
Title Code Clone Analysis Methods for Efficient
Software Maintenance

Author(s) 肥後, 芳樹

Citation 大阪大学, 2006, 博士論文

Version Type VoR

URL https://doi.org/10.18910/47259

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Code Clone Analysis Methods
for Efficient Software Maintenance

Submitted to
Graduate School of Information Science and Technology

Osaka University

October 2006

Yoshiki Higo

Abstract

Maintaining software systems becomes more difficult as the size and complexity
of them increase. One factor that makes software maintenance more difficult is
the presence of code clones. A code clone is a code fragment that has identical
or similar code fragments to it in the source code. Code clones are introduced by
various reasons such as reusing code by ‘copy and paste’. If we modify a code
clone with many similar code fragments, it is necessary to consider whether or
not we have to modify each of them. Especially, for large-scale software, such
a process is very complicated and expensive. We tend to overlook some of code
fragments which should be modified.

In this study, we propose maintenance support methods for the presence of
code clones. This study covers comprehensive maintenance situations that we are
suffered from code clones. To sophisticate and enrich our methods as practical
ones, we are promoting academic-industrial collaboration. We deliver our tools
to industrial people, and they apply the tools to their software development and
maintenance contexts, and they send feedback to us. We improve our methods and
tools based on the feedback, and deliver the improved tools to them repeatedly.
This iterative improvement process enhanced our methods and tools as useful ones
in practical software development and maintenance.

We propose methods of visualizing and characterizing code clones to support
understanding them in a software system. The methods are very practical since they
have a filtering functionality for eliminating uninteresting code clones. Automatic
code clone detection by tools tends to detect many uninteresting code clones. Unin-
teresting code clones are the ones that we are not interested in from a viewpoint of
software maintenance. For example, consecutive method invocations and case en-
tries of switch-statements are typically uninteresting. The existence reason of these
code clones is not copy and paste but the syntax of the programming language. The
visualization method provides a bird’s eye view of code clones distribution all over
the system. Using this view, we can understand the distribution state of code clones
at a glance. The characterization method calculates some metrics of the software
entities (code clones and source files). This quantitative characterization enables

iii

us to select code clones based on their features (ex. code clones which are very big
or occur in many places). We developed a tool, Gemini based on the methods, and
applied it to open source and commercial software. The application results show
that the filtering works very well and the visualization/characterization methods
help the programmer to understand the state of code clones.

We propose a refactoring support method for code clones. Refactoring is a
disciplined technique for restructuring an existing body of code, altering its inter-
nal structure without changing its external behavior. Generally, code clone is one
of the most noteworthy Bad Smells (which are bad code patterns) in the source
code. Our proposal consists of two steps. At the first step, refactoring-oriented
code clones are detected from the source code. Here, a refactoring-oriented code
clone is a code clone whose body is a whole structural unit (ex. class, method,
loop). In the second step, each refactoring-oriented code clones is characterized by
some metrics. We use two kinds of metrics, coupling and distance metrics. The
coupling metric measures how a code clone is coupled with its surrounding code.
If the degree of coupling is low, the code clone can be easily moved to other place.
The distance metric measures how the code clones that are similar to each other
are far in the class hierarchy. If they are in the same class, the code clones will be
able to extract as a new method in the class. If they are in different classes hav-
ing a common parent class, the code clones will be pulled up to the parent class.
We develop a refactoring support tool, Aries, and applied it to open source and
commercial software. The application results show that the refactoring techniques
suggested by Aries are applicable and practical.

We propose a modification support method for code clones. The presence of
code clones is a big factor of overlooking some places that should be modified. We
propose a refactoring support method as described above, but some code clones
cannot or should not be merged. In order to support maintenance against such code
clones, the modification support method is helpful. The key idea is very simple. At
first, programmer detects a code fragment that should be modified. Secondly, only
code clones across fragments and software files are detected. Detecting only these
code clone has two advantages. One is that the detection speed is much faster than
detecting all code clones, and the other is that the programmer are not confused by
the information of unconcerned code clones. We developed a modification support
tool, Libra, and applied it to open source software. The result shows that Libra is
a good searching tool as well as grep, which is an useful tool of UNIX.

In Chapter 1, the definition of code clone and several relative techniques are in-
troduced. Chapter 2 describes visualization and characterization methods of code
clones. Chapter 3 describes a refactoring support method for code clones, and a
modification support method is introduced in Chapter 4. In Chapter 5, we summa-
rize the suggestions of this paper and describe future works.

iv

List of Publications

Major Publications

[1-1] Yoshiki Higo, Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, Katsuro
Inoue: On Software Maintenance Process Improvement Based on Code Clone
Analysis. Proceedings of the 4th International Conference on Product Fo-
cused Software Process Improvement (PROFES 2002), pp.185-197, Rovaniemi,
Finland, December 2002.

[1-2] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue, Yoshio
Kataoka: On Refactoring for Open Source Java Program. Proceedings of
the 9th IEEE International Software Metrics Symposium (METRICS 2003),
pp.247-251, Sydney, Australia, September 2003.

[1-3] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue: Refac-
toring Support Based on Code Clone Analysis. Proceedings of the 5th In-
ternational Conference on Product Focused Software Process Improvement
(PROFES 2004), pp.220-233, Kyoto-Nara, Japan, April 2004.

[1-4] Yoshiki Higo, Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, Katsuro
Inoue: On Software Maintenance Process Improvement Based on Code Clone
Analysis. IPSJ Journal, Vol.45, No.5, pp1357-1366, May 2004 (in Japanese).

[1-5] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue: ARIES:
Refactoring Support Environment Based on Code Clone Analysis. Proceed-
ings of the 8th IASTED International Conference on Software Engineer-
ing and Applications (SEA 2004), pp.222-229, Cambridge, USA, November
2004.

[1-6] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue: Refac-
toring Support Environment Based on Code Clone Aanalysis. IEICE Journal,
Vol.J88-D-I, No.2, pp.186-195, February 2005 (in Japanese).

v

[1-7] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue: ARIES:
Refactoring Support Tool for Code Clone. Proceedings of the 3rd Workshop
of Software Quality (WoSQ 2005), pp.53-56, ST. Louis, USA, May 2005.

[1-8] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue: Improve-
ment and Implementation of Code Clone Visualization Method based on
Academic-Industrial Collaboration. IPSJ Journal, February 2007 (In Japanese)(to
appear).

[1-9] Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro Inoue: Method
and Implementation for Investigating Code Clones in a Software System,
Information and Software Technology (to appear).

Related Publications

[2-1] Yasushi Ueda, Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro
Inoue: Gemini: Code Clone Analysis Tool. Proceedings of the 2002 Interna-
tional Symposium on Empirical Software Engineering (ISESE 2002), Nara,
Japan, October 2002.

[2-2] Toru Sasaki, Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Katsuro In-
oue: A code clone information supplement tool to support program change.
IEICE Journal, Vol.J87-D-I, No.9, pp.868-870, September 2004 (in Japanese).

[2-3] Norihiro Yoshida, Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Kat-
suro Inoue: On Refactoring Support Based on Code Clone Dependency Re-
lation. Proceedings of the 11th IEEE International Software Metrics Sym-
posium(METRICS 2005), Como, Italy, September 2005.

[2-4] Yoshiki Mitani, Nahomi Kikuchi, Tomoko Matsumura, Satoshi Iwamura,
Yoshiki Higo, Katsuro Inoue, Mike Barker, Ken-ichi Matsumoto: Effects
of software industry structure on a research framework for empirical soft-
ware engineering. Proceedings of the 28th IEEE International Conference
on Software Engineering (ICSE 2006), pp.616-619, Shanghal, China, May
2006.

vi

Acknowledgement

I am most indebted to my supervisor Professor Katsuro Inoue for his continuous
support and supervision over the years. Without his help, experience and advice,
this thesis would never have reached completion.

I would like to express my gratitude to Professor Toshimitsu Masuzawa, Pro-
fessor Shinji Kusumoto and Associate Professor Makoto Matsushita for his valu-
able comments and helpful criticism on this thesis.

I would like to express my gratitude to Doctor Toshihiro Kamiya in National
Institute of Advanced Industrial Science and Technology. His comments, criticism
and advice have helped me shape the development of this thesis.

Many of courses that I have taken during my graduate career have been helpful
in preparing this thesis. I would especially like to acknowledge the guidance of
Professor Ken-ichi Hagihara and Professor Yasushi Yagi.

I would like to express my thanks to Professor Stan Jarzabek of National Uni-
versity of Singapore and Professor Michael W. Godfrey of the University of Wa-
terloo for their insightful comments and valuable discussions on the paper which
formed the basis of this thesis.

I wish to express my gratitude to the members of the CCFinder mailing list for
their feedback on my software tools.

Thanks are also due to many friends in the Department of Computer Science,
especially students in Inoue Laboratory.

vii

viii

Contents

1 Introduction 1
1.1 Software Maintenance . 1
1.2 Code Clone . 2

1.2.1 Definition . 2
1.2.2 Reasons of the Code Clone Presence 2
1.2.3 Code Clone Detection Tool: CCFinder 4
1.2.4 Related Studies on Code Clone Detection 7

1.3 Refactoring . 9
1.4 Research Overview . 14

1.4.1 Visualization and Characterization Methods for Compre-
hension . 15

1.4.2 Refactoring Support Method 15
1.4.3 Modification Support Method 16

2 Visualization and Characterization Methods for Comprehension 17
2.1 Motivation . 17
2.2 Proposal Techniques . 19

2.2.1 Filtering out Uninteresting Code Clones 19
2.2.2 Scatter Plot of Code Clone 21
2.2.3 Clone Set Metrics . 23
2.2.4 File Metrics . 24

2.3 Code Clone Visualization Tool: Gemini 25
2.4 Case Study on Open Source Software 26

2.4.1 Target and Configurations 26
2.4.2 Filtering with RNR . 27
2.4.3 Scatter Plot Analysis . 29
2.4.4 Metric Graph Analysis 32
2.4.5 File List Analysis . 33
2.4.6 Evaluation . 35

ix

2.5 Case Study on Commercial Software 38
2.5.1 Target and Configurations 38
2.5.2 History Analysis . 39
2.5.3 Scatter Plot Analysis . 40
2.5.4 Metric Graph Analysis 40
2.5.5 File List Analysis . 42

2.6 Related Works and Discussion 42
2.7 Summary . 44

3 Refactoring Support Method 45
3.1 Motivation . 45
3.2 Proposal Techniques . 46

3.2.1 Extraction of Refactoring-Oriented Code Clones 46
3.2.2 Provision of Appricable Refactoring Patterns 47
3.2.3 Example of Refactoring Process 48

3.3 Refactoring Support Tool: Aries 50
3.4 Evaluation on Applicability . 54

3.4.1 Result of Extract Method 55
3.4.2 Result of Pull Up Method 56

3.5 Evaluation on Usefulness . 59
3.5.1 Outline . 59
3.5.2 Evaluation Criteria . 61
3.5.3 Hypothesis . 63
3.5.4 Results . 63
3.5.5 Discussion . 68

3.6 Addaitive Descriptions of Aries 69
3.6.1 Other Refactoring Conditions in Aries 69
3.6.2 Concentrating Target Classes to be Refactored in Aries . . 69

3.7 Related Works . 71
3.8 Summary . 72

4 Modification Support Method 75
4.1 Motivation . 75
4.2 Approach . 75
4.3 Debug Support Tool: Libra . 76
4.4 Evaluation . 77

4.4.1 Canna . 78
4.4.2 Ant . 79
4.4.3 Discussion . 80

4.5 Related Works . 80

x

4.6 Summary . 81

5 Conclusions 83
5.1 Summary of Major Results . 83
5.2 Directions of Future Research 84

xi

xii

List of Figures

1.1 Clone Pair and Clone Set . 4
1.2 Input Source Code . 5
1.3 Detection Processe of CCFinder 6
1.4 An Example of Extract Method 11
1.5 An Example of Pull Up Method 11
1.6 An Example of Extract SuperClass 12
1.7 An Example of Consolidate Duplicate Conditional Fragments . . 12
1.8 An Example of Form Template Method 13
1.9 An Example of Replace Conditional with Polymorphism 14

2.1 Example of output from CCFinder 18
2.2 Example of language dependent code clone 20
2.3 Example of the Scatter Plot . 22
2.4 Filtering clone sets using the Metric Graph 24
2.5 Snapshot of the File List . 26
2.6 Examples of uninteresting code clones 28
2.7 Snapshots of Scatter Plot . 30
2.8 Example of code clones in B (branching by using source of events) 31
2.9 Example of code clones in B (methods creating GUI widgets) . . . 32
2.10 One of the fragments making up the clone set whose POP is highest 33
2.11 Transition of Recall, Precision, and F-value 36
2.12 Transition of the duplicated ratio of company Y 40
2.13 A snapshot of Scatter Plot . 41

3.1 Example of merging two code fragments 47
3.2 A Snapshot of Main Window . 51
3.3 A Snapshot of Clone Set Viewer 52
3.4 Analysis precess using GUI Unit 53
3.5 Example of Extract Method in (EG1) 55
3.6 Example of Extract Method in (EG2) 55

xiii

3.7 Example of Extract Method in (EG3) 56
3.8 Example of Extract Method in (EG4) 56
3.9 Example of Pull Up Method in (PG2) 57
3.10 Example of Pull Up Method in (PG3) 57
3.11 Example of Pull Up Method in (PG4) 58
3.12 A Snapshot of Class Viewer . 70

4.1 A SnapShot of Input Fragment 76
4.2 A SnapShot of Detection Result 77
4.3 An example of Canna’s modifications 78
4.4 An example of Ant’s modifications 79

xiv

List of Tables

2.1 Breakdown of uninteresting code clones 27
2.2 Duplicated Ratios of Files . 34
2.3 Size of target software systems and results of executions 37
2.4 Amount of code clones in sub-systems 39

3.1 Number of Detected Clone Sets 59
3.2 Refactoring Evaluations of Extract Super Class 64
3.3 Refactoring Evaluations of Move Method 66
3.4 Refactoring Evaluations of Extract Method 67

4.1 Attributes of target software . 77
4.2 Comparison between Libra and grep 80

xv

xvi

Chapter 1

Introduction

1.1 Software Maintenance

Software Maintenance is modification of a software product after delivery to cor-
rect faults, to improve performance or other attributes, or to adapt the product to
a modified environment [25]. Currently, software maintenance consists of 4 cate-
gories, which are defined as follows [26].

Corrective maintenance
The reactive modification for a software product performed after delivery to
correct discovered problems.

Adaptive maintenance
The modification of a software product, performed after delivery, to keep a
software product usable in a changed or changing environment.

Perfective maintenance
The modification of a software product after delivery to improve perfor-
mance or maintainability.

Preventive maintenance
The modification of a software product after delivery to detect and correct
latent faults in the software product before they become effective faults.

As the size and complexity of software increase, maintenance tasks become
more difficult and burdensome. Arthur states that only one-fourth or one-third of
all life-cycle costs are attributed to software development and that some 67% of
life-cycle costs are expended in the operation-maintenance phase of the life cycle
[3, 55].

1

Jones states that the work of enhancing an existing system in much more costly
than new development work if the base system is not well structured [30]. He pro-
vides empirical data to substantiate his claims. Perhaps one of the most salient
comments he makes is that organizations lump enhancements and fixing post-
delivery bugs together. He states that this is unfortunate because it distorts both
development and maintenance, and leads to confusion and mistakes in estimating.
He submits that this practice tends to perpetuate the notion that maintenance is
fixing bugs and mistakes.

Schneidewind also gives insight into why maintenance is hard [47]. He states
that,

1. It is difficult to trace the product or the process that created the product.

2. Changes are not adequately documented.

3. There is a lack of change stability.

4. There is a ripple effect when making changes.

This lack of attention to maintainability requirements during design results in
a loss of traceability. Thus, in tracing errors or adding enhancements, it is often
impossible to trace back to design specifications and user requirements. As a result,
maintenance is hard.

1.2 Code Clone

1.2.1 Definition

A code clone, in general, means a code fragment that has identical or similar code
fragments to it in source code. However, there is no single and generic definition
for code clone. So far, several methods of code clone detection have been proposed,
and each of them has its own definition about code clone. Some of these methods
are described in Section 1.2.4. In the remaining parts of this paper, we apply the
code clone detection feature of CCFinder as the definition of code clone.

1.2.2 Reasons of the Code Clone Presence

Code clones are introduced in source code because of various reasons as follows.

Copy and Paste
So far, many software design methods have been proposed, and they enable

2

us to develop software product with well-designed and high-reusability. Un-
fortunately there are enormous amount of ad-hoc reuse with copy and paste
because reuse with copy and paste is more reliable than writing code from
scratch.

Stereotyped Process
There are many stereotyped processes in implementing a software product,
and they depend on either programming language or domain of the software
product. For example, calculation of salary tax, file open/close and database
access are typical stereotyped processes.

Absence of Abstraction Functionality
If abstract data types or local variables cannot be used, we have to write the
same logic code many times in different places of the software product. The
same logic code tends to be code clones.

Performance Enhancement
In developing a real time software product using a compiler without the in-
line expansion functionality, we sometimes manually expand code in loops
for performance enhancement. Expanded code become code clones.

Tool Generation
Code generated by tools (Code Generator) tends to include many code clones
because the tools often use the same template to generate same or similar
logic code. Only identifier names of these code clones are different from
each other.

Coincidence
Coincidentally, different developers write the same logic code, but the prob-
ability of this case is very low.

The presence of code clone is one of the factors that makes software mainte-
nance more difficult. If we modify a code fragment and it has many code clones,
it is necessary to consider whether or not we have to modify each of the code
clones. Especially, for large-scale software, such processes are very complicated
and costly. There are two solutions for this problem.

• Keep making documents of up-to-date code clone information not to over-
look some of them in modification process.

• Detect code clones from source code automatically.

3

���

���

���

���

���

���

���

���

���

���

Figure 1.1: Clone Pair and Clone Set

The first solution requires much cost because keep up-to-date code clone in-
formation in document is performed manually. In development or maintenance of
the large-scale software product, this is unrealistic. On the other hand, the second
solution doesn’t require much cost because the tool detects code clones automati-
cally. As concrete approaches of it, several methods of code clone detection have
been proposed. Some of these methods are described in Section 1.2.4.

1.2.3 Code Clone Detection Tool: CCFinder

In CCFinder [33], a clone relation is defined as an equivalence relation (reflex-
ive, transitive, and symmetric relation) on code fragments. A code fragment is a
part of a source file, and it can be represented using ID, Linestart, Columnstart,
Lineend, and Columnend. For a code fragment f , ID(f) is the numeral ID of
the source file where f resided in. CCFinder assigns an unique ID to each of all
target source files. Linestart(f) (Lineend(f)) is the start (end) line number of f ,
and Columnstart(f) (Columnend(f)) is the start (end) column number of f re-
spectively. In this definition, it is possible that some code fragments are partially
overlapped to each other. Clone relation exist between two code fragments if (and
only if) the token sequences of them are identical1. For a given clone relation, a
pair of code fragments is called a clone pair if the clone relation holds between
them. An equivalence set of clone relation is called a clone set. That is, a clone set
is a maximal set of code fragments where a clone relation exits between any pair
of them.

Figure 1.1 illustrates an example of clone relation. As shown in this figure,

1The sequences are the transformed ones described as below

4

������� ��� 	
���
�	 ����
�
�� ��� ����
����������� "!�� ��#��$#�
&%('"� 	
�!*)
+,�-��� ��	 !".���/ 0�1

!�%��2��� �3	 !".4/ 0�)�5&��+"6"7 8"9�9�5(7"53��:�
�5(7�53
����;!"."%��;9�9�5�<�=
6��>
���.,� �?'@�&
���%�� ��%;."%�#�'�� ���*',�(�,1

!�%��A
�� .,� �(',�;
���%�� ��%;."%�#�'�� ���B��5&/ 9�C D"7 0 E$53�3=
8,�>	 !�����F"GH149�=
I �>��
��$� 	 !��@	"149�="	�J4��� K %�!".�� �@=�E@EL	 �
M��N	 �L� ',����� GO���
���� ��/ 	 0 � �
P � ��F"G2E@1*���;GQ'@K %�� '@���3�?%?RSF�GT:�%��3� ',����� ."%�� UL�;��%�!�� 9����3=
V��-�� ,��� %;G4�
�F"� � '"�3	 !�� K !���5(��F"G21*5�EW��F"GX�3=
D���<
�;9������ ��� 	
���
�	 �S."
�
������ ��	 !".4/ 0��&�@� ����
����������� �!�� �(#��$#�
�%?'"� 	
�!*)
�����Y���Z%(#�'X1O!�%��[���B��5;/ 9�C D"7 0 E�5��3=
��+,�>	 !�����F"G2149�=
�;6��>�
��$� 	 !��@	"149�=�	�J4��� K %;!".�� �@=�E�E�	 �
��8,�\	 �L��%�#�'�� GX���
���� ��/ 	 0 � �
� I � ��F"G2E@1X',���3�?%?RSF"G�:�%;��� %�#�'�� .�%�� UL����%�!,� 9�� �?=
�;M��-�� ,��� %;G]�
�F�� � '"��	 !�� K !���5(��F"G21W5$E4�3F�GT�?=
� P ��<

Figure 1.2: Input Source Code

there are five code fragments that have clone relations with other code fragments.
Fragment f1 has a clone relation with code fragment f4, and fragments f2, f3, and
f5 have clone relations with each other. In this case, 4 clone pairs, (f1, f4), (f2,
f3), (f2, f5), (f3, f5), and 2 clone sets, {f1, f4}, {f2, f3, f5} exist.

CCFinder detects code clones from source files, and tells the locations of clone
pairs in source files. The minimum code clone length to be detected is set by users
in advance. The clone detection of CCFinder is a process in which the input is
source files and the output is clone pairs. The process consists of the following
steps. Here we use the source code of Figure 1.2 to explain each step, and Figure
1.3 shows how the input source code is treated in each step.

1. Lexical analysis: Each line of source files is divided into tokens correspond-
ing to lexical rule of the programming language. The tokens of all source
files are concatenated into a single token sequence (Figure 1.3(a)).

2. Transformation: The token sequence is transformed, for example, tokens
are added, removed, or changed based on the transformation rules that aim
at regularization of identifiers and identification of structures (Figure 1.3(b)).

