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1. Introduction

A geodesic on a Riemannian manifold with boundary is called an orthogonal
geodesic chord if it connects two points of the boundary and intersects with
the boundary orthogonally at both end points. For orthogonal geodesic chords,
Lyusternik and Schnirelmann [7] prove the existence of z such chords of any
convex body in R” (compact convex C* submanifold with boundary of R" with
an interior point) and Bos [1] extends it to locally convex disks of dimension
n (the precise definition is given later).

In this note, we denote by M a compact Riemannian C* manifold of di-
mension # with boundary, define a topological invariant integer »(/) and show
that there exist at least »(//) non-constant orthogonal geodesic chords of M
if the boundary is locally convex with respect to the Riemannian metric given
on M, namely if there exists a positive number 7 such that for any two points
? and ¢ of the boundary with d(p, ¢)<<%, where d is the distance derived from
the Riemannian metric, there is the unique geodesic in M w.r.t. the Riemannian
metric, connecting the two points p and g. Furthermore we show »(D")=n,
where D" is the n dimensional disk, and

»(M)=n

if M is contractible (n=dim M).
For n=1 and 2, we know

(*) “‘compact contractible manifold with boundary is always homeomorphic
to a disk.”

For n=3, this statement is equivalent to the Poincaré Conjecture, that is,
we have () iff the conjecture for three dimension is true. For n>4, there are
examples of compact contractible manifolds with boundary, which are not
homeomorphic to a disk [8]. As a corollary, we have a generalization of Bos’
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result to compact contractible manifolds (Locally convex disk is a D" with a
Riemannian metric, w.r.t. which the boundary is locally convex).

The result obtained here are closely related to the existence problem of
periodic solutions of Hamiltonian systems (Cf. [2] [4] [11]).

2. Numbers determined by compact manifold with boundary

Let M be a compact C* manifold with boundary B=0M = (.
We define four numbers »(M), v (M), vyg(M), and vg(M) as follows. We
consider the set

Yy ={o: [0, 1] = M; continuous and «(0), o(1)EB}

endowed with compact open topology and identify B as a subset of Y, by identi-
fying a point of B with the constant path. In the following, homology and
cohomology groups are considered with the coefficient field Z,.

1 if 7y(Yy, B)=0 for some k>1,

0 otherwise .

0 vn)-]

(ii) wvx(M) is the maximal number of k>0 for which there exist o, a, -+,
o, EH*(Y,) with deg a;>0 (j=1, -+, k—1) and a€H(Y,,, B) such
that (e, U ++* U a—;) Na==0.

We remark that
(2.1) vg(M)>1 iff Hy(Y,, B)%0.
(iif) Let £: Y,,— Y, be the involution defined by
o=,

where ©™!(+)=w(1—+). This defines a Z,-action on Y, and we can define
Zj-equivariant (co)homology groups Hyp*(Y,) and H,"(Y,, B) (see [3] [10]).
As vy(M), we define:

va(M) is the maximal number of 2>0 for which there exist a, a, -+,
- EHy*(Yy,) with deg a;>0, and a€H,"(Y), B) such that (o, U -
Ual,_l)ﬂa#:O.

Finally we define a nonnegative integer »(M) by

(iv) v(M) = Max{v(M), vg(M), vu(M)}.

This number »(M) is obviously a topological invariant number associated
to M.
Lemma 2 of [4] shows that »,(M)>1 or vz(M)>1, hence we have
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(2.2) v(M)>1.
Lemma 1. Let L be a compact manifold and N a compact manifold with
boundary. Then, if vy(N)>1, we have
vy(NX L)>(cup length L)+vg(N) .

Proof. Let k=vy(N). Then there exist ay, -+, o, EH*(N), deg a;>0,
and a€ Hy(N, 8N) with

a’E(aIU oo Ud;,_l)ﬂa#o .

Let /=cup length L and let B, -, B;,€H*(L), deg 8;>0, with 8'=6,U -+
U B0 (Recall that cup length is the number which is maximal with this prop-
erty). We choose b& Hy(L) so that <{B’, b>=1, then B'Nbd=+0. Now
axbeHy((N, ON)X L)y=H(NXL, 8(Nx L)).
Then we have
(AxBYU - U(IXBYU(a;x 1)U+ U(as-1x 1)) N (axb)

= (IxB)N((enx 1)U+ U(as-1 X 1)) N (a X D))

= (I1xB)N(a"xb)

=a’'xX(B'Nb)

+0 in Hyg((NxXL), 9(NxL)).

