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Abstract

Non-perturbative behavior of QCD appears as hadrons and their interactions. The
mass, decay width and transition form factor of a nucleon resonance provide us basic
and fundamental information to understand low energy QCD. Resonance parameters are
extracted from amplitudes of 7NV scattering, meson-photoproduction and electroproduc-
tion. The purpose of this work is to extract resonance parameters such as mass, width and
electromagnetic transition form factors from the the 7N — 7N and v*N — 7N amplitudes
by analytic continuation. Meson-production reactions are dominated by final states of
7N, nN and 7N in the energy region above 1.3 GeV. We have developed the dynamical
reaction model which includes 7N, nN and also unstable particle channels o N, p/N and
wA coupled with 77w/N, but no analytic continuation method has been applied to such
a dynamical model with unstable particle channels. In this work we develop an method
of analytic continuation for the amplitude including those unstable channel. We apply
the method for the scattering amplitude from the dynamical reaction model and extract

mass, width and the electromagnetic N — N* transition form factors.
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6 I INTRODUCTION
I. INTRODUCTION

Spectrum of the excited baryons and their properties provide us important and fun-
damental information to understand strong interactions. A clear understanding of the
spectrum and decay scheme of excited baryons will reveal the role of confinement and
chiral symmetry in the non-perturbative QCD.

Most of information about the mass, width and transition form factor of baryon reso-
nances have been extracted from partial wave analyses of 7NV scattering data[l] and some-
times the transition amplitudes to inelastic channels such as TN — nN [2] or TN — 7w N
[3, 4]. In addition there is information available from photo- and electroproduction of N*
resonances. Recently, such data with high precision have been accumulated at Jefferson
Laboratory, MIT-Bates, LEGS of Brookhaven National Laboratory, MAMI of Mainz,
ELSA of Bonn, GRAAL of Grenoble, and LEPS of SPring-8. These data on the elec-
tromagnetic production of 7, 1, K, w, ¢ and 27 final states provide a opportunity to
investigate the properties of excited baryons, as reviewed in Ref.[5].

Here, we briefly recall how resonances are defined in relation to S-matrix theory. By
analytic continuation, a scattering amplitude can be defined on the complex energy plane.
Its analytical structure is well studied[6-10] for the non-relativistic two-body scattering.
For the single-channel case, the scattering amplitude is a single-valued function of mo-
mentum p on the complex momentum p-plane, but it is a double-valued function of energy
E on the complex energy E-plane because of the quadratic relation p = |2mE|"/2¢'?#/2,
Therefore the complex E-plane is composed of two Riemann sheets. The physical (p)
sheet is defined by specifying the range of phase 0 < ¢r < 27, and the unphysical (u)
sheet by 27 < ¢p < 4m. As illustrated in Fig. 1, the shaded area with Imp > 0 of the
upper part of Fig. 1(a) corresponds to the physical E-sheet shown in Fig. 1(b). Similarly,
the unphysical E-sheet shown in Fig. 1(c) corresponds to the Imp < 0 area in the lower
part of Fig. 1(a). On the physical sheet, the only possible singularities are on the real
E-axis : the bound state poles (solid square in Fig. 1(b)) below the threshold energy Ey,
and the unitary cut from Ej, to infinity. On the unphysical sheet, a pole (solid circle in
Fig. 1(c)) on the lower half plane and Re E,,. > E, corresponds to a resonance. From
unitarity and analyticity of S-matrix, each resonance pole has an accompanied pole, called

conjugate pole, which exists on the upper half of the unphysical sheet. A resonance pole
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FIG. 1: The complex momentum p-plane ((a)) and its corresponding complex energy E-plane
which has a physical sheet ((b)) and unphysical sheet ((c)). Their correspondence is indicated

by the same number. Solid squares (circles) represent the bound state (resonance) poles.

is due to the mechanism : an unstable system is formed and decay subsequently during
the collision. The mathematical details of this interpretation can be found in textbooks,
such as in chapter 8 of Goldberger and Watson[11].

For multi-channel case, the analytic structure of the scattering amplitude becomes
more complex [6-10]. In the inelastic region, a resonance is associated with a cluster of
poles on different Riemann sheets. If one of these poles is located near the real axis and
far enough from thresholds, it will be strongly dominant. We postpone the discussion on
this until section II where a two-channel Breit-Wigner form of scattering amplitude will
be used to give a pedagogical explanation.

