lambda u$ ,  $L'=\{z \in L | S(x, z)=S(y, z)=0\}$ . Then we have  $L=\mathfrak{r}_{\mathfrak{p}}x+\mathfrak{b}y+L'$ . Applying induction to L', we get our assertion, in view of Prop. 3.

Let U(S) be the group of all K-linear automorphisms  $\sigma$  of V such that  $S(x\sigma, y\sigma) = S(x, y)$ . As in [7, 5, 18] we define genera of r-lattices in V.

**Proposition 5.** Suppose that every prime factor of 2 in F is unramified in K. Let L be a  $\mu_0$ -maximal x-lattice in V. Then the genus of L with respect to U(S) consists of all  $\mu_0$ -maximal x-lattices M such that  $\mu_0(M) = \mu_0(L)$ .

This follows directly from [7, 3, 3] and Prop. 4 by the same argument as in the proof of [7, 5, 25].

**Proposition 6.** Suppose that every prime factor of 2 in F is unramified in K. Let a be an ideal in F, and L an x-lattice in V. Suppose that  $L = \{x \in V | S(x, L) \subset ax\}$ . Then L is  $\mu_0$ -maximal, and  $\mu_0(L) = ax$ .

Our assertion is clear if n=1. Suppose that n>1. For every rlattice M in V, define  $M^*$  by  $M^*=\{x \in V | S(x, M) \subset ar\}$ . We see that  $M \subset M^*$  if and only if  $\mu_0(M) \subset ar$ . Since  $L=L^*$ , we have  $\mu_0(L) \subset ar$ . If  $M_1 \subset M_2$ , then  $M_1^* \supset M_2^*$ . Now let  $L \subset M$ ,  $\mu_0(M) \subset ar$ . Then we have  $M^* \subset L^* = L \subset M \subset M^*$ , so that L=M. This shows that L is  $\mu_0$ -maximal.

By [7, 3. 2] and by Prop. 4, we can easily find a  $\mu_0$ -maximal r-lattice L' such that  $L \subset L'$  and  $\mu_0(L') = \alpha r$ . Then the above argument shows again L = L'. This proves our proposition.

**Proposition 7.** Let  $\mathfrak{p}$  be a prime ideal in F which remains prime in K. Suppose that there exist an ideal  $\mathfrak{a}$  in  $F_{\mathfrak{p}}$  and an  $\mathfrak{r}_{\mathfrak{p}}$ -lattice L in  $V_{\mathfrak{p}}$  such that  $L = \{x \in V_{\mathfrak{p}}^* | S(x, L) \subset \mathfrak{ar}_{\mathfrak{p}}\}$ . Then the structure  $(V_{\mathfrak{p}}, S)$  is uniquely determined by  $\mathfrak{a}$ . More precisely, if n is odd and  $\mathfrak{a} = ag_{\mathfrak{p}}$ , d(S) is the class of  $(-1)^{(n-1)/2}a$  modulo  $N_{K\mathfrak{p}/F\mathfrak{p}}(K\mathfrak{p}^*)$  (cf. [7, 2.1 and 4.2]). If n is even, S is maximally isotropic in  $V_{\mathfrak{p}}$ , namely,  $V_{\mathfrak{p}}$  has the trivial kernel subspace with respect to S (cf. [7, 4.3]).

By Prop. 4, we find a Witt decomposition  $V_{\mathfrak{p}} = \sum_{i=1}^{m} (K_{\mathfrak{p}}x_i + K_{\mathfrak{p}}y_i) + W$ such that  $L = \sum_{i=1}^{m} (r_{\mathfrak{p}}x_i + by_i) + M$ ,  $M = \{u \in W | S(u, u) \in \mathfrak{a}\}$ . By our assumption on L, we have

(A.5) 
$$M = \left\{ u \in W \middle| S(u, M) \subset \mathfrak{ar}_{\mathfrak{p}} \right\}.$$

If *n* is odd, we have  $W=K_{\mathfrak{p}}z$ ,  $W=\mathfrak{r}_{\mathfrak{p}}z$  for some *z*. Hence (A.5) implies that  $\mathfrak{a}=S(z, z)\mathfrak{g}_{\mathfrak{p}}$ . Since  $\mathfrak{p}$  is unramified in *K*, every unit in  $\mathfrak{g}_{\mathfrak{p}}$  is the norm of an element of  $K_{\mathfrak{p}}$ . Therefore we get our assertion for odd *n*. Next assume that *n* is even and *W* is two-dimensional. Since  $\mu_0(M)$  $=\mu(M)\mathfrak{r}_{\mathfrak{p}}=\mathfrak{a}\mathfrak{r}_{\mathfrak{p}}$ , we find, using the argument of the proof of Prop. 3, an expression  $M=\mathfrak{r}_{\mathfrak{p}}u+\mathfrak{r}_{\mathfrak{p}}v$  with S(u,v)=0. On account of (A.5), we see that  $\mathfrak{a}=S(u, u)\mathfrak{q}_{\mathfrak{p}}=S(v, v)\mathfrak{q}_{\mathfrak{p}}$ ; hence  $S(u, u)^{-1}S(v, v)$  is a unit in  $\mathfrak{q}_{\mathfrak{p}}$ . Therefore we find an element *c* in  $K_{\mathfrak{p}}$  such that  $cc^{\rho}=-S(u, u)^{-1}S(v, v)$ . Then we get S(cu+v, cu+v)=0, which is a contradiction. Hence *S* must be maximally isotropic in  $V_{\mathfrak{p}}$ .