3. Match Detection: From all the sub-strings on the transformed token se-

5

� � � � � � � � � � � � � 	
 � � �
 � � � �
� � � � � � � �
 � � � � � � � � � � � � � ��� �
� � � � � � � �
 � � � ��� � ��� �

� � � � ! " � �
 � �
 	 � � � � � � � #
� $ % � � � � & '(' �

� ! "
' �) � � $ � � � *+�
 � � �

 � ,�� � � " $ � ! � $)
 � � � % � 	 � � ! " � �
' � ! "
 �

� &
 � �-� .0/0� , � � � 1 /+1 � �) � � � �

� � ") % � $) �
 � � 23! "-���
 	

� �) � �
$ "�� � � & � � � �	

�
 � $ �) � � & � $
 � � � 1)

$.0/) � � � � � � �
 � $ �) � � & � $
 � � � 1)

$.0/ 	 � � � 4 5 � � '6�

� � � � � � � � � � � � � 	

 �

� �
 � � �
� � �

� � � � ! " � �
 � �
 	 � � � � � � � #
� $ % � � � � & '(' �

� ,�� � � " $ � ! � $)
 � � � % � 	 � � ! " � � ' � ! "

 �

� &
 � �-� .0/0� , � � � 1 /+1 � �) � � � �

� � � 1)

$ "�� � � & � � � �	

� 1) �

� � � .0/ 	 � � � 4 5 � � '6�

	

.7/

� ! "
' � � 1) $ � � � *(�
 � � �

) �
 � � 23! "-���
 	

	

	

	

� � � � � � � � � � � � � 	
 � � �
 � � � �
� � � � � � � �
 � � � � � � � � � � � � � ��� �
� � � � � � � �
 � � � ��� � ��� �

� � � � ! " � �
 � �
 	 � � � � � � � #
� $ % � � � � & '(' �

� ! "
' �) � � $ � � � *+�
 � � �

 � ,�� � � " $ � ! � $)
 � � � % � 	 � � ! " � �
' � ! "
 �

� &
 � �-� .0/0� , � � � 1 /+1 � �) � � � �

� � ") % � $) �
 � � 23! "-���
 	

� �) � �
$ "�� � � & � � � �	

�
 � $ �) � � & � $
 � � � 1)

$.0/) � � � � � � �
 � $ �) � � & � $
 � � � 1)

$.0/ 	 � � � 4 5 � � '6�

� � � � � � � � � � � � � 	

 �

� �
 � � �
� � �

� � � � ! " � �
 � �
 	 � � � � � � � #
� $ % � � � � & '(' �

� ,�� � � " $ � ! � $)
 � � � % � 	 � � ! " � � ' � ! "

 �

� &
 � �-� .0/0� , � � � 1 /+1 � �) � � � �

� � � 1)

$ "�� � � & � � � �	

� 1) �

� � � .0/ 	 � � � 4 5 � � '6�

	

.7/

� ! "
' � � 1) $ � � � *(�
 � � �

) �
 � � 23! "-���
 	

	

	

	

� � � � � � � � � � � � � 	
 � � �
 � � � �
� � � � � � � �
 � � � � � � � � � � � � � ��� �
� � � � � � � �
 � � � ��� � ��� �

� � � � ! " � �
 � �
 	 � � � � � � � #
� $ % � � � � & '(' �

� ! "
' �) � � $ � � � *+�
 � � �

 � ,�� � � " $ � ! � $)
 � � � % � 	 � � ! " � �
' � ! "
 �

� &
 � �-� .0/0� , � � � 1 /+1 � �) � � � �

� � ") % �

� � � � � � � � � � � � � 	
 � � �
 � � � �
� � � � � � � �
 � � � � � � � � � � � � � ��� �
� � � � � � � �
 � � � ��� � ��� �

� � � � ! " � �
 � �
 	 � � � � � � � #
� $ % � � � � & '(' �

� ! "
' �) � � $ � � � *+�
 � � �

 � ,�� � � " $ � ! � $)
 � � � % � 	 � � ! " � �
' � ! "
 �

� &
 � �-� .0/0� , � � � 1 /+1 � �) � � � �

� � ") % � $) �
 � � 23! "-���
 	

� �) � �
$ "�� � � & � � � �	

�
 � $ �) � � & � $
 � � � 1)

$.0/) � � � � � � �
 � $ �) � � & � $
 � � � 1)

$.0/ 	 � � � 4 5 � � '6�

� � � � � � � � � � � � � 	

 �

� �
 � � �
� � �

� � � � ! " � �
 � �
 	 � � � � � � � #
� $ % � � � � & '(' �

$) �
 � � 23! "-���
 	

� �) � �
$ "�� � � & � � � �	

�
 � $ �) � � & � $
 � � � 1)

$.0/) � � � � � � �
 � $ �) � � & � $
 � � � 1)

$.0/ 	 � � � 4 5 � � '6�

� � � � � � � � � � � � � 	

 �

� �
 � � �
� � �

� � � � ! " � �
 � �
 	 � � � � � � � #
� $ % � � � � & '(' �

� ,�� � � " $ � ! � $)
 � � � % � 	 � � ! " � � ' � ! "

 �

� &
 � �-� .0/0� , � � � 1 /+1 � �) � � � �

� � � 1)

$ "�� � � & � � � �	

� 1) �

� � � .0/ 	 � � � 4 5 � � '6�

	

.7/

� ! "
' � � 1) $ � � � *(�
 � � �

) �
 � � 23! "-���
 	

	

	

	

(a) After Devided into Tokens

� � � � � �

� �

�

� � � � 	 � �

�
� �
� �

���
�

�
� �

	

� � � �

�
	

� �

� �

�
� �	 � �

�

	 � �

� � � � � � 	

� �� �

�

� 	 � �

�
� �
� �

� �
	 �

� � �

� � � � � �

� �

�
� �	 � �

�

� � � 	 � �

	

���
�

�

	 � �	

	

	

� � � � � � � 	 � �� � � � � �

�

�
�

� � � �

�

� �

� � � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � �

� � � �

� � � � �

� � �

� � �

� � �� � � � � �

� �

�

� � � � 	 � �

�
� �
� �

���
�

�
� �

	

� � � �

�
	

� �

� �

�
� �	 � �

�

	 � �

� � � � � � 	

� �� �

�

� 	 � �

�
� �
� �

� �
	 �

� � �

� � � � � �

� �

�
� �	 � �

�

� � � 	 � �

	

���
�

�

	 � �	

	

	

� � � � � � � 	 � �� � � � � �

�

�
�

� � � �

�

� �

� � � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � �

� � � �

� � � � �

� � �

� � �

� � �

(b) After Transformation

� � � � � �

� �

�

� � � � 	 � �

�
� �
� �

���
�

�
� �

	

� � � �

�
	

� �

� �

�
� �	 � �

�

	 � �

� � � � � � 	

� �� �

�

� 	 � �

�
� �
� �

� �
	 �

� � �

� � � � � �

� �

�
� �	 � �

�

� � � 	 � �

	

���
�

�

	 � �	

	

	

� � � � � � � 	 � �� � � � � �

�

�
�

� � � �

�

� �

� � � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � �

� � � �

� � � � �

� � �

� � �

� � �� � � � � �

� �

�

� � � � 	 � �

�
� �
� �

���
�

�
� �

	

� � � �

�
	

� �

� �

�
� �	 � �

�

	 � �

� � � � � � 	

� �� �

�

� 	 � �

�
� �
� �

� �
	 �

� � �

� � � � � �

� �

�
� �	 � �

�

� � � 	 � �

	

���
�

�

	 � �	

	

	

� � � � � � � 	 � �� � � � � �

�

�
�

� � � �

�

� �

� � � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � �

� � � � �

� � � �

� � � �

� � � �

� � � �

� � � � �

� � �

� � �

� � �

(c) After Detection on Token Sequence

������� ��� 	
���
�	 ����
�
�� ��� ����
����������! �"�� ��#$�%#�
'&)($� 	
�"+*
,-�.�!� ��	 "$/���0 1�2

"�&3�4��� �5	 "$/60 1�*87'�3,$9$: ;$<�<�7):$75�3=�
�7):$75
����>"$/$&��><�<�78?'@
A$B.
���/-� ��(-�'
3��&�� ��&>/$&3#!(C� ���D(-�3��2

"�&3�E
���/-� ��(-�'
3��&!� ��&'/$&�#!(C� ���F��7>0 <�G H$: 1 I%7��5@
J�B.	 "��C��K$L42M<�@
N B.�
��%��	 "���	$2M<�@�	$OM��� P &�"�/!� ��@!I�IQ	 �
R�BS	 ��� (-�3� � LT�>�
3��� ��0 	 1 � �
U B ��K�LVI�2+���>L�(-P &�� (-�>�5�5&)W�K$L�=-&��)� (-����� /$&3� XQ�3��&3"�� <�� �)@
Y�BZ�� ���� &>L6�
�K$��� ($��	 "�� P "-��7)��K�LV2+7%IM��K�LT�)@
[�B-?
�><��!��� �3� 	
���
�	 �\/�
�
!����� �5	 "$/M0 1C�>�C� �$��
����������� $"�� �3#��%#�
'&�($� 	
�"+*
]�]�B^���_&3#!(`2a"-&3�b���c��7>0 <�G H$: 1 I�75�5@
]'d$B.	 "$����K$LV2D<�@
]'A$B.��
�����	 "���	$2M<�@�	$OM��� P &3"$/!� ��@!I�IQ	 �
]�J�BS	 �Q� &3#!(C� LT�3�
3��� ��0 	 1 ���
] N B ��K$LVIC2T(-�3�5�5&)W�K$L`=�&3�5� &�#!(C� /$&3� XC�>��&3"�� <!���5@
]�R�BZ�! ���� &>L6�
�K$� � (���	 "�� P "��57)��K�L42+7%IM��K$L`�5@
] U B�?

������� ��� 	
���
�	 ����
�
�� ��� ����
����������! �"�� ��#$�%#�
'&)($� 	
�"+*
,-�.�!� ��	 "$/���0 1�2

"�&3�4��� �5	 "$/60 1�*87'�3,$9$: ;$<�<�7):$75�3=�
�7):$75
����>"$/$&��><�<�78?'@
A$B.
���/-� ��(-�'
3��&�� ��&>/$&3#!(C� ���D(-�3��2

"�&3�E
���/-� ��(-�'
3��&!� ��&'/$&�#!(C� ���F��7>0 <�G H$: 1 I%7��5@
J�B.	 "��C��K$L42M<�@
N B.�
��%��	 "���	$2M<�@�	$OM��� P &�"�/!� ��@!I�IQ	 �
R�BS	 ��� (-�3� � LT�>�
3��� ��0 	 1 � �
U B ��K�LVI�2+���>L�(-P &�� (-�>�5�5&)W�K$L�=-&��)� (-����� /$&3� XQ�3��&3"�� <�� �)@
Y�BZ�� ���� &>L6�
�K$��� ($��	 "�� P "-��7)��K�LV2+7%IM��K�LT�)@
[�B-?
�><��!��� �3� 	
���
�	 �\/�
�
!����� �5	 "$/M0 1C�>�C� �$��
����������� $"�� �3#��%#�
'&�($� 	
�"+*
]�]�B^���_&3#!(`2a"-&3�b���c��7>0 <�G H$: 1 I�75�5@
]'d$B.	 "$����K$LV2D<�@
]'A$B.��
�����	 "���	$2M<�@�	$OM��� P &3"$/!� ��@!I�IQ	 �
]�J�BS	 �Q� &3#!(C� LT�3�
3��� ��0 	 1 ���
] N B ��K$LVIC2T(-�3�5�5&)W�K$L`=�&3�5� &�#!(C� /$&3� XC�>��&3"�� <!���5@
]�R�BZ�! ���� &>L6�
�K$� � (���	 "�� P "��57)��K�L42+7%IM��K$L`�5@
] U B�?

(d) After Mapped on Original Source Code

Figure 1.3: Detection Processe of CCFinder

quence, equivalent pairs are detected as clone pairs (Figure 1.3(c)).

4. Formatting: Each location of detected clone pairs is converted into line and
column numbers on the original source files (Figure 1.3(d)).

Some research studies have been done with CCFinder. Bruntink et al. [13]
evaluated the suitability of clone detection as a technique for the identification of
crosscutting concerns. At first, they manually identified four specific concerns
(memory error handling, parameter checking, error handling and tracing) in an in-
dustrial C application, and analyzed to what extent clone detection is capable of

6

finding these concerns. They used two different tools, which implement different
clone detection techniques. One is ‘ccdiml’, which is an implementation of a vari-
ation of Baxter’s approach [11], and thus falls in the category of AST-based clone
detections. The other is CCFinder [33], a clone detection tool based on tokenized
representations of source code. The results show that code belonging to concerns
like parameter checking and memory error handling is identified very well by both
clone detection tools, while error handling and tracing concerns are more problem-
atic. Kim et al. [36, 37] suggested a method supporting code clone unification
based on the history information of the development. They used CCFinder as a
clone detection engine. If code fragments of the same clone set are modified si-
multaneously and repeatedly, they said that removing them probably reduce the
maintenance cost of the future.

1.2.4 Related Studies on Code Clone Detection

Several methods and tools have been developed for code clone detection as follows,
and some comparative evaluations of them are conducted [14, 46].

Dup [4, 5, 6]

A clone detection tool Dup uses a sequence of lines as a representation of source
code and detects line-by-line clones. It performs the following subprocesses:

1. replacement of identifiers of functions, variables, and types into a special
identifier (parameter identifier),

2. extraction of matches by a suffix-tree algorithm [22] of O(n) time complex-
ity (n is the number of lines in the input),

3. computation of correspondence (pairing) between parameter identifiers.

The line-by-line method has a weakness in the line-structure modification. In
free-format languages such as C, C++, and Java, line breaks in source code have
no semantic meaning, they are often placed and relocated based on programmer’s
preference. The tool cannot detect code clones including such lines.

Duploc [18]

A language dependent clone detection tool Duploc reads source files, makes a se-
quence of lines, removes white-spaces and comments in lines, and detects match
by a string-based Dynamic Pattern Matching (DPM). The output is the line num-
bers of clone pairs, possibly with gap (deleted) lines in them. The computation

7

complexity is O(n2) for the input size n and it is practically too expensive. The
tool uses an optimization technique by a hash function for string, which reduces
the computation complexity.

CloneDR [11]

Baxter et al. proposes a technique to extract clone pairs of statements, declara-
tions, or sequences of them from C source files. The tool parses source code to
build an abstract syntax tree (AST) and compares its subtrees by characterization
metrics (hash functions). The parser needs a “full-fledged” syntax analysis for C
to build AST. Baxter’s tool expands C macros (define, include, etc) to compare
code portions written with macros. Its computation complexity is O(n), where n
is the number of the subtree of the source files. The hash function enables one to
do parameterized matching, to detect gapped clones, and to identify clones of code
portions in which some statements are reordered. In AST approaches, it is able to
transform the source tree to a regular form as we do in the transformation rules.
However, the AST based transformation is generally expensive since it requires
full syntax analysis and transformation.

Covet [41]

A clone-detecting method proposed by Mayrand et al. uses a representation named
Intermediate Representation Language (IRL) to characterize each function in the
source code. A code clone is defined only as a pair of whole function bodies that
have similar metric values.

SMC [8, 7, 9]

A clone detection tool SMC (Similar method Classifier) uses a hybrid approach
of characterization metrics and DPM (dynamic pattern matching). The paper only
discusses detection of whole methods, although the approach would be applied to
detect partial code portions also. The detection process consists of the following
subprocesses:

1. extraction of method bodies from source code of Java,

2. computing characteristic metrics values for each method,

3. identify pairs of methods with similar metric values,

4. compare each pair of token sequences of the similar methods by DPM to
identify clone methods, and

8

5. classifying clone methods into 18 categories.

The computing complexity is O(n), where n is amount of methods in source
files. The tool might be easily ported to the languages to which the metrics are
applicable, although its parser and hash function have to be constructed and tuned
for the input language.

Komondoor’s method [38]

Komondoor et al. has proposed a method using program slicing. In this method, a
program dependence graph is constructed by analyzing target source codes. Iden-
tical or similar parts are detected as code clone. This detection is greatly precise
because of considering control and data flow of program. Moreover, it can detect
reordered and intertwined clones. But, time complexity of constructing program
dependence graph is O(n2), where n is the number of statement and expression
included in target source codes. It is difficult to apply this method to large-scale
software.

1.3 Refactoring

Refactoring [20, 43] is the process of changing a software product in such a way
that it does not alter the external behavior of the code yet improves its internal
structure. It is a disciplined way to clean up code that minimizes the chance of
introducing bugs. In essence when the developer refactors he/she is improving the
design of the code after it has been written. Refactoring is a tool to be used for
several purposes.

Improve the Design of Software
Without refactoring, the design of the software will decay. As people change
code (changes to realize short-term goals or changes made without a full
comprehension of the design of code) the code loses its original structure. It
becomes harder to see the design by reading the code. Refactoring is rather
like tidying up the code. Work is done to remove bits that aren’t really in the
right place. Loss of the structure of code has a cumulative effect. The harder
it is to see the design in the code, the harder it is to preserve it, and the more
rapidly it decays. Regular refactoring helps code retain its shape.

Make Software Easier to Understand
The programmer doesn’t remember things about the code that he/she wrote
in past times, and he/she often has to modify the code written by other pro-
grammers. This means he/she has to understand the code before modifying

9

it. It maybe takes the programmer a week to make a change that would
have taken only an hour if he/she had understood the code. The trouble
is that when the programmer is trying to get the program to work, he/she
is not thinking about future changes. Refactoring helps the programmer to
make his/her code more readable because when he/she is refactoring he/she
is thinking about future changes.

Help to Find bugs
Help in understanding the code also helps the programmer spot bugs. By
clarifying the structure of the program using refactoring, the programmer
clarifies certain assumptions he/she has made, to the point at which even
he/she cannot avoid spotting the bugs. Refactoring also helps the program-
mer be much more effective at writing robust code.

Help to Develop and Maintain Software Rapidly and Efficiently
All the things described above come down to help to develop and maintain
the program rapidly and efficiently. A good design is essential for rapid
software development. Without a good design, the programmer can progress
quickly for a while, but soon the poor design starts to slow him/her down.
The programmer spends time finding and fixing bugs instead of adding new
function. Changes need more time as you try to understand the program.
A good design is essential to maintaining speed in software development.
Refactoring helps the programmer develop software more rapidly, because it
prevents the design from decaying.

In Fowler’s book [20], 22 bad smells (, which are the code patterns that should
be refactored) are introduced, and 72 refactoring patterns (, which are modification
techniques to remove bad smells) are also introduce to remove bad smells. The
book says that number one in the stink parade is duplicated code (code clone). The
following patterns can be used to remove code clones.

Extract Method
Originally, Extract Method is applied to a too long method or a part of com-
plicated function in order to improve the readability, understandability, and
maintainability. It also can be applied to code clones to merge them. Figure
1.4 illustrates a simple example of Extract Method. Before the refactoring,
the two methods have duplicated instructions. But, after the refactoring, the
duplicated parts are extracted as a new method and duplicated code was re-
placed with a caller statement of the new method.

Pull Up Method
Pull Up Method is that a method in a class is moved to its parent class.

10

����� ���	�
� �
�����������
� �������	�������
���
� ����� ���������� "!#�� ���������� $����	 %� ��&

��'�(�� ���)
���
�)��	�
� �
��* �%�,+������	 �-/.102�
�
�	 ��%&
��'�(�� ���)
���
�)��	�
� �
��* �%�,+3�
����������-/.40���������������&

5

����� ���	�
� �
��6�� (��� �
�����������
���7�
� ����� ���������� "!#�� ���6�� ($��
�	 �� �%&

��'�(�� ���)
���
�)��	�
� �
��* �%�,+������	 �-/.102�
�
�	 ��%&
��'�(�� ���)
���
�)��	�
� �
��* �%�,+3�
����������-/.40���������������&

5

����� ���	�
� �����������	��� �
�����	�������
���
� �	�
� ���������� "!#�� ���������� $����� �� �%&
����� �
�7� �
�
�	 	89�
�	�����
���%&

5

����� ���	�
� ����6�� (�
� �������������
���7�
� �	�
� ���������� "!#�� ���6�� ($��
�	 %� �%&
����� �
�7� �
�
�	 	89�
�	�����
���%&

5

����� ���	�
� ���%� � ���
� �����
���� 	8:� �������	�����
�����
��'�(�� ��;)����
�)��	�
� �
��* ���<+������� =-/.10#������ ��%&
��'�(�� ��;)����
�)��	�
� �
��* ���<+3�
����������- .10��
�������
����&

5

����� ���	�
� �
�����������
� �������	�������
���
� ����� ���������� "!#�� ���������� $����	 %� ��&

��'�(�� ���)
���
�)��	�
� �
��* �%�,+������	 �-/.102�
�
�	 ��%&
��'�(�� ���)
���
�)��	�
� �
��* �%�,+3�
����������-/.40���������������&

5

����� ���	�
� �
��6�� (��� �
�����������
���7�
� ����� ���������� "!#�� ���6�� ($��
�	 �� �%&

��'�(�� ���)
���
�)��	�
� �
��* �%�,+������	 �-/.102�
�
�	 ��%&
��'�(�� ���)
���
�)��	�
� �
��* �%�,+3�
����������-/.40���������������&

5

����� ���	�
� �����������	��� �
�����	�������
���
� �	�
� ���������� "!#�� ���������� $����� �� �%&
����� �
�7� �
�
�	 	89�
�	�����
���%&

5

����� ���	�
� ����6�� (�
� �������������
���7�
� �	�
� ���������� "!#�� ���6�� ($��
�	 %� �%&
����� �
�7� �
�
�	 	89�
�	�����
���%&

5

����� ���	�
� ���%� � ���
� �����
���� 	8:� �������	�����
�����
��'�(�� ��;)����
�)��	�
� �
��* ���<+������� =-/.10#������ ��%&
��'�(�� ��;)����
�)��	�
� �
��* ���<+3�
����������- .10��
�������
����&

5

Figure 1.4: An Example of Extract Method

������� �	��
�

�� �
���� ��� � ����� �
�
��

�
�� � � ��
���� �
�� � � �
	�!�

������� �	��
�

�
�� � � �
��!�

�� �
��"� ��� � ����� �
�
��

������� �	��
�

�� �
���� ��� � ����� �
�
��

�
�� � � ��
���� �
�� � � �
	�!�

������� �	��
�

�
�� � � �
��!�

�� �
��"� ��� � ����� �
�
��

Figure 1.5: An Example of Pull Up Method

If several child classes have similar methods, moving them to the common
parent class is an effective refactoring. The easiest case of using Pull Up
Method occurs when the methods have the same body, which implies there’s
been a copy and paste. Figure 1.5 demonstrates a simple example of Pull Up
Method. In the figure, before the refactoring, two classes (Salesman and En-
gineer) has identical methods (getName()). By pull up them to the common
parent class (Employee), duplicated code in the classes was eliminated.

Move Method
Move Method is similar to Pull Up Method. The different is only that dupli-
cated methods are moved to not the parent class but other class which is not
extended by the current class.

Extract SuperClass
If two or more classes have many similar functionalities and they don’t have
a common parent class, Extract SuperClass can remove the duplicated code.

