

Title	A Study on Configuration and Control of Distributed Flexible Network Photovoltaic Power Generation System
Author(s)	Mohamed, Dakkak
Citation	大阪大学, 2006, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/46990
rights	
Note	著者からインターネット公開の許諾が得られていないため、論文の要旨のみを公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

氏名	モハメド ダカック MOHAMED DAKKAK
博士の専攻分野の名称	博士(工学)
学位記番号	第 20346 号
学位授与年月日	平成 18 年 3 月 24 日
学位授与の要件	学位規則第 4 条第 1 項該当 工学研究科電気工学専攻
学位論文名	A Study on Configuration and Control of Distributed Flexible Network Photovoltaic Power Generation System (電力融通型太陽光発電システムの構成と制御に関する研究)
論文審査委員	(主査) 教授 伊瀬 敏史 (副査) 教授 熊谷 貞俊 教授 辻 豊一郎 教授 伊藤 利道 教授 杉野 隆 教授 佐々木孝友 教授 河崎善一郎 教授 西村 博明 教授 中塚 正大 教授 斗内 政吉

論文内容の要旨

This thesis presented a research study on configuration and control of the distributed flexible network photovoltaic (DFNPV) power generation system. The DFNPV system is a local power system for remote areas and islands, in which many subsystems such as houses composed of photovoltaic (PV) generation and loads are connected by network and share a common battery bank. This system improves the performance of such stand-alone systems, reduces the wasted power, and increases the utilization factor of PV power generated.

The thesis was organized in six chapters as follows :

The chapter 1 was an introduction to the subject. It included the research background and stand-alone PV power system problems, description of the necessity of the research to overcome the problems of stand-alone systems and summary of the main objectives of this thesis.

In chapter 2, the concept and benefits of the DFNPV system over stand-alone PV systems, and the power management schemes of the DFNPV system were presented. In addition, estimating the size of the DFNPV system within acceptable voltage drop, and the results of power losses and the cost of cables in relation to distance between subsystems were discussed. The economic feasibility of life cycle cost (LCC) for the DFNPV system was compared to the cost of the stand-alone PV system.

In chapter 3, several network configurations of the DFNPV system were presented. Configurations of the DFNPV system were classified as star, loop and mesh configurations. Moreover, a comparative study among them was carried out and the best configuration was examined from the viewpoints of wire cost, power losses in wires and future cost of system expansion. Process to find the best configuration of network that minimizes the extension cost and the power losses cost was introduced. Procedure to optimize optimal placement of the common battery bank from the viewpoints of the cost of power losses, extension cost and length of wires were also discussed.

In chapter 4, two-control schemes for the DFNPV system were introduced. The first control method consisted

of two series converters in each subsystem by using constant voltage control and maximum power point tracking control. The control processes of battery were included to protect the battery against over discharge and overcharge. The second control method used one converter for each subsystem to reduce converter losses in subsystem. Either the MPPT control or constant voltage control was applied in each subsystem depending on the situation of the system.

In chapter 5, the simulation model of the DFNPV system was described. All components of the DFNPV system for two control schemes were tested under various conditions of generated power, load demand and battery state in order to evaluate the accuracy of the models with its control method.

Comparison of simulation results was made between the DFNPV system and the stand-alone system to verify the effectiveness of the DFNPV system. The control models of the DFNPV system was developed and built in power electronic circuit simulator PSIM. The control techniques were simulated and the performance was demonstrated. The results showed significant impacts of the DFNPV system over stand-alone system.

Finally, chapter 6 summarized the research outcomes of this thesis. Topics for further research were also outlined.

論文審査の結果の要旨

地球環境およびエネルギー資源問題により太陽光電池を用いた太陽光発電の導入が各方面で進められている。本研究は電力系統が整備されていない未電化地域の電源に太陽光発電を適用する場合の一手法について詳細に検討した結果を示している。すなわち、未電化の村落において各住居に太陽光発電と二次電池を設置するのではなく、各住居に設置された太陽光発電をネットワーク的に接続してお互いに電力融通を行うと同時に二次電池をも共有するシステム (Distributed Flexible Network Photovoltaic Power Generation System ; 以下 DFNPV システムと略記する) について、その優位性、ネットワーク構成と二次電池の配置、およびシステムの制御方式について詳細に検討を行い、シミュレーションにより制御特性を検証している。得られた結果は以下のとおりである。

- (1) 負荷機器の電圧を考慮して DFNPV システムのネットワークを 48 V の直流で構成するとして、ネットワークを構成する電線の長さ、電線の直径、電線コストを評価すると同時に、DFNPV システムが各住居に太陽光発電と二次電池を設置するスタンドアローンシステムに対してコスト的に有利となるような条件を明らかにしている。
- (2) DFNPV システムの各住居で共有する二次電池の最適な配置場所について、1) 電線の電力損失を最小化する場合、2) 電線の電力損失とネットワークを構成する機器のコストの総和を最小化する場合、それぞれについて最適化計算により示している。
- (3) DFNPV システムの構成として、星型構成、ループ型構成およびメッシュ型構成を検討し、電線コスト、電線の電力損失、将来のネットワークの拡張にかかるコストなどの観点から比較をし、住居数が十数戸以下の小規模のシステムにおいては星型構成がコスト的に有利であるが、それ以上の規模のシステムではループ型構成がコスト的に有利であることを示している。
- (4) DFNPV システムの制御方式として各住居の太陽電池に最大出力制御を行う DC/DC コンバータとネットワークの電圧制御を行う DC/DC コンバータの 2つを同時に設置する手法と、各住居の太陽電池に 1 つの DC/DC コンバータを設置して本陽電池の出力電力、負荷電力および二次電池の充電状態に応じて DC/DC コンバータの運転モードを最大出力制御とネットワークの電圧制御で使い分ける手法を検討している。
- (5) 検討した各制御手法についてその特性をシミュレーションにより検証している。

以上のように、本論文は DFNPV システムについて初めてその概念を詳細に検討し二次電池の配置を含むネットワーク構成およびシステムの制御方式について示したものであり、この分野の技術の発展、地球環境およびエネルギー資源の問題の解決に寄与するところが大きい。

よって本論文は博士論文として価値あるものと認める。