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1. Introduction. Let U be the upper half-plane and let R=RU {0}
be the extended real line. The conformal automorphisms of U form the real
Mobius group SL’'(2, R), that is, SL(2, R) modulo its center. A discrete sub-
group G of SL’(2, R) is called a Fuchsian group; the trivial group G={1} is
included, where 1 means the identity transformation of SL'(2, R). Itis well-
known that a Fuchsian group G acts discontinuously on U and that the limit
set A(G) is a closed subset of Ié, which is invariant under G.

We denote by L.(U) the Banach space consisting of measurable functions
p on U with finite L., norm ||u||. Let f be a sense-preserving homeomorphism
of U. Such a mapping f is said to be quasiconformal if it has generalized
derivatives f; and f, which satisfy the Beltrami equation

(L) fi=uf,
for some p & L..(U) with ||u||<1. As is known, a quasiconformal automorphism
f of U is extensible to a homeomorphism of U U R. By abuse of language, we
introduce no new name for the extended mapping. For every pe L. (U) with
[lu]|<1, we denote by f. the homeomorphic solution of the equation (1.1) which
leaves the points 0, 1, co fixed; it is well-known that f,. exists and that f, is
uniquely determined by x (see [9]).

Let h: R—>R be a sense-preserving homeomorphism such that h(co)=oo.
Following [9], we say that & is quasisymmetric if there exists a constant p=1
such that

(1.2) 1p = (Wx-+8)—h(@)) (h(x)—h(x—1)) <p

for xR and £>0. In this case, we denote by p, the infimum of the constants
p which satisfy (1.2).

Let G be a Fuchsian group. We define H(G) as the set of all the quasisym-
metric functions 2 which satisfy the following conditions: for every YE€G,
there exists Y*€SL'(2, R) such that

(1.3) hovoh™ = v* &,
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and
(1.4) & leaves the points 0, 1, oo fixed,

where ¥* 4 means the restriction of v* to R. We define 3(G) as the family
of all the closed subsets o of R, which are invariant under G and satisfy

(1.5) sDAG)U {0, 1, =} .

For ke H(G) and o €X(G), we define F(G, h, o) as the set of all the quasicon-
formal automorphisms f of U satisfying

(1.6) fGf*cSL'(2, R),
and
(1.7) fie=hi.

In view of (1.4), (1.5) and (1.7), we see that each fEF(G, k, o) is of the form
Jf=fu for some p&L.(U) with ||u||<1. Moreover, for p&L.(U) with |[p||<]1,
we can easily check that f=f, satisfies (1.6)if and only if p satisfies the condi-
tion

p(Y(R)Y(2)7'(2) = u(2) for every vE€G .
In the case where F(G, h, o) is not empty, we put
(1.8) k(G, h, c) = inf [|u]],

where the infimum is taken over all fueF(G, %, s). By means of a normal
family argument of quasiconformal mappings, we can check that there exists
some f,EF(G, h, o) with ||v||=k(G, h, o) (see [9]). Such a mapping f, is said
to be extremal in the class F(G, &, o).

Let G, be a Fuchsian group and let G, be a subgroup of G,. Then G, is,
of course, a Fuchsian group. It follows from the definitions that H(G,)C H(G)),
2(G,)C3(G,) and that

(1.9) F(G,, h, 5)CF(G,, h, &)

for heH(G,) and o €3(G,). It is quite interesting to know how far infor-
mations about F(G;, k, o) for i=1, 2, have an effect on each other. In this paper
we shall be concerned with this kind of problems and prove some theorems.

2. Teichmiiller space theory and F(G, h, ). In thissection we trans-
late some known results about Teichmiiller space theory into the language of
our formulation.

