

Title	Closed hypersurfaces with constant mean curvature in a symmetric manifold
Author(s)	Xu, Hongwei; Ren, Xin'an
Citation	Osaka Journal of Mathematics. 2008, 45(3), p. 747–756
Version Type	VoR
URL	https://doi.org/10.18910/4699
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

CLOSED HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN A SYMMETRIC MANIFOLD

HONGWEI XU and XIN'AN REN

(Received August 30, 2006, revised July 26, 2007)

Abstract

We prove a rigidity theorem for closed hypersurfaces with constant mean curvature in a symmetric Riemannian manifold, which is a generalization of main results in [3] and [15].

1. Introduction

It seems interesting to generalize the famous optimal rigidity theorem for minimal hypersurfaces in a sphere due to J. Simons, H.B. Lawson Jr., and S.S. Chern, M. do Carmo and S. Kobayashi to general cases (see [4], [8], [12]). Q.M. Cheng and H. Nakagawa [3], and H.W. Xu [15] proved the following optimal rigidity theorem for hypersurfaces of constant mean curvature in a sphere independently.

Theorem A ([3], [15]). *Let M^n be an n -dimensional closed hypersurface with constant mean curvature H in a unit sphere S^{n+1} . If the squared norm of the second fundamental form S satisfies*

$$S \leq \alpha(n, H),$$

then M is congruent to one of the following

- (1) *totally umbilic sphere $S^n(1/\sqrt{1+H^2})$;*
- (2) *one of the Clifford minimal hypersurface $S^k(\sqrt{k/n}) \times S^{n-k}(\sqrt{(n-k)/n})$ in $S^{n+1}(1)$, for $k = 1, 2, \dots, n-1$;*
- (3) *the isoparametric hypersurface $S^{n-1}(1/\sqrt{1+\lambda^2}) \times S^1(\lambda/\sqrt{1+\lambda^2})$ in $S^{n+1}(1)$.*

2000 Mathematics Subject Classification. Primary 53C40; Secondary 53C42.

Research supported by the NSFC, Grant No. 10771187, 10231010 and Natural Science Foundation of Zhejiang Province.

Here λ and $\alpha(n, H)$ are given by

$$\lambda = \frac{nH + \sqrt{n^2H^2 + 4(n-1)}}{2(n-1)}$$

and

$$\alpha(n, H) = n + \frac{n^3}{2(n-1)}H^2 - \frac{n(n-2)}{2(n-1)}\sqrt{n^2H^4 + 4(n-1)H^2}.$$

Motivated by Theorem A and a theorem due to G. Huisken [7], B. Andrews [2] proposed a following conjecture on mean curvature flow for closed hypersurfaces in a unit sphere.

Conjecture. *Let $M_0 = F_0(M)$ be a closed hypersurface in S^{n+1} which satisfies*

$$(1.1) \quad S < \alpha(n, H).$$

Then there exists a smooth family of hypersurfaces $\{M_t = F_t(M)\}_{0 \leq t < T}$ which satisfy (1.1) and move by mean curvature flow with initial data M_0 . Either $T < \infty$ and M_t is asymptotic to a family of geodesic spheres shrinking to their common centre, or $T = \infty$ and M_t approaches to a great sphere.

The topological sphere theorem due to K. Shiohama and H.W. Xu [11] says that any closed hypersurface in S^{n+1} which satisfies $S < \alpha(n, H)$ must be a topological sphere, which provides an positive evidence to the conjecture above. In this paper, we generalize Theorem A as follows.

Main Theorem. *Let N^{n+1} be an $(n+1)$ -dimensional simply connected symmetric Riemannian manifold with δ pinched curvature, i.e., $\delta \leq K_N \leq 1$, and M^n be a closed hypersurface with constant mean curvature H in N^{n+1} . If*

$$(S - nH^2)[\alpha(n, H) - S - 2n(1 - \delta)] - \frac{1}{2}(1 - \delta)n^{3/2}H\sqrt{S - nH^2} \geq 0,$$

then M is congruent to one of the following

- (1) *totally umbilical hypersurface;*
- (2) *one of the Clifford minimal hypersurface $S^k(\sqrt{k/n}) \times S^{n-k}(\sqrt{(n-k)/n})$ in $S^{n+1}(1)$, for $k = 1, 2, \dots, n-1$;*
- (3) *the isoparametric hypersurface $S^{n-1}(1/\sqrt{1+\lambda^2}) \times S^1(\lambda/\sqrt{1+\lambda^2})$ in $S^{n+1}(1)$.*

Here $\alpha(n, H)$, λ are defined as in Theorem A.

