<table>
<thead>
<tr>
<th>Title</th>
<th>On some arithmetical properties of Rogers-Ramanujan continued fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Duverney, Daniel; Shiokawa, Iekata</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 37(3) P.759-P.771</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4719</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4719</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
ON SOME ARITHMETICAL PROPERTIES OF ROGERS-RAMANUJAN CONTINUED FRACTION

DANIEL DUVERNEY and IEKATA SHIOKAWA

(Received July 14, 1998)

1. Introduction

Let \(R(z) \) be the Rogers-Ramanujan continued fraction defined by

\[
R(z) = 1 + \frac{z}{1 + \frac{z^2}{1 + \frac{z^3}{1 + \cdots}}} \quad (|z| < 1).
\]

For \(z = l/q \) \((q \in \mathbb{N} - \{0, 1\})\), it is easy to transform \(R(1/q) \) into the regular continued fraction

\[
R(1/q) = 1 + \frac{1}{q + \frac{1}{q + \frac{1}{q^2 + q^3 + \cdots}}}
\]
(see e.g. [9; 2.3]). Since this expansion is not ultimately periodic, \(R(1/q) \) is not a quadratic number. More generally, as an application of a deep result of Nesterenko on modular functions [12], one can prove that \(R(z) \) is transcendental for every algebraic number \(z \) \((0 < |z| < 1)\) [5]. In this paper, we want to focus on the fact that \(R(1/q) \) is not a quadratic number, and generalize this result in two directions.

First, we consider a more general Rogers-Ramanujan continued fraction

\[
R(z; x) = 1 + \frac{zx}{1 + \frac{z^2x}{1 + \frac{z^3x}{1 + \cdots}}} \quad (|z| < 1).
\]

Irrationality results on \(R(z; x) \) for rational \(x \) and \(z \) are given in [11], [13], [14]. We will prove the following

Theorem 1. Let \(x = a/b \in \mathbb{Q}^* \) and let \(z = 1/q \) with \(q \in \mathbb{Z}, |q| \geq 2 \). Suppose that \(a^4 < |q| \). Then \(R(1/q; a/b) \) is not a quadratic number.

It should be noted that Lagrange’s theorem on regular continued fractions cannot be applied here, because

\[
R(1/q; a/b) = \frac{1}{qb/a + \frac{1}{q + \frac{1}{q^2b/a + \frac{1}{q^3b/a + \frac{1}{q^4b/a + \cdots}}}}}
\]
is not a regular continued fraction if $a \neq 1$. Theorem 1 is a direct consequence of the following general result on continued fractions with rational coefficients, which should be compared to Lambert's criterion on irrationality (see e.g. [10; p. 100]).

Theorem 2. Let c_1, c_2, c_3, \ldots be an infinite sequence of rational numbers satisfying the following conditions

1. $|c_n| \geq 2$ for every $n \geq 1$
2. $\sum_{n=1}^{+\infty} |c_n c_{n+1}|^{-1} < \infty$
3. There exists an infinite sequence of rational integers d_n ($n \geq 1$) such that $d_n c_n \in \mathbb{Z}$ for every $n \geq 1$, and $\liminf_{n \to +\infty} (d_1 d_2 \cdots d_n)^2 / c_{n+1} = 0$.

Then the continued fraction

$$\alpha = 1 + \frac{1}{c_1 + \frac{1}{c_2 + \cdots + \frac{1}{c_n + \cdots}}}$$

is convergent, and α is not a quadratic number.

Note that, under the hypothesis of Theorem 2, Lambert's criterion implies the irrationality of α.

For the second generalization, we will use Rogers-Ramanujan identities ([6; p. 36], or [8; p. 290], for example), and write