11

������� �

�
	���
 ������� � ��������� 	������

����� "!�!�#�$&% ')(�*+� , -
����� .+/�, -

���0� "!�!�#�$&% '1(�*+� , -
���0� 23�&$&/�')(�#�!�� , -

465&7 819�9�:�;�< =�>�?07 @ A
���0� BC$EDF�G, -

� ��������� 	H�����

���0� I�(�� $&% "!�!�#�$&% ')(�*+� , -
���0� BF$EDF�G, -
���0� 2J�E$G/�')(�#�!�� , -

�
	K��
 �������

L ��� MN�O�6PO��
 QR�OS���T+U
L ��� V���	H��T+U
L ��� WYXOT+U

������� �

�
	���
 ������� � ��������� 	������

����� "!�!�#�$&% ')(�*+� , -
����� .+/�, -

���0� "!�!�#�$&% '1(�*+� , -
���0� 23�&$&/�')(�#�!�� , -

465&7 819�9�:�;�< =�>�?07 @ A
���0� BC$EDF�G, -

� ��������� 	H�����

���0� I�(�� $&% "!�!�#�$&% ')(�*+� , -
���0� BF$EDF�G, -
���0� 2J�E$G/�')(�#�!�� , -

�
	K��
 �������

L ��� MN�O�6PO��
 QR�OS���T+U
L ��� V���	H��T+U
L ��� WYXOT+U

Figure 1.6: An Example of Extract SuperClass

���������	��

�
���������
������� �����
�
�
� ������
������
�! #"�$	%�&
���
'�()� ��&

*
�������+�

�
�
� ������
������
�! #"�$,
-�&
���
'�()� ��&

*

�����	���	�

�
���������
������� �
�
�
�
� ������
��.���
�/ �"�$	%0&

�������
�
�
� ������
��.���
�/ �"�$,�-�&

���
'�()� ��&

���������	��

�
���������
������� �����
�
�
� ������
������
�! #"�$	%�&
���
'�()� ��&

*
�������+�

�
�
� ������
������
�! #"�$,
-�&
���
'�()� ��&

*

�����	���	�

�
���������
������� �
�
�
�
� ������
��.���
�/ �"�$	%0&

�������
�
�
� ������
��.���
�/ �"�$,�-�&

���
'�()� ��&

Figure 1.7: An Example of Consolidate Duplicate Conditional Fragments

At first, the programmer creates a new class that is a common parent of the
classes. Next, he/she apples Pull Up Method to each duplicated method. Fig-
ure 1.6 illustrates an example of Extract SuperClass. Before the refactoring,
two methods (getTotalAnnualCost() and getName()) in class Department and
two methods (getAnnualCost() and getName()) are duplicated. Method get-
Name()s are exactly identical to each other, and method getTotalAnnual-
Cost() is similar to (not identical to) method getAnnualCost(). The different
is achieved by overriding the parent’s getAnnualCost().

Consolidate Duplicate Conditional Fragments
If the same instructions are in all branches of a conditional expression, mov-
ing them outside of the expression is an method of deleting duplicated code.
Figure 1.7 illustrates an example of Consolidate Duplicate Conditional Frag-
ments. Before the refactoring, in all branches of the if-statement expression,
there are the same method invocations. After refactoring, the method in-
vocations were moved to the outside of the conditional expression and the
duplicated code was removed.

12

��� ���

� ���	�
��
����� ������� ��� � � ����� � ������� ���

����� ��� � � �� !� �#"%$'&)(+*+� , - ����� �.� � � �# !� ��"/$'&)(+*+� , -

��� ���

� ���0�
��
����� ������� ��� � � ����� � ���1��� ���

���#� �.�324��"/$'&)(+*+� , -
���#� 5���6+"/$'&)(+*+� , -

����� �.�324��"/$�&)(+*+� , -
����� 5���6+"/$'&)(+*+� , -

����� ��� � � �� !� ��"/$�&)(+*+� , -
7�8	9 :<;
=�8�>@?/A+B
C�9 D E
7�8	9 F�;	G0>@?/A+B
C�9 D E

H0I3J�KML NOK0P3Q	NSROT
J0U�V W	QYXOT+Z#P0W3NSX\[3]�^�_
H0I3J�KML NOW0P	`ORaK0P3Q0NOXcbMV W3N]�d�e	f�T3g0e3d	hYXa[3]�i�_
Z#N0W	J)Z#UOK0P3Q	NSjaW	P0`M_

H	I	J0KML NOK0P3Q0NYROT)J	U�V W3QYXYT�ZkP	W3N�_
H	I	J0KML NOW0P	`ORaK0P	Q	NYXabMV W	N3]#d0e	f�T3g0e	d3h�_
Z�N�W3J)Z#UOK0P3Q0NYjaW0P	`M_

Z�N�W	J)Z�UOl	N�W	m0P3Q0N�e�n)I	J	U�W�o pcjal	N0W	d0P	`�e�n)I	J	U�W�o pM_

��� ���

� ���	�
��
����� ������� ��� � � ����� � ������� ���

����� ��� � � �� !� �#"%$'&)(+*+� , - ����� �.� � � �# !� ��"/$'&)(+*+� , -

��� ���

� ���0�
��
����� ������� ��� � � ����� � ���1��� ���

���#� �.�324��"/$'&)(+*+� , -
���#� 5���6+"/$'&)(+*+� , -

����� �.�324��"/$�&)(+*+� , -
����� 5���6+"/$'&)(+*+� , -

����� ��� � � �� !� ��"/$�&)(+*+� , -
7�8	9 :<;
=�8�>@?/A+B
C�9 D E
7�8	9 F�;	G0>@?/A+B
C�9 D E

H0I3J�KML NOK0P3Q	NSROT
J0U�V W	QYXOT+Z#P0W3NSX\[3]�^�_
H0I3J�KML NOW0P	`ORaK0P3Q0NOXcbMV W3N]�d�e	f�T3g0e3d	hYXa[3]�i�_
Z#N0W	J)Z#UOK0P3Q	NSjaW	P0`M_

H	I	J0KML NOK0P3Q0NYROT)J	U�V W3QYXYT�ZkP	W3N�_
H	I	J0KML NOW0P	`ORaK0P	Q	NYXabMV W	N3]#d0e	f�T3g0e	d3h�_
Z�N�W3J)Z#UOK0P3Q0NYjaW0P	`M_

Z�N�W	J)Z�UOl	N�W	m0P3Q0N�e�n)I	J	U�W�o pcjal	N0W	d0P	`�e�n)I	J	U�W�o pM_

Figure 1.8: An Example of Form Template Method

Form Template Method
If there are two or more methods in subclasses that perform similar steps in
the same order, the common logic can be merged in the superclass. In this
case, the programmer can move the sequence to the superclass and allow
polymorphism to play its role in ensuring the different steps do their things
differently. This kind of method is called a template method [21]. Figure
1.8 illustrates an example of Form Template Method. Before the refactoring,
the subclasses (ResidentialSite and LifelineSite) have methods whose log-
ics are similar to each other. By the refactoring, the duplicated logic was
pulled up to the superclass and each subclass overrides superclass’s method
for achiving a little bit of different steps.

Replace Conditional with Polymorphism
If there is a conditional expression that chooses different behavior depending
on the type of an object, moving each leg of the conditional expression to an
overriding method in a subclass is effective refactoring. The original method
becomes abstract. Usually, each case entry of a switch-statement tends to
be similar to each other. Using Replace Conditional with Polymorphism
can remove such code clones. Figure 1.9 illustrates an example of Replace

13

��������� �
	�������
�������� ���
����� ������� ������
������
��� � � ��!�"�#�$���%�&('

) �����)�* 	�����+�� � ����
�������� ��,
��� � �-%�.�"(/ 0�%�&�'

) �����)�* 	�����+�� � ����
�������� �213	�����4�������.��������) � � 5� * ��6����) #�7�0������ * ��� � ,
��� � �
&�#�"�89��:�/ %�&��9+�4�!��;'

) �����)�* � � � � &�� � � �����9<-=('>	�����+�� � ����
������(,
?
���) � �@* � � "�� * � � 69����A�����
�� � � * �CBD�������;� �
���� *�) �����������(� ��E3�(,

?

FHG IDJ

K;L9MON�P(LQL J�RTS

U-V I�G WQXZY

K;L9MON;P(LQL J(R[S

\^];ID_ P(L XZY

K;L9MON;P�LQL J�R[S

` _aITb LQK G XZY
Fdc] L

K;L9MON;P(LQL J(R[S

��������� �
	�������
�������� ���
����� ������� ������
������
��� � � ��!�"�#�$���%�&('

) �����)�* 	�����+�� � ����
�������� ��,
��� � �-%�.�"(/ 0�%�&�'

) �����)�* 	�����+�� � ����
�������� �213	�����4�������.��������) � � 5� * ��6����) #�7�0������ * ��� � ,
��� � �
&�#�"�89��:�/ %�&��9+�4�!��;'

) �����)�* � � � � &�� � � �����9<-=('>	�����+�� � ����
������(,
?
���) � �@* � � "�� * � � 69����A�����
�� � � * �CBD�������;� �
���� *�) �����������(� ��E3�(,

?

FHG IDJ

K;L9MON�P(LQL J�RTS

FHG IDJ

K;L9MON�P(LQL J�RTS

U-V I�G WQXZY

K;L9MON;P(LQL J(R[S

U-V I�G WQXZY

K;L9MON;P(LQL J(R[S

\^];ID_ P(L XZY

K;L9MON;P�LQL J�R[S

\^];ID_ P(L XZY

K;L9MON;P�LQL J�R[S

` _aITb LQK G XZY
Fdc] L

K;L9MON;P(LQL J(R[S

Figure 1.9: An Example of Replace Conditional with Polymorphism

Conditional with Polymorphism. Before the refactoring, there is a switch-
statement that chooses how to calculate the speed, and each case entry is
similar to each other. After the refactoring, there are three subclasses instead
of the switch-statement, and polymorphism has a role of choosing how to
calculate the speed. The biggest gain of Replace Conditional with Polymor-
phism occurs when this same set of conditions appears in many places in the
program. If the programmer wants to add a new type, he/she has to find and
update all the conditionals. But with subclasses, he/she just create a new
subclass and provide the appropriate methods.

1.4 Research Overview

In this research, we have discussed about support methods against the presence
of code clones. So far, Many support methods have been proposed by other re-
searchers [9, 11, 13, 18, 29, 34, 38, 41, 49]. The feathers of our methods that I

14

want to emphasize are the scalability and the comprehensive support range. Before
proposing these methods, we have actively promoted academic-industrial collab-
oration to get demands of industrial world. Based on the demands, we have im-
proved our methods and tools day by day. As a result, our methods became very
practical ones and more than 100 companies are using our tools currently.

1.4.1 Visualization and Characterization Methods for Comprehen-
sion

Chapter 2 describes visualization and characterization methods of code clones. The
most serious problem of existing visualization methods [18, 45] is that they have
no functionality to filter out uninteresting code clones. Automatic code clone de-
tection by tools tends to detect many uninteresting code clones. Filtering of such
code clone is essential for practical visualization. Our visualization method in-
cludes a filtering method based on code pattern, and it can efficiently eliminate
uninteresting code clone.

In characterization, we propose a novel selection way to select code clones
having the feature that users are interested in. Using the function, users can select
code clones that are very long or appear in many places in the program.

We implemented a tool, Gemini, and applied it to both industrial and open
source software. The result shows that the tool is very practical and useful to
analysis code clones for comprehension.

1.4.2 Refactoring Support Method

Chapter 3 describes a refactoring support method for code clones. The method con-
sists of two steps. In first step, refactoring-oriented code clones are extracted from
the result of code clone detection. We use CCFinder as a code clone detection en-
gine to get code clones quickly. But, as described in Section 1.2.3, CCFinder
detects code clones as token sequences, which means code clones detected by
CCFinder are not necessarily suitable for refactoring.

In second step, the method suggests applicable refactoring patterns (described
in Section 1.3) for each refactoring-oriented code clone. Some metrics are used to
characterize code clones.

We implemented a tool, Aries based on the method, and applied it to both
industrial and open source software. The results of both applications show that
refactorings suggested by Aries is applicable and practical.

15

1.4.3 Modification Support Method

Chapter 4 describes a modification support method for code clones. We propose
code clone removal method for code clone in Chapter 3. But, some code clones
cannot or shouldn’t be refactored, and a modification method is essential because
the programmer sometimes overlooks some of code clones that should be modi-
fied. We propose a modification method listing code fragments which should be
modified. The key idea is very simple, after the programmer identifies one of code
fragment that should be modified, code clones across the fragment and target files
are detected.

We implemented a tool, Libra based on the method, and applied it to open
source software. We performed imagine debugs using the past bugs information.
We compare the recall and precision of Libra and grep, which is a useful tool of
UNIX.

16

Chapter 2

Visualization and
Characterization Methods for
Comprehension

2.1 Motivation

There are many researches on automatic detection of code clones [4, 5, 6, 8, 7, 9,
11, 18, 31, 28, 38, 39, 40, 41]. We also have developed a code clone detection tool,
CCFinder [33], which has been designed as a tool to detect code clones effectively
in large-scale software used in the industrial world, and it is still being improved
day by day. We have been delivering CCFinder to more than 100 software organi-
zations and the usefulness of it in actual software maintenance is evaluated.

We received much feedback from these organizations, stating that CCFinder
extracts too many code clones, hence it is necessary to provide some guidelines
to select important code clones from raw output of the tool. Moreover, it is quite
difficult for users to investigate code clones only with the output of CCFinder.
Figure 2.1 shows an example of the output. In the figure, each line between #be-
gin{clone} and #end{clone} means a clone pair. For example, the fragment
starting from line 73 to line 86 in source file (0.2) and the fragment starting from
line 124 to line 137 in source file (1.2) contribute to a clone pair.

Depends on size and nature of target program, the amount of code clones de-
tected by CCFinder sometimes can become quite huge. For example, in JDK 1.5,
there are approximately 2,500,000 clone pairs (12,000 clone sets) whose fragment
length is more than 30 tokens. It is true that CCFinder enables users to quickly
obtain code clones from such large-scale software, but it is not realistic to check
all of the detected code clones by hand in order to figure out useful information. A

17

������� �	�
���
���� � � ����������� ��� �
�	�
�� ���	�
������ � ��� ���
��� �������	�����	
	
��
���� �
���
�! "�#�$
��
���� �
���
�! �%��&	���
��
���� �
���
�! '(#�$
��
���� �
���
�! ����"��	� � ')�%�	�	�)� *��
��
���� �
���
�! �+�,� �
��"	����� ��- � � � �%�	������� � ��� �
���.
$�� $ ����/ 0�/�� 1
 2��	3��	��� � ������� 2�� � �	*�3�! ��� 04� 5�2�� �)2���*��
�� �)2���� � &�����&�� �
$�� 6 5�� /	# 1
 2��	3��	��� � ������� 2�� � �	*�3�! ��� 04� 5�2�� �)2���*��
�� �)2�� ��� � � �
$�� � ����/ 0	��� 1
 2��	3��	��� � ������� 2�� � �	*�3�! ��� 04� 5�2�� �)2���*��
�� �)2�� �	
	����� �
$�� # 5	5�� 6)5�/�6 1
 2��	3��	��� � ������� 2�� � �	*�3�! ��� 04� 5�2�� �)2���*��
�� �)2��
�
�� � �
$�� � #	$ 5	7 1
 2��	3��	��� � ������� 2�� � �	*�3�! ��� 04� 5�2�� �)2���*��
�� �)2��)8��%� � ��'�� �
$�� 5 ��$�5 ��7�7 1
 2��	3��	��� � ������� 2�� � �	*�3�! ��� 04� 5�2�� �)2���*��
�� �)2	�1��� � 9�� �
6	� $ ����� 0�5�0 1
 2��	3��	��� � ������� 2�� � �	*�3�! ��� 04� 5�2�� �)2���*��
�� �)��2��	3���� � ��� �
6	� 6 ��� 0�# 1
 2��	3��	��� � ������� 2�� � �	*�3�! ��� 04� 5�2�� �)2���*��
�� �)��2�� ��� � � �
6	� � #�6�5 �	�	� 1
 2��	3��	��� � ������� 2�� � �	*�3�! ��� 04� 5�2�� �)2���*��
�� �)��2�� �	
	���

:
:

��������- � � � �;�������	� � ��� �
���.
��"	����� ��- ���
�����.
$�� � �	#�< �4< 6	6)0=7�04< 6�7�< 6)0�5>��� 6	� � 6)�	�4< ��< ���?6@6�#���< 6)7�< ��/	$A���
$�� � 6)5���< ��< #�7�5B6C0�5�< 0�< ����$D#�� 6	� � ���46	< ��< 5����>��#���< 0�< 5	7��D#��
$�� � 6)�46	< ��< ��#	�E��$46	< ��< 5	�46F7�6 6	� � �	��7�< ��< 5	/�7>��7	�4< ��< 0�7��@7�6
$�� � 7	$�< #�< 6 ��$G7	7�< 5�< 6)��#H#	� ��� 6�# 6�/�#�< #�< #	/��>��$�6�< 0�< ��#�$@#	�
$�� � �	5�< �4< 6	6�7G7	7�< 5�< 6)��#H5	� �4� 0 ��$	��< ��< 6)5�5	5I��6�5�< 0�< 6C0J6)$I5	�
$�� � �	5�< �4< 6	6�7G7	5�< 6�5�< 6)046K�J6 6�#�� 6)$ #�6���< ��< 0�5�/@#	����< 6)/�< ��$��L�J6
$�� � �	5�< �4< 6	6�7G7	5�< 6�5�< 6)046K�J6 6C�4� 6	6 0�$�/�< ��< 6C���	#L046�/�< 6)/�< 6�#�6)0M�J6
$�� � �	5�< �4< 6	6�7G7	#�< ����< 6�5�#D#�# 6�5�� � #�5�#�< ��< �	7�$@#	046�< �	�J< 746)5I#�#

:
:

��������- �	�
�����.

Figure 2.1: Example of output from CCFinder

simple browsing tool, which displays the source code of clone pairs one by one, is
not helpful for large-scale software.

In this chapter, we propose visualization and characterization methods of code
clones. By using these methods, users can see how code clones are distributed in
the system at a glance or obtain the code clones that have the features that they
are interested in. Also, from our previous experience, we figured out that there
are many uninteresting code clones in the results of code clone detection. Uninter-
esting code clone is a code clone that deemed to be not significant in the context
of software maintenance. We propose a filtering method to skip this kind of code
clones and reduce investigation effort. The filtering method makes the visualization
and characterization methods more effective.

18

2.2 Proposal Techniques

From many our previous experience with CCFinder, we figured out that CCFinder
detects many uninteresting code clones. As such, a filtering method is proposed
to counteract this problem. In order to realize an effective code clone analysis for
large-scale software products, we need some kind of bird’s eye view of code clones
to grasp the amount of code clones in the system, especially in the initial phase of
analysis. Also, we provide an appropriate characterization of entities (code clones,
target source files, and functionalities), which enables users to select arbitrary en-
tities based on their features.

In this section, we explain our methods with an example to order to give a
complete picture of them. We assume that we detect code clones from 4 source
files (F1, F2, F3, F4) located in 2 directories (D1, D2). Each source file consists
of the following five tokens (the meaning of superscripting * will be described in
Section 2.2.1).

F1 : a b c a b,

F2 : c c∗ c∗ a b,

F3 : d e f a b,

F4 : c c∗ d e f

Also, we use a label C(Fi, j, k) to represent a fragment. A fragment C(Fi, j, k)
starts at the j-th token and ends at the k-th token in source file Fi (j must be less
than k).

Here, we assume that at least 2 tokens are needed to be identified as a code
clone. With this assumption, the following 3 clone sets are detected from the source
files F1 ∼ F4.

S1 : {C(F1, 1, 2), C(F1, 4, 5), C(F2, 4, 5), C(F3, 4, 5)}

S2 : {C(F2, 1, 2), C(F2, 2, 3), C(F4, 1, 2)}

S3 : {C(F3, 1, 3), C(F4, 3, 5)}

2.2.1 Filtering out Uninteresting Code Clones

Many uninteresting code clones are included in the CCFinder detection results.
In this paper, an “uninteresting code clone” is a code clone whose existence infor-
mation is useless when using code clone information in software development or
maintenance.

19

��� � ����� 	�
�	
� � �
� � � ������	
�
��� 	 ����� � ����� 	�
�	
� � ��� � � ��� � � �
��	�� � � 	�� ������	
� � ����	
� �
��	�� � � 	�� "! ��� ��������	
� #�! ��� ��� ����	
� �
��	�� � � 	�� "! ��� � � #�! � �
��	�� � � 	�� �$����� � 	�% �! ��� � � ������� � 	�% �! ��� � � �
��	�� � � 	�� �$����� � ���
 �! ��� � � ������� � ���� "! ��� � � �
��	�� � � 	�� "! ��� ��& �����
	�% � ��! � �
� �
� #�!�' ����(�! ! �
)

! ��*�� + ,�# #�+�-/. # #�&�� � � 0�12% � 3 	�# � � 465�7$8�9�:<;",<=�5$:<� �

����� ! 	�% � � 	�� >2��� � � ? ��� � � �
����� ! 	�% � � 	�� 1<��% � � � ��% � � �
����� ! 	�% � � 	�� @2� 	�% � (� 	�% � �
����� ! 	�% � � 	�� 1<��� � ����% �
� � ��� � �"��% ��� �
����� ! 	�% � � 	�� 5252& � 5�52& � �
����� ! 	�% � � 	�� 4�	�� � ��*�	
� ��	�� � �
*�	
� �
����� ! 	�% � � 	�� A�% ����� � % ���6� �

B
C D<E
F�G�H<I J

K L M N�O K L M NQP
RRR

RRR

SS
S

SS
S

T E�I U<D�V
J F�G
F<U I U I D<E

T E�I U�D�V
J F�G
F�U I U I D�E

��� � ����� 	�
�	
� � �
� � � ������	
�
��� 	 ����� � ����� 	�
�	
� � ��� � � ��� � � �
��	�� � � 	�� ������	
� � ����	
� �
��	�� � � 	�� "! ��� ��������	
� #�! ��� ��� ����	
� �
��	�� � � 	�� "! ��� � � #�! � �
��	�� � � 	�� �$����� � 	�% �! ��� � � ������� � 	�% �! ��� � � �
��	�� � � 	�� �$����� � ���
 �! ��� � � ������� � ���� "! ��� � � �
��	�� � � 	�� "! ��� ��& �����
	�% � ��! � �
� �
� #�!�' ����(�! ! �
)

! ��*�� + ,�# #�+�-/. # #�&�� � � 0�12% � 3 	�# � � 465�7$8�9�:<;",<=�5$:<� �

����� ! 	�% � � 	�� >2��� � � ? ��� � � �
����� ! 	�% � � 	�� 1<��% � � � ��% � � �
����� ! 	�% � � 	�� @2� 	�% � (� 	�% � �
����� ! 	�% � � 	�� 1<��� � ����% �
� � ��� � �"��% ��� �
����� ! 	�% � � 	�� 5252& � 5�52& � �
����� ! 	�% � � 	�� 4�	�� � ��*�	
� ��	�� � �
*�	
� �
����� ! 	�% � � 	�� A�% ����� � % ���6� �

B
C D<E
F�G�H<I J

K L M N�O K L M NQP
RRR

RRR

SS
S

SS
S

T E�I U<D�V
J F�G
F<U I U I D<E

T E�I U�D�V
J F�G
F�U I U I D�E

Figure 2.2: Example of language dependent code clone

We have identified two types of uninteresting code clones. The first is a language-
dependent code clone. When a specific programming language is used, a pro-
grammer has to repeatedly write some code fragments that cannot be merged into
code fragments due to language limitations. A language-dependent code clone
consists of such code fragments. The second is an application-dependent code
cone. Some application frameworks sometimes require idiomatic code fragments
to the application code to interface with the frameworks. For example, a code
fragment of database connection is a typical application-dependent code clone.
Application-dependent code clone is a code clone that consists of such code frag-
ments. Language-dependent code clones are detected from all software systems
written in the same programming language, but not application-dependent code
clones, which differ greatly among systems. Therefore, it is much more difficult
to filter out application-dependent code clones than language-dependent ones. The
presence of uninteresting code clones doesn’t negatively influence software devel-
opment or maintenance. They are stereotyped code and are very stable.

As the first step to filter out uninteresting code clones, we propose a method to
filter out language-dependent code clones. For example, consecutive variable dec-
larations, consecutive method invocations, and case entries of switch statements,
which become code clones due to the structure of the programming language, are
typical language-dependent code clones.

