

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Kamal, M.A. and Mϋller, BJ. Osaka J. Math. **25** (1988), 825-832

TORSION FREE EXTENDING MODULES

MAHMOUD A. KAMAL AND BRUNO J. MÜLLER

(Received August 14, 1987)

1. Introduction

We recall that a module is extending if every complement submodule is a direct summand. In [6] we showed that, over a commutative domain R , a nontorsion module is extending if and only if it is of the form "injective \oplus extending torsion free reduced", and that a torsion free reduced module is extending if and only if it is a finite direct sum of uniform submodules each pair of which is extending.

In Theorem 1, we provide now a characterization of the extending property for such pairs, and thereby complete the description of non-torsion extending Λ-modules. (For the torsion case, cf. [7]). The drawback of this characterization, viz. that it is formulated in terms of local data, is removed in Theorems 5 and 6, under the assumption that a certain natural overring *S* of *R* is noetherian. The subsequent corollaries state what can be said if *R* itself is noetherian.

The last section presents a number of examples, which demonstrate that our various technical conditions cannot be relaxed.

Throughout this paper *R* will be a commutative domain with quotient field *K.*

A submodule *N* of a module *M* is a complement submodule, if there is another submodule N' such that N is maximal with respect to $N \cap N' = 0$.

Let *T* be an overring of *R.* The conductor of *R* in *T* is the largest ideal of *R* which is also an ideal of *T.*

2. Direct sums of two uniform modules over commutative domains

In this section we characterize all torsion free (reduced) extending modules which are direct sums of two uniform submodules.

Let M_1 and M_2 be torsion free reduced uniform R -modules. Since the M_i are embeddable into the quotient field K of R, we may assume $M_i \subseteq K$. Let $A: = \{q \in K: qM_1 \subset M_2\}$ and $B: = \{q \in K: qM_2 \subset M_1\}$. For any *R*-submodule X of K, let $O(X) := \{q \in K : qX \subset X\}$. Denote $O(M_1) \cap O(M_2)$ by S. If then $A \cong \text{hom}_R(M_1, M_2)$, and $B \cong \text{hom}_R(M_2, M_1)$, and

Theorem 1. Let $M=M_1\oplus M_2$ be a torsion free reduced R-module, where *the Mi are uniform. Then the following statements are equivalent :* 1) *M is extending*

 $2)$ for every maximal ideal P of S , $O(A_P)$ coincides with $O(B_P)$, and is a valua*tion ring with maximal ideal* $W \subset A_P B_P$. If $A_P \cong W \cong B_P$, then $O(A_P)$ is discrete.

Proof. 1) \Rightarrow 2): Let M be extending. By [6], Corollary 8, we have that *A* and *B* are non-zero. By [6], Theorem 7, we obtain $q^{-1}A \cap S + qB \cap S = S$ for each $0 \neq q \in K$. It follows that $q^{-1}A_P \cap S_P + qB_P \cap S_P = S_P$ for every maximal ideal *P* of *S*, and hence $q \in A_P$ or $q^{-1} \in B_P$.

By the same argument as in [7], Theorem 20, we can show that $O(A_P)$ coincides with $O(B_P)$ and is a valuation ring with maximal ideal $W \subset A_PB_P$, and that if $A_P \cong W \cong B_P$, then $O(A_P)$ ($=O(B_P)$) is discrete.

2) \Rightarrow 1): The same argument as in [7], Theorem 20, shows that $q \in A$ ^{*P*} or $q^{-1} \in$ *B_P* for all $0 \neq q \in K$ and every maximal ideal *P* of *S*. It follows that $q^{-1}A_P \cap S_P$ $+qB$ ^{*P*} \cap *S*^{*P*}=*S*^{*P*}, and hence $q^{-1}A \cap S + qB \cap S = S$. Therefore *M* is extending, by [6], Theorem 7.