$$R \left(\frac{1}{q} \right) = \frac{\alpha_q^*}{\beta_q^*}$$

with

$$\alpha_q^* = 1 + \sum_{n=1}^{+\infty} (-1)^n q^{-n(5n-1)/2} + \sum_{n=1}^{+\infty} (-1)^n q^{-n(5n+1)/2},$$
$$\beta_q^* = 1 + \sum_{n=1}^{+\infty} (-1)^n q^{-n(5n-3)/2} + \sum_{n=1}^{+\infty} (-1)^n q^{-n(5n+3)/2}.$$
Indeed, one can write \(a^*_q = \sum_{n=0}^{\infty} a(n)q^{-n} \), where \(a(n) = \pm 1 \) if there exists \(k \in \mathbb{N} \) such that \(n = u_k \), \(a(n) = 0 \) otherwise. Similarly, we have \(\beta^*_q = \sum_{n=0}^{\infty} b(n)q^{-n} \), where \(b(n) = \pm 1 \) if there exists \(k \in \mathbb{N} \) such that \(n = v_k \), \(b(n) = 0 \) otherwise. Therefore, we can deduce that \(R(1/q) \) is not quadratic for \(q \in \mathbb{Z} \ (|q| > 2) \) from the following more general result.

Theorem 3. Let \(a(n) \) and \(b(n) \) be bounded sequences of rational integers, such that

\[
\begin{align*}
 a(n) &\neq 0 & \text{if there exists } k \in \mathbb{N} \text{ such that } n = u_k, \\
 a(n) &= 0 & \text{otherwise}, \\
 b(n) &\neq 0 & \text{if there exists } k \in \mathbb{N} \text{ such that } n = v_k, \\
 b(n) &= 0 & \text{otherwise}.
\end{align*}
\]

Let \(\mathbb{K} \) be any quadratic field. Then, if \(q \in \mathbb{Z} \ (|q| \geq 2) \) the three numbers \(\alpha_q = \sum_{n=0}^{\infty} a(n)q^{-n} \), \(\beta_q = \sum_{n=0}^{\infty} b(n)q^{-n} \), and 1, are linearly independent over \(\mathbb{K} \).

2. Proof of Theorem 2

We will need the following lemma.

Lemma 1 ([14]). Let \(c_1, c_2, c_3, \ldots \) be an infinite sequence of complex numbers satisfying (1) and (2). Let \(P_n = c_n P_{n-1} + P_{n-2}, Q_n = c_n Q_{n-1} + Q_{n-2} \) \((n \geq 1)\) with \(P_0 = Q_0 = 0 \) and \(P_1 = Q_1 = 1 \). Then \(P_n/(c_2 c_3 \cdots c_n) \) and \(Q_n/(c_1 c_2 \cdots c_n) \) converge to non-zero limits \(\beta \) and \(\gamma \), and satisfy for every \(n \geq 1 \)

\[
(1) \quad A < \frac{|P_n|}{|c_2c_3\cdots c_n|} < B, \quad A < \frac{|Q_n|}{|c_1c_2\cdots c_n|} < B,
\]

where \(0 < A = \prod_{n=1}^{\infty} (1 - 2/|c_n c_{n+1}|) < 1 \), \(B = \prod_{n=1}^{\infty} (1 + 2/|c_n c_{n+1}|) > 1 \). So the continued fraction \(\frac{1}{c_1 + \frac{1}{c_2 + \frac{1}{c_3 + \cdots + c_n + \cdots}}} \) converges to the limit \(\alpha = \lim_{n \to +\infty} P_n/Q_n = \beta/(c_1 \gamma) \), and

\[
(2) \quad \frac{A}{B} < \left| \frac{\beta}{\gamma} \right| < \frac{B}{A}.
\]

Proof. Since \(|c_n| \geq 2 \), we have \(|P_n| \geq |2|P_{n-1}| - |P_{n-2}| \). Hence \(|P_n| \geq |P_{n-1}| \) for every \(n \geq 1 \) by induction, and \(|P_n| \geq |P_1| = 1 \). Therefore \(P_n \neq 0 \) for every \(n \geq 1 \), and the same holds for \(Q_n \). We put \(u_n = c_n P_{n-1}/P_n, v_n = c_n Q_{n-1}/Q_n \) for \(n \geq 1 \), so that \(u_1 = 0, v_1 = 1 \). Then we have

\[
P_n = c_n \left(1 + \frac{u_{n-1}}{c_{n-1}c_n} \right) P_{n-1}, \quad Q_n = c_n \left(1 + \frac{v_{n-1}}{c_{n-1}c_n} \right) Q_{n-1},
\]
and so

\[P_n = c_2 c_3 \cdots c_n \prod_{k=2}^{n-1} \left(1 + \frac{u_k}{c_{k-1} c_k} \right) \quad (n \geq 2), \]

\[Q_n = c_1 c_2 \cdots c_n \prod_{k=1}^{n-1} \left(1 + \frac{v_k}{c_{k-1} c_k} \right) \quad (n \geq 1). \]