Figure 2.2 is an example of a language-dependent code clone. The highlighted
parts are a clone pair between files A and B. Each code fragment of the clone
pair is an implementation of consecutive method invocations. The variable and
method names in the code fragments are different. As described in Section 1.2.3,
CCFinder transforms user-defined names into the same special token. This trans-
form detects the same logic code with different names; for example, after copy and
paste some variable names are changed. Unfortunately, CCFinder also detects
many language-dependent code clones such as Figure 2.2.

20

We focused on a repetition structure within a code clone because a language-
dependent code clone has repetitive implementations of the same logics. We pro-
pose to filter out such code clones with a metric called RNR(S) that represents the
ratio of non-repeated code sequence in clone set S.

Here, we assume that clone set S includes n fragments, f1,f2, · · ·, fn. LOSwhole(fi)
represents the Length Of whole Sequence of fragment fi, and LOSrepeated(fi) rep-
resents the Length Of repeated Sequence1 of fragment fi, then,

RNR(S) = 1 −

n∑
i=1

LOSrepeated(fi)

n∑
i=1

LOSwhole(fi)

We defined repeated code sequence as repetitions of its adjacent code sequence,
and non-repeated code sequence as other parts. In the example explained previ-
ously, three tokens are considered as repeated code sequences, and the superscript-
ing * is to indicate that its token is in repeated code sequence.

In the case of the example,
RNR(S1) = 1 − 0 + 0 + 0 + 0

2 + 2 + 2 + 2 = 8
8 = 1.0

RNR(S2) = 1 − 1 + 2 + 1
2 + 2 + 2 = 2

6 = 0.3̇

RNR(S3) = 1 − 0 + 0
3 + 3 = 6

6 = 1.0
This metric enables users to identify clone sets such as consecutive variable

declarations or consecutive accessor declarations in Java language, or repeated
printf, scanf, and switch statements clones in C language. From our ex-
perience, ‘0.5’ is deemed appropriate as threshold value of RNR.

2.2.2 Scatter Plot of Code Clone

We have utilized and enhanced Scatter Plot [5, 18, 45] for a bird’s eye view visu-
alization method of code clones. Figure 2.3 illustrates Scatter Plot of the example
explained previously. Both the vertical and horizontal axes represent tokens of
source files. The source files are sorted in alphabetical order of the file path, so that
source files in the same directory are close to each other. A clone pair is shown as a
diagonal line segment (We previously assumed that a cloned fragment has at least
two tokens). Each dot of diagonal line segments means the corresponding tokens
on the horizontal and the vertical axes are identical. The dots are spread symmetri-
cally with the diagonal line (from the upper left corner to the bottom right corner).
Using Scatter Plot, the distribution state of code clones can be grasped at a glance.

1A repeated Sequence is a sub-fragment included in fragment fi. All tokens included in repeated
Sequence are the same as the previous token (sequence).

21

� ��� � � �� � ������ ������� � �

	�
 	
� 	��

��

��

��

	
�

���
�

�
�

�

�

�

�

�

�
�
�
�
�
�
�

�
�
�
�

��

�

��
 ���

��

��

 "!$#$ &%'#$)(*#$ $+-,/.10325476
89!$#$8
%:,<;=0 >?4A@CBED/>F034G6

,7HJIKBE@KL$4A;NMODP6F0 BQ03DGR�;S4KBE4A@KBE4A;9I76TIUROD/ROVW0 RSBE4C>X4G6YBQ0 RPZ[@ADS;S4\@725D/RO4
,7H�IKBE@KL$47;]MODP6X0 BQ03D/R^;S4KBE47@CBE47;_I76"I`M=>?IA@KBQ03@7IA2O@7D=;S4�@A25DGR$4

� ��� � � �� � ������ ������� � �

	�
 	
� 	��

��

��

��

	
�

���
�

�
�

�

�

�

�

�

�
�
�
�
�
�
�

�
�
�
�

��

�

��
 ���

��

��

 "!$#$ &%'#$)(*#$ $+-,/.10325476
89!$#$8
%:,<;=0 >?4A@CBED/>F034G6

,7HJIKBE@KL$4A;NMODP6F0 BQ03DGR�;S4KBE4A@KBE4A;9I76TIUROD/ROVW0 RSBE4C>X4G6YBQ0 RPZ[@ADS;S4\@725D/RO4
,7H�IKBE@KL$47;]MODP6X0 BQ03D/R^;S4KBE47@CBE47;_I76"I`M=>?IA@KBQ03@7IA2O@7D=;S4�@A25DGR$4

Figure 2.3: Example of the Scatter Plot

Also, our Scatter Plot provides the results of filtering with metric RNR to users.
Each blue dot represents an element included in a code clone judged uninteresting.
By using the results of filtering, users can avoid spending much time on uninterest-
ing code clones, which means the code clone analysis can be done more effectively
by using Scatter Plot.

The directory (which means a package, in the case of Java) separators are
drawn as a solid line, in order to distinguish from file separators shown as a dotted
line. Users can recognize boundaries of directories and understand which directo-
ries (packages) contain many code clones, and which directories shares many code
clones with other directories.

22

2.2.3 Clone Set Metrics

In this part, we elaborate on how we quantitatively characterize code clones, and
how we visualize them. We defined the following metrics to characterize code
clones.

LEN(S) : LEN(S) is the average length of sequences (size of fragments) in
clone set S. In the example explained previously, the values of LEN(S1),
LEN(S2), and LEN(S3) are 2, 2, and 3 respectively. Using metric LEN ,
we can see that the fragment size of clone set S3 is greater than the ones of
clone sets S1 and S2.

POP(S) : POP (S) is the number of fragments of S. A high value of POP (S)
means that fragments of S appear in many places in the system. In the ex-
ample, the values of POP (S1), POP (S2), and POP (S3) are 4, 3, and 2
respectively. Using metric POP , we can see that the number of occurrences
of clone sets S1 is larger than the ones of S2 and S3.

NIF(S) : NIF (S) is the number of the source files that contain any fragments of
S. A high NIF (S) value may indicates bad design of the software system,
absence of abstraction for fragments of S, or spread code fragments of a
cross-cutting concern. In the example, the values of NIF (S1), NIF (S2),
and NIF (S3) are 3, 2, and 2 respectively. Using metric NIF , we can see
that clone set S1 involves more source files than S2 and S3.

RNR(S) : RNR(S) is described in Section 2.2.1. As mentioned there, using
metric RNR, we can see whether each clone set is practical or uninterest-
ing. From our experience, ‘0.5’ is deemed appropriate as threshold value of
RNR. In the example, clone set S2 is judged uninteresting.

Using these simple metrics, we can see which clone sets are discriminative in
various aspects.

We propose a visualization/selection method using Metric Graph for charac-
terized code clones. We explain Metric Graph using Figure 2.4. In Metric Graph,
each metric has a parallel coordinate axis. Users can specify upper and lower limits
of each metric. The hatching part is the range bounded by upper and lower limits
of them. A polygonal line is drawn per clone set. In this figure, 3 lines of clone
sets S1, S2, and S3 are drawn. In the left graph (Figure 2.4(a)), all metric values
of all clone sets are in the hatching part. As such, all clone sets are in selected
state. In the right graph (Figure 2.4(b)), the values of LEN(S1) and LEN(S2) are
smaller than the under limit of LEN , which makes S1 and S2 in unselected state.
This means that we can get long code clones by changing the lower limit of LEN .

23

����� ��� � �
	��

��

���

�����

� ��� � � �

� ��� � � �

���

����� ��� � �
	��

��

���

�����

� ��� � � �

� ��� � � �

���

(a) before

����� ��� � �
	��

��

���

�����

� ��� � � �

� ��� � � �

���

����� ��� � �
	��

��

���

�����

� ��� � � �

� ��� � � �

���

(b) after

Figure 2.4: Filtering clone sets using the Metric Graph

Thus Metric Graph enables users to make a choice of arbitrary clone sets based
on metric values.

2.2.4 File Metrics

We also defined the following metrics to characterize source files. All metrics use
only the clone sets whose RNR are threshold th or greater for calculation. Here
we use ‘0.5’ as the threshold. These metrics are used for filtering of source files
described later in Section 2.3.

NOCth(F) : NOCth(F) is the number of fragments of any clone sets in source
file F , whose RNR values are equal to or greater than threshold th. In the
example explained previously, the values of NOC0.5(F1) and NOC0.5(F3)
are 2, and the ones of NOC0.5(F2) and NOC0.5(F4) are 1. Here, by using
metric NOC, we can see that source files F1 and F3 has more duplicated
fragments than source files F2 and F4.

ROCth(F) : ROCth(F) is the ratio of duplication of source file F . In the example,
the values of NOC0.5(F1), NOC0.5(F2), NOC0.5(F3), and NOC0.5(F4)
are 0.8, 0.4, 1.0 and 0.6 respectively. Here, by using metric ROC, we can
see that source file F3 is completely duplicated.

24

NOFth(F) : NOFth(F) is the number of the source files that share any code
clones with source file F . In the example, the values of NOF0.5(F1), NOF0.5(F2),
NOF0.5(F3), and NOF0.5(F4) are 2, 2, 3, and 1 respectively. Here, by us-
ing metric NOF , we can see that source file F3 share code clones with all
the other source files.

2.3 Code Clone Visualization Tool: Gemini

We implemented a code clone visualization tool named Gemini based on the pro-
posed visualization and characterization strategies. Gemini supports all program-
ming languages that CCFinder can handle. Gemini provides the following views
as the implementations of code clone visualization mechanism and code clone/source
file selection mechanisms.

• Scatter Plot

• Metric Graph

• File List

As described in Section 2.2.2, by using Scatter Plot, users can understand the
distribution state of code clones at a glance, which is very useful in particular on
the early stage of analysis process.

Metric Graph is designed to enable users quantitatively select clone sets. In
Scatter Plot, how much clone sets are distinguished depends on their positions.
For example, suppose there is a clone set Sexample which has 100 fragments. If
all fragments of Sexample are in the same source file, they will be distinguished
because the positions of each line segment are close to each other. But if they are
in different source files, their line segments are scattered, thus will not be distin-
guished. On the other hand, in Metric Graph, the feature of ‘100 fragments’ is
represented as metric POP (Sexample), and users can select Sexample regardless of
their positions.

File List is used to select source files. File List exhibits all source files of the
system with the quantitative information, file metrics described in Section 2.2.4 and
two size metrics. Users can sort all source files based on any metrics. Figure 2.5
is a snapshot of File List. In this figure, 2 size metrics, LOC(F) and TOC(F),
represent the number of lines and the number of tokens in source file F respec-
tively. For metrics NOC, ROC, and NOF , there are 2 values respectively. The
values outside parentheses are the metrics on threshold th, and ones in parentheses
are the metrics on threshold 0, which means all code clones are used to calculate
the metrics. File List is very useful when users want to select source files based on

25

Figure 2.5: Snapshot of the File List

the quantitative information. We did not apply a quantitative file selection mecha-
nism using Metric Graph for File List, because it is more useful to use not only
quantitative metrics but also their paths or names. As described in Section 2.2.3,
Metric Graph is suitable for selections based on numeric values, but not suitable
for strings such as file paths or file names. This brings the reason why we use File
List, not Metric Graph. Also, File List has a function that sorts source files in
ascending or descending order of metrics or in alphabetical order of file names.

2.4 Case Study on Open Source Software

2.4.1 Target and Configurations

We chose Ant [2](version 1.6.0) as the target. Ant 1.6.0 includes 627 source files,
and the size is approximately 180,000 LOC. In this case study, we set 30 tokens
as the minimum token length of a code clone (intuitively, 30 tokens correspond to
about 5 LOC). The value ‘30’ comes from our previous studies of CCFinder [33].

26

Table 2.1: Breakdown of uninteresting code clones

Kinds of code clones Number of clone sets
Consecutive accessor declarations 428
Consecutive simple method declarations 224
Consecutive method invocations 177
Consecutive if- or if-else statements 160
Consecutive case entries 30
Consecutive variable declarations 29
Consecutive assign statements 19
Consecutive catch statements 4
Consecutive while-statements 2
Total 1,073

It took less than a minute to detect code clones with CCFinder. As the results
of code clone detection, we found 2,406 clone sets (190,004 clone pairs). From the
results, we can understand that it is unrealistic to check all detected code clones
because of the enormous amount, and it is very important to select discriminative
code clones or source files. In this study, we set 0.5 as the threshold of metric
RNR. If RNR(S) is less than 0.5, more than half of the tokens in clone set S are
in repeated token sequences. The detail of the filtering results is written in Section
2.4.2.

2.4.2 Filtering with RNR

We browsed through the source code of all code clones judged uninteresting by
using RNR. Table 2.1 shows the breakdown of clone sets whose RNR are less
than 0.5. The number of such clone sets is 1,073, and all of them are consecution
of simple implementations. As described in Section 2.1, CCFinder detects code
clones after translating all user-defined names into the same special token, and so
each code fragment included in the same clone set is an implementation of different
contents, as in Figure 2.2.

Many consecutive accessor declarations are found as code clones coinciden-
tally however user-defined names used in them are different from each other. As
described in Section 1.2.3, CCFinder detects code clones after translating all user-
defined names into the same special token, therefore they are detected as code
clones.

27

public static boolean isAbstract(int access_flags) {

return (access_flags & ACC_ABSTRACT) != 0;

}

public static boolean isPublic(int access_flags) {

return (access_flags & ACC_PUBLIC) != 0;

}

public static boolean isStatic(int access_flags) {

return (access_flags & ACC_STATIC) != 0;

}

public static boolean isNative(int access_flags) {

return (access_flags & ACC_NATIVE) != 0;

}

(a) Consecutive simple method declarations

out.println();

out.println("--------------------------------------");

out.println(" ANT_HOME/lib jar listing");

out.println("--------------------------------------");

doReportLibraries(out);

out.println();

out.println("--------------------------------------");

out.println(" Tasks availability");

out.println("--------------------------------------");

doReportTasksAvailability(out);

(b) Consecutive method invocations

if (null != storepass) {

cmd.createArg().setValue("-storepass");

cmd.createArg().setValue(storepass);

}

if (null != storetype) {

cmd.createArg().setValue("-storetype");

cmd.createArg().setValue(storetype);

}

if (null != keypass) {

cmd.createArg().setValue("-keypass");

cmd.createArg().setValue(keypass);

}

(c) Consecutive if-statements

case Project.MSG_ERR:

msg.insert(0, errColor);

msg.append(END_COLOR);

break;

case Project.MSG_WARN:

msg.insert(0, warnColor);

msg.append(END_COLOR);

break;

case Project.MSG_INFO:

msg.insert(0, infoColor);

msg.append(END_COLOR);

break;

case Project.MSG_VERBOSE:

msg.insert(0, verboseColor);

msg.append(END_COLOR);

break;

(d) Consecutive case entries

private MenuBar iAntMakeMenuBar = null;

private Menu iFileMenu = null;

private MenuItem iSaveMenuItem = null;

private MenuItem iMenuSeparator = null;

private MenuItem iShowLogMenuItem = null;

private Menu iHelpMenu = null;

private MenuItem iAboutMenuItem = null;

(e) Consecutive variable declarations

src = attributes.getSrcdir();

destDir = attributes.getDestdir();

encoding = attributes.getEncoding();

debug = attributes.getDebug();

optimize = attributes.getOptimize();

deprecation = attributes.getDeprecation();

depend = attributes.getDepend();

verbose = attributes.getVerbose();

(f) Consecutive assign statements

catch (final ClassNotFoundException cnfe) {

throw new BuildException(cnfe);

} catch (final InstantiationException ie) {

throw new BuildException(ie);

} catch (final IllegalAccessException iae) {

throw new BuildException(iae);

}

(g) Consecutive catch statements

e = ccList.elements();

while (e.hasMoreElements()) {

mailMessage.cc(e.nextElement().toString());

}

e = bccList.elements();

while (e.hasMoreElements()) {

mailMessage.bcc(e.nextElement().toString());

}

(h) Consecutive while-statements

Figure 2.6: Examples of uninteresting code clones

Consecutive simple method declarations are found as code clones coinciden-
tally just like the case of consecutive accessor declarations. Figure 2.6(a) is one of
such code clones. They implement simple instructions, but not accessors.

Consecutive method invocations are detected as code clones. Figure 2.6(b) is
one of such code clones. It is not worthwhile that users see these code clones in the

28

process of code clone analysis because there is nothing they can do about them.
Consecutive if-statements and if-else statements are detected as code clones.

Figure 2.6(c) is one of such code clones. These code clones implement verifications
of variable states. It is obvious that these code clones are harmless in the context
of software maintenance, and users are needless to see them in the process of code
clone analysis.

Consecutive case entries are found as code clones coincidentally just like the
case of consecutive accessor declarations. Figure 2.6(d) shows one of such code
clones. Usually, the programmer implements simple instructions in case entries.
Moreover, CCFinder replaces all user-defined names into the same special token.
Thus consecutive case entries tend to be detected as code clones, but they are harm-
less in the context of software maintenance.

Consecutive variable declarations and assign statements are found as code
clones coincidentally just like the case of consecutive accessor declarations. Figure
2.6(e) and Figure 2.6(f) is one of such code clones respectively. These coincidences
are due to the detection algorithm of CCFinder, and they shouldn’t be detected as
code clones.

Consecutive catch statements are detected as duplicated fragments. Figure
2.6(g) is one of such code clones. Their existence is due to the specification of
Java language, and they shouldn’t be detected as code clones.

Consecutive while-statements are detected as code clones. Figure 2.6(h) is
one of such code clones. In this case, the logics of each while-statement are very
simple, and it is no problem to filter out them. But if their logics are complex, they
shouldn’t be filtered out.

We were able to filter out 44% (1,073 out of 2,406) clone sets by using RNR.
All of the clone sets that have been filtered out are either coincidental ones, in-
evitable duplications by the specification of Java language, or consecutive simple
instructions.

2.4.3 Scatter Plot Analysis

Figure 2.7 are snapshots of Ant’s Scatter Plot. In Figure 2.7, clone sets whose
RNR are less than 0.5 are drawn in blue, and the others are drawn in black. Each
vertical or horizontal line is the border between files or between directories. In
Figure 2.7(a), all such lines are being omitted because there are too many lines.
We can grasp the distribution state of code clones over the system by using Scatter
Plot at a glance. The parts that are distinct in Scatter Plot are the parts where there
are many code clones in the system. Finding out whether duplication of such parts
in the system is the expected results or not is one of the significant usages of code
clone information. We investigated what kinds of implementations were conducted

29

�

�

�

�

�

�

(a) Whole (b) Zooming “A”

(c) Zooming “B” (d) Zooming “C”

Figure 2.7: Snapshots of Scatter Plot

in distinct parts of Scatter Plot. Figure 2.7(a) is the entire of Scatter Plot. The
following describes A, B, and C, the 3 different parts marked in Figure 2.7(a).

Figure 2.7(b) is a closer view of part A in Figure 2.7(a). The part illustrates
source files under directory ant/filters/. These source files implement classes that
return a java.io.Reader object under various conditions. The following are
some of them.

30

if (e.getSource() == VAJAntToolGUI.this.getBuildButton()) {

executeTarget();

}

if (e.getSource() == VAJAntToolGUI.this.getStopButton()) {

getBuildInfo().cancelBuild();

}

if (e.getSource() == VAJAntToolGUI.this.getReloadButton()) {

Figure 2.8: Example of code clones in B (branching by using source of events)

ConcatFilter.java : Concatenate a file before and/or after the file.

HeadFilter.java : Read the first n-lines of a stream.

LineContains.java : Filter out all lines that don’t include all the user-specified
strings.

PrefixLines.java : Attach a prefix to every line.

These source files have the following functionalities in common.

1. Read a character from a specified stream. If reached the end of stream, then
some operations are performed.

2. Create a new Reader object, and returns it.

The details of the functionalities in these source files were different, but pro-
cessing flows were duplicated.

Figure 2.7(c) is a closer view of part B in Figure 2.7(a). It shows that source file
ant/taskdefs/optional/ide/VAJAntToolGUI.java contains many code clones. This
source file implements a simple GUI for providing some build information to Ant
or browsing build processes. Most of these code clones were classified into either
of the following two types. These code clones are typical processes of GUI.

• If-statements that determine process flow depending on source of events.
Figure 2.8 is one of them.

• Method declarations that create GUI widgets. Figure 2.9 is one of them.

Figure 2.7(d) is a closer view of part C in Figure 2.7(a). It corresponds to
source files under the directory ant/taskdef/optional/clearcase/. These source
files implement several tasks working with ClearCase [17], which is one of the
famous version control systems. Each command (for example, Checkin, Checkout,
Update...) of ClearCase is implemented as a class. These source files were created
by entire file copy, rather than copy and paste of particular parts of text.

31

private Panel getAboutCommandPanel() {

if (iAboutCommandPanel == null) {

try {

iAboutCommandPanel = new Panel();

iAboutCommandPanel.setName("AboutCommandPanel");

iAboutCommandPanel.setLayout(new java.awt.FlowLayout());

getAboutCommandPanel().add(getAboutOkButton(),

getAboutOkButton().getName());

} catch (Throwable iExc) {

handleException(iExc);

}

}

return iAboutCommandPanel;

}

Figure 2.9: Example of code clones in B (methods creating GUI widgets)

2.4.4 Metric Graph Analysis

We investigated what kind of code clones is quantitatively discriminative by us-
ing Metric Graph. The following types of code clones are investigated. Before
performing this analysis, we raised the lower limit of RNR to filter out clone sets
whose RNR are less than 0.5.

• Clone sets whose POP are high.

• Clone sets whose LEN are high.

• Clone sets whose NIF are high.

Clone sets whose POP are high

Figure 2.10 is one of the fragments making up the clone set that has more fragments
than any other ones. The clone set had 31 fragments, and all of them were in source
file VAJAntTool.java described in Section 2.4.3. Each fragment begins with the
end of a method and ends with the beginning of its next method. This means the
center parts of each method are different from each other.

Clone sets whose LEN are high

Two source files WebLogicDeployment.java and WebSphereDeployment.java,
under directory ant/taskdefs/optional/ejb/, shared the longest code clones. The
fragment size of clone set was 282 tokens (77 lines). Both source files implement
tasks working with WebLogic [53] and WebShpere [54], which are famous ap-
plication servers. Each source file has a method named isRebuildRequired, and
both duplicated fragments are in these methods. Some variable names used in

32

} catch (Throwable iExc) {

handleException(iExc);

}

}

return iAboutCommandPanel;

}

/**

* Return the AboutContactLabel property value.

* @return java.awt.Label

*/

private Label getAboutContactLabel() {

if (iAboutContactLabel == null) {

try {

iAboutContactLabel = new Label();

iAboutContactLabel.setName("AboutContactLabel");

Figure 2.10: One of the fragments making up the clone set whose POP is highest

these methods are different, but other properties (indents, blank lines, comments)
are completely identical, which indicates these fragments were made by ‘copy and
paste’.

Clone sets whose NIF are high

The clone set involving most source files was implementations of consecutive ac-
cessor declarations, which appeared in 19 files (22 places). The accessor’s names
were different from each other, but CCFinder ignores differences of user-defined
names2 when detecting code clones. There are both setters and getters in these
fragments of clone sets, thus the fragments are not simple consecutive code. RNR
value of the clone set was 85.

2.4.5 File List Analysis

We investigated what kind of source files is discriminative by using File List. The
following types of source files are investigated. In this analysis, we targeted only
the clone sets whose RNR are 0.5 or more.

• Files whose ROC are high.

• Files whose NOC are high.

• Files whose NOF are high.