At first, the following result follows easily from the definitions.
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Lemma 1. Let G be a Fuchsian group, he H(G) and o =3(G). Suppose
that F(G, h, o) is not empty. Let v be an arbitrarily chosen and fixed element
of G. Then fuovofu' is identical with v* for every fucF(G, h, o), where v*&
SL'(2, R) is determined by the condition (1.3) and does not depend on the choice
of fu. Further, k(G, h, 0)=0 if and only if 1€ F(G, h, o).

Let L be the lower half-plane. For every Fuchsian group G, we denote by
B(L,G) the Banach space consisting of all the holomorphic functions ¢ in L,
which satisfy

d(V(2)V'(2)? = ¢p(2)  for every YEG, and sup | (2—Z)%p(2) | < oo.

If we define T(G) as the set of those h& H(G) such that F(G, &, R) is not empty,
then T(G) is the so-called (unreduced) Teichmiiller space for the Fuchsian
group G. From now on, the trivial group {1} is simply denoted by 1, provided
that there is no confusion. It is well-known in Teichmiiller space theory that
there exists a canonical injection W: H(1)—B(L, 1). Earle [4] includes the result:

(2.1) Y(H(G)) = Y(H)NBL, G)
for every Fuchsian group G. Kra [6] proved that
22) W(T(G) = VHD)NB(L, G)

for every finitely generated Fuchsian group G. Furthermore, it is obvious that
(2.3) F(G, h, R)CF(G, ko) for every s €Z(G).
According to (2.1), (2.2) and (2.3), we have the following lemma.

Lemma 2. Let G be a finitely generated Fuchsian group. Then F(G, h, )
is not empty for every he H(G) and every o 3.(Q).

Remark 1. In the case where G=1 and a-:IAE, it is well-known that
Ahlfors and Beurling [1] includes the following result: Suppose that A& H(1).
Then F(1, k, R) is not empty, and k(1, k, R)< p}.

Now we state the following Lemma 3, of which we shall not make use in
this paper. It is, however, a noteworthy information with respect to arbitrary,
not necessarily finitely generated, Fuchsian groups. The argument developed
in the proof of Theorem 2 in Lehto [8] and (2.3) ensure the validity of our
Lemma 3.

Lemma 3. Let G be a Fuchsian group. Then F(G, h, ) is not empty for
every o €32(G) and every he H(G) such that p,<\/ 2.

3. Extremal quasiconformal mappings. Let G be a Fuchsian group
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and s €Z(G). Let ¢ be a holomorphic quadratic differential for the config-
uration (U, G), that is, a holomorphic function in U satisfying

d(7(=))7'(2)* = (=) for every YEG .

We denote by A(G, o) the space consisting of all the holomorphic quadratic
differentials ¢ for (U, G), which are continuously extensible to R\o and real
on R\, and satisfy

ll¢llc-=-S§U/Gl¢(z)|dxdy<oo.

The space A(G, o) is a real Banach space with norm || [|;. We denote by
A(G, o), the set of those ¢=A(G, o) with ||$|l;=1. As is well-known,
dimy 4A(G, o) is finite if and only if G is finitely generated and the set (¢ \A(G))/G
is finite.

The fundamental inequality, referred to in the title of Bers [3], plays an im-
portant role to characterize extremal mappings. In his paper [3], Bers proved
the most generalized form of the inequality (see Theorem 2 in [3]). It has
several very important applications (see [5] and [11]). Here we state slightly
modified forms of some results in Gardiner [5] as the following Lemmas 4 and 5.
The corresponding results in [5] say that the following Lemmas 4 and 5 hold
whenever G has no elliptic elements. But the proofs of them in [5] are based on
Theorem 2 in [3] and are still effectively valid, even if G may have elliptic
elements,

Lemma 4. Suppose that fucF(G, h, ¢). Pul K=(1+k)[(1—Fk), where
k=k(G,h,c). Then, for every ¢ in A(G, o),

(3.1) UK = SnglW'l_l—fﬁ/ll—ﬁ'—lzdxdy.

Lemma 5. Suppose that fu= F(G, h, ), where
(3-2) w="klo|/d

for a constant k such that 0=<k<1 and some ¢=A(G, o). Then f. is unique
extremal in the class F(G, h, o).