Consequently we have

Corollary. *Let M^n be an n -dimensional closed minimal hypersurface in N^{n+1} with curvature K_N satisfying $\delta \leq K_N \leq 1$. If the squared norm of the second fundamental form S satisfies*

$$S \leq (2\delta - 1)n,$$

then M is congruent to one of the following

- (1) *totally geodesic submanifold;*
- (2) *one of the Clifford minimal hypersurface $S^k(\sqrt{k/n}) \times S^{n-k}(\sqrt{(n-k)/n})$ in $S^{n+1}(1)$, for $k = 1, 2, \dots, n-1$.*

It should be mentioned that when M^n is a minimal hypersurface in N^{n+1} , then our pinching condition reduces to $S \leq (2\delta - 1)n$, which is weaker than the one in [5], [10] and [14].

Motivated by the main theorem, one can propose an analogue of the conjecture above for closed hypersurfaces in a symmetric Riemannian manifold with δ pinched curvature.

2. Preliminaries

Throughout this paper, let M^n be an n -dimensional closed hypersurface isometrically immersed in an $(n+1)$ -dimensional simply connected symmetric Riemannian manifold N^{n+1} . The following convention of indices are used throughout.

$$1 \leq i, j, k, \dots, \leq n,$$

$$1 \leq A, B, C, \dots, \leq n+1.$$

Choose an orthonormal frame field $\{e_A\}$ in a neighborhood of $p \in M$ such that the $\{e_i\}$ span the tangent space $T_p M$ to M at p . Let $\{\omega_A\}$ be the dual frame fields of $\{e_A\}$ and $\{\omega_{AB}\}$ be the connection 1-forms of N . Restricting these forms to M , we have

$$\omega_{n+1i} = \sum_j h_{ij} \omega_j, \quad h_{ij} = h_{ji}.$$

The curvature tensors of N , M are denoted by K_{ABCD} , R_{ijkl} respectively. The second fundamental form of M is denoted by h and the mean curvature normal field by ξ . Denote the mean curvature of M and squared norm of h by $H = \|\xi\|$ and S respectively. We have then

$$(2.1) \quad h = \sum_{i,j} h_{ij} \omega^i \otimes \omega^j \otimes e_{n+1},$$

$$(2.2) \quad \xi = \frac{1}{n} \sum_{i=1}^n h_{ii} e_{n+1},$$

$$(2.3) \quad R_{ijkl} = K_{ijkl} + h_{ik}h_{jl} - h_{il}h_{jk},$$

$$(2.4) \quad S = \sum_{i,j} (h_{ij})^2.$$

DEFINITION 2.1. M is called a hypersurface with constant mean curvature if H is constant. In particular, M is called minimal hypersurface if $H = 0$.

We denote the first and second covariant derivatives of h_{ij} by h_{ijk} and h_{ijkl} respectively, which are defined as in [4]. Following to [4] and [16], we have

$$(2.5) \quad h_{ijk} - h_{ikj} = -K_{n+1ijk},$$

and the Ricci formula

$$(2.6) \quad h_{ijkl} - h_{ijlk} = \sum_s h_{sj} R_{sikl} + \sum_s h_{is} R_{sjkl}.$$

Let $K_{n+1ijkl}$ be the covariant derivative of K_{n+1ijk} as the section of $T^\perp M \otimes T^*M \otimes T^*M \otimes T^*M$ and $K_{ABCD;E}$ the covariant derivative of K_{ABCD} as curvature tensor of N . Restricted to M we have

$$(2.7) \quad \sum_l K_{n+1ijkl} \omega_l = dK_{n+1ijk} + \sum_s K_{n+1sjk} \omega_{is} + \sum_s K_{n+1ijs} \omega_{ks},$$

and

$$(2.8) \quad K_{n+1ijk;l} = K_{n+1ijkl} - K_{n+1in+1k} h_{jl} - K_{n+1ijn+1} h_{kl} + \sum_m K_{mijk} h_{ml}.$$

DEFINITION 2.2. N is called a symmetric Riemannian manifold if for every $p \in N$ there exists an isometric $\sigma_p: N \rightarrow N$ such that $\sigma_p(p) = p$, and the differential of σ_p at p is equal to $-I_p$, where I_p is the identity transformation of $T_p N$. The Laplacian of the second fundamental form is defined by $\Delta h_{ij} = \sum_k h_{ijkk}$.

The following propositions will be used in the proof of Main Theorem.