Corollary 2. Let $M=M_1\oplus M_2$ be an extending R-module as in Theorem 1. *Then O(A) coincides with O(B), and is integrally closed.*

Proof. By Theorem 1, $O(A_P)$ = $O(B_P)$ is a valuation ring for all maximal ideals P of S. Since any valuation ring is integrally closed, we have that $\bigcap_{i} O(A_{P})$) is integrally closed. It is clear that $AO(A_P) \subset A_P$ for all P; hence $A[\bigcap_{P} O(A_{P})] \subset \bigcap_{P} A_{P} = A$, i.e. $\bigcap_{P} O(A_{P}) \subset O(A)$. Thus $\bigcap_{P} O(A_{P}) = O(A)$. Similarly $\cap_{P} O(B_{P}) = O(B)$

Corollary 3. *Let N be a uniform torsion free reduced R-module. Then Nⁿ is extending if and only if O(N) is a Prttfer domain.*

Proof. Theorem 1, and [6], Theorem 11.

Corollary 4. *Let P be a maximal ideal of a commutative domain R. Then the following statements are equivalent :*

1) *PξBR is extending;*

2) *O(P) is a PrUfer domain and P is a maximal ideal of O(P). R^Q is a valuation ring for all maximal ideals Q different from P.*

Proof. Theorem 1, Corollary 3, and observing that *(R:P)P=R* or $(R: P)P = P$.

3. Direct sums of uniform modules over noetherian domains

Theorem 5. Let $M = M_1 \oplus M_2$ be a torsion free reduced R-module, where

the MI are uniform. Let S be noetherian. Then the following statements are equivalent:

1) *M is extending*

2) *O(A) coincides with O(B)^y and is a Dedekίnd domain. AB is a product of distinct maximal ideals of O(Λ). There is a one-to-one correspondence between the maximal ideals of O(A) and the maximal ideals of S, via contraction;*

3) *the integral closure S' of S is Dedekind and is a (maximal) equivalent order. There is a one-to-one correspondence, via contraction (and extension), between the maximal ideals of S and of S'. The conductor D of S in S' is a product of distinct maximal ideals of S' (or S). A and B are S'-modules with AB—D.*

Proof. 1) \Rightarrow 2). Let *M* be extending. By Corollary 2, $O(A)=O(B)$ is integrally closed. By [6], Corollary 8, *AB* is a non-zero ideal of *S* which is also an ideal of *O(A).* Then *AB* is contained in the conductor *D* of *S* in *O(A).* Since *S* is noetherian and $D+0$, we have that $O(A)$ is a finitely generated *S*module. It follows that *O(A)* is noetherian and integral over 5, and hence *O(A)* is the integral closure of *S.*

Since *A* is a fractional ideal of *S* and hence finitely generated, $O(A)_P$ $O(A_p)$ is a rank one discrete valuation ring, for every maximal ideal P of S, by Theorem 1. Since $O(A)_P$ is integral over S_P , it follows that S_P is one dimensional for all P. Hence *S* is one dimensional, and thus *O(A)* is Dedekind.

We show that for each maximal ideal *P of S* there exists a unique maximal ideal $\mathfrak P$ of $O(A)$ such that $P=\mathfrak P\cap S$. The existence of such $\mathfrak P$ is due to $O(A)$ being integral over *S*. The uniqueness follows from the fact that $O(A)_P$ $O(A)$ _{\$} for any maximal ideal \$\pmatha of $O(A)$ lying over P. This establishes the one-to-one correspondence, via contraction.

Now we show that *AB* is a product of distinct maximal ideals of *O(A).* Since $O(A)$ ^{*P*}= $O(A)$ ^{*B*}, for every maximal ideal P of *S*, where $\mathfrak{P} \cap S = P$, we have $(AB)_{\mathfrak{B}} = (AB)_{\mathfrak{p}}$. Hence $(AB)_{\mathfrak{B}} = \mathfrak{P}_{\mathfrak{B}}$ for any maximal ideal \mathfrak{B} of $O(A)$ containing $(AB)_{\mathfrak{B}} = (AB)_{\mathfrak{p}}$. *AB*, by Theorem 1. On the other hand, AB is an ideal of $O(A)$, $AB=\Pi\mathfrak{P}^{*(\mathfrak{P})}$. It follows that $(AB)_{\mathfrak{B}} = \mathfrak{P}_{\mathfrak{B}}^{*(\mathfrak{B})}$, and by comparison we conclude that $n(\mathfrak{B}) = 1$. $(2) \rightarrow 3$. By 2), $O(A) = O(B) =$: S' is Dedekind and is the integral closure of S, hence a maximal equivalent order.