Resonance parameters are extracted from partial wave amplitudes. The often used
methods are based on the Breit-Wigner form[12], speed plot method of Hoehler[13, 14],
and time delay method of Wigner[15, 16], which extract resonance parameters directly
from partial wave amplitudes and need not a reaction model. Another method uses the
dispersion relations, which was the basis of many analysis[17] of pion production data
in the A region and is revived recently to also analyze n production reactions[18|. For
investigating the data at higher energy, where the production of two pions and other

mesons could occur, the isobar model was developed to extract parameters of higher
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mass nucleon resonances [19]. K-matrix method and isobar parameterization is used to
perform amplitude analysis of the data and determine resonance parameters by SAID[20]
and MAID[21]. Multi-channel K-matrix method|[2, 4, 22] and unitary coupled-channel
isobar model[3, 23] have been also developed.

From the resonance parameters listed by the Particle Data Group[24], it is clear that
only the low-lying N* states are well established while there are large uncertainties in
higher mass nucleon resonances. There are 13 “4-star” and 5 “3-star” N* and A reso-
nances below the mass of 2 GeV and another 6 “1- and 2-star” resonances at the same
mass region. The Breit-Wigner parameters are most often quoted and are used in model-
based studies of the baryons and associated reaction dynamics. The conventional param-
eters are the mass mpg, the width ['(E) at E = mg, and the branching ratios. Following
is one example of the problems with this conventional parametrization.

The Breit-Wigner mass, width and the pole position of N*(1440)P;;, so-called Roper
resonance, on Particle Listings by PDG[24] are extracted from several partial wave anal-
yses of mIN scattering data. The pole position can be related to the mass and width of

the resonance by
mpr = Re Epol€7 I'=—2Im Epolea (1)

which is the origin of the denominator in a Breit-Wigner parametrization of a resonance.
By comparing the mass and width parameters to the position of the pole, one can see
large discrepancies. The mass as extracted from the pole is estimated from 1350 to 1380
MeV, which lies typically about 80 MeV below mpg. Something similar can be seen by
comparing the widths: here a ratio —I'/Im E,. ~ 4 is found instead of the expected value
of 2. For an undistorted resonance, such as the N*(1520) D3, the mass and width from the
Breit-Wigner parametrization and the pole position are essentially the same within a few
MeV. This observation shows already that the Roper resonance is substantially influenced
by strong meson-baryon non-resonant interactions and effects from nearby thresholds.
Hohler suggested the use of the pole position as source of information on the mass and
width of a resonance, since the pole has a well-defined meaning in S-matrix theory|[25].
Around 1440 MeV, the VPI group found two poles in the P;; amplitude on different
Riemann sheets[26]. Cutkosky et al. pointed out that the branch point for 7A channel

is located near the poles, so the poles belong to the same resonance[27]. Such meson-



baryon non-resonant interactions and effects from nearby threshold described above can
be understood by a dynamical coupled channel model of meson production reactions that
accounts for the off-shell scattering effects. It can therefore provide a much more direct
way to interpret the resonance parameters.

The purpose of this work is to develop an analytic continuation method for meson pro-
duction reactions and extract resonance parameters such as mass, width, electromagnetic
transition form factors from the the 7N —7 N and v* N — 7 N amplitudes. We analyse 1N
and v*N reactions up to 2 GeV to study N* below 2 GeV. Above A(1232) P53 resonance,
the dominant final states of those reactions are 7N, nN and w7 /N states. The reaction
model developed in Ref. [28-31] include 7N and nN and also unstable particle channels
oN, pN and A to account for 7wN. The model satisfies 7w N three body unitarity. To
analytic continue to amplitude obtained form the above model, in addition to the stable
particles channel such as 7N and n/N the unstable particle channels, o N, pN and 7A,
which decay into 7w N channel. In the previous works on hyper nuclei[32] and N — A
[33] system, unstable channels are treated as quasi two-body channel with complex mass
and the decay of those states into three-body channel was only approximately included
by introducing constant width. No analytic continuation method has been applied for
extraction of N* mass and form factor from the dynamical model in the previous works.
In this work we develop an method to analytic continuation of the amplitude including
those unstable channel. We then apply the method for the scattering amplitude obtained
from the analysis of the 7N of VPI and nN cross section and v*NN cross sections ob-
tained from JLab. We extract mass, width and the electromagnetic N — N* transition
form factors.

In section II, we review the analytic structure of S-matrix and resonance phenomena
which appears as the pole of S-matrix on unphysical energy sheet and develop an analytic
continuation method by using some dynamical models. In section III, we present the
method to extract resonance parameters as the residue of poles on amplitudes which
are N-N* transition form factors. In section IV, we present the model Hamiltonian
of our formulation. It is derived from a set of Lagrangians by applying the unitary
transformation method[34, 35]. The coupled-channel equations are derived from the

model Hamiltonian and we explain the procedures for performing numerical calculations
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within our formulation. Section V is devoted to showing the results from applying the
developed analytic continuation method to extract the nucleon resonances in partial waves

within our dynamical coupled channel model. Finally, a summary is given in section VI.