This implies the inequality of the lemma. Q.E.D.

RemarRk: We do not know whether or not v4(IN)>1 for any compact
manifold V.

3. Orthogonal geodesic chords

Theorem 1. Let M be a compact Riemannian manifold with locally convex
boundary. Then there exist at least v(M) non-constant orthogonal geodesic chords
of M.

Before giving the proof, we set a path space and distances on it. Let M
be as in Theorem 1 and A be the set of all piecewise C* curve \: [0, 1]—>M
with A(0) and AM(1)EB. For A, M, EA, we define

d(Ap, Xo)= %\gfgf d(ny(2), Mo(2))
where d is the distance derived from the Riemannian metric on M, and
1 . .
&0y 2 =du M)+ (01— )V,

where || is the length of tangent vector.
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Let E be the energy functional E: A— [0, o) defined by
E)=1 | 1A 1.
2 Jo

We know that E is continuous w.r.t. d; (§ 16 in [9]). A critical value of E is
a number « for which there is an orthogonal geodesic chord A with E(\)=«.
This naming is reasonable because orthogonal geodesic chords are regarded
as critical points of E.

Now we have a sequence of continuous mappings

(A, B)C(A, d)E (Vi d)

Both these maps 7 and j give homotopy equivalences by Theorem 17.1 in [9].
For K >0, we put

Af={pneA; E0\)<K}.

Lemma A.1.4 in [6] is given for closed curves on a compact manifold with-
out boundary. For our case, the manifold is with boundary and curves con-
nect two points of the boundary. But in our case, the boundary is locally
convex, hence we can define a deformation like one in Lemma A.1.4 of [6],
by the method used in [2] [4]. Therefore we have an analogue of Lemma A.1.4
in [6]:

Lemma 2. We take the distance d.. on A. For given K >0, there is a
deformation (continuous map)
D: A% [0, 1] — AX
satisfying:

(1) D(-, 0) is the identity map: AX — AX,
(ii) D is E-non-increasing, that is

E(D(\, ))<ED(, 5)) i t>s,

(iil) D(N, 1)=Nn if and only if \ is an orthogonal geodesic chord (or constant curve
on B).

(iv) Let 0<k<K and C, be the set of all orthogonal geodesic chords of energy «.
Then for any open neighborhood W of C. (ome may choose W= in the case
C= (), there exists p>0 such that

DAPCW UA~*

where D= D(-, 1): AX— AE.
V) D(-, t): A¥— A¥ is Z,-equivariant for any t<[0, 1].
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This lemma means that the convexity of the boundary plays the role of
the condition (C) of Palais-Smale.

Proof of Theorem 1. First we prove that v (M)=1 implies the existence
of at least one non-constant orthogonal geodesic chord. Since A®=<A° for suf-
ficiently small £>0, we have

ﬂk(A, A‘)—’—:’ﬂk(A, Ao)gzk( YM’ B) .
Let a be the non-trivial element of z,(A, A®). We put

(3.1) o = inf sup E(f(D")

Although E is not continuous w.r.t. d.., this number is finite, because the
inclusion 7: (A, d,) C(A, d..) is a homotopy equivalence as remarked above. We
can choose a representative f: D*— A of a, which is continuous w.r.t. d,. Now
we show that «, is a critical value with x,>&. This follows from the fact that
a is non-trivial in the relative homotopy =z, (A, A®), because x,<<E& implies
f(D¥Y)C A® for some f €a, which means a=0 in z,(A, A®).

Assume that #, is not a critical value, that is, C,,=. We put K=«,+1.
Then, choosing W= (¥ in (iv) of Lemma 2, there exists p>>0 such that D;A"*?
C A", By the definitior: of «,, we can choose fEa with f(D*)C A", hence
D, f(D¥)c A%~*. Since D, is homotopic to the identity, we have D,fea so

ky<sup E(D,f(D) <, —p.

This is the contradiction showing that «, is a critical value.

This means that v (M )=1 implies that there exist at least one non-constant
orthogonal geodesic chord. We also have at least one such chord if vy(M)
>1, that is H,(A, A®)==0 (see (2.1)). In this case, the non-zero element of
Hy(A, A®) plays the role of a above (written also as @) and, instead of (3.1),
z1gaf sup E(|z]) is a critical value with >¢& (the definition of |2| is given below).