Since \(u_n = (1 + u_{n-1}/c_{n-1} c_n)^{-1} \) and \(v_n = (1 + v_{n-1}/c_{n-1} c_n)^{-1} \), we see by induction on \(n \) that \(|u_n| \leq 2, |v_n| \leq 2 \) for \(n \geq 1 \), which together with (1) and (2) ensures the convergence of the products \(\beta = \prod_{k=2}^{\infty} (1 + u_k/c_k c_{k+1}) \) and \(\gamma = \prod_{k=1}^{\infty} (1 + v_k/c_k c_{k+1}) \), and (1) and (2) follow immediately.

Lemma 2. With the notations in Lemma 1, there exists \(n_0 \in \mathbb{N} \) such that \(|\alpha - P_n/Q_n| < 2/|Q_n Q_{n+1}| \leq 1 \) for every \(n \geq n_0 \).

Proof. Put \(\alpha_n = \frac{1}{c_n + c_{n+1} + \cdots} \) \((n \geq 1) \). We have

\[\alpha = \alpha_1 = \frac{1}{c_1 + c_2 + \cdots + c_{n+2}} = \frac{1}{c_1 + \cdots + c_{n+1}} + \frac{\alpha_{n+2}}{1} = \frac{P_n + \alpha_{n+2} P_n}{Q_n + \alpha_{n+2} Q_n}, \]

and we get the well-known formula

\[\alpha - \frac{P_n}{Q_n} = \frac{(-1)^n}{Q_n Q_{n+1}(1 + \alpha_{n+2} Q_n/Q_{n+1})} \quad (n \geq 1). \]

By (1), we have

(3) \[|Q_n/Q_{n+1}| \leq \frac{B}{A|c_{n+1}|}. \]

By (2) with \(\alpha_{n+2} \) in place of \(\alpha = \alpha_1 \), we get \(|\alpha_{n+2}| \leq B/(A|c_{n+2}|) \). Hence \(\lim_{n \to +\infty} (1 + \alpha_{n+2} Q_n/Q_{n+1}) = 1 \) by (2), and Lemma 2 follows.

Proof of Theorem 2. Suppose that \(\alpha \) is a root of \(f(x) = ax^2 + bx + c, a, b, c \in \mathbb{Z}, \alpha \neq 0 \). It follows from the mean value theorem that \(-f(P_n/Q_n) = (\alpha - P_n/Q_n)f'(\theta) \), with \(\alpha - 1 \leq \theta \leq \alpha + 1 \). By Lemma 2 we get \(|f(P_n/Q_n)| \leq 2M/|Q_n Q_{n+1}| \) \((n \geq n_0) \) where \(M = \max(1, f'(x)) |\alpha - 1 \leq x \leq \alpha + 1| \). Using (3) yields \(|Q_n^2 f(P_n/Q_n)| \leq 2MB/(A|c_{n+1}|) \) \((n \geq n_0) \).

We see by induction on \(n \) that \(d_1 d_2 \cdots d_n P_n \) and \(d_1 d_2 \cdots d_n Q_n \) are rational integers; the same holds for \(A_n = (d_1 d_2 \cdots d_n)^2 Q_n^2 f(P_n/Q_n) \) \((n \geq 1) \). Using (3), we get \(\liminf_{n \to +\infty} A_n = 0, \) and \(A_n = 0 \) for infinitely many \(n \), namely \(f(P_n/Q_n) = 0 \) for infinitely many \(n \). Hence \(f \) has infinitely many roots, and \(f = 0 \). The proof of Theorem 2 is complete.
3. Proof of Theorem 3

To prove Theorem 3, we essentially use the same method as in [2]. We put

\[\alpha_q^2 = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{\lfloor n/k \rfloor} a(k)a(n-k) \right) q^{-n} = \sum_{n=0}^{+\infty} r(n)q^{-n}, \]

\[\beta_q^2 = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{\lfloor n/k \rfloor} b(k)b(n-k) \right) q^{-n} = \sum_{n=0}^{+\infty} s(n)q^{-n}, \]

\[\alpha_q \beta_q = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{\lfloor n/k \rfloor} a(k)b(n-k) \right) q^{-n} = \sum_{n=0}^{+\infty} t(n)q^{-n}. \]

As \(a(n) \) and \(b(n) \) are bounded sequences of rational integers, we see that there exists \(M > 0 \) such that

\[|r'(n)| \leq Mr(n), \]

\[|s'(n)| \leq Ms(n), \]

\[|t'(n)| \leq Mt(n), \]

where \(r(n), s(n), t(n) \) are the numbers of solutions \((k, l) \in \mathbb{N}^2\) of the equations \(u_k + u_l = n, v_k + v_l = n, u_k + v_l = n \), respectively.