2It is possible to make CCFinder recognize differences of user-defined names

33

Table 2.2: Duplicated Ratios of Files

Range of Duplicated Ratio(ROC0.5) # Files Percentage
0 % - 10% 207 33 %

11 % - 20% 75 12 %
21 % - 30% 64 10 %
31 % - 40% 61 10 %
41 % - 50% 53 8 %
51 % - 60% 53 8 %
61 % - 70% 33 5 %
71 % - 80% 22 4 %
81 % - 90% 22 4 %

91 % - 100% 37 6 %
Total 627 100%

Files whose ROC are high

Table 2.2 represents the duplicated ratio distribution of source files. As we can
see in this table, Ant has many source files with high duplicated ratios. Hence, we
describe not only the highest duplicated ratio source file, but also top 10 files. In
the following items, the numbers in parentheses are ROC0.5 values.

FlatFileNameMapper.java (1.0) : Returns the file name included in a specified
java.lang.String.

IdentityMapper.java (1.0) : This source file is a duplication of FlatFileNameMap-
per.java. Only the class name is different.

DirSet.java (1.0) : Treats a set of directories. This source file is a complete dupli-
cation of FileSet.java.

FileSet.java (1.0) : Treats a set of source files. This source file is a complete
duplication of DirSet.java.

CCMkbl.java (0.98) : Implements a task working with ClearCase. This source
file is duplicated with several source files implementing other ClearCase’s
tasks.

SOSCheckin.java (0.97) : Implements a task working with SourceOffSite [48].
This source file is duplicated with several source files implementing other

34

SourceOffSite’s tasks.

StringLineComments.java (0.97) : This source file is one of the file filters de-
scribed in Section 2.4.3 part A. It shares code clones with other filters.

FieldRefCPInfo.java (0.96) : Stores information of a field (for example, field
name, type, owner class, ...). This source file is a duplication of Inter-
faceMethodRefCPInfo.java.

InterfaceMethodRefCPInfo.java (0.96) : Stores information of a method (for
example, method name, signature, owner class, ...). This source file is a
duplication of FieldRefCPInfo.java.

MSVSSCREATE.java (0.96) : Implements a task working with Visual Source-
Safe [51]. This source file is duplicated with several source files implement-
ing other Visual SourceSafe’s tasks.

Files whose NOC are high

The source file who has the highest NOC0.5 value is VAJAntToolGUI.java de-
scribed in Section 2.4.3 part B. This source file has 378 code clones, which is
overwhelming compared with any other ones.

Files whose NOF are high

The source file who has the highest NOF0.5 value is ant/taskdefs/optional/
jsp/JspC.java, and most of code clones in the source file are implementations
of consecutive accessor declarations. These fragments are the same kinds as ones
described in Section 2.4.4. Not only this source file, most of such source files
(files with high NOF0.5 values) have many code clones of consecutive accessor
declarations.

2.4.6 Evaluation

Filtering with RNR

We examined how the RNR filtering worked well. We browsed through the source
code of all detected code clones so as to calculate precision, recall and f-value of
the filtering. 869 of 2,406 were practical clone sets and 1,537 were uninteresting
ones. The definitions of the values are the followings.

recall(%) = 100 × # real uninteresting clone sets filtered out by RNR

clone sets filtered out by RNR

35

�
� �
� �
� �
� �
� �
� �
� �
� �
	 �
� � �
� � �

�
��	�� �
� ������� ��� 	�� ����������������	�� ��� ������� ��� 	�� ��� ������� ��� 	�	 ��	 �
������� � ��!"��#$#&%

')(+*-,$. . /10 (2*"3 4+3 5-6 7982:+,$. ;2(

Figure 2.11: Transition of Recall, Precision, and F-value

precision(%) = 100 × # clone sets filtered out by RNR

all real uninteresting clone sets

f − value =
2 × recall × precision

recall + precision

Figure 2.11 illustrates transitions of recall, precision, and f-value when the
RNR threshold is between 0 and 1.0. As mentioned above, in this case study, we
used 0.5 as the threshold. Under this condition, recall is 100(%), which means that
no practical clone set is accidentally filtered out at all. Also, precision is 65(%),
which indicates that about one third clone sets judged practical are uninteresting.
Using 0.5 as the threshold raised precision from 36(%) to 65(%). Therefore, we
can conclude that most part of uninteresting clone clones are filtered out with no
false positive by using 0.5 as the threshold.

It might be useful to use the value making f-value its greatest. In this case
study, f-value reached its greatest when the threshold was 0.7. Under this condi-
tion, recall was 95(%) and precision was 82(%). In other words, one twentieth
clone sets filtered out were practical ones and four fifths of real uninteresting clone
sets were filtered out. We consider that accidentally filtering out practical code
clones should be avoided because filtered clone sets might play an important role
in software development and maintenance. Hence, it deems to be better to use 0.5
as the threshold than 0.7.

36

Table 2.3: Size of target software systems and results of executions

Target Size CCFinder Gemini
Name # Files LOC Run time Mem usage Init time Mem usage
Ant 627 180,844 55 sec. 30 MBytes 4 sec. 46 MBytes

JDK1.5 6,555 1,883,928 594 sec. 194 MBytes 15 sec. 137 MBytes

Using Gemini in other contexts

In this section, we will discuss the external validity of the case study. The discus-
sion points are the followings.

• Performance and scalability of Gemini

• General versatility of the code clone analysis method described in this case
study.

• Required users’ skills to perform code clone analysis

First discussion point is the performance and scalability of Gemini. We applied
CCFinder and Gemini to a large-scale software system, JDK 1.5 besides Ant
for investigating these properties. We used a PC-based workstation3 to perform
the tools. Table 2.3 illustrates the sizes of the target software systems and the
results of executions. Note that total time of CCFinder’s running and Gemini’s
initialization is only 10 minutes despites the huge size of JDK 1.5. Additionally,
the memory usage of both CCFinder and Gemini is quite reasonable. Therefore,
we can conclude that the performance and scalability of these tools are enough
to be used in real software development and maintenance. Users can efficiently
perform code clone analysis of a large-scale software system with an ordinary PC.

Secondly, we will discuss the general versatility of the code clone analysis
method described in this case study. We have already analyzed many other open
source and industrial software systems, and the analysis methods for them are al-
most the same as the one described in this case study. This analysis method can
be applied to various software systems independently of their sizes, development
patterns, and their domains. From many experiences of code clone analyses, we
have learnt that ‘30’ is an appropriate value of the minimum code clone size that
CCFinder detects. But infrequently under this condition, especially in the case of

3CPU: PentiumIV 3.0 GHz, Memory Size: 2.0 GBytes, OS: WindowsXP

37

large-scale software, too many code clones are detected, and we cannot efficiently
analyze code clones. In such cases, users should change the minimum code clone
size to ‘50’ or ‘100’ and re-run CCFinder for efficient analysis. Also, it became
clear that industrial software tends to include more code clones than open source
software. If users are going to detect and analyze code clones in a large-scale in-
dustrial software system, they should use ‘100’ as the minimum code clone size
in the first running of CCFinder. In this case study, we evaluated that 0.5 is an
appropriate threshold of RNR. Since the target software is written in Java, the
threshold value is probably useful for any software systems written in Java. But,
for software systems written in another programming language, another value may
be more useful.

Finally, we will discuss required users’ skills to perform code clone analysis. In
the code clone analysis with Gemini, they have to browse through that the source
code of code clones and understand the implementations. Hence, they must be
familiar with the programming language of the target software. And if the target
software was developed by 2 or more people, the higher skill of reading source
code is required. But they don’t need to know the detail information of the target
software; actually we don’t have deep knowledge of Ant. If users had such in-
formation, they could perform deeper analysis. If users want to do the same kind
of analysis as the one described in this case study, they don’t need to have such
information.

2.5 Case Study on Commercial Software

2.5.1 Target and Configurations

We applied Gemini to the Probe Information System4 that was developed by 5 ven-
dors on Advanced Software Development(AED) Project [44] of Information Tech-
nology Promotion Agency [1]. Venders developed individually and the project
manager couldn’t see the state of source code, the number of man-hour, and the
status of development (ex. outsourcing companies, necessary human resources).
On the periodic meetings that the project manager holds, each manager of venders
reports only what stage of the development the vender is and how the progress is
different from the plan. For helping such a blind management of the project man-
ager, in other words, for grasp the state of black-boxed source code, we performed

4Prove Information System is a system that regards a vehicle as a moving sensor. The results of
sensing are transformed to the center. The center provides useful information by analysing, accumu-
lating and converting the sensing results.

38

Table 2.4: Amount of code clones in sub-systems

After unit test After combined test
of code clones Duplicated ratio # of code clones Duplicated ratio

V 259 33.9% 259 33.4%
W 369 27.3% 379 26.2%
X 4,483 55.3% 4,768 50.8%
Y 6,747 42.6% 7,628 46.0%
Z 2,450 56.2% 2,505 56.3%

code clone analysis5.
We applied Gemini two times, after the unit test and after the combined test.

The total LOC of the system is about hundreds thousand lines, and the source code
after the combined test is 20 thousands greater than the one after the unit test. The
system is written in C/C++. The analysis was performed on each vender’s source
code individually. In this application, we used 30 tokens as the minimum length
of code clone that CCFinder detects. We also used 0.5 as the threshold of metric
RNR. The analyses described in Section 2.5.3 ∼ 2.5.5 are for the source code
after the combined test.

2.5.2 History Analysis

We analyzed how the amount of code clones after the unit test is different from the
one after the combined test. Table 2.4 illustrates the amount of code clones and
the duplicated ratio on the source code after the unit test and after the combined
test. In the sub-system developed by company Y, the number of code clones after
the combined test is greater than the one after the unit test. Usually, after unit test,
no new function is added to the system. Thus we predicted that the amounts of
code clones between them were not different. Figure 2.12 illustrates a graph of
the relation between duplicated ratio and the number of file. We can see that the
number of high duplicated files is greatly increased. We interviewed the developers
of company Y. They said that these files were added just before the combined test
to implement some new functions. They are library code managed in company Y,
and used in many software developments. They contain many code clones but they
are very stable because they are managed in many projects.

5This analysis was performed in the secluded room, which was established under the agreement
of all vendors

39

�
� �
� �
� �
� �
�����

� 	�

� � 	

� � 	

 � 	

 � 	

� � 	

� � 	

� � 	

� � 	

� � 	

� � 	

� � 	

� � 	

� � 	

� � 	

� � 	

� � 	

� � 	

� � 	�

� �
� 	

������� � ��� �"!$#&%'� �(�)

* +
,- .
/0
11 2
3 .
4

57698�:<;>=�?A@ 8>8B:<CD8
57698�:<;FE�GAH�IJ@ ?�:<KL8�:�CM8

Figure 2.12: Transition of the duplicated ratio of company Y

2.5.3 Scatter Plot Analysis

Figure 2.13 illustrates a snapshot of the sub-system that a vender developed. In
part A, there are many code clones filtered out by metric RNR. Actually, we
browsed through source code of them, and we knew that they are code of outputting
information for debug (consecutive printf-statements) or checking the validity of
data (consecutive if-statements), which are not interesting as described above.

Also in part B, there are many code clones. These code clones are shared
by different directories hence they are across black-lines. These directories treat
position information of vehicles and each directory is for a kind of vehicles. The
above means each directory treats different information but the logics are the same,
which is detected as code clones.

2.5.4 Metric Graph Analysis

Before this analysis, we eliminated code clones whose RNR value is less than 0.5.

Clone sets whose LEN is high

In the sub-system of a vender, we detected a clone set whose LEN value was 441
(154 lines). This clone set consists of two code fragments, one is in AAAXXXBBB.cpp
and the other is in AAAYYYBBB.cpp. In the code fragment of AAAYYYBBB.cpp,

40

�

�

�

�

Figure 2.13: A snapshot of Scatter Plot

some method names and comments included string XXX. This implies that a copy
and paste from AAAXXXBBB.cpp to AAAYYYBBB.cpp is performed, and for-
got to modify some of names.

Clone sets whose POP is high

In all sub-systems, the clone set whose POP value was highest was data validity
check (checking by if-statement, and if not valid output error). The kinds of data
are different from each vender, but the processes of validity checking were the
same logic.

Clone sets whose NIF is high

In the sub-system of a vender, we detected a clone set whose NIF value was 8
(the clone set involves 8 files). This code clone checked whether string ends with
NULL. If there is no NULL, added NULL to the end. This clone set seemed to be
merged easily hence each code clone in this clone sets is a whole function.

41

2.5.5 File List Analysis

In this analysis, we used 50 as the thureshold of RNR.

Files whose NOC are high

In the sub-system of a vender, there was a file containing 358 code clones. Code
clones were scattered all over the file but concentrated on a part. Code clones are
both within-file-clone and across-files-clone. These code clones seemed not to be
problematic but the maintainability of the file deems to be not good.

Files whose ROC are high

The duplicated ratio of two files included in a sub-system was 96%. One is for
online process, and the other is for offline process. We interviewed the developers
of the system. They decided to separate implementations of the two processes
before coding, and so they know the existence of the code clones.

Files whose NOF are high

A file included in a sub-system shared code clones with other 13 files. The file
included various input/output processes, and each of which is duplicated with a
part of other files. As a result of these duplications, the NOF value became large.
Code clones are well-understood logics in the target software and the logics were
simple. We determined that the code clones are not problematic.

2.6 Related Works and Discussion

Kapser et al. implemented a visualization tool named CLICS for comprehension
of cloning [34]. CLICS displays the structures in the source files and the system
architecture with code clone information, which makes it possible for users to eas-
ily get the information of code clones that he/she is interested in. Also, CLICS is
facilitated with query support feature to display code clones satisfying the condi-
tions of queries. CLICS doesn’t implements Scatter Plot because of its limited
scalability.

We believe that our enhanced Scatter Plot is scalable and useful to understand
the state of code clones over software system. In our case study, the Scatter Plot
works smoothly on source code of JDK 1.5, whose size is 1.8 million LOC, includ-
ing 2,497,433 clone pairs in 12,522 clone sets, under the condition of LEN ≥ 30.
Our Scatter Plot displays the results that already filtered out the uninteresting code

42

clones, which differentiates it from previous works [5, 18, 45]. This enhancement
comes from our previous experiences, where we applied Scatter Plot to large-scale
software systems and found an enormous amount of such code clones. Kapser et
al. have the same opinion as ours [34], and their tool, CLICS has implemented
some filtering features. Also, in our Scatter Plot, the directory (package) separa-
tors are differently shown from the file ones, which makes it possible for users to
know the boundaries of directories, and then finds out directories (packages) that
contain many code clones and directories that shares many code clones with other
directories. Users can see the state of practical code clones in the package hierar-
chy of a software system by using our Scatter Plot since uninteresting code clones
are filtered out.

Also Kapser et al. describes functionalities to support navigation and under-
standing of cloning in a software system [34]. The functionalities are as below.

1. Facilities to evaluate overall cloning activity.

2. Mechanisms to guide users toward clones that will be most effectively used
in their task.

3. Methods for filtering and refining the analysis of the clones.

We think of these functionalities in the context of our tool, Gemini. Scatter
Plot provides a bird’s eye view, therefore it accomplishes the first functionality.
We believe that Metric Graph and File List implement the second functionality
because we can easily get arbitrary clone sets based on their quantitative features
by using them. The third functionality is realized through metric RNR. RNR
enables users to filter out uninteresting code clones. With all these characteris-
tics mentioned above, Gemini is definitely useful and appropriate as a code clone
visualization tool.

Rieger et al. suggested and implemented some diagrams to visualize code clone
information [45]. Their diagrams are based on the principle of Polymetric View,
and provide abstracted code clone information on various granularities to users.
They also said that, in the large-scale software too many code clones are detected,
and some filtering functionalities are essential.

Johnson suggested a navigation method using HTML [29]. The hyperlink func-
tionality of HTML enables users to jump freely between source files having clone
relations with each other or fragments included in the same clone set (in his paper,
term Hash is used instead of clone set). We do agree hyperlink properties are very
nice to navigate users, but there is no functionality to see the state of code clones
over the system.

43

Basit et al. suggested a method detecting structural clones [10]. A structural
clone is a pattern of cloned code fragments, and it indicates the presence of design-
level similarities. They also implemented a tool detecting such clones based on
the “market basket analysis” technique of the Data Mining domain. Providing
structural clone information is a great support of program comprehension, but how
the information is expressed is a big challenge.

Walenstein et al. reported that judgment of code clones varies among experts
[52]. In one of their experiments, for more than 60% of automatically detected
clones, three experts disagreed whether the fragments are really code clone or not.
Our metric system does not settle the controversy, but it helps users to make a
choice of what kind of codes should be regarded as code clones.

2.7 Summary

We proposed visualization and characterization methods of code clones in a soft-
ware system, and implemented them as a tool, Gemini. Gemini provides valuable
mechanisms as described below.

• Mechanism for filtering out uninteresting code clones.

• Mechanism for viewing the state of code clones over a system.

• Mechanism for navigating users to code clones which have the features that
they are interested in.

As described in Sections 2.4 and 2.5, our proposed methods worked well and we
were able to figure out various cloning activities in Ant.

44

Chapter 3

Refactoring Support Method

3.1 Motivation

One of the promising approaches to get the high maintainable software is refactor-
ing. Refactoring is defined as a change made to the internal structure of software
to make it easier to understand and cheaper to modify without changing its observ-
able behavior [20]. It is generally accepted that refactoring is useful to improve
the maintainability of software. However, it is difficult to introduce refactoring
to actual software development. The developer cannot afford to apply refactor-
ings because they are too busy implementing given requirements and it’s difficult
to identify refactoring candidates, determine what refactoring patterns should be
applied and understand the actual effects of refactorings to software maintenance.
Thus, it is necessary to support the difficulties of refactoring.

Code clone is considered as one of the typical Bad Smells in refactoring process
[20], so that the code clone detection is identification of code fragments to be
refactored. From a practical standpoint, it is very hard to identify which code
clones should be merged. Some code clones are not simply able to be merged, or
at least not appropriate to be merged since the merged code will make the source
code less understandable. Usually, large-scale software have complicated logics
intertwining each other, which make the maintainer confused judging which code
clones can be merged and how to merge them.

To conduct effective refactoring for code clone, we have to extract code clones
that can be refactored. Since the detection speed of CCFinder is very fast, the tool
can be used to conduct practical refactoring. However the code clones detected
by CCFinder are sequences of tokens as described in Section 1.2.3, they are not
necessarily appropriate to be directly merged into one module.

In this Chaper, we propose a refactoring support method for code clones. Our

45

method consists of two steps. In the first step, the method extracts refactoring-
oriented code clones from the results of CCFinder. In the second step, the method
calculates some metrics of refactoring-oriented code clones to suggest how they
can be refactored. In other words, the method tells users which code clones can
be removed and how to remove them. we also describe about the applicability and
usefulness of refactorings suggested by our method.

3.2 Proposal Techniques

Here, we describe a refactoring support method for code clones. Usually, refactor-
ings are performed in the following steps [20, 42]. (1) Identify where the software
should be refactored, (2) determine which refactoring patterns should be applied
to the identified locations, (3) confirm that the refactoring doesn’t change the ex-
ternal behavior of the software, (4) modify the source code, (5) assess the effect
of the refactoring on the software quality characteristics, and (6) maintain consis-
tency between the refactored program code and other software artifacts (or vice
versa). In refactoring process, the steps (1) and (2) are very complicated tasks, es-
pecially, in large-scale software. Our approach identifies where can be refactored,
and tells users which refactoring patterns can be applied. So, users can perform
refactorings effectively. The method consists of two phases. At first, the method
extracts refactoring-oriented code clones from ones detected by CCFinder, which
corresponds to the step (1). Secondly, the method provides appropriate refactoring
patterns of each extracted code clone to users, which corresponds to the step (2).

3.2.1 Extraction of Refactoring-Oriented Code Clones

As described above, firstly, refactoring-oriented code clones are extracted from
ones detected by CCFinder. Here, we regard structural code clones as refactoring-
oriented ones. Figure 3.1 shows an example. In this figure, there are two fragments
A and B from a program, and the fragments with hatchings are token-based code
clone between them. In fragment A, operations on class name are performed,
and in fragment B, operations on property file name are performed. The try-catch
blocks in A and B have a common logic that handles a java.util.Vector data struc-
ture. There are, however, sentences before and after try-catch blocks, which are not
necessarily related with the try-catch blocks from the semantic standpoint. Such
semantically unrelated sentences often obstruct refactoring. In other words, ex-
tracting only try-catch blocks as code clones is more preferable from refactoring
viewpoint in this example. As shown in this example, each logical block is similar
to the scope of programming language. So our proposed method extracts structural

46

���������
	��
������� � �����
��������� ��	����! �"�#�$
%

% ��� ��&� '���(�� "�) �+*���(�� ��-,�./� � 0� ��	����-,1#�#+2
��� 342
� � 0� ��	���� +) (
�+����� ���5��	��-�-(���"�
6 �07980:-#�$
� 7�7�$

% ��(������;� <=����(�3+> 	����
��?!����?='��@���+	��� ����
�0������� ��	!(�� �+��A���#+2
B ����� 	�"&�5 �"&CD,-EF���G�H�� 0�� �������� ' 3!(H��� (� � �	�(��5�;�4����	!,

7D,1�� �� 	�";�����H./� � 0� ��	�����(�� "��+�5��	��-,1$
���������
	����I���+� � �����
�0������� ��	����! �"�#�$

%
% ��� ��&� '���(�� "�) �� (�� � 0JK� ���
�-,�.1LM,/#�#�2
N�O > 	�� ��� �� ���� 	�"�� 35��	�����"���P0�Q�H"+�
�+���&����� �!�4����	;(&�� ����

RRR

RRR S �����;'���(�"��5��	��
<

 ��+(��-���+T�����UV�+� !CWLX��T�<ZYX[�U�\V�]YX> [�L@\VT^> [+��_@<=`G��$
%

% ��� ��&� '��-(�� "�) 0��(�� � 0JK� ���
�-,�.a�+�-�+�
��� � 30'�� � ��,/#�#�2
��� 3Z2
�+���+�
��� � 3�T�� � �� +) (
�+����� ���!��	��-�-(�� "+ �6 �0798b:-#�$
� 7�7�$

% ��(������;� <Z����(�3+> 	��+���
?!����?='��@���+	��+ �������������� ��	;(�� �+��A���#+2
B ����� 	�"c�5 �"DC&,-EF���H�G�� 0�� �������� ' 3!(G�+�����
��� � 3Z'�� � ��	
(��5�!�5����	;,

7D,1��
� 	�";�����H./�+��������� � 3�'�� � �G(���"��+�!��	���,d$
�-�+�����
	��
�I����� � �����
�0������� ��	
�a�5 �"�#�$

%
% ��� ��&� '��-(�� "�) �+*��
(�� ��-,�./eb,1#@f f�(���"�) �+*���(�� ��-,�./eg�+����.�"���� 	�"�,/#�#+2
eb�����
h4��� 	�"�`;���+�DCH�������^$

RRR

RRR S �����;'���(�"��5��	��@�

��� 3Z2
i 8
) (
���^�V� ���5��	��-�-(�� "�
6 �0798b:-#�$
� 7�7^$

% ��(
�����H� <=����(
3�> 	����
�
?;����?='��@����	��+ ����
�0������� ��	;(�� ����A���#+2
B ����� 	�"&�5 �"DCD,�EX���H�H�� 0�+ ��
�+��� ' 3!(i�j �5����	!,