Proposition 2.3 ([3], [15]). *If a_1, \dots, a_n are n real numbers with $\sum_{i=1}^n a_i = 0$, then*

$$\left| \sum_{i=1}^n a_i^3 \right| \leq (n-2)[n(n-1)]^{-1/2} \left(\sum_{i=1}^n a_i^2 \right)^{3/2}.$$

Moreover, the equality holds if and only if at least $n-1$ numbers of a_i 's are equal.

Proposition 2.4. *If the function $f(x_1, \dots, x_n, y_1, \dots, y_n) = \sum_{i=1}^n x_i y_i$ satisfies*

$$(2.9) \quad \sum_{i=1}^n x_i = 0, \quad \sum_{i=1}^n x_i^2 = \Lambda, \quad \delta \leq y_i \leq 1.$$

Then

$$f(x_1, \dots, x_n, y_1, \dots, y_n) \geq \frac{1}{2}(\delta - 1)(n\Lambda)^{1/2}.$$

Proof. We assume

$$x_1 \leq x_2 \leq \dots \leq x_k \leq 0 \leq x_{k+1} \leq \dots \leq x_n.$$

Thus

$$(2.10) \quad \begin{aligned} f(x_1, \dots, x_n, y_1, \dots, y_n) &= \sum_{i=1}^k x_i y_i + \sum_{i=k+1}^n x_i y_i \\ &\geq \sum_{i=1}^k x_i + \delta \sum_{i=k+1}^n x_i \\ &= (\delta - 1) \sum_{i=k+1}^n x_i. \end{aligned}$$

By (2.9) we have

$$(2.11) \quad \begin{aligned} k\Lambda &= k \sum_{i=1}^k x_i^2 + k \sum_{i=k+1}^n x_i^2 \\ &\geq \left(\sum_{i=1}^k x_i \right)^2 + \frac{k}{n-k} \left(\sum_{i=k+1}^n x_i \right)^2 \\ &= \frac{n}{n-k} \left(\sum_{i=k+1}^n x_i \right)^2. \end{aligned}$$

So by (2.11) we have

$$\left(\sum_{i=k+1}^n x_i \right)^2 \leq \frac{k(n-k)}{n} \Lambda \leq \frac{n}{4} \Lambda.$$

Thus

$$f(x_1, \dots, x_n, y_1, \dots, y_n) \geq (\delta - 1) \sum_{i=k+1}^n x_i \geq \frac{1}{2}(\delta - 1)(n\Lambda)^{1/2}.$$

This proves Proposition 2.4. \square

From (2.5) and (2.6),

$$(2.12) \quad \Delta h_{ij} = - \sum_k (K_{n+1}k_{ikl} + K_{n+1}k_{jkk}) + \sum_{k,m} (h_{mk} R_{mijk} + h_{im} R_{mkjk}).$$

Since N is a symmetric manifold, N is complete and locally symmetric. Thus

$$K_{ABCD;E} \equiv 0$$

for all A, B, C, D, E . This together with (2.3), (2.8) and (2.12) implies

$$(2.13) \quad \frac{1}{2} \Delta S = \sum_{i,j,k} (h_{ijk})^2 + \sum_{i,j} h_{ij} \Delta h_{ij} = X + Y + Z,$$

where

$$\begin{aligned} X &= nH \operatorname{tr} H_{n+1}^3 - (\operatorname{tr} H_{n+1}^2)^2, \\ Y &= 2 \sum_{m,k,i,j} (h_{mj} h_{ij} K_{mki} + h_{mk} h_{ij} K_{mijk}) + \sum_{i,j,k} (h_{ijk})^2, \\ Z &= - \sum_{i,j,k} (K_{n+1}k_{n+1}k_{ij} h_{ij} h_{ij} + K_{n+1}k_{n+1}k_{ij} h_{kj} h_{ij} + K_{n+1}k_{n+1}k_{ij} h_{jk} h_{ij} + K_{n+1}k_{n+1}k_{ij} h_{kk} h_{ij}). \end{aligned}$$

3. Proof of Main Theorem

The following lemmas are useful in the proof of the main theorem.

Lemma 3.1. $X \geq (S - nH^2)[2nH^2 - S - (n(n-2)/\sqrt{n(n-1)})H(S - nH^2)^{1/2}]$.

