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1. Introduction

Let ¢ be a natural number and  an integer primecto . The clas8ieaekind
sum

wa5(() ()

with

i ., . .
(x)) = {x —[«] — > if x is not an integer;
if x is an integer,
describes the behaviour of the logarithm of eta-function [([d) under modular trans-

formations. B.C. Berndt [3] gave an analogous transfomnaformula for the loga-
rithm of the classical theta-function

+0oo

0(z) = Z exp(rin?z), Imz > 0.

n=—oo

PutVz =@z +b )z +d) witha ,b ,c ,d € Z, ¢ > 0, andad — bc = 1. Then

2 logf(Vz) =logé(z) + 1 log(cz +d)— }77[ + }m'Sl(d, o),
2 4 4
where
c—1
Su(d. €)=Y _(~1y* s,
j=1

The sumsSi(d, ¢) (and certain related ones) are sometimes called Hardys.stiley
are closely connected with Dedekind sums (cf., e.g., LemmaSBme arithmetical
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properties ofSi(d, ¢) can be found in R. Sitaramachandraro [10]. In [13], thehaut
studied the & -th power mean 6i(d, ¢), and proved that the asymptotic formula

1

—_ 2m _  2m §2(2m) (l - 1/4’”) 2m—1 6 In p
1|Sl(h,p)| =p @) (17 147 +O(p exp(lnln;a))

<

=
1

holds for all odd primep and positive integer , whef§) is the Riemann zeta-
function and expf ) =” . In this paper, we shall study the distibn problem of the
hybrid mean value involvingsi(d, ¢) and Ramanujan’s sum

R.(d) = zpj’e (%)

bh=1

wheree () = e, 3", denotes the summation over @&l  such thato( ) = 1. In
fact, we use the estimates for character sums and the mea@ tredorem of Dirichlet
L-functions to obtain an interesting hybrid mean value fdamavolving Si1(d, ¢) and
R.(d). That is, we shall prove the following:

Theorem. Let ¢ > 3 be an odd number. Then we have the asymptotic formula

c

! 1 1 +e
> Re(2h +1)81(2h, ¢) = %) [ | (1 + ;> 11 (1 + m) +0 (),

h=1 ple plle

where ¢ be any fixed positive numhe#(d) be the Euler function and] . denotes

the product over prime divisop af such that| ¢ and p? { c.

plle

From this Theorem we may immediately deduce the following:

Corollary. If ¢ > 3 be a square-full odd numbgethen we have

c

Z’ R.(2h +1)S1(2h, ¢) = ¢*(c) H (1 + %) +0 ().

h=1 ple
2. Some Lemmas

To complete the proof of Theorem, we need the following Lemma

Lemma 1. Let integerq > 3 and (%, ¢) = 1. Then we have the identity

2
S0na)= =Y S > AL P,

dlq x modd
x(—1)=—1
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where x denotes a Dirichlet character modulé  with(—1) = —1, and L(s, x) de-
notes the DirichletZ -function corresponding fa

Proof (see reference [11]). O
Lemma 2. Let integerg > 2 and (4, ¢) = 1. Then we have the identity
Si(h.q)=—8S(h +q.29)+ 45 (. q )

Proof. This formula is an immediate consequence of (5.9) @nd0) in [10].
O

Lemma 3. Let y be a character modulg, generated by the primitive character
xm Modulom . Then we have the identity

7(X) = Xm (1) % (%) 7(Xm)

m
where ;(n) be the Modbius function.