7G,1�� �� 	�"H����� i+k (�� "����5��	���,1$
���+������	����l�V��� � �����
�0������� ��	����5 �"�#�$

%
mGn
o p@n�qGr o�s0p^tDn�u�v

���������
	��
������� � �����
��������� ��	����! �"�#�$
%

% ��� ��&� '���(�� "�) �+*���(�� ��-,�./� � 0� ��	����-,1#�#+2
��� 342
� � 0� ��	���� +) (
�+����� ���5��	��-�-(���"�
6 �07980:-#�$
� 7�7�$

% ��(������;� <=����(�3+> 	����
��?!����?='��@���+	��� ����
�0������� ��	!(�� �+��A���#+2
B ����� 	�"&�5 �"&CD,-EF���G�H�� 0�� �������� ' 3!(H��� (� � �	�(��5�;�4����	!,

7D,1�� �� 	�";�����H./� � 0� ��	�����(�� "��+�5��	��-,1$
���������
	����I���+� � �����
�0������� ��	����! �"�#�$

%
% ��� ��&� '���(�� "�) �� (�� � 0JK� ���
�-,�.1LM,/#�#�2
N�O > 	�� ��� �� ���� 	�"�� 35��	�����"���P0�Q�H"+�
�+���&����� �!�4����	;(&�� ����

RRR

RRR S �����;'���(�"��5��	��
<

���������
	��
������� � �����
��������� ��	����! �"�#�$
%

% ��� ��&� '���(�� "�) �+*���(�� ��-,�./� � 0� ��	����-,1#�#+2
��� 342
� � 0� ��	���� +) (
�+����� ���5��	��-�-(���"�
6 �07980:-#�$
� 7�7�$

% ��(������;� <=����(�3+> 	����
��?!����?='��@���+	��� ����
�0������� ��	!(�� �+��A���#+2
B ����� 	�"&�5 �"&CD,-EF���G�H�� 0�� �������� ' 3!(H��� (� � �	�(��5�;�4����	!,

7D,1�� �� 	�";�����H./� � 0� ��	�����(�� "��+�5��	��-,1$
���������
	����I���+� � �����
�0������� ��	����! �"�#�$

%
% ��� ��&� '���(�� "�) �� (�� � 0JK� ���
�-,�.1LM,/#�#�2
N�O > 	�� ��� �� ���� 	�"�� 35��	�����"���P0�Q�H"+�
�+���&����� �!�4����	;(&�� ����

RRR

RRR S �����;'���(�"��5��	��
<

 ��+(��-���+T�����UV�+� !CWLX��T�<ZYX[�U�\V�]YX> [�L@\VT^> [+��_@<=`G��$
%

% ��� ��&� '��-(�� "�) 0��(�� � 0JK� ���
�-,�.a�+�-�+�
��� � 30'�� � ��,/#�#�2
��� 3Z2
�+���+�
��� � 3�T�� � �� +) (
�+����� ���!��	��-�-(�� "+ �6 �0798b:-#�$
� 7�7�$

% ��(������;� <Z����(�3+> 	��+���
?!����?='��@���+	��+ �������������� ��	;(�� �+��A���#+2
B ����� 	�"c�5 �"DC&,-EF���H�G�� 0�� �������� ' 3!(G�+�����
��� � 3Z'�� � ��	
(��5�!�5����	;,

7D,1��
� 	�";�����H./�+��������� � 3�'�� � �G(���"��+�!��	���,d$
�-�+�����
	��
�I����� � �����
�0������� ��	
�a�5 �"�#�$

%
% ��� ��&� '��-(�� "�) �+*��
(�� ��-,�./eb,1#@f f�(���"�) �+*���(�� ��-,�./eg�+����.�"���� 	�"�,/#�#+2
eb�����
h4��� 	�"�`;���+�DCH�������^$

RRR

RRR S �����;'���(�"��5��	��@�

 ��+(��-���+T�����UV�+� !CWLX��T�<ZYX[�U�\V�]YX> [�L@\VT^> [+��_@<=`G��$
%

% ��� ��&� '��-(�� "�) 0��(�� � 0JK� ���
�-,�.a�+�-�+�
��� � 30'�� � ��,/#�#�2
��� 3Z2
�+���+�
��� � 3�T�� � �� +) (
�+����� ���!��	��-�-(�� "+ �6 �0798b:-#�$
� 7�7�$

% ��(������;� <Z����(�3+> 	��+���
?!����?='��@���+	��+ �������������� ��	;(�� �+��A���#+2
B ����� 	�"c�5 �"DC&,-EF���H�G�� 0�� �������� ' 3!(G�+�����
��� � 3Z'�� � ��	
(��5�!�5����	;,

7D,1��
� 	�";�����H./�+��������� � 3�'�� � �G(���"��+�!��	���,d$
�-�+�����
	��
�I����� � �����
�0������� ��	
�a�5 �"�#�$

%
% ��� ��&� '��-(�� "�) �+*��
(�� ��-,�./eb,1#@f f�(���"�) �+*���(�� ��-,�./eg�+����.�"���� 	�"�,/#�#+2
eb�����
h4��� 	�"�`;���+�DCH�������^$

RRR

RRR

 ��+(��-���+T�����UV�+� !CWLX��T�<ZYX[�U�\V�]YX> [�L@\VT^> [+��_@<=`G��$
%

% ��� ��&� '��-(�� "�) 0��(�� � 0JK� ���
�-,�.a�+�-�+�
��� � 30'�� � ��,/#�#�2
��� 3Z2
�+���+�
��� � 3�T�� � �� +) (
�+����� ���!��	��-�-(�� "+ �6 �0798b:-#�$
� 7�7�$

% ��(������;� <Z����(�3+> 	��+���
?!����?='��@���+	��+ �������������� ��	;(�� �+��A���#+2
B ����� 	�"c�5 �"DC&,-EF���H�G�� 0�� �������� ' 3!(G�+�����
��� � 3Z'�� � ��	
(��5�!�5����	;,

7D,1��
� 	�";�����H./�+��������� � 3�'�� � �G(���"��+�!��	���,d$
�-�+�����
	��
�I����� � �����
�0������� ��	
�a�5 �"�#�$

%
% ��� ��&� '��-(�� "�) �+*��
(�� ��-,�./eb,1#@f f�(���"�) �+*���(�� ��-,�./eg�+����.�"���� 	�"�,/#�#+2
eb�����
h4��� 	�"�`;���+�DCH�������^$

 ��+(��-���+T�����UV�+� !CWLX��T�<ZYX[�U�\V�]YX> [�L@\VT^> [+��_@<=`G��$
%

% ��� ��&� '��-(�� "�) 0��(�� � 0JK� ���
�-,�.a�+�-�+�
��� � 30'�� � ��,/#�#�2
��� 3Z2
�+���+�
��� � 3�T�� � �� +) (
�+����� ���!��	��-�-(�� "+ �6 �0798b:-#�$
� 7�7�$

% ��(������;� <Z����(�3+> 	��+���
?!����?='��@���+	��+ �������������� ��	;(�� �+��A���#+2
B ����� 	�"c�5 �"DC&,-EF���H�G�� 0�� �������� ' 3!(G�+�����
��� � 3Z'�� � ��	
(��5�!�5����	;,

7D,1��
� 	�";�����H./�+��������� � 3�'�� � �G(���"��+�!��	���,d$
�-�+�����
	��
�I����� � �����
�0������� ��	
�a�5 �"�#�$

%
% ��� ��&� '��-(�� "�) �+*��
(�� ��-,�./eb,1#@f f�(���"�) �+*���(�� ��-,�./eg�+����.�"���� 	�"�,/#�#+2
eb�����
h4��� 	�"�`;���+�DCH�������^$

RRR

RRR S �����;'���(�"��5��	��@�

��� 3Z2
i 8
) (
���^�V� ���5��	��-�-(�� "�
6 �0798b:-#�$
� 7�7^$

% ��(
�����H� <=����(
3�> 	����
�
?;����?='��@����	��+ ����
�0������� ��	;(�� ����A���#+2
B ����� 	�"&�5 �"DCD,�EX���H�H�� 0�+ ��
�+��� ' 3!(i�j �5����	!,

7G,1�� �� 	�"H����� i+k (�� "����5��	���,1$
���+������	����l�V��� � �����
�0������� ��	����5 �"�#�$

%
mGn
o p@n�qGr o�s0p^tDn�u�v

��� 3Z2
i 8
) (
���^�V� ���5��	��-�-(�� "�
6 �0798b:-#�$
� 7�7^$

% ��(
�����H� <=����(
3�> 	����
�
?;����?='��@����	��+ ����
�0������� ��	;(�� ����A���#+2
B ����� 	�"&�5 �"DCD,�EX���H�H�� 0�+ ��
�+��� ' 3!(i�j �5����	!,

7G,1�� �� 	�"H����� i+k (�� "����5��	���,1$
���+������	����l�V��� � �����
�0������� ��	����5 �"�#�$

%
mGn
o p@n�qGr o�s0p^tDn�u�v

Figure 3.1: Example of merging two code fragments

blocks inside code clones

3.2.2 Provision of Appricable Refactoring Patterns

Secondly, appricable refactoring patterns of extracted code clones are provided to
users. So far, many refactoring patterns have been proposed [20], and some of
them can be used for merging code clones as shown in Section 1.3.

The method judges which refactoring patterns can be used to each code clone.
Merging ways of code clones can be divided into two types, (a) extract a code
fragment as a new module, and (b) move an existing module to other place.

We show an example of type (a) using Extract Method pattern. Originally, Ex-
tract Method is applied to a too long method or a part of complicated function in
order to improve the readability, understandability, and maintainability. It also can
be applied to code clones to merge them. To apply this pattern, it is desirable that
each code fragment of the clone set has low coupling with its surrounding code.
In other words, the less the variables defined outside the code fragment are used
(referred and assigned), the easier we move it to other place. If such variables are
used, it is necessary to provide them as parameters for the extracted method. There-
fore, to measure the amount of such variables, we defined two metrics NRV(S) (the
Number of Referred Variables) and NAV(S) (the Number of Assigned Variables).
Here, we assume that a clone set S includes code fragments f1, f2, · · · , fn. The

47

code fragment fi refers si variables defined externally, and assigns to ti variables
defined externally. Then,

NRV (S) =
1
n

n∑
i=1

si, NAV (S) =
1
n

n∑
i=1

ti,

Intuitively, NRV (S) represents the average number of externally defined vari-
ables referred in the code fragments of clone set S, NAV (S) represents the av-
erage number of externally defined variables assigned to in the code fragments of
S.

Next, we demonstrates an example of type (b) using Pull Up Method pattern.
Pull Up Method means that a method in a class is moved to its parent class. If
several child classes have identical methods, moving them to the common parent
class is an effective refactoring. Naturally, classes including code clones have to
be descendants of the common parent class. Therefore, to measure the positional
relationship of code clones in the class hierarchy, we defined a metric DCH(S) (the
Dispersion in Class Hierarchy). As described above, a clone set S includes code
fragments f1, f2, · · · , fn. Ci denotes the class that includes the code fragment fi.
Then, if classes C1, C2, · · · , Cn have some common parent classes, Cp is defined
as a class which lays the lowest position in the class hierarchy among the parent
classes C1, C2, · · · , Cn. Also, D(Ck, Ch) represents the distance between class
Ck and class Ch in the class hierarchy. Then,

DCH(S) = max {D(C1, Cp), D(C2, Cp), · · · , D(Cn, Cp)}

The value of DCH(S) becomes large as the degree of the dispersion of S
becomes extended. If all code fragments of S are in the same class, the value of
DCH(S) is set as 0. If all code fragments of S are in a class and its direct child
classes, the value of DCH(S) is set as 1. Exceptionally, if some of classes have
no common parent class, the value of DCH(S) is set as ∞. In detail, this metric
is measured for only the class hierarchy where the target software exists because
it is unrealistic that users pull up some ‘method’s which are defined in the target
software classes to library classes like JDK.

3.2.3 Example of Refactoring Process

We demonstrate two examples of filtering conditions using two refactoring patterns
Pull Up Method and Extract Method.

48

Pull Up Method

If users want to perform Pull Up Method, the following conditions should be con-
sidered for example.

PC1 : The target is the method unit.

PC2 : The value of DCH(S) is 1 or more (not ∞).

Usually, Pull Up Method is performed on existing methods, so (PC1) is con-
sidered. Furthermore, all classes sharing code fragments (methods) of the same
clone set have to inherit a common parent class, so (PC2) is considered. By using
the conditions, clone sets are categorized as described below.

PG1 : Clone sets that can be merged only by moving each of the code fragments
to the common parent class.

PG2 : Clone sets that can be merged by moving each of the code fragments to
common parent class and adding parameters for each variable which is de-
fined outside of them. Existing methods which include the pull-uped code
clones can be deleted or changed so that they call the new method from the
inside. If they are deleted, it is necessary to change all its caller places,
because the signature was changed.

PG3 : Clone sets that can be merged by moving the code fragments to the common
parent class and adding parameters for each variable which is defined outside
and adding a return-statement. As well as (PG2), existing methods can be
deleted or changed from the same reason.

PG4 : Clone sets that need much contrivance to be merged.

Extract Method

If users want to perform Extract Method, a typical set of conditions will be as
follows.

EC1 : The target is statement unit.

EC2 : The value of DCH(S) is 0.

EC3 : The value of NAV (S) is 1 or less.

49

Since Extract Method is directed to a part in a method, (EC1) is considered. If
all code fragments of a clone set S are in the same class, it is easy to merge them,
so, (EC2) is considered. The reason to consider (EC3) is that, if some values are
assigned to variables defined externally, it is necessary to make them parameters
of the new extracted method, and to return them to its caller place to reflect the
values of them. It is necessary to contrive like making a new data class if two or
more values are assigned to. By using these conditions, clone sets are categorized
as described below.

EG1 : Clone sets that can be merged only by extracting them and making a new
method in the same class.

EG2 : Clone sets that can be merged by extracting them and making a new method
with setting the externally defined variables as parameters of it, because such
variables are referred in the code clone.

EG3 : Clone sets that can be merged by extracting them and making a new method
with setting the externally defined variables as parameters of it and adding a
return-statement to deliver the results of the assignments to the caller place.

EG4 : Clone sets that can be merged but need much effort.

3.3 Refactoring Support Tool: Aries

We implemented a refactoring support tool, Aries based on the refactoring pattern
recommendation method. Currently, Aries supports only Java language, but can
be extended to other languages. Aries consists of Extraction Unit and GUI Unit.

Extraction Unit extracts the following types of code clones from source code
as refactoring-oriented ones.

Declaration : class { }, interface { }
Function : method, constructor, static-initializer
Statement : if, for, while, do, switch, try, synchronized

Also, Extraction Unit quantitatively characterizes refactoring-oriented code
clones by using 6 metrics. These metrics are NRV (S), NAV (S), DCH(S),
which are described in Section 3.2.2, and LEN(S), POP (S), DFL(S), which
are described in Section 2.2.3. Refactoring-oriented code clone information with
the metrics are stored into a file with the XML format.

GUI Unit includes two windows, Main Window and Clone Set Viewer. Users
select code clones that he/she is going to refactor on Main Window after he/she
gives the XML file to GUI Unit. Figure 3.2 is a snapshot of Main Window. Users
can get detail information of the code clones that they selected on Clone Set

50

��������� �
	�����
������ ��� ������������� �!�#" �#�$��%�� &'" %�(��)�*�+��,�� -.�

&�" %#(��0/1(+� ���!�#" ���$�2%��

��������� �
	�����
������ ��� ������������� �!�#" �#�$��%�� &'" %�(��)�*�+��,�� -.�

&�" %#(��0/1(+� ���!�#" ���$�2%��

Figure 3.2: A Snapshot of Main Window

Viewer. Figure 3.3 is a snapshot of Clone Set Viewer. Here, we explain each
component of GUI Unit.

Metric Graph View
Aries’s Metric Graph is identical to Gemini’s one except metric types. How
Metric Graph works is described in Section 2.2.3.

Clone Unit Selector
In Clone Unit Selector, users can choose the target unit of refactoring. For
example, in performing Parameterized Method, only method unit should be
selected.

NRV/NAV Selector
Variable types used for calculating NRV (S) and NAV (S) can be chosen
in NRV/NAV Selector. The variable types are as follows.

51

���������
	���
���������� � ��� �����
	
� ��� �!�"� #!�%$��"�����

&'�"#�	����(�������)��� �!* +�,.-0/1+�23-54�� ���

���������
	���
���������� � ��� �����
	
� ��� �!�"� #!�%$��"�����

&'�"#�	����(�������)��� �!* +�,.-0/1+�23-54�� ���

Figure 3.3: A Snapshot of Clone Set Viewer

- field-members-of-its-class,
- field-members-of-parent-class,
- field-members-of-interface,
- local-variables.

For example, in performing Extract Method within a class, only local-variables
need to be considered, because other variable types can be accessed wher-
ever in the same class. In performing Pull Up Method, we think that field-
members-of-parent-class don’t need to be considered, but field-members-of-
its-class have to be considered. Like this, users can choose which types are
counted according to each refactoring pattern.

Clone Set List
Clone Set List shows clone sets which are selected state in Metric Graph
View. The list has a function to sort clone sets in ascending or descending
order of arbitrary metrics. Double-clicking a clone set on the list is a trigger

52

��� � � � ���	�
 �
� ��� �
����� � ��� � � �

��� �����

��� �����

� ! � ��" �#� ! �%$���&
$! '�(�)�*�+�

� ' " �

,.-�/10 ,32�/
4 � � � � � �	�

��� �
���651��� �
4 � � � � � �	�

��� ���87

$+9+��$%:
' ��� '�(�

��� ���<;

��� �
����� � ��=�� � >3� �

$! '�(�)�*�+� �

��� � � � ���	�
 �
���� � � � ���	�
 �
� ��� �
����� � ��� � � ���� �
����� � ��� � � �

��� �����

��� �����

� ! � ��" �#� ! �%$���&
$! '�(�)�*�+�

� ' " �

,.-�/10 ,32�/
4 � � � � � �	�

��� �
���651��� �
4 � � � � � �	�

��� ���87

$+9+��$%:
' ��� '�(�

��� ���<;

��� �
����� � ��=�� � >3� �

$! '�(�)�*�+� �

Figure 3.4: Analysis precess using GUI Unit

to display Clone Set Viewer. It provides more detail information of the
selected clone set to users.

Metrics Value Panel
Metrics Value Panel displays metrics values of the selected clone set.

Code Fragment List
Code Fragment List displays the list of code fragments included in the
selected clone set. Each element of the list has three kinds of information, a
path to each file including the code fragment, the location of the code clone
in the file, and the size of the code fragment.

Source Code View
Source Code View works cooperatively with Code Fragment List. Users
can browse the actual source code corresponding to the code fragment se-
lected in Code Fragment List. The code clone is emphatically displayed.

NRV/NAV List
NRV/NAV List displays the list of variables which are used and defined ex-
ternally in the code fragment selected in Code Fragment List. Each element
of the list has three kinds of information, the variable name, the variable type
and the number of usage.

Figure 3.4 illustrates the model of the analysis process on GUI Unit. In Step
1, users decide which variable types are used to calculate metrics and which unit
types are target that they are going to refactor by using NRV/NSV Selector and
Clone Unit Selector.

53

In Step 2, users filter code clones by changing the lower and upper limits of
metrics. The code clones that satisfying the metrics conditions are listed in Clone
Set List. Currently, Metric Graph View has pre-defined conditions for the fol-
lowing refactoring patterns. By only choosing a refactoring pattern, users can get
clone sets which can be merged using the pattern.

- Extract Class,
- Extract Method,
- Extract SuperClass,
- Form Template Method,
- Move Method,
- Parameterize Method,
- Pull Up Constructor, and
- Pull Up Method.

In Step 3, clone sets filtered in Metric Graph View are displayed on the Clone
Set List with metrics values, and this list can sort clone sets in ascending or de-
scending order of arbitrary metrics. Users select a clone set in this list.

Finally, in Step 4, users get detail information of the selected clone set by using
Clone Set Viewer. The information includes all metric values and all code frag-
ments of the selected clone set. And for each code fragment, variables which are
used to calculate NRV (S) and NAV (S) are displayed with the number of refer-
ences and assignments. Also, users can browse source code of the code fragments
selected in Code Fragment List. Users can conduct refactorings effectively using
the information.

3.4 Evaluation on Applicability

In this Section, we describe the case study that we conducted to evaluate applica-
bility of refactorings suggested by Aries.

Target and Configuration

We chose Ant [2](version 1.6.0) as our target because of two reasons. Firstly, Ant
is written in Java language. As previously mentioned, CCFinder can deal with
several popular programming languages (i.e., C/C++, Java, COBOL, Fortran, ...),
but Aries can deal with only Java language. Secondly, the Ant package includes
many test cases which can be used to confirm that Ant’s external behavior doesn’t
change by refactorings.

Ant 1.6.0 includes 627 source files, and the size is about 180,000 LOC. In this
case study, we set 30 tokens as the minimum token length of code clone (intuitively,

54

30 tokens correspond to about 5 LOC). The value 30 comes from our previous
studies of CCFinder [33].

We applied Extract Method and Pull Up Method refactoring patterns to code
clones. It took 2 minutes to detect refactoring-oriented code clones, and we got 154
clone sets from Ant. Fifty-nine of them satisfied the conditions of Extract Method,
and twenty of them satisfied the conditions of Pull Up Method. The conditions
of Extract Method and Pull Up Method are the same as ones described in Section
3.2.3. In Sections 3.4.1 and 3.4.2, we describe the details of refactoring using
Aries. Also, after merging each clone set, we performed regression tests to confirm
the behavior of Ant. In the regression test process, we used totally 220 test cases
included in the Ant package. These test cases were conducted to use JUnit [32],
which is one of unit testing frameworks. So, we could easily perform all test cases
and took about 4 minutes to perform all of them.

3.4.1 Result of Extract Method

As described above, we got 59 clone sets as the result using the conditions of
Extract Method. Then, we browsed and examined source code of all clone sets,
and classified them into 4 groups (EG1) ∼ (EG4), which are described in Section
3.2.3. After classifying, we merged all code clones in groups (EG1) ∼ (EG3).

if (!isChecked()) {

// make sure we don’t have a circular reference here

Stack stk = new Stack();

stk.push(this);

dieOnCircularReference(stk, getProject());

}

Figure 3.5: Example of Extract Method in (EG1)

Three clone sets were classified into (EG1). Figure 3.5 shows a code fragment
included in them. In this if-statement clone, no externally defined local-variable
was used. So, it was very easy to extract each code fragment as a new method in
the same class.

if (javacopts != null && !javacopts.equals("")) {

genicTask.createArg().setValue("-javacopts");

genicTask.createArg().setLine(javacopts);

}

Figure 3.6: Example of Extract Method in (EG2)

Thirty-four clone sets were classified into (EG2). Figure 3.6 shows a code

55

fragment included in them. In this if-statement clone, variable javacopts was a
field-member-of-its-class, and variable genicTask was a local-variable. So, it was
necessary to set genicTask as a parameter of a new method to extract each code
fragment in the same class.

if (iSaveMenuItem == null) {

try {

iSaveMenuItem = new MenuItem();

iSaveMenuItem.setLabel("Save BuildInfo To Repository");

} catch (Throwable iExc) {

handleException(iExc);

}

}

Figure 3.7: Example of Extract Method in (EG3)

Fifteen clone sets were classified into (EG3). Figure 3.7 shows a code frag-
ment included in them. In this if-statement clone, variable iSaveMenuItem was
externally defined. Moreover, there was an assignment to the variable in the code
fragment. So, it was necessary to make iSaveMenuItem a parameter of the new
method and add a return-statement to reflect the results of the assignment to the
caller code.

if (name == null) {

if (other.name != null) {

return false;

}

} else if (!name.equals(other.name)) {

return false;

}

Figure 3.8: Example of Extract Method in (EG4)

Seven clone sets were classified into (EG4). Figure 3.8 shows a code fragment
included in them. In this if-statement clone, two return-statements existed. So,
much effort would be necessary to extract it. In this case study, we didn’t merge
these seven clone sets because we thought that merging them would be strongly
dependent on the skill of each programmer.