A quasiconformal mapping fuE F(G, h, o), with p of the above form (3.2),
is said to be a Teichmiiller mapping with finite norm in the class F(G, 4, o).

Lemma 6. Suppose that fuF(G, h, o). Then fu is extremal in the class
F(G, h, o) if and only if

(33) lull = sup|Re [ npasapyl,
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where the supremum is taken over all p= A(G, o), and Re A denotes the real part
of A.

Proof. The necessity is due to Bers [2]. The sufficiency follows as a
by-product of the fundamental inequality. In fact, we can prove the sufficiency
by making use of Lemma 4 and, for the sake of completeness, we shall give the
proof.

We assume that p satisfies (3.3). For ¢ in 4(G, o),, we have —p € A(G, o),.
Thus we see that there exists a sequence ¢, 4(G, o), n=1, 2, -+, such that

(3.4 lall = tim Re ([ pupodudy

Put K=(1+k)/(1—k), where k=k(G, h, o). Then, by Lemma 4,

[ Pul | 1—ppa/ | b4l I
1/K§SSU/G e be L ey

<((+HIIPIA—1lalP) =@ Re [ npudsdy)i(1—IlulF).

By letting 7 tend to oo in the above inequality, in view of (3.4), we have

(3.5) YK <(1—ul)/A-+lull).

It follows from (1.8) and (3.5) that ||u||=k. This means that f. is extremal in
the class F(G, h, o).

Let fueF(G ,h, ) be extremal. Then we have seen that y satisfies (3.3).
In this case, we can easily check that f. is a Teichmiiller mapping with finite
norm if and only if the supremum in the right-hand side of (3.3) is attained
for some ¢,=A(G, o), (see [10]). In particular, this happens, provided that
dimg A(G, o) is finite. Thus, noting Lemma 2, we have the following result.

Lemma 7. Let G be a finitely generated Fuchsian group and o<3(G).
Suppose that the set (c\A(G))|G is finite. Then, for every he H(G), F(G, h, o)
is not empty and contains a Teichmiiller mapping with finite norm.

Let G be a Fuchsian group and let ® be a holomorphic function in U.
The Poincaré series ©;® of @ is defined by

(3-6) (B6P)(2) = 23 2(v(2))Y'(2)" -

Bers [3] proved the fundamental inequality by an application of Poincaré series.
The following lemma is implicitly established in [3] on the way of the proof of
the inequality.

Lemma8. Let G be a Fuchsian group and o €3(G). Then, for every @ in
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A(1, o), the series ©;D, defined by (3.6), comverges absolutely and uniformly on
compact subsets of U. And, further, the mapping O gives a real linear continuous
mapping of A(1, o) onto A(G, o), and the operator norm of ©; is not greater
than 1.

RemaARrk 2. In the case o=R, the assertion is well-known (see the pres-
entation in Kra [7]).

4. A Fuchsian group G, and its subgroup G,. Let G, be a Fuchsian
group and let G, be a subgroup of G,. Let ke H(G,) and o €3 (G,) be given.
Suppose that F(G,, h, ¢) is not empty. Then, owing to (1.9), we see that
k(Gy, b, o) =k(G,, h, c). Now we prove the following theorem.

Theorem 1. Let G,2G, be Fuchsian groups such that the index [G,: G,]
of Gy, in G, is finite. Let he H(G,) and c<3(G,) be given. Suppose that
F(G,, h, o) is not empty. Then

(1) F(G,, h, o) is not empty,
and

(2) k(Gy, b, a)=Fk(G3, b, o).

Proof. By our assumption, the index #=[G;: G,] is finite. In this case,
it clearly follows that A(G,, ¢)C A(G,, o) and that, for every ¢ in A(Gy, o),

1) lgllo, = lllo,/n .

