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A Model to Estimate the Ductile Crack Growth in Metallic
Materials with Node Release Technique Using Potential '

Jianxun ZHANG* and Hidekazu MURAKAWA**

Abstract

A model in which the micro-void mechanics and macro-fracture mechanics are combined is
proposed to estimate the ductile crack growth in metallic materials. A node release technique using
a potential function is employed in the proposed finite element method. J-integral, far from the
crack tip, is taken as a fracture parameter and the criterion of node releasing is described in terms
“of fracture strain and stress triaxiality near the crack tip. The ductile crack growth and the
influential factors are investigated numerically for three-point bend specimens. The predicted
curves of J-integral versus crack-extension show good agreements with the experimental

measurements.
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1. Introduction

Researches on ductile crack growth simulations in
recent years have been making remarkable progress due
to the development of the micro-macro fracture
mechanics and computing technology'™. Numerical
estimation of the ductile crack growth is a very
important and complicated topic in nonlinear fracture
mechanics. The procedure to simulate the ductile crack
propagation consists of two stages, i.e., generation phase
and application phase®. The so-called generation phase
requires estimations of the fracture toughness parameters
such as COD, CTOA, COA and J-integral based on the
experimental data on the relation between the load-point
displacement and the crack growth length. The
application phase is a study of the load-point
displacement and crack growth according to the fracture
criteria at crack tip. Most researches are concentrated on
the generation phase. One of the most difficult parts in
numerical simulation is how to determine the fracture
criterion during the ductile crack propagation in large
scale yielding.

Numerical investigations applying the J-integral
concept to stationary cracks in large scale yielding show
that the ductile crack growth cannot be described
adequately by the single parameter ‘concept of
J-controlled crack growth”®. It is shown that the crack

growth in elastic-plastic materials changes the strength.
of the singularity in the stress and the strain fields at the
actual crack tip. In case of ductile fracture, it has been
observed experimentally that the crack tip opening
displacement or J-integral at the initiation of ductile
fracture is larger for specimens with low constraint than
those with high constraint”. The J-integral along the
contour far from the crack tip remains path-independent

- with crack growth and can be used to express the crack

growth behavior, although the J-integral along the
contour near the crack tip vanishes during stable crack
growth. Therefore, the effects of stress triaxiality should
be taken into account'®"'?.

It is predicted from metallurgical researches that the
nucleation and growth of voids play an important role in
the fracture process of ductile metallic materials, which
cannot be described by conventional continuum
mechanics. In structural materials, the voids nucleate
mainly at second phase particles and inclusions. Usually,
the micro-voids can be divided into two families, i.e.,
larger voids and smaller voids. The larger voids nucleate
from inclusions at relatively low strains and smaller
voids nucleate from carbides or precipitates at
considerably larger strains. Consequently, void growth
takes place due to the plastic deformation of the
surrounding matrix material and final failure occurs
when the larger voids coalesce with each other or link up
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Fig.1 Crack growth model.

with a nearby crack tip via a void sheet consisting of
voids nucleated from smaller particles”'>. Some of the
recent approaches introduce new mechanical concepts
for failure characterization of these kinds of
materials'®!?).

Combining micro-void damage mechanics and
macro-fracture mechanics, a model to estimate the
ductile crack growth in ductile materials is proposed in
this paper. A node release technique using a potential
function is introduced into the finite element simulation.
The ductile crack growth in the three point bend
specimen is analyzed using the proposed method and the
influence of various factors is investigated numerically.

2. Cohesive Zone and Node Release Technique

The ductile fracture of mild steels can be described
as a progressive process consisting of the nucleation,
growth and coalescence of voids or micro-cracks. In the
vicinity of a pre-existing macro-crack, a large damage
evolution occurs due to the high stress and strain
concentrations. It has been shown from experiments that
the damaged zone is confined to very near the
macro-crack tip. The fracture toughness, the crack
resistance and tearing modulus of ductile materials may
be considerably affected by the .presence of such
localized damages near the crack tip. The so-called
cohesive zone model is proposed to incorporate more
details of the separation process than the modeling with
conventional continuum mechanics as shown in Fig.1.
The black region ahead of a growing crack tip shown in
Fig.1 is a narrow strip joining the two elastic-plastic
bodies which interact with each other through a kind of
separation law. In general, a one-dimensional separation
relation is assumed to be acting on the ligament for cases
under mode I loading conditions. Varieties of separation
functions were proposed for different applications'™.
The traditional node release technique is to modify the
boundary condition by releasing the node force. In this
paper, a new kind of node release technique is proposed.
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Fig.2 Effect of constant m on node force
release scheme.