3.4.2 Result of Pull Up Method

Here, we describe the result of applying Pull Up Method. As described above, we
got 20 clone sets as the results using the conditions of Pull Up Method. Then, we
browsed and examined source code of all code clones, and classified them into 4

56

groups (PG1) ∼ (PG4), which are described in Section 3.2.3. After classifying, we
merged all code clones in groups (PG1) ∼ (PG3).

In this case study, no clone set was classified into (PG1).

private void getCommentFileCommand(Commandline cmd) {

if (getCommentFile() != null) {

/* Had to make two separate commands here because

if a space is inserted between the flag and the

value, it is treated as a Windows filename with

a space and it is enclosed in double quotes (").

This breaks clearcase.

*/

cmd.createArgument().setValue(FLAG_COMMENTFILE);

cmd.createArgument().setValue(getCommentFile());

}

}

Figure 3.9: Example of Pull Up Method in (PG2)

Ten clone sets were classified into (PG2). Figure 3.9 shows a code frag-
ment included in them. In this method clone, variable this was omitted at calling
method getCommentFile, since it was defined in the same class. Variables this
and FLAG COMMENTFILE, which were field-members-of-its-class, were exter-
nally defined. So, we pulled up them to the common parent class after adding two
parameters.

public void verifySettings() {

if (targetdir == null) {

setError("The targetdir attribute is required.");

}

if (mapperElement == null) {

map = new IdentityMapper();

} else {

map = mapperElement.getImplementation();

}

if (map == null) {

setError("Could not set <mapper> element.");

}

}

Figure 3.10: Example of Pull Up Method in (PG3)

Two clone sets were classified into (PG3). Figure 3.10 shows a code fragment
included in them. In this method clone, variable map was externally defined, and
some values were assigned to it. Method setError was defined in the common
parent class. So, in order to pull up this clone set to the common parent class, it

57

was necessary to add a parameter and a return-statement for variable map.

public void execute() throws BuildException {

Commandline commandLine = new Commandline();

Project aProj = getProject();

int result = 0;

// Default the viewpath to basedir if it is not specified

if (getViewPath() == null) {

setViewPath(aProj.getBaseDir().getPath());

}

// build the command line from what we got. the format is

// cleartool checkin [options...] [viewpath ...]

// as specified in the CLEARTOOL.EXE help

commandLine.setExecutable(getClearToolCommand());

commandLine.createArgument().setValue(COMMAND_CHECKIN);

checkOptions(commandLine);

result = run(commandLine);

if (Execute.isFailure(result)) {

String msg = "Failed executing: " +

commandLine.toString();

throw new BuildException(msg, getLocation());

}

}

Figure 3.11: Example of Pull Up Method in (PG4)

Eight clone sets were classified into (PG4). Figure 3.11 shows a code fragment
included in them. This method called method checkOptions, which was defined in
the same class. Methods getProject, getViewPath and getLocation were defined
by using the common parent class. Also, variable commandLine, which was a
parameter of checkOptions, was defined and used in this code fragment. Method
checkOptions was defined in each class having a code clone of the clone set, and
each code clone called different method checkOptions. It prevented them from
merging with Pull Up Method. But, we thought that we would be able to apply
Form Template Method pattern on them. That is, we move the code clone to the
common parent class. Then, we define an abstract method named checkOptions
in the common parent class.

58

Table 3.1: Number of Detected Clone Sets
Unit # of Clone Sets Refactoring Pattern

Declaration 4 Extract Super Class
Function 13 Move Method
Statement 49 Extract Method

3.5 Evaluation on Usefulness

3.5.1 Outline

In this case study, we evaluate whether refactorings suggested by Aries are use-
ful1. The target is a web-based system developed in Hitachi Systems & Services,
Ltd, which is a software company in Japan. The total LOC of the system is about
310,000. Some parts of the system (about 70,000 (309 classes) LOC) were devel-
oped from scratch and we applied Aries to them.

In this study, we used 50 as the minimum clone length that Aries detects. In
the case study of applicability, which is described in Section3.4, we uses 30. But in
this case study, we evaluate the usefulness of refactorings suggested by Aries. We
think that the size of code clones affects the usefulness of refactoring, so that we
used a slightly larger value, 50. In the default settings, Aries ignores differences of
all user-defined names (variable names, type names, object types, and so on). But,
in this study, we configured that Aries did not ignore differences of type names,
method names, and literals. Because it is difficult and costly to refactor code clones
with such differences.

With the above settings, Aries detected 66 clone sets. We applied different
refactoring patterns to each unit(Declaration, Function, and Statement) of clone
sets. Table 3.1 classifies the detected clone sets.

After the detection of code clones, we filtered clone sets by using some con-
ditions. And, a maintainer of the system evaluated whether refactorings of filtered
clone sets are effective. Next, we explain some conditions to filter the clone sets.

Pattern 1: Extract Super Class

Extract Super Class is creating a common super class of some classes, and moves
the common features to the super class. In this study, we used the following three
conditions to get clone sets which can be refactored by Extract Super Class.

1In Section 3.4, we evaluated whether refactorings suggested by Aries can be performed. Here,
we evaluate whether refactorings suggested by Aries help future maintenance.

59

(ESC1) The unit of code clone is class,

(ESC2) All code clones (classes) do not use any field-members-of-super-class, and

(ESC3) All code clones (classes) have no common super class.

Obviously, since Extract Super Class’s target is class, the condition (ESC1)
is required. It is difficult to apply this pattern to classes depending on the class
hierarchy since applying this pattern changes the class hierarchy, so the condition
(ESC2) is required. (ESC2) is represented as (NRV (S) = 0) ∩ (NSV (S) =
0). Also, this pattern creates a common super class and so we have to filter out
code clones (classes) that already have a common super class using the condition
(ESC3). (ESC3) is represented as DCH(S) = ∞.

If the code clones (classes) are completely identical, it would be appropriate to
delete all code clones (classes) except one without applying Extract Super Class
pattern.

Pattern 2: Move Method

Move Method is moving a method to another class. Originally, the location might
be the best where the method had been defined. But, repeated modification and
extending the features sometimes change the best location of the method. Then,
we use Move Method. In this study, we used the following two conditions to get
clone sets that can be moved to utility classes.

(MM1) The unit of code clone is method, and

(MM2) All code clones (methods) don’t use any field-members-of-its-class.

Since obviously Move Method’s target is method, the condition (MM1) is used.
Also, to get methods that did not implement some features of the class (did not use
any fields of the class), we use the condition (MM2). (MM2) is represented as
(NRV (S) = 0) ∩ (NSV (S) = 0).

Pattern 3: Extract Method

Extract Method is turning a code fragment into a method whose name explains the
purpose of it. Originally, Extract Method is applied to a part of a too long method
or a part of complicated function in order to improve the readability, understand-
ability, and maintainability. In this study, we used the following conditions to get
clone sets that can be refactored by Extract Method pattern.

60

(EM1) The unit of code clone is statement,

(EM2) There is only one or no assignment for externally defined variables,

(EM3) All code clones (statements) are in the same class, and

(EM4) There are three or more code clones (statements) in the same clone set.

Since Extract Method is applied to a part of a method, the condition (EM1)
is required. If some values are assigned to some externally defined variables, it is
necessary to make them arguments of the new extracted method, and to return them
to its caller places to reflect them. It is necessary to contrive like making a new
data class if two or more values are assigned to. If there is only one assignment,
we just have to add a return-statement to the extracted method. So, the condition
(EM2) is required. (EM2) is represented as NSV (S) ≤ 1. And, if all code clones
(statements) are in the same class, it is easy to merge them. So, (EM3) is required
and is represented as DCH(S) = 0. At last, we filtered clone set consisting of
only two clones. Refactorings of such clone sets may not be effective, because the
size of statement is much smaller than one of declaration and function,

3.5.2 Evaluation Criteria

Here, we describe evaluation criteria in the case study. The criteria consist of (A)
State of Clone, (B) Effectiveness of Refactoring, (C) Cost of Refactoring, and (D)
Comprehensive Evaluation.

(A) State of Clone

We evaluated (A) State of Clone from four viewpoints. For each point, the main-
tainer of the system determined whether each clone set (a) has a bad influence, or
(b) has a little influence on the system.

(A1) Size of Software
(A2) Design of Software
(A3) Cohesion of Class
(A4) Coupling of Classes

The first point is (A1) Size of Software. Here, ‘size’ means the LOC of class
or method. The second point is (A2) Design of Software. Here, ‘design’ means
the class hierarchy or Encapsulation. The third point is (A3) Cohesion of Class.
Here, ‘cohesion’ means whether each class has responsibility of a function or not.
If a class implements two or more functions, its ‘cohesion’ should be considered as
low (bad). The last point is (A4) Coupling among Classes. Here, ‘coupling’ means

61

that a class uses method and fields of other classes. If some methods and fields are
not defined in the proper class, ‘coupling’ should be considered as high (bad).

(B) Effect of Refactoring

We evaluated (B) Effect of Refactoring from the following six viewpoints. For each
point, the maintainer evaluated refactorings for each clone set as it (a) improves the
point, (b) prevents future problems, (c) has no impact, or (d) has a bad influence.

(B1) Size of Software
(B2) Design of Software
(B3) Cohesion of Class
(B4) Coupling of Classes
(B5) Readability of Source Code
(B6) Reusability of Source Code

(B1) ∼ (B4) are the same as ones described in (A) State of Clone. (B5) Read-
ability of Source Code is whether the refactoring improves readability of the source
code. If the refactoring improves the readability, the maintainer need less time to
understand the source code when he has to modify it. (B6) Reusability of Source
Code is whether the refactoring makes it easier to reuse the source code. If the
reusability is improved, the refactoring reduces the future cost of the same or dif-
ferent software development/maintenance.

(C) Cost of Refactoring

We evaluated (C) Cost of Refactoring from the following two viewpoints. For each
point, the maintainer evaluated whether each task (a) can end immediately, (b) is a
little costly, or (c) is very complicated.

(C1) Modification of Source Code
(C2) Regression Test

(C1) is the cost of modifying source code. If the refactoring is big, the main-
tainer has to modify different parts of software. (C2) is the cost of performing
regression tests. As described in Section 1.3, refactoring must not changes the
external behavior of software. After modifying source code, regression test is re-
quired to confirm the behavior. If tests of the modified parts use some test frame-
work like JUnit [32], the regression tests probably be able to be performed just by
inputting some command or clicking some buttons of GUI.

(D) Comprehensive Evaluation

Taking into account all things of refactorings, the maintainer totally judged the
effectiveness of refactoring each clone set on the followings: it (a) should be done

62

immediately, (b) needs to be done in the future, (c) doesn’t need to be done, or (d)
must not be done.

(D1) Refactoring

3.5.3 Hypothesis

Here, we define our hypotheses in this case study. The units of refactorings are
declaration, function, and statement. Since there is a whole wide spread in the size
of those units, we considered that all aspects of refactorings are different dependent
on the unit.

(A) State of Clone
We made a hypothesis that the bigger units of clones are, the worse effects
they have for software maintenance. In other words, declaration-clones has
the worst effect, and statement-clones has less bad effect.

(B) Effect of Refactoring
We made the same hypothesis as (A) State of Clone. The worse effect clones
have the effective it is to remove them.

(C) Cost of Refactoring
We hypothesized that, the bigger units of clones are, the more costly their
refactorings are. Because a big refactoring needs complicated modifications
of the source code.

(D) Comprehensive Evaluation
We could not hypothesize which unit of refactorings is the most effective.
Because we predicted that refactorings of big unit (declaration-clone) has
big effects but need much cost. On the other hand, refactorings of small
unit (statement-clone) has small effects but need a little cost. The trade-off
between effects and cost is important to determine whether the refactorings
should be done or not.

3.5.4 Results

We detected 66 clone sets comprising refactoring oriented code clones by using
the extraction method. Then, we filtered the code clones by using the conditions
(ESC1 ∼ 3), (MM1 ∼ 2), and (EM1 ∼ 4), As a result, 4, 5 and 12 clone sets
satisfied the conditions of each refactoring pattern.

63

Table 3.2: Refactoring Evaluations of Extract Super Class

(a) State of Clones

(A1) (A2) (A3) (A4)
(a) have a bad influence 4 4 0 0
(b) have no impact 0 0 4 4

(b) Effect of Refactorings

(B1) (B2) (B3) (B4) (B5) (B6)
(a) improve 2 2 0 0 1 1
(b) prevent future problems 2 2 0 0 3 3
(c) have no impact 0 0 4 4 0 0
(d) have a bad influence 0 0 0 0 0 0

(c) Cost of Refactorings

(C1) (C2)
(a) can end immediately 1 1
(b) is a little costly 3 1
(c) is very complicated 0 2

(d) Comprehensive Evaluation

(D1)
(a) must be done immediately 2
(b) need to be done in the future 2
(c) does’t need to be done 0
(d) must not be done 0

Pattern 1: Extract Super Class

Table 3.2 shows the evaluation of Extract Super Class pattern. Table 3.2(a) says
that all clone sets have a bad influence on (A1) Size of Software and (A2) Design
of Software. But, no clone set have a bad influence on (A3) Cohesion of Class and
(A4) Coupling of Classes.

Table 3.2(b) shows Effect of Refactorings. From this table, we found that refac-
torings of all clone sets improve or prevent future problems from the viewpoint of
(B1) Size of Software, (B2) Design of Software, (B5) Readability of Source Code
and (B6) Reusability of Source Code. The maintainer judged that there was no

64

impact on (B3) and (B4).
Table 3.2(c) shows Cost of Refactorings. From the viewpoint of (C1) Modi-

fying Source Code, all refactorings are judged can end immediately and is a little
costly. The result is different from our hypothesis. From the viewpoint of (C2) Re-
gression Test, the judgments are divisive. Refactoring a clone set which calculates
something about ‘date’ was judged can end immediately in both (C1) Modification
of Source Code and (C2) Regression Tests. The classes are included in different
packages and in the same clone set. The difference was only their package names.
This clone set can be easily removed by deleting all classes except only one class.
Also, other three clone sets depend on the framework that the software uses. But,
the maintainer commented that we should introduce some interfaces to avoid such
clone sets in the future.

Table 3.2(d) shows Comprehensive Evaluation. The maintainer judged that
refactorings of all clone sets as must be done immediately or need to be done in
the future. From these evaluations, we can conclude that Aries can effectively
specified clone sets that should be refactored.

Pattern 2: Move Method

Table 3.3 shows the evaluation results of Move Method pattern. From Table 3.3(a),
we can see that all clone sets have a bad influence on (A1) Size of Software and
(A2) Design of Software. But, no clone set have a bad influence on (A4) Coupling
of Classes.

Table 3.3(b) shows (B) Effect of Refactorings. From this table, we can see that
refactorings improve or prevent future problems from the viewpoint of (B1) Size
of Software, (B2) Design of Software, (B3) Cohesion of Class, (B5) Readability
of Source Code, and Reusability of Source Code. Improving cohesion means that
location of cloned methods are not appropriate, and we were able to identify such
ones by Aries. On the other hand, all refactoring had no impact on (B4) Coupling
of Classes.

From Table 3.3(c), we can see that all refactorings can end immediately both
(C1) Modification of Source Code and (C2) Regression Test. We consider that it
is due to the strict condition MM2 (All code clones (methods) don’t use any field-
members-of-its-class), and the simplicity of Move Method (just move a method to
another class).

Table 3.3(d) shows Comprehensive Evaluation. The maintainer judged that
refactorings of all clone sets must be done immediately or need to be done in the
future. From these evaluations, we can say that Aries can effectively identify the
method candidates of refactorings.

65

Table 3.3: Refactoring Evaluations of Move Method

(a) State of Clones

(A1) (A2) (A3) (A4)
(a) have a bad influence 5 5 4 0
(b) have no impact 0 0 1 5

(b) Effect of Refactorings

(B1) (B2) (B3) (B4) (B5) (B6)
(a) improve 5 5 5 0 4 4
(b) prevent future problems 0 0 0 0 1 1
(c) have no impact 0 0 0 5 0 0
(d) have a bad influence 0 0 0 0 0 0

(c) Cost of Refactorings

(C1) (C2)
(a) can end immediately 5 5
(b) is a little costly 0 0
(c) is very complicated 0 0

(d) Comprehensive Evaluation

(D1)
(a) must be done immediately 4
(b) need to be done in the future 1
(c) does’t need to be done 0
(d) must not be done 0

Pattern 3: Extract Method

Table 3.4 shows the refactoring evaluations of Extract Method pattern. Table 3.4(a)
says that most of clone sets have no impact on software quality.

Table 3.4(b) shows Effect of Refactorings. From the viewpoint of (B1) Size
of Software, (B2) Design of Software, (B5) Readability of Source Code, and (B6)
Reusability of Source Code, some refactorings improved the quality but others yield
opposite effect. Aries could not effectively identify clone sets that Extract Method
should be applied. Also, all refactorings have no impact on other properties.

From Table 3.4(c), wee can see that some refactorings need high cost. The

66

Table 3.4: Refactoring Evaluations of Extract Method

(a) State of Clones

(A1) (A2) (A3) (A4)
(a) have a bad influence 2 2 0 0
(b) have no impact 10 10 12 12

(b) Effect of Refactorings

(B1) (B2) (B3) (B4) (B5) (B6)
(a) improve 0 0 0 0 0 2
(b) prevent future problems 50 3 0 0 0 2
(c) have no impact 4 3 12 12 3 4
(d) have a bad influence 3 6 0 0 5 4

(c) Cost of Refactorings

(C1) (C2)
(a) can end immediately 3 2
(b) is a little costly 5 6
(c) is very complicated 4 4

(d) Comprehensive Evaluation

(D1)
(a) must be done immediately 0
(b) need to be done in the future 3
(c) does’t need to be done 3
(d) must not be done 6

maintainer commented that, it is troublesome to extract a part of existing methods
as a new method although Aries provided information where and how we can
refactor them.

Table 3.4(d) shows Comprehensive Evaluation. Half of clone sets were judged
that their refactorings must not to be done. Most of such clone sets depend on the
application framework, and they do not have bad impact on software quality. Also,
refactorings of ‘statement-clones’ are a little effective, yet need much cost. That is
a big factor of bad comprehensive evaluation.

67

3.5.5 Discussion

From the above evaluations, with respect to ‘declaration-clones’ and ‘function-
clones’, all clone sets satisfying filtering conditions had bad impact on (A1) Size of
Software and (A2) Design of Software, and the maintainer judged that refactorings
for them improve software qualities. Especially, refactorings of all clone sets satis-
fying Move Method conditions are regarded as improving (B2) Design of Software
and (B3) Cohesion of Class, and don’t need much cost.

On the other hand, with respect to the ‘statement-clones’, most of clone sets
satisfying Extract Method conditions have no impact of software quality. There are
some clone sets whose refactoring might have a bad influence. One of the reasons
the result is that, such clone sets are very small elements of software (they are state-
ments.), and so have a little impact on software quality. Moreover, most of them
depend on the application framework and so it is not appropriate to simply remove
them. Also, the costs of ‘statement-clones’ are higher than ‘function-clones’ and
‘declaration-clones’. The maintainer said that it is troublesome to extract manually
a part of existing methods as a new method even if we get the information where
and how we can refactor them.

In this case study, we applied Aries to just a software system in a specific
context. So, the results might be significant only to the context. However, the
followings would be generalized to software developed in other context.

1. In case that the target system uses any application frameworks, it is not ap-
propriate to remove code clones depending on the frameworks. Such code
clones are prone to be stereotyped, not ad-hoc implementations. Generally,
stereotyped code is very stable and not to be refactored.

2. Refactorings of ‘declaration-clones’ and ‘function-clones’ are more effective
than ones of ‘statement-clones’. Most refactorings of ‘declaration-clones’
and ‘function-clones’ need only simple operations like just moving or just
deleting. But, refactorings of ‘statement-clones’ require complicated oper-
ations like renaming variables or adding parameter. Doing such operations
manually is prone to be troublesome and costly.

In this case study, a maintainer of the target system subjectively judged the
effectiveness of refactorings. To suggest the effectiveness of refactorings automat-
ically, it is essential to characterize code clones quantitatively and show the effect
of the refactoring. For example, the coupling metrics among methods proposed
by Kataoka, et al. [35] would be used. We measure the metrics both before and
after refactorings, and compare them. If the values are quite different, we could
say that the refactorings have greatly changed the quality. Also, if we would use

68

the history information of the development, the method suggested by Kim et al.
[36, 37] may be useful. If we can identify clone sets whose fragments simultane-
ously and repeatedly, removing them maybe reduce the maintenance cost of the
future. By using this method, refactorings of small clones like statement might be
also effective.

3.6 Addaitive Descriptions of Aries

3.6.1 Other Refactoring Conditions in Aries

In Sections 3.2.3 and 3.5.1, we have given some conditions for Extract Method,
Extract SuperClass, Move Method and Pull Up Method. But, of course, there are
many other conditions used to filter clone sets. For example, in performing Extract
Method, it is considered that users use not only NAV (S) but also NRV (S). Using
the conditions, he/she can get clone sets which can be extracted with less than a cer-
tain number of parameters. It maybe be useful to use POP (S), which is described
in Section 2.2.3, to filter clone sets consisting of 10 or more code fragments. If
some bugs are found in clone sets having many code fragments, modifying each
of them without overlooking is complicated task. Refactoring of such clone sets
should be practical. That is, users can filter clone sets with any conditions of all
metrics.

3.6.2 Concentrating Target Classes to be Refactored in Aries

In Section 3.2.1, we explained how to identify the refactoring-oriented code clones.
But, if users have already identified some classes which should be refactored, Pro-
viding only code clones in such classes is very effective. Aries has a function to
do that. Figure 3.12 is a snapshot of the window that users select classes.

The left side is Package Tree. If users have already decided which classes
he/she refactors, Package Tree is useful to select classes. Package Tree repre-
sents classes on the package hierarchy. Each element of the tree has a checkbox.
Only code clones in checked classes are shown in Main Window, whose snapshot
is Figure 3.2.

The right side is Class List. Class List represents classes with several metrics.
The following are brief explanations of each metrics.

NOC(C) : NOC(C) is the number of code clones included in a given class C.

ROC(C) : ROC(C) is the ratio of duplication of class C.

69

������������	�

��	�	 ��� ��������� ���������������	�

��	�	 ��� ��������� ���

Figure 3.12: A Snapshot of Class Viewer

NOM(C) : NOM(C) is the number of methods defined in class C. Accessors are
included, but inherited methods are not included.

NOA(C) : NOA(C) is the number of attributes defined in class C. Inherited
attributes are not included.