Now let *D* be the conductor of *S* in *S'*; it is clear that $AB \subset D$. Since *A* and *B* are non zero, M_1S' and M_2S' , as *S'*-modules, can be embedded in each other. By [5], Lemma 12, $M_1S' = M_2I$ where *I* is a fractional ideal of S'. Since $M_i D \subset M_i$ (*i*=1, 2), it follows that $M_2 ID \subset M_1$ and $M_1 I^{-1} D \subset M_2$. Hence $ID \subset$ *B* and $I^{-1}D \subset A$, and thus $D^2 \subset AB \subset D$. Since AB, by 2), is a product of distinct maximal ideals of *S',* we deduce *AB—D.*

Now we show that for any maximal ideal P of S , the unique maximal ideal of *S'* lying over P is *?β=PS'.* This means that the inverse of the one-to-one correspondence via contraction (in Condition 2)) is given by extension. Since

 $P = \mathfrak{P} \cap S \subset \mathfrak{P}$, we have $PS' \subset \mathfrak{P}$. Hence $PS' = \mathfrak{P}^n$, $n \ge 1$. If $n>1$, then $\mathfrak{P}D \subset \mathfrak{P}$ $\mathfrak{B} \cap S = P \subset PS' = \mathfrak{B}^n$, and thus $D \subset \mathfrak{B}^{n-1} \subset \mathfrak{B}$. Therefore $D \subset \mathfrak{B} \cap S \subset \mathfrak{B}^n$, which contradicts that D is a product of distinct maximal ideals of S' .

3) \Rightarrow 1): Condition 2) of Theorem 1 can be easily verified, by using that *A* and *B* are *S'*-modules, and $AB=D$.

For more than two uniform modules M_i , we use the notations A_{ij} : $=$ {q \in $K: qM_i \subset M_j$, $A_{ii} = O(M_i)$, and $S_{ij} = O(M_i) \cap O(M_j)$.

We combine Theorem 6 with Theorem 11 from [6] to obtain the following:

Theorem 6. Let $M = \bigoplus_{i=1}^{n} M_i$ be a torsion free reduced R-module, where the M_i are uniform. Let $S := \bigcap_{i=1}^{n} O(M_i)$ be noetherian. Then the following statements *are equivalent :*

1) M is extending;

2) *the integral closure S' of S is Dedekind, and is a (maximal) equivalent order. There is a one-to-one correspondence^y via contraction (and extension) between the maximal ideals of S' and of S. The conductor D of S in S' is a product of distinct maximal ideals of S' (or S). For all* $i \neq j$ *, the* A_{ij} *are S'-modules, and* $D \subset$ $A_{ii}A_{ii} \subset S'$;

3) there is a Dedekind domain $R \subset L \subset K$, maximal ideals $\mathfrak{P}_k(k=1, 2, \cdots, n)$ of L, a nd subfields F_k of L/\mathfrak{B}_k such that the A_{ij} are L-modules and $\bigcap\limits_{i=1}^n\mathfrak{B}_k \subset A_{ij}A_{ji} \subset L$ *i*), and S is the full inverse image of $\oplus\limits_{n=0}^{\infty}F_{k}$ under the natural homomorphism $L \rightarrow L/\bigcap_{k=1}^n \mathfrak{P}_k \cong \bigoplus_{k=1}^n L/\mathfrak{P}_k.$

Proof. 1) \Rightarrow 2): Let M be extending. Then $M_i \oplus M_j$ is extending for all It is clear that $I: =A_{12}A_{23}\cdots A_{n-1n}A_{n1}$ is a non zero ideal of S which is also an ideal of S_{ij} . Since *S* is noetherian, S_{ij} is noetherian for all $i \neq j$. By Theorem 5, the $O(A_{ij})$ are Dedekind. Since $o \neq I \subset D$ (the conductor of *S* in $O(A_{ij})$, it follows that $O(A_{ij})$ is the integral closure of S; and hence all $O(A_{ij})$ coincide. We denote this ring by *S'.*

We show that $(S_{ij}: D)D=D_{ij}$, where D_{ij} is the conductor of S_{ij} in S'. It is clear that $(S_{ij}: D)D \subset D_{ij}$. Now let $x \in D_{ij}$ be arbitrary. For any $(S': D)$, we have $yD\subset S'$ and hence $xyD\subset xS'\subset S_{ij}$. It follows that $xy \in (S_{ij}:$ D), hence $x(S': D) \subset (S_{ij}: D)$. Thus $x \in xS' = x(S': D)D \subset (S_{ij}: D)D$. Therefore $(S_{ij}: D)$ $D = D_{ij}$, and hence $O(D) = O(S_{ij}: D) = S'$.