In this method the nodes are release gradually under the
applied load according to the potential function. Since
the potential function can be chosen rather arbitrarily, the
power exponent function is used in this paper.

The distance of the node when releasing is denoted
by &. The mechanical characteristics of the node
releasing are defined through a power exponent function
F as shown in the following.

S \m
F=F -3 — 1

where, F. is the maximum force when the node is
released, J. the critical displacement when the new crack
increment forms, and m the material constant.

In the model of cohesive zone, it is assumed that the
maximum traction is given and related to the fracture
stress. In fact, traction in the cohesive zone is changing
with applied load. So it is important to keep the traction
in the cohesive zone the same as that predicted using the
continuum mechanics.

There are two parameters in Eq.(1). The relationship
of dimensionless F/F ., and &/4,. with material constant
m is presented in Fig.2. It can be seen from Fig.2 that the
larger the constant m is, the more difficult the separation
of the node and the higher the fracture tearing toughness
will be. The constant m can be used to describe the
fracture property in some degree. It should have some
relation with the necking property in standard tensile
testing. The detail will be discussed in the later section.

3. Crack Driving Force

According to the theoretical Rice-Tracey model for
void growth, which was derived for a fully plastic
material of infinite extent with one spherical void, the
void growth occurs under the combined effects of the



applied plastic strain and stress triaxiality'® '*. The

relationship between the void radius increment and
applied plastic strain increment can be derived as
follows.

dR 3
—=0.322exp| — F_ |dg 2
R p(z g} » @)

Where, R is the void radius, ds, increment of applied
plastic strain, F, =0,/ o the stress triaxiality which
is the rgtio of mean stress o, to Von Mises equivalent
stress o .

Equation (2) can be integrated as:

R 3
= exp{0.322 | eXp(E F, )dgp} 3)

0
where R, is the initial radius of isolated void.

From Eq.(3), it can be seen that the void growth can
be described as a function of both the plastic strain and
the stress triaxiality. From this point, the parameter U
could be defined":

U= J'exp[% F, jdg » )

This parameter expresses the driving force for void

. growth in ductile fracture. If the void grows to its critical
value, the driving force will become the material
constant. According to the theoretical and experimental
research, the dR/R is not sensitive to stress triaxiality,
and it can be assumed that the critical value U, is
independent of constraint. In other words, this means
that the fracture strain is dependent on the stress
triaxiality near the crack tip. The coalescence of voids
can be thought of as some kind of necking. The stress
triaxiality in tensile specimen is 0.866. On the basis of
the ultimate strain &, obtained from the measured tensile
stress-strain curve and calculated driving force value, the
fracture strain in the crack tip can be obtained using the

following formula.

&, =1.6487 exp[—% F, )5” 5)

From the tensile testing, the stress-strain curve of the
material can be obtained, and the maximum of stress o,
and corresponding strain &, can be determined. When the
strain becomes larger than the g, the real stress
decreases with necking, By assuming that the stress-
strain relation in the tensile test can be applied to the
criteria for node releasing as shown in Eq.(1), then the
constant, i, can be obtained according to the simulation
line. '

4. Materials and Experiment Procedure
The materials used for fracture toughness tests were
a pipeline steel plate of API-X52 and its J507 weldment.
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Fig.4 Finite element mesh for three point
bend specimen.

The three point bend specimens of 8 x 16 x 80 mm were
cut out and prepared as shown in Fig.3. The ratio of
crack length to specimen width a/¥ is 0.5. The fatigue
pre-crack was introduced using a high frequency testing
machine with the stress intensity factor range
Ki<750KJ/mm® The specimens were tested in three-
point bend conditions under static loading on an
INSTRON 1195 testing machine at room temperature.
The multi-specimen method was used to determine the
fracture toughness characteristics.

