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1. Introduction

Let be a natural number and an integer prime to . The classicalDedekind
sum

(1) ( ) =
∑

=1

(( ))(( ))

with

(( )) =

{
− [ ] − 1

2
if is not an integer;

0 if is an integer,

describes the behaviour of the logarithm of eta-function (cf. [7]) under modular trans-
formations. B.C. Berndt [3] gave an analogous transformation formula for the loga-
rithm of the classical theta-function

θ( ) =
+∞∑

=−∞

exp(π 2 ) Im > 0

Put = ( + )( + ) with , , , ∈ , > 0, and − = 1. Then

(2) logθ( ) = logθ( ) +
1
2

log( + )− 1
4
π +

1
4
π 1( )

where

1( ) =
−1∑

=1

(−1) +1+[ / ]

The sums 1( ) (and certain related ones) are sometimes called Hardy sums. They
are closely connected with Dedekind sums (cf., e.g., Lemma 2). Some arithmetical
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properties of 1( ) can be found in R. Sitaramachandraro [10]. In [13], the author
studied the 2 -th power mean of1( ), and proved that the asymptotic formula

−1∑

=1

| 1( )|2 = 2 ζ2(2 )
(
1− 1/4

)

ζ(4 )
(
1 + 1/4

) +

(
2 −1 exp

(
6 ln
ln ln

))

holds for all odd prime and positive integer , whereζ( ) is the Riemann zeta-
function and exp( ) = . In this paper, we shall study the distribution problem of the
hybrid mean value involving 1( ) and Ramanujan’s sum

( ) =
∑′

=1

( )

where ( ) = 2π ,
∑′ denotes the summation over all such that ( ) = 1. In

fact, we use the estimates for character sums and the mean value theorem of Dirichlet
-functions to obtain an interesting hybrid mean value formula involving 1( ) and
( ). That is, we shall prove the following:

Theorem. Let ≥ 3 be an odd number. Then we have the asymptotic formula

∑′

=1

(2 + 1) 1(2 ) = φ2( )
∏

|

(
1 +

1
)∏

‖

(
1 +

1
( + 1)( − 1)2

)
+

(
1+ǫ
)

where ǫ be any fixed positive number, φ( ) be the Euler function and
∏

‖ denotes

the product over prime divisor of such that| and 2 ∤ .

From this Theorem we may immediately deduce the following:

Corollary. If ≥ 3 be a square-full odd number, then we have

∑′

=1

(2 + 1) 1(2 ) = φ2( )
∏

|

(
1 +

1
)

+
( 1+ǫ)

2. Some Lemmas

To complete the proof of Theorem, we need the following Lemmas.

Lemma 1. Let integer ≥ 3 and ( ) = 1. Then we have the identity

( ) =
1
π2

∑

|

2

φ( )

∑

χ mod
χ(−1)=−1

χ( ) | (1 χ)|2 ,
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where χ denotes a Dirichlet character modulo withχ(−1) = −1, and ( χ) de-
notes the Dirichlet -function corresponding toχ.

Proof (see reference [11]).

Lemma 2. Let integer ≥ 2 and ( ) = 1. Then we have the identity

1( ) = −8 ( + 2 ) + 4 ( )

Proof. This formula is an immediate consequence of (5.9) and(5.10) in [10].

Lemma 3. Let χ be a character modulo , generated by the primitive character
χ modulo . Then we have the identity

τ (χ) = χ
( )

µ
( )

τ (χ )

whereµ( ) be the Möbius function.

Proof (see Lemma 1.3 of reference [2]).

Lemma 4. Let and be integers with ≥ 2 and ( ) = 1, χ be a Dirichlet
character modulo . Then we have the identities

∑∗

χ mod

χ( ) =
∑

|( −1)

µ
( )

φ( )

and

( ) =
∑

|

µ( )φ
( )

where
∑∗

χ mod denotes the summation over all primitive characters modulo, and
( ) denotes the number of primitive characters modulo .

Proof. From the properties of characters we know that for anycharacterχ mod-
ulo , there exists one and only one| and primitive characterχ∗ modulo such
that χ = χ∗χ0, whereχ0 denotes the principal character modulo . So we have

∑

χ mod

χ( ) =
∑

|

∑∗

χ mod

χ( )χ0( ) =
∑

|

∑∗

χ mod

χ( )
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Combining this formula and Möbius inversion, and noting the identity

∑

χ mod

χ( ) =

{
φ( ) if ≡ 1 (mod );
0 otherwise,

we have
∑∗

χ mod

χ( ) =
∑

|

µ( )
∑

χ mod ( / )

χ( ) =
∑

|( −1)

µ
( )

φ( )

Taking = 1, we immediately get

( ) =
∑

|

µ( )φ
( )

This proves Lemma 4.