By Theorem 5 and since $O(D) = O(S_{ij}: D) = S'$, we have that $D \oplus S_{ij}$ is extending for all $i\neq j$. 2) follows, by Theorem 5, once we show that $D\oplus S$ is extending. Since S is noetherian, it is enough to show that $D_P \oplus S_P$ is extending, for every maximal ideal *P* of *S.* To this end we consider two cases: *Case* 1. $P \supset D$. Since $D \oplus S_{ij}$ is extending for all $i \neq j$, we have that $D_P \oplus (S_{ij})_F$

is extending. Since $O(D_p) = O(D_p) = S'_p$ is local, we have, by [6], Theorem 7, that D_P and $q(S_{ij})_P$ are comparable for every $q \in K$. If $q(S_{ij})_P \subset D_P$ for some $i \neq j$, then $qS_P \subset q(S_{ij})_P \subset D_P$. On the other hand, if $D_P \subset q(S_{ij})_P$ for all $i \neq j$, then $D_P \subset \bigcap_{i \in I} q(S_{ij})_P = qS_P$. It follows that D_P and qS_P are comparable for every , and hence, by [6], Theorem 7, $D_P \oplus S_P$ is extending whenever $P \supset D$. 2. $P \oplus D$. Then $D_P = S_P = S'_P$ is a rank one discrete valuation ring, and thus $D_P \oplus S_P$ is extending. $2) \Rightarrow 3$: From 2), the conductor of S in S' is a product of distinct maximal

ideals of S', i.e. $D = \prod_{i=1}^{n} \mathfrak{P}_i = \prod_{i=1}^{n} \mathfrak{P}_i$. Let $\mathfrak{P}_i \cap S = : P_i$, it follows that $D = \bigcap_{i=1}^{n} P_i$ and hence $\bigoplus_{i=1}^{n} k_i := \bigoplus_{i=1}^{n} S/P_i \cong S/\bigcap_{i=1}^{n} P_i = S/D \subset S'/\bigcap_{i=1}^{n} \mathfrak{P}_i \cong \bigoplus_{i=1}^{n} S'/\mathfrak{P}_i$, where $k_i =$ $S/P_i = S/\mathfrak{B}_i \cap S \cong S + \mathfrak{B}_i/\mathfrak{B}_i \subset S'/\mathfrak{B}_i.$

By 2), the A_{ij} are S'-modules and $A_{ij}A_{ji} \supset \bigcap_{i=1}^{n} \mathfrak{P}_{i}$.

3) \Rightarrow 1) Let $I := \bigcap_{i=1}^{n} \mathfrak{P}_i$. Since *I* is a nonzero ideal of *S* which is also an ideal of L, the conductor *D* of *S* in *L* is nonzero. Since *S* is noetherian, we obtain that *L* is the integral closure of *S*. Since $A_{ij}A_{ji}\supset I$, we get that $A_{ij}A_{ji}$ is a product of distinct maximal ideals of L.

From $S/I = \bigoplus_{i=1}^{n} k_i \subset \bigoplus_{i=1}^{n} L/\mathfrak{B}_i = L/I$, we see that the maximal ideals of S and of L containing I are in one-to-one correspondence. On the other hand, for any maximal ideal P of S not containing I, $S_P = L_P$ is a rank one discrete valuation ring. Therefore we obtain a one-to-one correspondence between all the maximal ideals of *L* and of *S*. Since the A_{ij} are *L*-modules, it follows that $O(A_{ij})=L$ for all $i \neq j$. Since $S_{ij} \supset S$, Condition 2) of Theorem 5 is satisfied for all $i \neq j$, and hence $M_i \oplus M_j$ is extending. Therefore M is extending, by [6] Theorem 11.