**Proposition 8.** Suppose that there is no or only one prime ideal in F which is ramified in K. Suppose that there exist an ideal a in F and an x-lattice L such that  $L = \{x \in V | S(x, L) \subset ax\}$ . Then the structure (V, S) is uniquely determined, up to isomorphism, by a and the signature of S at infinite prime spots of F.

Let q be a possible prime ideal in F which is ramified in K. By Prop. 7, the structure  $(V_{\mathfrak{p}}, S)$  is uniquely determined by a if  $\mathfrak{p} \neq \mathfrak{q}$ . If we assign a fixed signature to each infinite prime spot of F, then the structure  $(V_{\mathfrak{q}}, S)$  is automatically determined by virtue of the product formula of norm residue symbol. This proves our proposition.

If a prime factor of 2 in F is ramified in K, we can not apply Prop. 5. However, under a suitable condition, we may treat such a case.

12

For example, let us consider the case where F = Q, K = Q(i),  $i^2 = -1$ , n=3. Let  $\mathfrak{p}=(2)$ ,  $\mathfrak{P}=(1+i)$ , and let L be an  $\mathfrak{r}_{\mathfrak{p}}$ -lattice in  $V_{\mathfrak{p}}$  such that

(A. 6) 
$$L = \left\{ x \middle| S(x, L) \subset (2^{-1}) \right\}.$$

Assume that S is represented in  $V_p$  by the diagonal matrix with diagonal elements 1, 1, -1. Now by [7, 4.15], the following two cases may occur.

(I)  $L = r_{p}x + r_{p}y + r_{p}z$ , S(x, y) = S(y, z) = S(z, x) = 0. (II)  $L = r_{p}x + r_{p}y + r_{p}z$ , S(x, z) = S(y, z) = 0,  $S(x, x) \in \mathfrak{P}S(x, y)$ ,  $S(y, y) \in \mathfrak{P}S(x, y)$ .

Put S(x, x) = a, S(y, y) = b, S(z, z) = c, S(x, y) = d. In the case (I), by (A. 6), we have  $(a) = (b) = (c) = (2^{-1})$ . Put 2a = a', 2b = b', 2c = c'. By our assumption on S, -a'b'c' must be the norm of an element of  $K_{\mathfrak{p}}$  (cf. [7, 4. 2]). Since -1 is not a norm residue, we may assume, exchanging the order of x, y, z if necessary, that a' = b' = c' = -1 or a' = b' = 1, c' = -1. The former case can be reduced to the latter case by the transformation  $u = e^{-1}(x - (1+i)y), v = e^{-1}((1-i)x + y), w = z$ , where e is an element of  $\mathfrak{r}_{\mathfrak{p}}$  such that  $ee^{\rho} = -3$ .

In the case (II), by (A.6), we have  $(c)=(d)=(2^{-1})$ , so that  $a \in \mathfrak{g}_{\mathfrak{P}}$ ,  $b \in \mathfrak{a}_{\mathfrak{P}}$ . Hence  $dd^{\mathfrak{P}}-ab$  is the norm of an elemet of  $K_{\mathfrak{P}}$ . Therefore, by [7, 4.1], S is isotropic in  $K_{\mathfrak{P}}x+K_{\mathfrak{P}}y$ . It follows that c is the norm of an element of  $K_{\mathfrak{P}}$ , on account of our assumption on S. Hence we may assume  $\mathfrak{r}_{\mathfrak{P}}z=\mathfrak{P}^{-1}w$  with S(w,w)=1. Put  $M=\mathfrak{r}_{\mathfrak{P}}x+\mathfrak{r}_{\mathfrak{P}}y$ . Then  $\mu(M) \subset \mathfrak{g}_{\mathfrak{P}}=2\mu_0(M) \subset \mu'(M)$ , so that  $2\mu_0(M)=\mu(M)$ . Applying the argument of the proof of Prop. 6 to M, we see that M is  $\mu_0$ -maximal, so that by Prop. 1, M is maximal. By [7, 4.7], we have  $M=\mathfrak{P}^{-1}u+\mathfrak{P}^{-1}v$  with S(u,u)=S(v,v)=0, S(u,v)=1. Put r=u+w, s=v-w, t=u-v+w. Then S(r,r)=S(s,s)=1, S(t, t)=-1, S(r, s)=S(s, t)=S(t, r)=0,  $L=\mathfrak{P}^{-1}r+\mathfrak{P}^{-1}s+\mathfrak{P}^{-1}t$ . Therefore L is reduced to the case (I).

This result, combined with Prop. 4 and a localization of Prop. 6, shows that every r-lattice L in V satisfying (A. 6) belongs to one and the same genus with respect to U(S).

**OSAKA UNIVERSITY AND PRINCETON UNIVERSITY** 

#### References

- [1] A. Clebsch: Theorie der binären algebraischen Formen, Leipzig, 1872.
- [2] J. Igusa: Arithmetic variety of moduli for genus two, Ann. of Math. 72, (1960), 612-649.

## G. Shimura

- [3] E. Picard: Sur des fonctions de deux variables indépendantes analogues aux fonctions modulaires, Acta Mathematica 2 (1883), 114-135.
- [4] G. Shimura: On the theory of automorphic functions, Ann. of Math. 70 (1959), 101-144.
- [5] -------: On the zeta-functions of the algebraic curves uniformized by certain automorphic functions, J. Math. Soc. Japan 13 (1961), 275-331.
- morphic functions, Ann. of Math. 78 (1963), 149-192.
- Ann. of Math. 80 (1964), 160–189.
- [9] O. Zariski: On Castelnuovo's criterion of rationality  $p_a = P_2 = 0$  of an algebraic surface, Illinois J. Math. 2 (1958), 303-315.