Proof. Let $\{e_i\}$ be an orthonormal frame at a point on M such that the matrix $H_{n+1} = (h_{ij})_{n \times n}$ takes the diagonal form and such that $h_{ij} = \lambda_i \delta_{ij}$ for all i, j . Set

$$\begin{aligned} f_k &= \sum_{i=1}^n (\lambda_i)^k, \\ B_k &= \sum_{i=1}^n (\mu_i)^k, \\ \mu_i &= H - \lambda_i. \end{aligned}$$

Then we have

$$(3.1) \quad B_1 = 0, \quad B_2 = S - nH^2,$$

and

$$(3.2) \quad B_3 = 3HS - 2nH^3 - f_3.$$

From (3.1), (3.2) and Proposition 2.3, we get

$$\begin{aligned} X &= nHf_3 - S^2 \\ &\geq nH \left[3HS - 2nH^3 - \frac{n-2}{\sqrt{n(n-1)}} B_2^{3/2} \right] - S^2 \\ &\geq (S - nH^2) \left[2nH^2 - S - \frac{n(n-2)}{\sqrt{n(n-1)}} H(S - nH^2)^{1/2} \right]. \end{aligned}$$

This proves Lemma 3.1. \square

Lemma 3.2. $Y \geq 2\delta n(S - nH^2)$.

Proof. It follows that

$$\begin{aligned} Y &= 2 \sum_{i,k} [K_{ikik}(h_{ii})^2 + K_{kiih}h_{kk}h_{ii}] \\ &= \sum_{i,k} K_{ikik}(\lambda_i - \lambda_k)^2 \\ &\geq \delta \sum_{i,k} (\lambda_i - \lambda_k)^2 \\ &= 2n\delta(S - nH^2). \end{aligned}$$

This proves Lemma 3.2. \square

Lemma 3.3. $Z \geq -n(S - nH^2) - (1/2)(1 - \delta)n^{3/2}H\sqrt{S - nH^2}$.

Proof.

$$\begin{aligned} (3.3) \quad Z &= - \sum_{k,i} K_{n+1kn+1k}(\lambda_i)^2 + \sum_{k,i} K_{n+1kn+1k}\lambda_k\lambda_i \\ &\geq -nS + nH \sum_k K_{n+1kn+1k}\lambda_k \\ &= -n(S - nH^2) + nH \sum_k K_{n+1kn+1k}\mu_k, \end{aligned}$$

where we set $\mu_k = \lambda_k - H$. Since $\sum_k \mu_k = 0$, $\sum_k \mu_k^2 = S - nH^2$ and $\delta \leq K_{n+1kn+1k} \leq 1$, by Proposition 2.4, we have

$$(3.4) \quad Z \geq -n(S - nH^2) - \frac{1}{2}(1 - \delta)n^{3/2}H\sqrt{S - nH^2}.$$

This proves Lemma 3.3. \square

Proof of Main Theorem. If $S = nH^2$, then $\lambda_i = H$ for $i = 1, 2, \dots, n$, which means that M is a totally umbilic submanifold.

If $S \neq nH^2$, then $S > nH^2$. By the assumption that

$$(S - nH^2)[\alpha(n, H) - S - 2n(1 - \delta)] - \frac{1}{2}(1 - \delta)n^{3/2}H\sqrt{S - nH^2} \geq 0,$$

we get

$$S \leq \alpha(n, H) - 2n(1 - \delta) \leq \alpha(n, H).$$

Combining this with Lemmas 3.1, 3.2 and 3.3, we have

$$\begin{aligned} \frac{1}{2}\Delta S &\geq (S - nH^2) \left[-n + 2n\delta + 2nH^2 - S - \frac{n(n-2)}{\sqrt{n(n-1)}}H(S - nH^2)^{1/2} \right] \\ &\quad - \frac{1}{2}(1 - \delta)n^{3/2}H\sqrt{S - nH^2} \\ &\geq (S - nH^2) \left[n + 2nH^2 - \alpha(n, H) - \frac{n(n-2)}{\sqrt{n(n-1)}}H(\alpha(n, H) - nH^2)^{1/2} \right. \\ &\quad \left. + \alpha(n, H) - S - 2n(1 - \delta) \right] - \frac{1}{2}(1 - \delta)n^{3/2}H\sqrt{S - nH^2} \\ &= (S - nH^2)[\alpha(n, H) - S - 2n(1 - \delta)] - \frac{1}{2}(1 - \delta)n^{3/2}H\sqrt{S - nH^2}. \end{aligned}$$