Lemma 5. Let > 1 be an odd number and( ) = 1. Then we have

1( ) =





− 16
π2

∑

|

2

φ( )

∑

χ mod
χ(−1)=−1

χ( )| (1 χχ0
2)|2 if 2 | ;

0 if 2 ∤ ,

whereχ0 denotes the principal charactermod .

Proof. Note that
∑

|2 ( ) =
∑

| ( ) +
∑

| (2 ). So from Lemma 1 and
Lemma 2 we get

1( ) = −8 ( + 2 ) + 4 ( )

= − 4
π2

∑

|2

2

φ( )

∑

χ mod
χ(−1)=−1

χ( + )| (1 χ)|2

+
4
π2

∑

|

2

φ( )

∑

χ mod
χ(−1)=−1

χ( )| (1 χ)|2

= − 4
π2

∑

|

(2 )2

φ(2 )

∑

χ mod 2
χ(−1)=−1

χ( + )| (1 χ)|2(3)

It is clear that 2 has only one principal characterχ0
2, so for any odd number , from

(3) we obtain

1( ) = − 16
π2

∑

|

2

φ( )

∑

χ mod
χ(−1)=−1

χ( + )χ0
2( + )| (1 χχ0

2)|2
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=





− 16
π2

∑

|

2

φ( )

∑

χ mod
χ(−1)=−1

χ( )| (1 χχ0
2)|2 if 2 | ;

0 if 2 ∤ .

This completes the proof of Lemma 5.

Lemma 6. Let be any integer with ≥ 3. Then for any integer | with
≥ 2, we have the asymptotic formula

∑∗

χ mod
χ(−1)=−1

| (1 χχ0)|2 =
π2

12
( )
∏

|

(
1− 1

2

)
+ ( ǫ)

whereχ0 be the principal character.

Proof. First for any parameter ≤ ≤ 2 and any non-principal characterχ
modulo , applying Abel’s identity (see reference [1]) we have

(4) (1 χχ0) =
∞∑

=1

χ( )χ0( )
=
∑

1≤ ≤

χ( )χ0( )
+
∫ ∞ ( χχ0)

2

where ( χχ0) =
∑

< ≤ χ( )χ0( ). Applying Pólya-Vinogradov inequality we
have

| ( χχ0)| =

∣∣∣∣
∑

< ≤

χ( )χ0( )

∣∣∣∣ =

∣∣∣∣
∑

|

µ( )χ( )
∑

/ < ≤ /

χ( )

∣∣∣∣

≪
(∑

|

|µ( )|
)√

ln ≪ 2ω( )
√

ln ≪ 1/2 ǫ

whereω( ) denotes the number of all different prime divisors of . From this estimate
and (4) we get

(1 χχ0) =
∑

1≤ ≤

χ( )χ0( )
+

( 1/2 ǫ
)

and

∑∗

χ mod
χ(−1)=−1

∣∣ (1 χχ0)
∣∣2 =

∑∗

χ mod
χ(−1)=−1

∣∣∣∣
∑

1≤ ≤

χ( )χ0( )
∣∣∣∣
2
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+




1/2 ǫ ∑∗

χ mod
χ(−1)=−1

∣∣∣∣
∑

1≤ ≤

χ( )χ0( )
∣∣∣∣


 +

( 2 ǫ

2

)

=
∑∗

χ mod
χ(−1)=−1

∣∣∣∣
∑

1≤ ≤

χ( )χ0( )
∣∣∣∣
2

+

( 3/2 ǫ
)

(5)

Note that for ( ) = 1, from Lemma 4 we have

∑∗

χ mod
χ(−1)=−1

χ( ) =
1
2

∑∗

χ mod

(1− χ(−1))χ( )

=
1
2

∑∗

χ mod

χ( ) − 1
2

∑∗

χ mod

χ(− )

=
1
2

∑

|( −1)

µ

( )
φ( ) − 1

2

∑

|( +1)

µ

( )
φ( )

So that we have

∑∗

χ mod
χ(−1)=−1

∣∣∣∣
∑

1≤ ≤

χ( )χ0( )
∣∣∣∣
2

=
∑

1≤ ≤

∑

1≤ ≤

χ0( ) ∑∗

χ mod
χ(−1)=−1

χ( )χ( )

=
1
2

∑

1≤ ≤

∑

1≤ ≤

χ0( ) ∑

|( − )

µ

( )
φ( )

− 1
2

∑

1≤ ≤

∑

1≤ ≤

χ0( ) ∑

|( + )

µ

( )
φ( )

=
1
2

( )
∑

1≤ ≤
( )=1

1
2

+



∑

|

φ( )
∑

1≤ ≤
( )=1

∑

1≤ ≤ /

1
( + )