As in [2], the numbers \(r(n), s(n) \) and \(t(n) \) can be connected to the number \(\rho(n) \) of solutions \((k, l) \in \mathbb{N}^2\) of the equation \(k^2 + l^2 = n \). This will be done in the paragraph 3.1, Lemmas 4 and 5. In the paragraph 3.2, we will recall an elementary criterion of irrationality from [1] (Theorem 4) and prove a modified version of [3; Lemma 2] (Theorem 5), concerning the gaps in the sequence \(r(n) \). The proof of Theorem 3 will be given in the paragraph 3.3.

3.1. Three technical lemmas

We prove some connections between \(r(n), s(n), t(n) \) and \(\rho(n) \).

Lemma 3. Suppose that \(n = 2^a \prod p^\beta \prod q^\gamma \), where \(p \) and \(q \) are primes congruent to 1 and 3 modulo 4, respectively. Then, if \(n \) is not a square,

\[\rho(n) = \prod (\beta + 1) \prod \left(\frac{1 + (-1)^\gamma}{2} \right). \]

Proof. Let \(\rho^*(n) \) be the number of decompositions of \(n \) as sum of squares of two rational integers. It is well known that the generating function of \(\rho^*(n) \) is

\[g^*(x) = \left(\sum_{n=-\infty}^{+\infty} x^{n^2} \right)^2. \]
while the generating function of $\rho(n)$ is

$$g(x) = \left(\sum_{n=0}^{+\infty} x^{n^2} \right)^2.$$

Hence $g^*(x) = \left(2\sum_{n=0}^{+\infty} x^{n^2} - 1 \right)^2 = 4g(x) - 4\sum_{n=0}^{+\infty} x^{n^2} + 1$. Thus if n is not a square, $\rho(n) = \rho^*(n)/4$, and Lemma 1 follows directly from [8; (16–9–5) and Theorem 278].

Lemma 4. For every natural integer n, we have

$$r(n) = \rho(40n + 2),$$
$$s(n) = \rho(40n + 18).$$

Proof. We prove (5). Let (k, l) be a solution of the equation

$$\frac{k(5k + u)}{2} + \frac{l(5l + v)}{2} = n$$

with $u^2 = 1$, $v^2 = 1$. It is easy to verify that this equation is equivalent to

$$(10k + u)^2 + (10l + v)^2 = 40n + 2.$$

Thus every solution (k, l) of (7) yields a solution (k', l') of the equation

$$k'^2 + l'^2 = 40n + 2.$$

Conversely, let (k', l') be a solution of (8). By reduction modulo 5, we obtain $k' = 5k_1 + u$ and $l' = 5l_1 + v$, with $k_1 \in \mathbb{N}$, $l_1 \in \mathbb{N}$, $u^2 = 1$, $v^2 = 1$. But k' and l' must be odd by (8), therefore k_1 and l_1 must be even, and $k' = 10k + u$, $l' = 10l + v$. Thus (k, l) is a solution of (7), and (5) is proved. The proof of (6) is similar.

The connection between $t(n)$ and $\rho(n)$ is a bit more difficult to handle, and we only prove:

Lemma 5. For every integer $n \geq 0$, we have

$$t(n) = \frac{1}{2} \rho(40n + 10) \text{ if } n \not\equiv 1 \pmod{5},$$
$$t(n) \leq \rho(40n + 10),$$
$$t(n) = 2 \text{ if } \rho(40n + 10) = 4 \text{ and } 8n + 2 \not\equiv 0 \pmod{5}.$$
Proof. Let us prove first (16). The equation
\[(12) \quad \frac{k(5k + u)}{2} + \frac{l(5l + v)}{2} = n\]
with \(u^2 = 1, v^2 = 9\) is equivalent to
\[(10k + u)^2 + (10l + v)^2 = 40n + 10.\]
Thus every solution \((k, l)\) of (12) yields one solution \((k', l')\) of the equation
\[(13) \quad k'^2 + l'^2 = 40n + 10,\]
and (16) is proved.