By the assumption and Hopf's maximum principle, we see that S must be a constant. This implies that the inequalities in (3.3) and (3.4) become equalities. Since $S > nH^2 \geq 0$, it follows from (3.3) that $K_{n+1n+1k} = 1$ for all $k = 1, \dots, n$. On the other hand, it follows from $S > nH^2$ and $\sum_k \mu_k = 0$ that there exist k and l such that $\mu_k < 0$ and $\mu_l > 0$, where $1 \leq k < l \leq n$. By (3.4) and Proposition 2.4, we have $K_{n+1l n+1l} = \delta$ for some l . Therefore

$$\delta = 1 \quad \text{and} \quad (S - nH^2)[S - \alpha(n, H)] = 0,$$

which implies that $S = \alpha(n, H)$ and N is isometric to a unit sphere. It follows from Theorem A that M must be congruent to either

- (i) one of the Clifford minimal hypersurfaces $S^k(\sqrt{k/n}) \times S^{n-k}(\sqrt{(n-k)/n})$ in $S^{n+1}(1)$, for $k = 1, 2, \dots, n-1$; or
- (ii) the isoparametric hypersurface $S^{n-1}(1/\sqrt{1+\lambda^2}) \times S^1(\lambda/\sqrt{1+\lambda^2})$ in $S^{n+1}(1)$, where λ is given by

$$\lambda = \frac{nH + \sqrt{n^2H^2 + 4(n-1)}}{2(n-1)}.$$

This proves the theorem. □

ACKNOWLEDGEMENTS. We would like to thank the referee for his/her valuable comments and suggestions.

References

- [1] H. Alencar and M. do Carmo: *Hypersurfaces with constant mean curvature in spheres*, Proc. Amer. Math. Soc. **120** (1994), 1223–1229.
- [2] B. Andrews: *Positively curved surfaces in the three-sphere*; in Proceedings of the International Congress of Mathematicians, II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 221–230.
- [3] Q.M. Cheng and H. Nakagawa: *Totally umbilic hypersurfaces*, Hiroshima Math. J. **20** (1990), 1–10.
- [4] S.S. Chern, M. do Carmo and S. Kobayashi: *Minimal submanifolds of a sphere with second fundamental form of constant length*; in Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968), Springer, New York, 1970, 59–75.
- [5] F. Fontenele: *Submanifolds with parallel mean curvature vector in pinched Riemannian manifolds*, Pacific J. Math. **177** (1997), 47–70.
- [6] H. Gauchman: *Minimal submanifolds of a sphere with bounded second fundamental form*, Trans. Amer. Math. Soc. **298** (1986), 779–791.
- [7] G. Huisken: *Deforming hypersurfaces of the sphere by their mean curvature*, Math. Z. **195** (1987), 205–219.
- [8] H.B. Lawson, Jr.: *Local rigidity theorems for minimal hypersurfaces*, Ann. of Math. (2) **89** (1969), 187–197.
- [9] A.-M. Li and J.-M. Li: *An intrinsic rigidity theorem for minimal submanifolds in a sphere*, Arch. Math. (Basel) **58** (1992), 582–594.
- [10] K. Shiohama and H.-W. Xu: *A general rigidity theorem for complete submanifolds*, Nagoya Math. J. **150** (1998), 105–134.
- [11] K. Shiohama and H.-W. Xu: *The topological sphere theorem for complete submanifolds*, Compositio Math. **107** (1997), 221–232.
- [12] J. Simons: *Minimal varieties in riemannian manifolds*, Ann. of Math. (2) **88** (1968), 62–105.
- [13] H.-W. Xu: *A rigidity theorem for submanifolds with parallel mean curvature in a sphere*, Arch. Math. (Basel) **61** (1993), 489–496.
- [14] H.-W. Xu: *On closed minimal submanifolds in pinched Riemannian manifolds*, Trans. Amer. Math. Soc. **347** (1995), 1743–1751.
- [15] H.-W. Xu: *Pinching theorems, global pinching theorems, and eigenvalues for Riemannian submanifolds*, Ph.D. dissertation, Fudan University, 1990.
- [16] S.T. Yau: *Submanifolds with constant mean curvature*, I, II, Amer. J. Math. **96** (1974), 346–366, **97** (1975), 76–100.

Hongwei Xu
Center of Mathematical Sciences
Zhejiang University
Hangzhou, 310027
P.R. China
e-mail: xuhw@cms.zju.edu.cn

Xin'an Ren
Institute of Applied Mathematics
AMSS, CAS
Beijing, 100080
P.R. China
e-mail: xyrxali@sohu.com

Current address:
Department of Mathematics
China University of Mining and Technology
Xuzhou, 221116
P.R. China