REMARKS, (i) We note that Condition 2) of Theorem 6 mainly deals with the relationship between *S* and its integral closure, and that further data from *M* enter only in the last sentence. Loosely speaking, this condition says that S is "almost integrally closed" and the M_i are "almost isomorphic".

(ii) Condition 3) is convenient for the construction of examples, starting with an arbitrary Dedekind domain.

(iii) Even if the ring *R* is noetherian, *S* need not be, and then Theorem 6 does not apply. However, if *R* is noetherian of Krull dimension one, then every overring is noetherian of Krull dimension one ([8], Theorem 13), hence in particular *S* is noetherian and *S'* is Dedekind ([8], Theorem 96). Thus in this case, the rest of Condition 2) yields a complete characterization of all torsion free reduced extending R -modules.

Conversely, again if R is noetherian, and if one of the M_i is finitely generated (and hence all M_i are isomorphic to ideals of R , cf. [6], Corollary 8),

then it follows that the Krull dimension is one.

Corollary 7. Let R be a noetherian domain. Let M_1 , M_2 be finitely gen*erated torsion free reduced uniform R-modules. If* $M_{\textbf{1}} {\oplus} M_{\textbf{2}}$ *is extending, then R has Krull dimension one.*

Proof. It is clear that $R \rightarrow S \rightarrow O(M_1) \simeq \text{hom}_R(M_1, M_1) \rightarrow \text{hom}_R(R^*, M_1) \simeq$ *MI.* Since *Mϊ* is noetherian, it follows that *S* is noetherian and integral over *R.* Thus *S* and *R* have the same Krull dimension.

Now if $M_1 \oplus M_2$ is extending, then, by Theorem 5, S is one dimensional, and therefore so is *R.*

We now prove a generalization of Corollary 4, for arbitrary ideals, in case *R* is noetherian.

Corollary 8. *Let R be a noetherian domain, and I be an ideal of R. Then the following statements are equivalent :*

1) $R \oplus I$ is extending;

2) *the integral closure R' of R is Dedekind. There is a one-to-one correspondence, via contraction (and extension), between the maximal ideals of R and of R^r . The conductor D of R in R' is a product of distinct maximal ideals of R'. I is an ideal* $of R'$;

3) *O(I) is Dedekind, and (R : I) I is a product of distinct maximal ideals of O(I). O(I)^P is a discrete rank one valuation ring for all maximal ideal P of R containing* $(R: I)$ I .

Proof. Corollary 7, and Theorem 5.

4. Examples

The first example shows that the condition "if $A_P \cong W \cong B_P$, then $O(A_P)$ is discrete' ' in Theorem 1 does not follow from the rest of Condition 2).

EXAMPLE 9. Let V be a valuation ring which is not discrete, with maximal ideal *W*, and $V/W = Q$ the field of rational numbers. Choose additive subgroups M_1 and M_2 , $W \subset M_1$, $M_2 \subset V$, such that M_1/W , M_2/W are of incomparable types \mathfrak{T}_1 and \mathfrak{T}_2 , and such that $\mathfrak{T}_1(P), \mathfrak{T}_2(P)$ are not both ∞ for any prime number P . Then $O(M_1) \cap O(M_2) = S$ is the full inverse image of \boldsymbol{Z} under the natural homomorphism $V \rightarrow V/W=\mathbf{Q}$. One can show that $A_P = A = W = B = B_P$, for every maximal ideal P of S. Consequently one has $O(A_P) = O(B_P) = O(W) = V$ and $W = A_P B_P$.

Our second example shows that, in contrast to Corollary 3, if $M_1 \oplus M_2$ is α extending with $M_1 \cong M_2$, then neither $O(M_2)$ nor $O(M_1) \cap O(M_2) = \colon S$ need be Prüfer domains.

EXAMPLE 10. Let $F[[t]]$ be the ring of formal power series over a field F . Let *k* be a proper subfield of *F*. Let M_1 : $=$ t $F[[t]]$ and M_2 : $=$ k $+$ t $F[[t]]$. By Corollary 4, $M_1 \oplus M_2$ is extending. $O(M_2) {=} S {=} k {+} t F[[t]]$ is local but not a valuation ring, hence not a Prüfer domain.