Proof (see Lemma 1.3 of reference [2]). ]

Lemma 4. Letg andr be integers witly > 2 and (r, g) = 1, x be a Dirichlet
character modulagy . Then we have the identities

S x= > w(d) e

x modg dl(g,r=1)
and
Ha)=d u@e (3).
dlq
where 3-0 4, denotes the summation over all primitive characters modyland

J(q) denotes the number of primitive characters modaglo

Proof. From the properties of characters we know that for @mgractery mod-
ulo ¢, there exists one and only o@e| ¢ and primitive charactey; modulod such
that x = xjx9, wherex) denotes the principal character modylo . So we have

Y =Y 8= Y ).

x modgq d|gx modd d|gx modd
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Combining this formula and Mobius inversion, and noting ientity

Z () = {(b(q), if r E.l (modgq );

o, otherwise,
x modgq

we have
S ua) Y x= Y (%)@
X modg d|q x mod @ /d) d|(g.r—1)
Taking r =1, we immediately get

Ja) =Y e (4).

dlg

This proves Lemma 4. O

Lemma 5. Letg > 1 be an odd number anh, ¢) = 1. Then we have

16 d? ne

— =Y Y xMIL@ P i 2]k
S1(h, q) = ™4 dlgq ¢(d) x modd
x(=1)=-1

0, if 24h ,

where x9 denotes the principal charactemodd.

Proof. Note thatd_,,, f(d) = > ,, f(d)+>_,, f(2d). So from Lemma 1 and
Lemma 2 we get

S1(h, q) = —SS(h +q, 2[1)+45‘(h,q)

= Z¢() > X+ q)IL(L X))

d|2q x modd
x(—1)=-1

A S I P
m2q 4= 0(d) ' '

x modd
x(—1)=-1

@) : Z(Z‘” S X+ gL P

(2 ) x mod 2
x(—=1)=-1
It is clear that 2 has only one principal characig; so for any odd numbeg , from
(3) we obtain

Si(h. q) = dzl: o@D de X(h+q)x3(h + q)|L(L, XX
q X mo
A-D)=1
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16 d? .
>~ > xMILEL P i 2]h;

)
={ maoEod) o,
x(=1)=—-1
0, if2¢h.

This completes the proof of Lemma 5. U

Lemma 6. Let ¢ be any integer withy > 3. Then for any integek | ¢ with
k > 2, we have the asymptotic formula

> @ adE= T J(k)H( )+0(cf)

x modk pla
x(—1)=-1

Wherex‘q) be the principal character.

Proof. First for any parametey < N < ¢? and any non-principal character
modulo k , applying Abel’s identity (see reference [1]) we &av

> n 0 n n n A
4) L(1, XXS):Z% = Z x( )X!]( ) /N O, XXq)

n
n=1 1<n<N y

where A §, XXS) = ZN<n<y X(n)xq(n) Applying Polya-Vinogradov inequality we
have

AG. 0= D0 x)x3m)| = D ud)x@ D x(n)
N<n<y dlq N/d<n<y/d
< (Z |M(d)|>\//? Ink < 2°DVk Ink < k3¢,
dlq

wherew(g) denotes the number of all different prime divisorsqof . mrthis estimate
and (4) we get

0 €
LA xx)= ) 7X(n)xq(n)+0(kl/zq )

n N
1<n<N

and

5 X(m)x0(n) |*

ST @)= 3 .

x mod k x modk
x(—1)=-1 x(—=1)=-1

1<n<N
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kY2q¢ x(n)xg(n) k%q*
+0 > X ol
x modk '1<n<N
x(=1)=-1

5) _ Z > X(n)xq(n)
x modk
x(=1)=-1

k3/2qe
N .

Note that for ¢, k ) =1, from Lemma 4 we have

n
1<n<N

S x@=3 Y - (D@
X%—ni;):d—kl x modk

=2 @5 Y wa)

x modk x mod k
1 k 1 k
=5 d>oon (;) o) = 5 Do (;) o(u).
u|(k,a—1) u|(k,a+1)

So that we have

Z* Z X(n)xq(n)

x modk '1<n<N "
x(=1)=-1
0
Xq(mn) = _
> > po— > x(m)x(n)
1<m<N 1<n<N x modk

x(—1)=-1
0
X (mn) k
D D) S (—) ¢(u)
mn u
1<m<N 1<n<N u|(k,m—n)