Next we consider the equivariant case, that is, we shall prove that we have
at least vp(M) non-constant orthogonal geodesic chords. We put Ap=S~XA,
1y

the orbit space of S~X A under the involution (£, A)—(—¢&, EX), where S==
U -0 S*, S* is the & dimensional sphere. Since E is invariant under &, we can
define the map

E: Az — [0, )
by E[f, N]=E(1), where [{, A] is the equivalence class represented by (£, 2).
Let a be the nontrivial element of H,™(A, A®), which is equal to Hy(Agn, Ax®).
We put
%, = inf sup E{(|z]),
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where |z| = UImae;, 2=310y, ;1 A;—> Ag, singular simplices. Then, by

Lemma 2 in [5] (We take K=&,+-1, then D(-, #) plays the role of ¢, in the
lemma.), Cz,+ and %,>¢&. Thus vp(M)>1 yields the existence of at least
one nonconstant orthogonal geodesic chord.

Furthermore, assume that there exists aH™*(Ag) with deg >0, such
that b=aNa=*0 in Hy(Aqn, Ax®), that is, vp(M)>2. Then &, is also a critical
value with #,>€&. In this case, in general, #<#%, and if %,=#,, then there
are infinitely many critical points on the level (a version of Lemma 2 in [5]).
In any case, we have at least two distinct non-constant orthogonal geodesic
chords. Thus »g(M)>2 implies the existence of at least two such chords.

If vg(M)>3, then we have @; and a,€ H*(Ag), with deg a;>0, satisfying
a,N(a,Na)=(a;Ua;)Na=+0. Putting by=a,Na and b,=a; N b;, we have

Ro> Ry 27y >E6>0.

In this case we have at least three distinct non-constant orthogonal geodesic
chords. Repeatedly, we have at least »() such chords.
The case of vyz(M) is the standard one (cf. Corollary 2.1.11 of [6]). We

don’t need S and similar argument as above, removing ~ or II (that is, con-
sider E, H*, H, instead of E, Hy*, H,", etc.) yields the existence of at least
vz(M) non-constant orthogonal geodesic chords. Q.E.D.

By (2.2), we get

Corollary (Theorem C of [2]). Any compact Riemannian manifold with
locally convex boundary has at least ome mon-comstant orthogonal geodesic chord.

Remark: There is an example of compact Riemannian manifold with
boundary with no orthogonal geodesic chords [1].

Theorem 2. Let M be a compact contractible manifold with locally convex
boundary. Then there exist at least n monm-constant orthogonal geodesic chords
of M, where n=dim M.

To prove Theorem 2, we need

Lemma 3 ([3], Theorem 2). Let B be a closed manifold of dimension m.
Put B’=BX B and define the involution &: B>~ B? by
Ex p) = (3 ).
Then there exist a< H,,"(B% A) and 0 = Hy'(B?) with 0" Na=0 in H,*(B?,
A), where A denotes the diagonal set.

In this note, we apply this lemma for the case where B is the boundary
of a manifold.
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Proof of Theorem 2. By Theorem 1, it is sufficient to show

(3.2) va(M)>n .

Recall that B=08M. Let n: Y, —B? be the projection defined by
w—(w(0), w(1)). Since the mapping z": S X ¥,—>S <X B? defined by (£, 0)—
(€, 7(w)) is Z,-equivariant, we have the mapping

7: S*X Yy, — S*xB?.
pis n

Then it is easy to see that 7 gives a fibre space.
We fix base points 4B and *& .S and take ¥=[*, (b, b)] as the base point
of S*x B?%. Then we can identify the fibre # (%) with QJ, the space of loops
n

in M starting from and ending at 5. Thus we have a fibration
(3.3) QM = S= X Yy — S=x B*.
his o

Now we use the assumption that M is contractible. Since M=b, we
have QM =>b. Hence the spectral sequence of the (co)homology associated to
the fibration degenerates, so the homology group and the cohomology ring
of the base space S“%(Bz is isomorphic to those of S“;( Y, Also, using

5-lemma, we see that Hy™(Y,, B) is isomorphic to Hy™(B?, A). Therefore,
by Lemma 3 and the naturality of the (co)homology theory, there exist
a€H,,"(Yy, B) and 0 € H'y(Y,) with §"Na@=+0 (m=n—1). This means
vu(M) > n. Q.E.D.

Remark that we have
(3.4) v(D") =n.

In fact, (3.2) implies vp(D")>n. Recall that the solid ellipsoid, whose
lengths of axes are all different and with standard Riemannian metric, has ex-
actly #» non-constant orthogonal geodesic chords. Thus Theorem 1 excludes
the posibility that »(D")>n, giving (3.4).
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