+


∑

|

φ( )
∑

1≤ <

1
( − )


 +



∑

|

∑

1≤ ≤
( )=1

∑

1+( / )≤ ≤ /

φ( )
( − )



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=
1
2

( )ζ(2)
∏

|

(
1− 1

2

)
+


∑

|

φ( )
ln2




=
π2

12
( )
∏

|

(
1− 1

2

)
+ ( ǫ)(6)

whereζ( ) be the Riemann zeta-function andζ(2) = π2/6.
Taking = 2, combining (4), (5) and (6) we may immediately obtain the asymp-

totic formula

∑∗

χ mod
χ(−1)=−1

| (1 χχ0)|2 =
π2

12
( )
∏

|

(
1− 1

2

)
+ ( ǫ)

This completes the proof of Lemma 6.

3. Proof of the Theorem

In this section, we complete the proof of Theorem. First for any primitive charac-
ter χ modulo , from the properties of Gauss sums we have

τ (χ )τ (χ ) = − if χ(−1) = −1

and for any odd number and | with any characterχ modulo , note that

∑′

=1

χ(2 ) (2 + 1) =
∑′

=1

∑

=1

χ(2 )χ0(2 )

(
(2 + 1)

)

=
∑′

=1

χ( )χ0( )

( ) ∑′

=1

χ( )χ0( )

( )
= τ (χχ0)τ (χχ0)(7)

From (7), Lemma 3 and Lemma 5 we have

∑′

=1

1(2 ) (2 + 1)

= − 16
π2

∑

|

2

φ( )

∑

χ mod
χ(−1)=−1

(∑′

=1

χ(2 ) (2 + 1)

)
| (1 χχ0

2)|2

= − 16
π2

∑

|

2

φ( )

∑

χ mod
χ(−1)=−1

τ (χχ0)τ (χχ0)| (1 χχ0
2)|2
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= − 16
π2

∑

|

2

φ( )

∑

|

∑∗

χ mod
χ(−1)=−1

τ (χχ0)τ (χχ0)| (1 χχ0χ0
2)|2

=
−16
π2

∑

|

2

φ( )

∑

|

∑∗

χ mod
χ(−1)=−1

∣∣∣χ
( )∣∣∣

2
µ2
( )

τ (χ)τ (χ)| (1 χχ0
2 )|2

=
16
π2

∑

|

2

φ( )

∑

|

∑∗

χ mod
χ(−1)=−1

∣∣∣χ
( )∣∣∣

2
µ2
( )

| (1 χχ0
2 )|2(8)

Let = , where ( ) = 1, be a square-full number or = 1, be a square-
free number. Now for any | and χ modulo , it is clear thatχ( / ) = 0, if
( / ) > 1. χ( / )µ( / ) 6= 0 if and only if = , where | . From these
properties, (8) and Lemma 6 we have

∑′

=1

(2 + 1) 1(2 )

=
16
π2

∑

|

2

φ( )

∑

|

∑∗

χ mod
χ(−1)=−1

∣∣∣χ
( )∣∣∣

2
µ2
( )

| (1 χχ0
2 )|2

=
16
π2

∑

|

2 2

φ( )

∑

|

∑∗

χ mod
χ(−1)=−1

| (1 χχ0
2 )|2

=
16 2

π2 φ( )

∑

|

2

φ( )

∑

|

∑∗

χ mod
χ(−1)=−1

| (1 χχ0
2 )|2

=
16 2

π2 φ( )

∑

|

2

φ( )

∑

|


π

2

12
( )

∏

|2

(
1− 1

2

)
+ (( )ǫ)




=
16 2 ( )
12 φ( )

∑

|

2

φ( )

∑

|

( )
∏

|2

(
1− 1

2

)
+

(
1+ǫ
)

=
2φ2( )
φ( )

1∏

|

(
1− 1

2

)∑

|

2

φ( )

∏

|

(
1− 1

2

)∑

|

( ) +
(

1+ǫ
)

= φ2( )
∏

|

(
1 +

1
)
· 1∑

|

∏

|

(
1 +

1
)

(1 + ( − 2)) +
( 1+ǫ)

= φ2( )
∏

|

(
1 +

1
)
· 1∏

|

(
1 + ( + 1)( − 1)2

)
+

(
1+ǫ
)
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= φ2( )
∏

|

(
1 +

1
)
·
∏

|

(
1 +

1
( + 1)( − 1)2

)
+

( 1+ǫ)

= φ2( )
∏

|

(
1 +

1
)∏

‖

(
1 +

1
( + 1)( − 1)2

)
+

( 1+ǫ)

where we have used the identity ( ) =φ2( )/ , if be a square-full number. This
completes the proof of Theorem.
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