Sy y s (e

1<m<N 1<n<N u|(k,m+n)

1,
=57 > _+0 OB (hu+n)

l<n<N ulk 1<n<N 1<h<N/u
(g1 ()1

P(u)
*o Z¢(H)Z n(u n) *o Z Z Z (huu—n)

ulk 1<n<u ulk ]i<n)<N 1+(n/u)<h<N/u
q
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1 1
= EJ(k)g(z)H (1 — ?> +0 (Z @ In2 N)

rla ulk

© = L0 (1-5) 0w,

rla

where ((n) be the Riemann zeta-function ag@) = 72/6.
Taking N =42, combining (4), (5) and (6) we may immediately obtain thenagy
totic formula

S L 0P = J(k)H(l——)w(qE)

X modk pla
x(—1)=-1

This completes the proof of Lemma 6. U

3. Proof of the Theorem

In this section, we complete the proof of Theorem. First foy arimitive charac-
ter x,, modulom , from the properties of Gauss sums we have

T(X,,,)T(%) =—m if X(—l) =_1

and for any odd number and | ¢ with any charactery modulod , note that

S @R @+ =TS v@n e (M)
h=1 b=1 h=1

™) = 37 XN (” ) 3 x(h)xp(h)e( ) = @O0,
=1

h=1

From (7), Lemma 3 and Lemma 5 we have

S Su(2h, ¢)R.(2h +1)
h=1

2 ‘ ’
_771_22 > % 3 (Z Y(2h)R.(2h + 1)) IL(L xxD)?
dlc

x modd h=1
x(—=1)=-1

ch Z @ > T CAILEL XD
x modd

x(=1)=-1
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7T2C Z o(d) Z > RO AL G

m|d x modm
x(=1)=—-1

—16
= 7T2c Z (b(d) Z Z

m|d x modm
x(=1)=-1

®) - WZCZ o(d )Z Z ’ ( )’ (%) L oGl

m|d x modm
x(—1)=—1

()] 12 (£) r@roolLa vdo?

Let ¢ = uv, where §,v) = 1,u be a square-full number or =1, be a square-
free number. Now for anyn | ¢ and x modulom , it is clear thaty(c/m) = O, if
(¢/m,m) > 1. x(c/m)u(c/m) # 0 if and only if m =ur, wherer | v. From these
properties, (8) and Lemma 6 we have

c

S Ro(2h +1)54(2h, q)

h=1
= chzd )zl:? Zj ’ ( )’ (%) IL(L, xx3)I?
m|d x modm
x(=1)=-1

= 7T12€Z Z o(ud )Z Z mu|L(1, Xszl)|2

m|dx modum
x(—1)=—1

16u? *
= 7T2U¢(u) Z (b(d) Zm Z |L(l’ XX(Z)M[[)|2

m|d x modum

x(—1)=-1
Z Z 7T—ZJ(um) 11 (1— i) + 0 ((ud)°)
7T2v¢(u) ¢(d) 12 o 2
_ 16u2J (1) m ( - _) ”
12v¢(u)z¢()%:; 7 ),,EL 1-25) o)
= M2¢2(u)} ( _ _) _ ( _ _) mJ(m 1+e
uqﬁ(u)vg ! p2? dzlv:(b(d)g 1 2 % J( )+0(c )
:¢2(”)H (14‘%) %Zdn (l+%> L+p(p—2)+0 (cl+e)
plu dlv  pld

:¢2(M)H(1+%> .%H(l+(p+l)(p—l)2)+0(cl+e)

plu plv
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= 2u) | (1%) 1 (1m> £ 0 ()

plou Pl
1 1 +e
=¢2(c>£[(1+;)pr[(1+(p+1)(p_1)2)+o(c1 )

where we have used the identity u ( )@ (u)/u, if u be a square-full number. This
completes the proof of Theorem.
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