TCC(C) ; TCC(C) [12] means a cohesion of class C. Here, we assume that
NDC(C) is the number of method pairs which share some attributes, and
NP (C) is the number of all method pairs. Then,

TCC(C) =
NDC(C)
NP (C)

RFC(C) : RFC(C) [16] means the cardinality of the response set for class C,
which is a set of methods that can be potentially executed in response to a
message received by an object of that class. Mathematically it can be defined
using elements of set theory, as : RS = M

∪n
i=1Ri where Ri is the set of

70

methods called by method i and M is the set of all methods in the class, and
n is the number of methods defined in C. Then, mathematically RFC(C) =
|RS|.

LCOM(C) ; LCOM(C) [23] means a lack of cohesion. Consider the set M of
m-th methods M1, · · ·, Mm, and the set A of a-th data attributes A1, · · ·,
Aa accessed by M . Let µ(Ak) be the number of methods that access data
attribute Ak where 1 ≤ k ≤ a. Then,

LCOM(C) =

(1
a

a∑
j=1

µ(Aj)) − m

1 − m

Class List has a sort function, so that users can sort classes in ascending or de-
scending order of arbitrary metrics. By using Class List, users can see which
classes have inappropriate metrics values, and can select them to refactor. Each
element of the list has a checkbox. Only code clones in checked classes are shown
in Main Window, whose snapshot is Figure 3.2.

3.7 Related Works

Jarzabek et al. suggested a clone unification method [27]. The method unifies
a set of cloned code fragments (or patterns of them; they call them design-level
similarity patterns) in the source code as a meta-component. The method was im-
plemented as a tool, XVCL (XML-based Variant Configuration Language). XVCL
is language-independent in that it can be applied on top of any programming lan-
guage. XVCL provides a generic solution for the problem that language-level uni-
fication methods fail to provide.

Kataoka et al. suggested a method measuring the effectiveness of refactor-
ings [35]. They use coupling among methods as the indicator of refactorings ef-
fects. The coupling is calculated from three attributes, return-value, arguments,
and shared-variables. They compare the values of before and after refactorings,
and the degree of difference represents the effectiveness of the refactoring. We
consider that their method can be applied to refactorings of code clones because
we use existing refactoring patterns to merge code clones.

Rysselberghe et al. argued which of the following detection techniques are ap-
propriate from a refactoring perspective: 1. string-based detection techniques. 2.
token-based detection techniques. 3. metric fingerprint techniques [46]. The met-
ric fingerprint technique was judged the most appropriate one from the viewpoint
of the unit of code clones. The metric fingerprints inherently identify duplicated

71

methods or scope blocks which can readily be refactored using refactoring like Ex-
tract Method, Pull Up Method and Extract Class. String-based detection technique
is the best confidence since exact matches are targeted. Token-based detection tech-
niques also have a good confidence if it uses a strict one-to-one parameterization.
Metric fingerprint technique decreases accuracy. From all techniques studied, the
metric fingerprint technique returns the most false positive. In our method, code
clones are detected using a token-based detection technique, but blocks in them are
extracted based on the programming language structure. Moreover our method has
a big scalability, and so we believe that our method is adequately appropriate for
refactorings.

Baxter et al. developed a tool CloneDR [11]. The tool presents templates
which show how clone sets can be merged, after detecting them. Users can modify
code clones by using the templates, but the tool doesn’t show where the merged
code should be located. Our tool Aries presents the location by using the metric
DCH . If the DCH is 0, the modified code should be located in the original
class. If the DCH is 2, the modified code should be locate in the direct parent of
the original class. This information allows users to refactor code clones without
detracting design intentions or unnecessarily increasing the complexity.

3.8 Summary

We have proposed a refactoring support method against code clones. The proposed
method consists of extraction and provision steps. In the extraction step, code
clones which are suitable for refactoring are extracted from the source code. In
the provision step, code clones are quantitatively characterized by using coupling
and distance metrics. The removal ways, which are existing refactoring patterns, of
characterized code clones is decided automatically. A tool, Aries was implemented
based on the proposal. Moreover we applied the tool to open source and commer-
cial software to evaluate applicability and usefulness of refactorings suggested by
the tool.

In the case study to evaluate usefulness, a maintainer of the system evaluated
the effectiveness of refactorings suggested by Aries. For declaration and function,
all refactorings of code clones satisfying the conditions were judged very effec-
tive. But, for statement, most refactorings of clones were judged as not effective,
because the cost of refactorings is very expensive in comparison with the effec-
tiveness of ones, or most of code clones depend on the frameworks used by the
software. One of the actions for such code clones is to add a function omitting
specified code from candidates of refactorings to Aries. And, specifying code
depending on the frameworks will increase the effectiveness of refactorings sug-

72

gested by Aries. For supporting complicated modifications of ‘statement-clones’,
re-implementing Aries as a plug-in of Eclipse [19] may be effective. If Aries
is a plug-in of Eclipse, Aries can cooperate with other plug-ins and can support
various

73

74

Chapter 4

Modification Support Method

4.1 Motivation

Code clone makes the modification process more complicated. For example, when
we find a bug and modify a code fragment (code clone) including the bug, it is
necessary to determine whether or not we have to modify other code clones in
the same clone set. Furthermore, it is likely to overlook some of them. So, it is
important to have a search feature for code clones of a specified code fragment.

In this Chapter, we examine a modification support method for code clones.
The method supports modification of source files by showing code clones of the
code fragment that users are going to modify as a debugging, an adaptation, or an
enhancement of a software product. It can prevent users from overlooking code
fragments of the source files in the modification process, and enable them to main-
tain the system effectively.

4.2 Approach

To detect only code clones across the input fragment and target files, we use the
options of CCFinder. CCFinder has the following options.

-cg- : not detect code clones across groups.

-cf- : not detect code clones across files.

-cw- : not detect code clones within a file.

Here, a group means a file set. Users can freely construct groups before CCFinder’s
detection. Usually, users make a group from files which are in the same directory or

75

Figure 4.1: A SnapShot of Input Fragment

module. Conducting groups enables them to measure the similarities of directories
or modules.

With the default settings, CCFinder detects all code clones (across groups,
across files, within a file). But using above options, users can get only code clones
across groups. In the proposed method, we assign the input fragment to group 1,
and target files to group 2. After that, CCFinder runs with -cf- and -cw- options.
Also, the proposed method count the token number of the input fragment, and set
it as minimum token length of code clones which CCFinder detects. This setting
prevents CCFinder from detecting redundant code clones.

4.3 Debug Support Tool: Libra

We implemented a tool, Libra, based on the above modification support method.
At first, users input a code fragment to be modified and specify target files. Figure
4.1 demonstrates the window that users input a code fragment. Next, Libra exe-
cutes CCFinder internally with the options previously. Figure 4.2 demonstrates
the window of the detection result. In the left side, target files are listed as the di-

76

Figure 4.2: A SnapShot of Detection Result

Table 4.1: Attributes of target software

Version
Name

pre post
Total LOC Number of Files Language

Canna 3.6 3.6p1 100,000 132 C
Ant 1.6.0 1.6.1 180,000 627 Java

rectory tree of the target system. Each file containing code clones of the input code
fragment is shown in the highlighted color with a number of code clone contained
in it. When users select a file in this view, the right side displays the source code
of it.

4.4 Evaluation

We have applied Libra to a imaginary debug process as a case study. We chose Ant
[2](version 1.6.0) and Canna [15](version 3.6) as our target. Table 4.1 illustrates

77

ir_debug(Dmsg(10, "ProcWideReq3 start!!\n"));

buf += HEADER_SIZE; Request.type3.context = S2TOS(buf);

buf += SIZEOFINT; Request.type3.buflen = S2TOS(buf);

ir_debug(Dmsg(10, "req->context = %d\n", Recuest.type3.context));

(a) Before modification (version 3.6)

ir_debug(Dmsg(10, "ProcWideReq3 start!!\n"));

+ if (Request.type3.datalen != SIZEOFSHORT * 2)

+ return(-1);

+

buf += HEADER_SIZE; Request.type3.context = S2TOS(buf);

buf += SIZEOFINT; Request.type3.buflen = S2TOS(buf);

ir_debug(Dmsg(10, "req->context = %d\n", Recuest.type3.context));

(b) After modification (version 3.6p1)

Figure 4.3: An example of Canna’s modifications

some attributes of target software. Because many versions of them are published,
and so it enables us to conduct Libra’s evaluations. Since Libra is a tool to search
the similar code fragments that are created by ‘copy and paste’ and need to modify
simultaneously in maintenance process, we have evaluated whether Libra can find
out such code fragments.

We compared the Libra’s search results to the grep’s ones, which is a search
tool of UNIX. In this case study, the length of a code fragment by users was set as
the minimum token length of code clone.

4.4.1 Canna

Canna 3.6 includes 92 .c files and 40 .h files, and the size is about 100,000 LOC.
We used an actual modification between version 3.6 and version 3.6p1. In version
3.6p1, a buffer overflow checking is inserted before each process using buffer,
which is 21 places. Figure 4.3(a) represents a code fragment before modified, and
Figure 4.3(b) represents its modified version. The lines beginning with ‘+’ were
added in version 3.6p1.

We assumed that a maintainer had detected a code fragment of them, and input
it into Libra. We investigated whether Libra can detect the 21 code fragments. Two
lines beginning with ‘#’ were input to Libra, and 17 code fragments were detected
as identical or similar to it. All the detected code fragments were modified ones in
version 3.6p1, but Libra couldn’t detect other 4 modified code fragments.

As the input of grep, we choose a variable Request.type which is a part

78

commandLine.setExecutable(getClearToolCommand());

commandLine.createArgument().setValue(COMMAND_CHECKIN);

checkOptions(commandLine);

result = run(commandLine);

if (Execute.isFailure(result)) {

String msg = "Failed executing: " + commandLine.toString();

throw new BuildException(msg, getLocation());

}

(a) Before modification (version 1.6.0)

commandLine.setExecutable(getClearToolCommand());

commandLine.createArgument().setValue(COMMAND_CHECKIN);

checkOptions(commandLine);

+ if (!getFailOnErr()) {

+ getProject().log("Ignoring any errors that occur for: "

+ + getViewPathBasename(), Project.MSG_VERBOSE);

+ }

result = run(commandLine);

! if (Execute.isFailure(result) && getFailOnErr()) {

String msg = "Failed executing: " + commandLine.toString();

throw new BuildException(msg, getLocation());

}

(b) After modification (version 1.6.1)

Figure 4.4: An example of Ant’s modifications

of variable name used in the buffer process. As a result, grep detected 58 Re-
quest.types, and 20 modified code fragments were included1.

4.4.2 Ant

Ant 1.6.0 includes 627 .java files, and the size is about 180,000 LOC. We used
an actual modification between version 1.6.0 and version 1.6.1. This modification
was additions of log instructions to 10 places. Figure 4.4(a) represents a code
fragment before modified, and Figure 4.4(b) represents its modified version. The
lines beginning with ‘+’ were added and the one with ‘!’ was changed.

We assumed that a maintainer had detected a code fragment of them, and input
it into Libra. We investigated whether Libra can detect the 10 code fragments. Five
lines beginning with ‘#’ were input to Libra, and 12 code fragments were detected
as identical or similar to it. All 10 modified code fragments were included in them,

1grep output 234 lines, and 134 lines of them are related with any of modified code fragments.

79

Table 4.2: Comparison between Libra and grep

Target Libra grep
Name recall precision run-time recall precision run-time

Canna 81% 100% 8 secs. 95% 34% less than 1 sec.
Ant 100% 83% 10 secs. 100% 40% less than 1 sec.

and the other 2 code fragments were not modified in version 1.6.1. This modifica-
tion is not bug fix but additions of logging instruments, so we can’t judge whether
the 2 code fragments should be modified or not. However, pointing out such code
fragments by Libra maybe be helpful for the maintainer in some situations.

As the input of grep, we choose a variable Execute.Failure which is a part of
the if-statement condition. As a result, grep detected 25 Execute.Failures, and all
modified code fragments were included.

4.4.3 Discussion

Table 4.2 illustrates precisions, recalls and execution times of Libra and grep.
While recalls between them are almost the same, precisions of Libra are much
better than ones of grep. This means results of Libra include less extra information
than ones of grep. In other words, the maintainer can avoid expending times to
check code fragments which don’t need to be modified.

We also compared the execution times between Libra and grep. The execution
time of grep was less than a second. On the other hand, Libra took 10 seconds.
Libra’s execution time was more than 8(10) times of grep’s one, but the 8(10)
seconds is no problem considering the precision.

4.5 Related Works

Toomim et al. [49] suggested a modification support method. In their method,
there is a database of code clone information in the backend of the editor that users
use. If a fragment including any clone sets is modified, its code clones are also
simultaneously modified. From our case study, though it is obvious that not all
code clones could/should be merged, their method would be very useful for simple
code clones.

80

4.6 Summary

In this Chapter, we proposed a modification support method using code clone in-
formation. We have implemented a modification support tool, Libra based on code
clone analysis. Libra supports modifying code clones. Users can detect all code
clones which should be modified without omission. That is, in debugging or adding
new functions, only a specified code and its code clones are easily detected. We
also applied the tool to open source software, and compared it to grep, which is a
search tool of UNIX. Libra finds code fragments including different identifiers(ex.
variable name, method name) as code clones, which reduces maintainer’s chances
of overlooking some places that must be modified. So, we can say that Libra is one
of good searching tool as well as grep.

81

82

Chapter 5

Conclusions

5.1 Summary of Major Results

In this paper, we have proposed three methods to use code clone information for
effective software development and maintenance.

First, we have proposed methods of visualizing and characterizing code clones
for comprehension. The proposed method has the following functions that are
required as comprehension support tool.

• The function to provide a bird’s eye view of code clones all over the system.

• The function to guide users to code clones which have the features that he/she
is interested in.

• The function to eliminate code clone information which is not required in
users’ task.

We implemented a tool, Gemini based on the methods, and applied it to open
source software. By using Gemini, we could see various activities of code clones.

Second, we have proposed a refactoring support method for code clones. The
method provides information which and how code clones can be refactored. Based
on the proposed method, we implemented a tool, Aries, and applied it to open
source and commercial software. Through the case studies, we can conclude that
refactorings suggested by Aries are applicable and useful.

Third, we have proposed a modification support method using code clone in-
formation. The method prevents users from overlooking some of code fragments
which should be modified. Also, we implemented a tool, Libra based on the
method, and applied it to open source software. In the case studies, we compared

83

the tool with grep, which is a search tool of UNIX. The result showed that the tool
was a good search tool as well as grep1.

We have made the above tools a code clone analysis environment, ICCA (Inte-
grated Code Clone Analyzer) [24]. The environment is used by domestic/overseas
organizations and individuals.

5.2 Directions of Future Research

From many experiences of code clone detection, we learned that sometimes gaps
occur between the original code fragments and modified ones since the developers
are usually modifying the copied-and-pasted code fragments. We call modified
the code fragments including some gaps Gapped code clone [50]. By treating the
gapped code clones as well, our methods become more effective.

As described in Section 2.2.1, the proposed filtering method only deals with
language dependent code clones. We are going to improve the method to filter
out application dependent code clones. Features of application dependent code
clones are so strikingly different among software systems that such metric-based
filtering as RNR is probably unpractical. We believe that pattern-based filtering
works well. For example, users input code patterns that they are not interested
in. After that, Gemini filters out all code clones whose contents correspond to the
code patterns. Using such a filtering approach, we can filter out any kind of code
clones dependent on the domain or the framework of a system.

We are going to perform more detail analyses for code clones to evaluate the
effectiveness of refactorings. Currently, we filter code clones based on the judg-
ment whether or not they can be merged. If we can judge whether the code clones
should be merged or not, the supporting of the refactoring will become more effec-
tive. Further, since the current Aries subsystem can deal with only Java programs,
extension is necessary so that it can be applied to other programming languages.

Categorization of code clones may be helpful to analyze them. As described in
Section 2.2.1, code clone detection by tools prone to detect many code clones, and
some approaches mining them are required. Categorizing code clones before users
analyze them should prevent them from spending much time on code clones which
are not related with their tasks.

1As shown in Table 4.2, the detection accuracy of the tool is higher than grep’s one. but the
detection speed of grep is much faster than the tool’s one.

84

Bibliography

[1] I. T. P. Agency(IPA). http://www.ipa.go.jp/index-e.html.

[2] Ant. http://ant.apache.org/.

[3] L. Arthur. Software Evolution: The Software Maintenance Challenge. Wiley,
1988.

[4] B. S. Baker. A program for identifying duplicated code. In Proc. the 24th
Symposium of Computing Science and Statistics, pages 49–57, Mar 1992.

[5] B. S. Baker. On finding duplication and near-duplication in large software
systems. In Proc. of the 2nd Working Conference on Reverse Engineering,
pages 86–95, Jul 1995.

[6] B. S. Baker. Parameterized duplication in strings: Algorithms and an appli-
cation to software maintenance. SIAM Journal on Computing, 26(5):1343–
1362, Oct 1997.

[7] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis. Mea-
suring clone based reengineering opportunities. In Proc. of the 6th IEEE In-
ternational Symposium on Software Metrics, pages 292–303, Nov 1999.

[8] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis. Par-
tical redesign of java software system based on clone analysis. In Proc. of the
6th IEEE International Working Conference on Reverse Engineering, pages
326–336, Oct 1999.

[9] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis. Ad-
vanced clone-analysis to support object-oriented system refactoring. In Proc.
of the 7th IEEE International Working Conference on Reverse Engineering,
pages 98–107, Nov 2000.

85

[10] H. A. Basit and S. Jarzabek. Detecting higher-level similarity patterns in
programs. In Proc. of the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 156–165, Sep 2005.

[11] I. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier. Clone detection using
abstract syntax trees. In Proc. International Conference on Software Mainte-
nance 98, pages 368–377, Mar 1998.

[12] J. Bieman and B. Kang. Cohesion and reuse in an object-oriented system. In
Proc. of the 1995 Symposium on Software reusability, pages 259–262, Aug
1995.

[13] M. Bruntink, T. A. V. Deursen and, and R. V. Engelen. An evaluation of
clone detection techniques for identifying crosscutting concerns. In Proc.
of the 20th IEEE International Conference on Software Maintenance, pages
200–209, Sep 2004.

[14] E. Burd and J. Bailey. Evaluating clone detection tools for use during pre-
ventative maintenance. In Proc. of the 2nd IEEE International Workshop on
Source Code Analysis and Manipulation, pages 36–43, Oct 2002.

[15] Canna. http://canna.sourceforge.jp/.

[16] S. Chidamber and C. Kemerer. A metric suite for object-oriented design.
IEEE Transactions on Software Engineering, 25(5):476–493, Jun 1994.

[17] ClearCase. http://www-306.ibm.com/software/awdtools/clearcase/.

[18] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach
for detecting duplicated code. In Proc. of the International Conference on
Software Maintenance 99, pages 109–118, Aug 1999.

[19] Eclipse. http://www.eclipse.org/.

[20] M. Fowlor. Refactoring: improving the design of existing code. Addison
Wesley, 1999.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object Oriented Software. Addison Wesley, 1995.

[22] D. Gusfield. Algorithm on Strings, Trees, and Sequences. Campridge Uni-
versity Press, 1997.

[23] B. Henderson-Sellors. Object-Oriented Metrics: Measures of Complexity.
Prentice Hall, 1996.

86

[24] ICCA. http://sel.ist.osaka-u.ac.jp/icca/.

[25] IEEE. Standard for Software Maintenance. IEEE Standard 1219, 1998.

[26] ISO/IEC. Software Engineering - Software Maintenance. ISO/IEC 14764,
1999.

[27] S. Jarzabek, P. Basset, H. Zhang, and W. Zhang. Xvcl: Xml-based variant
configuration language. In Proc. of the 25th International Conference on
Software Engineering, pages 810–811, May 2003.

[28] J. H. Johnson. Substring matching for clone detection and change tracking. In
Proc. of International Conference on Software Maintenance 94, pages 120–
126, Sep 1994.

[29] J. H. Johnson. Navigating the textual redundancy web in legacy source. In
Proc. of the 1996 Conference of Centre for Advanced Studies on Collabora-
tive Research, pages 7–16, Nov 1996.

[30] C. Jones. Programming Productivity. McGraw-Hill, 1986.

[31] JPlag. http://www.ipd.uni-karlsruhe.de/jplag/.

[32] JUnit. http://www.junit.org/.

[33] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A multi-linguistic token-
based code clone detection system for large scale source code. IEEE Trans-
actions on Software Engineering, 28(7):654–670, Jul 2002.

[34] C. Kapser and M. Godfrey. Improved tool support for the investication of
duplication in software. In Proc. of the 21st International Conference on
Software Maintenance, pages 305–314, Sep 2005.

[35] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation of
maintainability enhancement by refactoring. In Proc. of the 18th IEEE Inter-
national Conference on Software Maintenance, pages 576–585, Oct 2002.

[36] M. Kim and D. Notkin. Using a clone genealogy extractor for understanding
and supporting evolution of code clones. In Proc. of the 2nd International
Workshop on Mining Software Repositories, pages 17–21, May 2005.

[37] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An empirical study of
code clone genealogies. In Proc. of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 187–196, Sep 2005.

87

[38] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source
code. In Proc. of the 8th International Symposium on Static Analysis, pages
40–56, Jul 2001.

[39] B. Lague, E. M. Merlo, J. Mayrand, and J. Hudepohl. Assessing the benefits
of incorporating fucntion clone detection in a development process. In Proc.
of Intenational Conference on Software Maintenance 97, pages 314–321, Oct
1997.

[40] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Finding copy-paste and
related bugs in large-scale software code. IEEE Transaction on Software
Engineering, 32(3):176–192, Mar 2006.

[41] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detec-
tion of function clones in a software system using metrics. In Proc. of the
International Conference on Software Maintenance 96, pages 244–253, Nov
1996.

[42] T. Mens and A. Deursen. Refactoring: Emerging trends and open problems.
In Proc. of the 1st International Workshop on Refactoring: Achievements,
Challenges, Effects, Nov 2003.

[43] R. H. Page. http://www.refactoring.com/.

[44] A. S. D. Project. http://www.ipa.go.jp/english/sec/third.html.

[45] M. Rieger, S. Ducasse, and M. Lanza. Insights into system-wide code dupli-
cation. In Proc. the 11th Working Conference on Reverse Engineering, pages
100–109, Nov 2004.

[46] F. Rysselberghe and S. Demeyer. Evaluating clone detection techniques from
a refactoring perspective. In Proc. of the 19th IEEE International Conference
on Automated Software Engineering, pages 336–339, Sep 2004.

[47] N. Schneidewind. The state of software maintenance. IEEE Transactions on
Software Engineering, 13(3):303–310, Mar 1987.

[48] SourceOffSize. http://www.sourcegear.com/sos/.

[49] M. Toomim, A. Begel, and S. Graham. Managing duplicated code with linked
editing. In Proc. IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 173–180, Sep 2004.

88

[50] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On detection of gapped
code clones using gap locations. In Proc. of the 9th Asia-Pacific Software
Engineering Conference, pages 327–336, Dec 2002.

[51] VisualSourceSafe. http://msdn.microsoft.com/vstudio/previous/
ssafe/.

[52] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia. Problems creating
task-relevant clone detection reference data. In Proc. of the 10th Working
Conference on Reverse Engineering, pages 285–294, Nov 2003.

[53] WebLogic. http://www.beasys.com/products/weblogic/.

[54] WebSphere. http://www-306.ibm.com/software/websphere/.

[55] S. W. L. Yip and T. Lam. A software maintenance survey. In Proc. of the 1st
Asia-Pacific Software Engineering Conference, pages 70–79, Dec 1994.

89