The stress-strain behavior in simple tension is
described using the following equation,

.9 o <o, (6)

g _ O- n _~l
&y Oy

The yielding stresses of API-X52 and J507
weldment are 310MPa and 362MPa, respectively. Their
strain hardening exponents are 7.99.and 7.10.

o >0, (7)

5. Numerical Procedure

The same three-point bend specimen was used both
in the experiments and also in finite element simulations.
The finite element mesh used in numerical analysis for
three-point bend specimen is shown in Fig.4. The half
specimen is meshed considering its symmetry. The
meshes consisted of 1110 four-node isoparametric
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Fig.5 Comparison between experiment and estimation

of J-integral vs. crack growth for API-X52 steel.

elements with 3435 nodes. In the large strain gradient
zone the mesh was refined. The minimum mesh size near
crack tip is about 1/400 of ligament length. The
numerical evaluation of the J-integral was conducted
incrementally through Gauss-point integration of the
elements on the path with a standard weight function
according to the reference®. The J-integral was
estimated as the mean value for five different paths.

The procedure for the numerical simulations is
simple. The crack driving force expressed by parameter
U increases with the applied load. The cohesive zone is
created and the corresponding node begin to be released
when the calculated crack driving force U near the crack
tip reaches its critical value U,, which is the function of
ultimate fracture strain ¢, and stress triaxiality near crack
tip. In general, the traction at the nodes inside the
cohesive zone has to follow the potential given by Eq.(1)
which governs the node releasing process. If the external
applied load increases further, the cohesive zone grows.
The new crack increment forms when node displacement
reaches its critical value, &, or the node force reaches
near zero. According to the crack increment and
corresponding J-integral values, the evolution of
J-integral with crack growth can be obtained.

6. Results and Discussions

The numerical results of J-resistance curves are
compared with those obtained by experiments. Figures 5
and 6 shows the results for J507 weldment and API-X52
pipeline steel, respectively. The solid lines show the
numerical results and the solid points indicate the
experimental results in these two figures. According to
the fracture toughness testing and tensile testing, the
parameters used in calculation of J-resistance curves by

80

300

J507

250

200

150 }

J-integral (KJ/m b

100

® Experiment |
50 i i

¢ === Calculation |
— ;

Q 0.1 0.2 0.3 04 05 0.6
Crack growth Aa (mm)
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estimation of J-integral vs. crack growth
for J507 weldment.

finite element methods are determined to be the
following values. In case of the J507 weldment, yielding
stréss, strain-hardening exponent, the ultimate fracture
strain, node release exponent m, the initial crack tip
displacement are 362MPa, 7.99, 0.2, 0.4 and 0.03,
respectively. For the API-X52 pipeline steel, the
parameters used in calculation of J-resistance curve are
the following: yielding stress is 310MPa, strain-
hardening exponent is 7.1, the ultimate fracture strain is
0.1, node release exponent is 2.0, the initial crack tip
displacement is 0.005 according to fracture toughness
experiment. It can be seen from Figs.5 and 6 that there is
a good agreement between numerical and experimental
J-resistance curves. Although the parameters used to
estimate the J-resistance curve are determined from
experiments, the node release exponent and ultimate
fracture strain are slightly modified considering the
differences in stress state between tensile tests and crack
problems.

In this model of simulating ductile crack growth,
there are five parameters which may have an influence
on the J-resistance curve, i.e., yield stress op, strain
hardening exponent n, fracture strain s,, critical crack tip

* displacement &, and node release exponent m. These

parameters, except the critical crack tip displacement,
can be determined from the tensile stress-strain curve.
The critical crack tip displacement can be determined
from void growth theory or from the fracture toughness
experiment. For the application of the proposed method
to practical problems, it is important to understand the
influences of these parameters involved in the model on
the J-resistance cutve.
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The influence of critical crack tip displacement on
the J-resistance curve is shown in Fig.7. The yield stress
and strain hardening exponent of the ductile material
used in these cases are 499MPa and 8.0, respectively,
and the node release exponent is kept the same value as
1.0. The fracture strain for node releasing is 0.2. It is
assumed that the critical crack tip displacement remains
the same during crack growth. It is clearly shown in
Fig.7 that the critical crack tip displacement influences
not only the initial J-integral but also the J-resistance
curve. It seems that the effect of the critical crack tip
displacement on J-resistance curve is not linear. The
slope of the J-resistance curve becomes steeper as the
critical crack tip displacement increases. For the given
critical crack tip displacement, the slope of the J-
resistance curve becomes smaller as the crack grows.
The critical crack tip displacement has a significant
influence on the initial J-integral.