First we show that, if F(Gy, h, o) is not empty, then k(G,, k, c)=k(G), h, o).
Let f. be extremal in the class F(G), A, o). Then, by Lemma 6, there exists a
sequence ¢, € A(Gy, o), j=1, 2,-++, such that

(42) KGu by o) = llull=lim|Re [ s, duay].
jroo U/G,

But we can rewrite (4.2) as follows:

(43) lall = tim|Re [ wgyndsay .

Since ¢;/nE A(G,, o), we see by (1.9), (4.3) and Lemma 6 that f. is extremal
in the class F(G,, k, 0). This means k(G,, h, c)=k(G,, h, o).

Now we show (1). Since the index n=[G,: G,] is finite, if G; is a finite
group, then so is G;. In this case, (1) clearly follows by Lemma 2. Thus it
remains to prove (1) in the case where G, is an infinite group. Since every
Fuchsian group consists of a countable number of elements, we may assume
that G,=1{1, 7,, 7, -=:}. For every j=1, 2, .-+, let G,,; be the group generated
by {71, 72+, 7;}. Then
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G, CG,,C -+, and G,=G,,UG,,U .
Choose coset representatives §,=1, §,, **+, §,_; in G, such that
Gl = G2+G281+'"+G28n-—1 .

For every j=1, 2, .-+, let G, ; be the group generated by G, ; and {3, 8,, -+, §,-,},
and put G¥;=G, ;N G,. Then, as is well-known in group theory, it follows
that

(44) [G.;: GEI=[Gh: Gol<eo forj=1, 2,--.

Since every G, ; is finitely generated, every F(G, ;, h, o) is not empty by Lemma
2. Letfy, be extremal in the class F(G, , h, o) for j=1, 2, ---. Then, as was
proved in the first half of the proof, we see by (4.4) that

(4.5) el = k(G%j, h, o) forj=1,2,--.
On the other hand, because F(G,, k, o) C F(G¥;, h, o) for j=1, 2, -+, we have
(4.6) k=k(Gy, h, o)=k(G¥;, h, o) forj=1,2, ...

According to (4.5) and (4.6), we see that the family {f.}, j=1,2, -, forms a
subfamily of a closed normal family of K-quasiconformal automorphisms of
U, where K=(1+4k)/(1—E) (see [9]). Taking a subsequence if necessary, we
may assume that the sequence fu;, j=1, 2, ---, converges to a quasiconformal
automorphism f. of U. Noting Lemma 1, we can easily check that f. belongs
to F(G,, h, o). This completes the proof of the theorem.

RemMARK 3. Let G be a Fuchsian group, h€H(G) and c€3(G). If Gis
an infinite group, then we have an enumeration 1, 7, v, -+, of all the elements
of G. In this case, for every j=1, 2, ---, let G, be the group generated by
{71, 72 ==+, v;}. Since every topological subspace of R is separable, if the set
a\(A(G)U {0, 1, oo}) is infinite, then there exists a countable dense subset
{ay, a5, -+, aj, -} of s\(A(G)U {0, 1, o}). In this case, for every j=1, 2,--,
let o; be the smallest subset of o, which belongs to %(G) and which contains
{a,a5, -+, a;}. Then, for every j=1, 2,---, we can easily check that an arbitrary
element of o;\A(G) is of the form 7(x) for some vEG, where x=0, 1, o or
a;, 1=<i<j. In particular, for every j=1, 2, -+, the set (¢;\A(G))/G is finite.
Under the above assumptions and notations, suppose that F(G, h, o) is not
empty. Then, as in the latter part of the proof of Theorem 1, we can check the
following results by a normal family argument and Lemma 1:

(a) KG, k, o) = lim k(G;, h, o)

whenever G is an infinite group, and
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(b) HG, b, o) = lim kG, b, ;)
>0
whenever the set o\(A(G) U {0, 1, oo}) is infinite.

Now we shall state one more lemma and prove some theorems.