Next we prove (15). Let \((k', l')\) be a solution of (13). It is easy to verify that only two cases can occur:
Case 1°. \(k' \equiv u \pmod{5}\) and \(l' \equiv v \pmod{5}\), with \(u, v \in \{1, -1, 3, -3\}\). As \(k'\) and \(l'\) must be odd by (13), we obtain \(k' = 10k + u\) and \(l' = 10l + v\).
Case 2°. \(k' \equiv 0 \pmod{5}\) and \(l' \equiv 0 \pmod{5}\).

Suppose that \(n \not\equiv 1 \pmod{5}\). Then Case 2° cannot occur, because \(k' = 5k_1\) and \(l' = 5l_1\) implies \(8n + 2 = 5(k_1^2 + l_1^2)\) by (13), and reduction modulo 5 yields \(n \equiv 1 \pmod{5}\). Hence we are in Case 1° and \(k' = 10k + u, l' = 10l + v\), with \(u, v \in \{1, -1, 3, -3\}\). But this gives a solution of (12) only if \(u = 1\) or \(-1\) and \(v = 3\) or \(-3\). Therefore (15) is proved.

Finally (17) is an immediate consequence of (15).

3.2. Two theorems The following theorem is proved in [1](see also [4] for a generalization).

Theorem 4. Let \(q \in \mathbb{Z} (|q| \geq 2)\). Let \(\tau(n)\) be a sequence of rational integers with the following properties (i), (ii), (iii):

(i) \(\tau(n) \neq 0\) for infinitely many \(n\).

(ii) When \(n\) is large enough, \(|\tau(n)| \leq \omega(n)\) with \(\omega(n) > 0\) and
\[\limsup_{n \to +\infty} \omega(n + 1)/\omega(n) < |q|,\]

(iii) There exists infinitely many \(k \in \mathbb{N}\) and integers \(n_k \in \mathbb{N}\) such that \(\tau(n_k + 1) = \tau(n_k + 2) = \cdots = \tau(n_k + k) = 0\) and \(\lim_{k \to +\infty} \omega(n_k + k + 1)/|q|^k = 0\).

Let \(x = \sum_{n=0}^{+\infty} \tau(n)q^{-n}\). Then if \(x = \alpha/\beta \in \mathbb{Q}\), we have
\[\alpha q^n - \beta \sum_{n=0}^{n_k} \tau(n)q^{n_k-n} = 0\]
for all sufficiently large \(k\).

One sees that Theorem 4 is a criterion of irrationality for gap series under some
Theorem 5. Let Ω_1 and Ω_2 be two natural integers, with $\Omega_1 \equiv 1 \pmod{4}$, Ω_2 odd, $\gcd(\Omega_1, \Omega_2) = \Delta \equiv 1 \pmod{4}$, and let $\theta_1 \in \mathbb{N}$, $\theta_2 \in \mathbb{N} - \{0, 1\}$, $\delta \in \mathbb{N} - \{0\}$, $\varepsilon \in]0, 1[$. Denote by $p_1 < p_2 < \cdots < p_n$ a sequence of consecutive rational primes congruent to 3 modulo 4 with the following properties:

$$p_n \text{ does not divide } \Omega_2 \text{ for every } n \geq 1,$$

$$\sum_{n=1}^{+\infty} p_n^{-2} \leq \varepsilon.$$

Then there exists an integer $m_0 = m_0(\Omega_1, \Omega_2, \theta_1, \theta_2, \delta, \varepsilon)$ and a constant $L > 1$ (Linnik’s constant [7]) such that, for every $k = p_1 p_2 \cdots p_m$ with $m \geq m_0$, there exists $N_k \in \mathbb{N}$ such that

$$\rho(N_k - \delta) = \cdots = \rho(N_k - 1) = \rho(N_k + 1) = \cdots = \rho(N_k + k) = 0,$$

$$N_k = 2^h \Delta p_k^* h_k^2, \text{ where } p_k^* \text{ is a rational prime satisfying } p_k^* \equiv 1 \pmod{4}, \text{ and } h_k \text{ is an integer whose prime divisors are all distinct and congruent to 3 modulo 4},$$