Similarly, the effect of the node release exponent, m,
on the J-resistance curve is investigated by keeping other
material constants the same. The yielding stress, the
strain-hardening exponent, the ultimate fracture strain,
the critical crack tip displacement are assumed to be
490MPa, 8.0, 0.2 and 0.05mm. Figure 8 shows the
influence of the node release exponent, m, on the J-
resistance curve. The initial J-integral becomes slightly
greater, while the slope of the J-resistance curve
becomes significantly steeper as the node release
exponent decreases. It can be seen that the larger node
release exponent results in the lower crack growth
resistance. In the node release technique using potential,

these -two - parameters, namely the critical crack tip -

displacement and the node release exponent,” are the
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parameters which can reflect the initial J-integral and the
J-resistance curve. These two parameters have some
relations with the material properties, which can be
determined from fracture toughness testing and tensile
testing. From the aspect of the micro-mechanics of
ductile fracture, the critical crack tip displacement and
node releasing exponent in the model should have some
relation with void properties. These need more detailed
investigations.

The crack driving force U is taken as a crack growth
criterion in this study. The critical values U, is
determined by the fracture strain and stress triaxiality
near the crack tip as mentioned above. The stress
triaxiality is dependent on the stress state of the cracked
body. The fracture strain can be determined as the strain
at the maximum stress point in the tensile stress-strain
curve. The effect of the fracture strain on the J-resistance
curve is examined by keeping the constants in the
potential used for the node releasing. The critical crack
tip displacement and the node release exponent are
0.05mm and 0.5, respectively. The yield stress and the
strain-hardening exponent are 490MPa and 8.0. As is
shown in Fig.9, the fracture strain also has influence on
the J-resistance curve. The initial J-integral becomes
slightly greater and the slope of J-resistance curve
becomes steeper as the fracture strain increases.

The mechanical properties of ductile materials are
defined by the yield stress and strain hardening exponent
through Eqgs.(6) and (7). The effect of the strain-
hardening exponent and the yield stress has been
examined. Figure 10 shows the effect of the strain-
hardening exponent. The yield stress of the material is
490MPa. The node release exponent, the critical crack
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tip displacement and the ultimate fracture strain are kept
the same and assumed to be 0.5, 0.05mm and 0.2
respectively. As shown in Fig.10, significant influence is
observed in the slope of the J-resistance curve but its
influence on the initial J-integral is small.

Similarly, the effect of yield stress on the J-
resistance curve is investigated with keeping material
constants except the yield stress are the same. The yield
stresses are assumed to be 784MPa, 686MPa, 588MPa,
490MPa and 392MPa in each case. The strain-hardening
exponent, the node release exponent, the ultimate
fracture strain and the critical crack tip displacement are
6.0, 0.5, 0.2 and 0.05mm, respectively. It is clearly seen
from Fig.11 that the yield stress of ductile material
influences not only the initial J-integral but also the J-
resistance curve.

7. Conclusions

Based on the combination of micro-void mechanics
and macro-fracture mechanics, a model to estimate the
ductile crack growth in metallic materials is proposed. A
node release technique using the potential function is
introduced into the finite element simulation. The ductile
crack growth in three-point bend specimens is
investigated numerically using the proposed finite
element method. For the given material, there are five
parameters which influence the I-resistance curve. The
effects of parameters describing the node releasing
criterion and the mechanical properties of the material
are examined numerically. Through this study the
following conclusions are drawn.
(1) The predicted curves of the J-integral versus crack-

extension are compared with the experimental

measurements.
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All the parameters in the model influence not only
the initial J-integral but also the J-resistance curve.
The node release exponent m, ultimate fracture
strain and the strain-hardening exponent are the
main factors which influence the slope of the
J-resistance curve.

The critical crack tip displacement and yielding
stress are the main factors which influence the initial
J-integral.
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