Lemma 9. Let G,2G, be Fuchsian groups and o <Z(G,). Let ® be
an arbitrarily chosen and fixed element of A(1, o). Put ¢,=0; P and ¢2—-®G2
Suppose that ¢,=+0. Then

llpille, = llpelle, = | P, -

Furthermore, the three following conditions are equivalent to each other:

(1) ”Sih”(;l = ”4’2”(;2 ’

(2) ¢2€A(G1, 0') )

and

3) n= [Gy: Gy]<oo, and ¢, = ne,.

Proof. Choose coset representatives §,=1, 8, 8,, ***, in G}, which end with
8,-1 if n=[G,: G,]<oo, such that

Gl = G2+G281+G282+

Let w be a fundamental region in U with respect to G, that is, w is an open
subset of U such that the measure of the boundary 0w of w in U vanishes,
o NY(w) is empty for 1=y =G, and such that each 2= U is contained in some
Y(wU0w), YEG,. Then o U8 (w)USdy(w)U -+ is a fundamental region in U
with respect to G, We put m=n—1(=1) if n=[G,: G,] <oo, otherwise
m=oco. Since the series @5 P converges absolutely and uniformly on compact
subsets of U, we see that

(4.7) $(2) = 2 (T O(r=8.2)7 (B2))0/(a)
— 31 GBS

Thus

(+8) (1, 196y 1wty =33 ({ 16u(3.0051(2) 1 ey

31([, 16 dsdy

$=0

SS«;US @V ()] dxdy
|

[y 0, 182) iy

I
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Similarly
dxd sg S O |dxdy .
ngzlcﬁzl ly < UI | dxdy

It remains to prove the latter part of the lemma. Assume that (4.8) holds
with equality. Then, for every i=1, 2, ---,

(4.9) ggw | ba(2)+ $(8:(2))8i(2)" | dxdy
= [ (16:2) 1+ 1 a3 N81(2) sy
By (4.9), we see that, for every i=1, 2, -,

(4.10) bo(2)ba(8:(2)5H(21=0  for 2€w.

We can easily check that, for every i=1, 2,---, (4.10) happens if and only if there
exists a constant ¢;=0 such that

D2(8:(2))84(2)? = cipx(2) for xEw, hence for z€U .

As ¢,F= 00, we see by (4.7) that czl—i—i ¢c; is finite and that ¢,()=c¢,(2).
Thus (1) implies (2). =

Now we note that, if the index [G,: G,] is infinite, then A(G,, o) N A(G,, &)
={0}. Noting this, we see by (4.7) that (2) implies (3). Finally, by (4.1), (3)

clearly implies (1). The proof of our lemma is complete.

Theorem 2. Let G,2G, be Fuchsian groups and o <=3(G,). Let v be a
measurable function in U such that v==Fk|},||p,, where kis a constant such that
0<k<1 and $,€ A(G,, o). Then $, belong. to A(G,, o) if and only if £,G,f;'C
SL'(2, R). Furthermore, in the case where [G: G,]<<co and ¢,& A(G,, o), fuik
does not belong to H(G,).

Proof. If ¢, belongs to A(G,, o), then
»(Y(2))7Y' ()7 (z) = v(z)  for every YEG,.

So f, is compatible with G|, that is, f,G,f;'CSL'(2, R).

Now we show the converse. Assume that f, is compatible with G,. By
Lemma 8, there exists some ®EA(1, o) such that ¢,=0;,P. Put ¢,=0; .
Then we can easily check that