$$N_k \equiv 2^h \Omega_1 \pmod{2^h + \delta \Omega_2},$$

$$N_k \leq (2^h + \delta \Omega_2)^L \exp(4Lp_{2(k)}).$$

Proof of Theorem 5. We follow the proof of [1; Lemma 2] until the fourth step. We modify the fifth step in the following way. Because of (14), we can choose $\eta \in \{0, 1, \ldots, 2^h + \delta \Omega_2 - 1\}$, such that

$$\eta(p_1 p_2 \cdots p_{m+N+M})^4 + t_m \equiv 2^h \Omega_1 \pmod{2^h + \delta \Omega_2}.$$

Then we put for $s \in \mathbb{N}$

$$w_s = 2^h + \delta \Omega_2 (p_1 p_2 \cdots p_{m+N+M})^4 s + \eta(p_1 p_2 \cdots p_{m+N+M})^4 + t_m,$$

$$D = \gcd[2^h + \delta \Omega_2 (p_1 p_2 \cdots p_{m+N+M})^4, \eta(p_1 p_2 \cdots p_{m+N+M})^4 + t_m].$$

Using (25) and [1; (30)], we see that

$$D = 2^h \Delta \prod_{i=1}^{n+N+M} p_i^{\alpha_i}, \text{ with } \alpha_i = 0 \text{ or } 2.$$

We write

$$w_s = D(\xi s + \chi), \text{ with } (\xi, \chi) \in \mathbb{N} \times \mathbb{N}.$$
Because of [1; (31)], we have $\chi < \eta$ for large m. Then, by Linnik's theorem, there exists a prime number p_k^* and a natural integer σ such that

$$\omega = Dp_k^* \leq D \left(\frac{2^{\theta_1 + \theta_2} \Omega_2(p_1 p_2 \cdots p_{m+N+M})^4}{D} \right)^L.$$

We put $N_k = \omega \sigma$. By (28) with $L > 1$, we have

$$N_k \leq (2^{\theta_1 + \theta_2} \Omega_2)^L(p_1 p_2 \cdots p_{m+N+M})^{4L},$$

which leads to (24) by following the sixth step of the proof of [1; Lemma 2].

Moreover, as $\Omega_1 \equiv 1 \pmod{4}$ and $\theta_2 \geq 2$, we have by using (25) $w_i \equiv 1 \pmod{4}$ ($s \in \mathbb{N}$). Thus, by (27) and (28)

$$\Delta \prod_{i=1}^{m+N+M} p_i^\omega \cdot p_i^* \equiv 1 \pmod{4}.$$

As $\Delta \equiv 1 \pmod{4}$ and $\alpha_i = 0$ or 2, we get $p_k^* \equiv 1 \pmod{4}$, and p_k^* is a sum of two squares. This proves (22), while (23) results from (26) and the definition of N_k. Finally, (15) is a direct consequence of [1; (35)]. The proof of Theorem 4 is complete.

3.3. Proof of Theorem 3 For the proof of Theorem 3, it is sufficient to show that the numbers $\alpha^2, \beta^2, \alpha q \beta q, \alpha q, \beta q$ and 1 are linearly independent over \mathbb{Q}, because $(a+b\sqrt{d})+(a'+b'\sqrt{d})\alpha q+(a''+b''\sqrt{d})\beta q = 0$ implies $(a+a'\alpha q+a''\beta q)^2 = d(b+b'\alpha q+b''\beta q)^2$. So suppose that, for rational integers $A, B, C, D, E, F,$

$$A\alpha^2 + B\beta^2 + C\alpha q \beta q + D\alpha q + E\beta q + F = 0. $$

Then, if

$$\tau(n) = Ar'(n) + Bs'(n) + Ct'(n) + Da(n) + Eb(n),$$

we have $\sum_{n=0}^{+\infty} \tau(n)q^{-n} = -F$.