The following example refers to Theorem 5 (3). It shows that, if the integral closure *S'* of *S* is Dedekind, and there is a one-to-one correspondence between the maximal ideals of *S'* and of *S,* via contraction and extension, then the conductor *D* of *S* in *S'* need not be a product of distinct maximal ideals of *S'.*

EXAMPLE 11. Let $S' := F[t]$ be the polynomial ring over a field F. Let k be a proper subfield of *F* such that *F* is a finite dimensional over &. Let *S: =* $k+kt+t^2S'$. Then the conductor *D* of *S* in *S'* is t^2S' , and hence *S'* is a maximal equivalent order. Since $S/t^2S' \cong k[t]/t^2k[t]$, we see that $P:=kt+t^2S'$ is the only maximal ideal of *S* containing *D*. It is easy to show that $PS' = tS'$ and $tS' \cap S = P$. This suffices to establish the one-to-one correspondence, via contraction and extension, between all maximal ideals of *S'* and of *S.* But *D= fS'* is not a product of distinct maximal ideals of *S'.*

The next example shows that the statement *"A* and *B* are S'-modules" does not follow from the rest of condition 3) of Theorem 5.

EXAMPLE 12. Let $S' := F[t]$ and let *k* be as in Example 11. Let $S = k+1$ *tS'*. Then $D=tS'$ is the conductor. Let V be a proper *k*-subspace of F such that $\dim_k V \geq 2$, and let $M_1 := Vt + t^2S'$ and $M_2 := S$.

Then $B=M_1$ and $A=(S: B)$. Since $BS'=(Vt+t^2S')$ $S'=tS'\subset S$, we have $S' \subset A$. Now let $a \in A$, hence $aB \subset S$. It follows that $a\hat{t}S' \subset S$, and thus $at^2 \in D = tS'$. Then $at \in S'$, and therefore $at = x + yt$ with $x \in F$ and On the other hand, $atV=(x+yt) V\subset S$; it follows that $xV\subset k$. Since $\dim_k V\geq 2$, we obtain that $x=0$ and $at=yt\in tS'$. Therefore $A=S'$ and $AB=tS'=D$. The one-to-one correspondence, via contraction and extension, between the maximal ideals of *S'* and of *S* can be easily established. Hence all the conditions of Theorem 5 (3) are satisfied, except that B is not an S' -module.

The last example shows that, in contrast to Theorem 5 and Corollary 7, if *S* is not noetherian, then *S* need not be of Krull dimension one, and if *R* is noetherian but the M_i are infinitely generated then R need not be of Krull dimension one.

EXAMPLE 13. Let *R* be a commutative noetherian domain with quotient field *K*, and with Krull dim(R)>1. There exists a valuation ring $R\subset V\subset K$ such that Krull dim(V)>1; hence V is not noetherian (cf. [9] Chapter V Exercise 3). By Corollary 3, $V \oplus V$ is extending as an *R*-module; and obviously *s=v.*

References

- [1] F.W. Anderson and K.R. Fuller: Rings and Categories of Modules, Springer Verlag, New York (1973).
- [2] A.W. Chatter and C.R. Hajarnavis: *Rings in which every complement right ideal is a direct summand,* Quart. J. Math. Oxford 28 (1977), 61-80.
- [3] M. Harada: *On modules with extending property,* Osaka J. Math. 19 (1982), 203-215.
- [4] L. Fuchs: Infinite Abelian Groups, Acad. Press, New York (1973).
- [5] M. Harada and K. Oshiro: *On extending property on direct sums of uniform modules,* Osaka J. Math. 18 (1981), 767-785.
- [6] M.Kamal and B.J. Mullen *Extending modules over commutative domains,* Osaka J. Math. 25 (1988), 531-538.
- [7] M. Karnal and BJ. Mϋller: *The structure of extending modules over noetherian rings,* Oseka J. Math. 25 (1988), 539-551.
- [8] I. Kaplansky: Commutative Rings, Univ. of Chicago Press, Chicago (1974).
- [9] M.D. Larsen and PJ. McCarthy, Multiplicative Theory of Ideals, Acad. Press, New York (1971).

Department of Mathematics and Statistics McMaster University Hamilton, Ontario, Canada L8S 4K1