(4.11) || = SSWG vebydrdy — SSWC vdrdy.
2 1

By Lemma 9, we have ||¢y]|;,=1. But (4.11) does not hold whenever [|¢||¢,<1.
This implies [|¢y]ls,=1. Hence we see by Lemma 9 that ¢,€4(G,, o).
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It remains to prove the latter part of the theorem. Assume that [G;: G,]<
oo and that ¢, A(Gy, o). Put h=f,z. Clearly f, is contained in F(G,, h, o).
Now we shall prove that ¢ H(G,). Assume the contrary. Then % belongs
to H(G,), and thus F(G,, k, o) is not empty by (1) in Theorem 1. Let f. be
extremal in the class F(Gy, &, o). By (2) in Theorem 1, we see that fu. is
extremal in the class F(Gy, hy o), too. On the other hand, by Lemma 5, f, is
unique extremal in the class F(G,, h, o). Thus f. is identical with f,. Therefore
we see that f, is compatible with G, and that ¢$,&A4(G,, ). This contradicts
our assumption. This shows that i H(G,).

As immediate corollaries, we deduce the following results.

Corollary 2.1. Let G, be a Fuchsian group which has a subgroup G such
that [G,: Gj]=ccand let o €3(G,). Suppose that v==Fk|¢,||P., where kis a con-
stant such that 0<k<<1 and ¢, A(G,, o). Then f, is not compatible with G,.

Corollary 2.2. Let G, be a Fuchsian group which has a finitely generated
subgroup G, such that [G,: G,]=co. For a given oc&3(G,) and a given h&
H(G)) with h,=+1,,, suppose that F(G,, h, &) is not empty. Then

k(Gy, k, 0)>E(Gy, k, a™)
for every o*=3(G,) with o* Co, such that the set (6*\A(G>))|G is finite.

Proof. Assume the contrary. Then k(G,, &, o)=k(G,, k, c*) for some
c*e3(G,), where ¢*Co and the set (c*\A(G,))/G, is finite. Let f. be ex-
tremal in the class F(Gy, h, o). As h,=+1,, fu. is not conformal by Lemma 1.
By our assumption, f. is extremal in the class F(G,, h, ¢*), too. Thus,
owing to Lemma 5 and Lemma 7, we see that f,. is a Teichmiiller mapping with
finite norm in the class F(G,, k, o*), and that f. is not conformal. Hence, by
Corollary 2.1, fu. does not belong to F(G,, h, ). This is absurd. This con-
tradiction proves Corollary 2.2.

Let G be a Fuchsian group and ¢&3(G) and let f be a quasiconformal
automorphism of U. We say that f is compatible with G on ¢ if f satisfies the
following property: for every YEG, there exists Y*&SL'(2, R) such that

(4.12) for(x) = y*ofix)  forall x€o .

Theorem 3. Let G, be a Fuchsian group which has a normal subgroup G,
such that [G,: G,J=co. For a given o €3(G,) and a given he H(G,) with
hi.¥ 1, suppose that F(G,, h, o) is not empty. Then F(G,, h, o) admits no
Teichmiiller mappings with finite norm.

We shall prove the following slightly stronger form of Theorem 3.
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Theorem 3'. Let G, be a Fuchsian group which has a normal subgroup G,
such that [G,: G,;]=co. Suppose that o E3(G,) and that v=Fk|$||p, where k is
a constant such that 0<k<1 and ¢= A(G,, o),. Then f, is not compatible with
G, on o. In particular, f, 3 does not belong to H(G,).

Proof. Assume the contrary. Then f, is compatible with G, on . Let
v be an arbitrary element of G,. Then there exists y*&SL’(2, R) which
satisfies (4.12) for f=f,. We put g=v*"lof,oy and h=g . Since G, is a
normal subgroup of G,, we can easily check that 4 belongs to H(G,) and that
both g and f, belong to F(G,, h, 0). By Lemma 5, we see that f, is unique
extremal in the class F(G,, h, o). On the other hand, the norm of the complex
dilatation of g is equal to ||v||, and thus g is also extremal in the class F(G,, &, o).
Therefore g is identical with f,. In other words, it holds that

(4.13) fiov(2) = v*o f(2)  forzeU.

Because the choice of Y &G, is arbitrary, we see by (4.13) that f, is compatible
with G;. But it contradicts Corollary 2.1. This contradiction proves the
theorem.
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