First step. Suppose first that $B \neq 0$. Let $\sigma \in \mathbb{N}$ such that q^σ divides none of the numbers $2Bb(u)b(v)$ with $(u, v) \in \mathbb{N}^2$ and $b(u)b(v) \neq 0$; we can choose such a σ because $b(u)$ and $b(v)$ are bounded. In Theorem 5, we put

$$\delta = 40\sigma + 16,$$

and choose ε such that

$$32L - \frac{\log |q|}{320\varepsilon} < 0.$$
Also we put $\Omega_1 = 9, \Omega_2 = 5, \theta_1 = 1, \theta_2 = 2$ and then N_k in (23) satisfies $N_k \equiv 18 \pmod{40}$. We put $n_k = (N_k - 18)/40$.

By using (15) and (22), and Lemma 3, 4, 5, we have

$$s(n_k - \sigma) = \cdots = s(n_k - 1) = s(n_k + 1) = \cdots = s\left(n_k + \left[\frac{k}{40}\right]\right) = 0,$$

$$s(n_k) = 2,$$

$$r(n_k - \sigma) = \cdots = r(n_k - 1) = r(n_k) = \cdots = r\left(n_k + \left[\frac{k}{40}\right]\right) = 0,$$

$$t(n_k - \sigma) = \cdots = t(n_k - 1) = t(n_k) = \cdots = t\left(n_k + \left[\frac{k}{40}\right]\right) = 0,$$

$$a(n_k - \sigma) = \cdots = a(n_k - 1) = a(n_k) = \cdots = a\left(n_k + \left[\frac{k}{40}\right]\right) = 0,$$

$$b(n_k - \sigma) = \cdots = b(n_k - 1) = b(n_k) = \cdots = b\left(n_k + \left[\frac{k}{40}\right]\right) = 0.$$

(31) (32)

For the proof of the relations (31) and (32), observe that $t(n) = 0$ implies $a(n) = b(n) = 0$; otherwise, since $u_0 = v_0 = 0$, the equation $u_p + v_m = n$ would have a solution. Thus, by using (2), (3), (4), (29), we get

$$\tau(n_k - \sigma) = \cdots = \tau(n_k - 1) = \tau(n_k + 1) = \cdots = \tau\left(n_k + \left[\frac{k}{40}\right]\right) = 0,$$

$$\tau(n_k) = 2Bb(u)b(v), \quad \text{with} \quad (u, v) \in \mathbb{N}^2, \quad b(u)b(v) \neq 0.$$

(33) (34)

For the proof of the relation (34), by (29) one has $\tau(n_k) = B\tau'(n_k) = 2Bb(u)b(v)$ for some $u = v_p$ and $v = v_m$ by (1), where $v_p + v_m = v_m + v_p = n_k$ comes from $s(n_k) = 2$.

But we know that

$$\rho(n) \leq d(n) \leq \exp\left(\frac{\log n}{\log \log n}\right)$$

for large n ([8; p. 262, Th. 317, and §18-7, p. 270]). Using (29), (2), (3), (4), and Lemmas 4 and 5, we get for large n

$$\tau(n) \leq \exp\left(\frac{2\log n}{\log \log n}\right) = o(n).$$

Moreover, Theorem 5 and (24) yield

$$n_k + \left[\frac{k}{40}\right] + 1 \leq 40^{L-1}\exp(4LP_{2\lfloor k \rfloor}) + \left[\frac{k}{40}\right] + 1.$$

(35) (36)

Using the prime number theorem in arithmetic progressions, we have for large k

$$\frac{1}{4} \log p_{2\lfloor k \rfloor} \leq 2\varepsilon k \leq \frac{p_{2\lfloor k \rfloor}}{\log p_{2\lfloor k \rfloor}},$$

(37)
so that by (36)

\[n_k + \left[\frac{k}{40} \right] + 1 \leq \exp(8Lp_{2[k]}). \]

Hence we get by (35)

\[\log \omega \left(n_k + \left[\frac{k}{40} \right] + 1 \right) \leq \frac{16Lp_{2[k]}}{\log 8L + \log p_{2[k]}} \]

and so for large \(k \)

(38)

\[\omega \left(n_k + \left[\frac{k}{40} \right] + 1 \right) \leq \frac{32Lp_{2[k]}}{\log p_{2[k]}}. \]

We put \(h = p_{2[k]} / (\log p_{2[k]}) \). Then \(h \) tends to infinity as \(k \) does. By using (38) and (37), we get

\[
\frac{\omega(n_k + \lfloor k/40 \rfloor + 1)}{|q|^{\lfloor k/40 \rfloor}} \leq \frac{\exp 32L \cdot h}{|q|^{(h/320) - 1}}.
\]

Therefore, by the choice of \(\varepsilon \) in (30), we have

\[\lim_{k \to +\infty} \frac{\omega(n_k + \lfloor k/40 \rfloor + 1)}{|q|^{\lfloor k/40 \rfloor}} = 0. \]

Noting that \(\lim_{k \to +\infty} \omega(n + 1)/\omega(n) = 1 \), and recalling (29) and (33), we can apply Theorem 4 and obtain

\[Fq^n + \sum_{n=0}^{n_k} \tau(n)q^{n_k-n} = 0. \]

By using (33) and (34), we now have for some \((u, v) \in \mathbb{N}^2\)

\[Fq^n + 2Bb(u)b(v) + \sum_{n=0}^{n_k-\sigma-1} \tau(n)q^{n_k-n} = 0. \]

Thus \(q^{\sigma+1} \) divides \(2Bb(u)b(v) \), and this contradiction proves that \(B = 0 \).

Second step. We now suppose that \(C \neq 0 \), and we choose \(\sigma \) such that \(q^\sigma \) does not divide any of the numbers \(2Ca(u)b(v) \) for \((u, v) \in \mathbb{N}^2 \) with \(a(u)b(v) \neq 0 \). In Theorem 5, we put

\[\delta = 40\sigma + 16, \]
and choose ε as in (30), $\Omega_1 = 5$, $\Omega_2 = 5$, $\theta_1 = 1$, $\theta_2 = 2$. Then N_k in (23) satisfies
$N_k \equiv 10 \pmod{40}$ and we put $n_k = (N_k - 10)/40$. By using (15), (22), and Lemmas 3, 4 and 5 (observe that $N_k = 40n_k + 10$, so that (17) in Lemma 5 applies), we get

$$t(n_k - \sigma) = \cdots = t(n_k - 1) = t(n_k + 1) = \cdots = t\left(n_k + \left\lfloor \frac{k}{40} \right\rfloor \right) = 0,$$

$$t(n_k) = 2,$$

$$r(n_k - \sigma) = \cdots = r(n_k - 1) = r(n_k) = \cdots = r\left(n_k + \left\lfloor \frac{k}{40} \right\rfloor \right) = 0,$$

$$s(n_k - \sigma) = \cdots = s(n_k - 1) = s(n_k) = \cdots = s\left(n_k + \left\lfloor \frac{k}{40} \right\rfloor \right) = 0,$$

$$a(n_k - \sigma) = \cdots = a(n_k - 1) = a(n_k) = \cdots = a\left(n_k + \left\lfloor \frac{k}{40} \right\rfloor \right) = 0,$$

$$b(n_k - \sigma) = \cdots = b(n_k - 1) = b(n_k) = \cdots = b\left(n_k + \left\lfloor \frac{k}{40} \right\rfloor \right) = 0.$$

By arguing exactly the same way as the first step, we obtain $C = 0$.

Third step. Suppose that $A \neq 0$, and choose σ such that q^σ does not divide any of the numbers $2Aa(u)a(v)$ for $(u, v) \in \mathbb{N}^2$ with $a(u)a(v) \neq 0$. Choose again $\delta = 40\sigma + 16$, ε as in (30), $\Omega_1 = 1$, $\Omega_2 = 5$, $\theta_1 = 1$, $\theta_2 = 2$ in Theorem 5, and put $n_k = (N_k - 2)/40$. By going on exactly as in the first and second steps, one can prove that $A = 0$.

Fourth step. Thus we have $D\alpha_q + E\beta_q + F = 0$. It can be proved, by elementary means, this is impossible. Hence Theorem 3 is proved.

ACKNOWLEDGEMENT. This paper has been written at the occasion of two stays of the first-named author in Keio University, Yokohama, in June 1996 and 1997; the author thanks Professors Kumiko Nishioka and Iekata Shiokawa for their kind invitation and hospitality.

References

D. Duverney
24 Place du Concert
59800 LILLE, France
e-mail: duverney@gat.univ-lille1.fr

I. Shiokawa
Department of Mathematics
Keio University
Hiyoshi 3-14-1, Kohoku-ku
Yokohama 223-0061, Japan
e-mail: shiokawa@math.keio.ac.jp