II. RESONANCE AND ANALYTIC STRUCTURE OF S-MATRIX
A. Scattering and resonance

Resonance phenomena are observed in scattering experiments of atomic, nuclear and
particle physics. At first, we briefly review the pole structure of S-matrix within the
frame work of non-relativistic quantum dynamics. Let us consider the elastic scattering
of a spinless particle by a target and assume that the interaction is represented by a
potential V() which is spherically symmetric. Time-independent Schrédinger equation

for S-wave scattering is written as

[—Z; ¥ vm] () = Bo(), 2
[—27171;: + V(r)} ug(r) = ;;Uk(r), (3)

where the scattering wave function satisfies ¢ () = ug(r)/r and a total energy is £ =
k%/2m. We assume that the potential V(r) vanishes identically at all distances larger

than some finite distance R,

V(r)=0 for r>R. (4)
For r > R, the solution of Eq. (3) is given by

up(r) = Ae™™™ 4 Be ", (5)

which represents an outgoing and an incoming spherical wave. Here we define the S-

matrix as

u(r) = N[Se*r — e7r), (6)

CZ:‘C — Nik[Se™ 4 e ], (7)
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where N is a normalization factor. At r = R, it is clear that

% dr + Uk(R) =2NSe s (8)
1 duy(R) _ —ikR
T ug(R) = 2Ne ", (9)

and we can easily obtain the expression of S-matrix,

_ —%EkR duc + ikuy(R)

S=e dr . (10)
Assuming there is a bound state at £ = —B < 0 and no incoming wave, Eq. (3) can
be solved as
up(r) = Ae*e" (11)
= Ae "B, (12)
with kg = ikp and kg > 0. Then the S-matrix for a bound state is given by
- ik
G 2ikR KB IR (13)

—kpg — ik’
which has a pole at k = ¢k on the complex momentum plane. The pole that corresponds
to a bound state exists on the imaginary axis of the complex momentum plane and the
imaginary part of the pole position is positive.
Next, we assume some complex energy F,, and corresponding complex momentum £,
which satisfies £, = k2/2m and Rek, > 0. The above Schrodinger equation for r > R

can be solved as

ug, (r) = A" + Be~Hnr, (14)
and
d , .
Z;?]fn — ik[Aelknr . Be—zknr]' (15)
It is easily to derive the boundary condition at r = R,
1 duy,(R) —iknR
R)— ———= = 2Be™ ", 16
e () = = ‘ (16)

If we assume that there is no incoming wave, that is B = 0, the resulting boundary

condition is

Uk, (R) = 50—

=0, (17)
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which means the S-matrix represented by Eq. (10) diverges at the pole on complex mo-

mentum plane, k = k,,. At this condition, the scattering wave function is
ug(r) = Aetkrr=hir (18)

where k = kg + ik;.

As a function of energy E, S is not single-valued, because it has different values for
k and —k, which belong to the same energy. We must therefore replace the complex F
plane by a Riemann surface of two sheets, linked by a branch point at the origin. It
is convenient to think of each sheet as covering the F plane once, with a cut along the
positive real axis. Then the first sheet corresponds to the half plane in k& above the real
axis. This is usually called physical sheet, which contains no poles except those belonging
to real bound states[36]. On the other hand, the second sheet corresponds to the half
plane in £ below the real axis, which is called unphysical sheet and can contain resonance

poles.

B. Analytic structure of S-matrix

To examine analytic properties of S-matrix, we consider a commonly used two-channel
Breit-Wigner (BW) amplitude [6, 8, 37, 38] which can be naturally derived from the
coupled channel equation. To make the contact with what we will discuss in this thesis,
we will indicate here how this amplitude can be derived from a Hamiltonian formulation
of meson-baryon reactions, such as that developed in Ref.[28].

It is sufficient to consider the simplest two-channel case with a non-relativistic two-

particle Hamiltonian defined by
H = Hy+V. (19)

In the center of mass frame Hy can be written as

Ho = > _ i) [mi + miz + i (il (20)

where my, is the mass of k-th particle in channel i, and p; = m;mge/(mi; + my2) is the
reduced mass. In each partial-wave, the S-matrix is a 2 X 2 matrix and can be written

1 —aimpK

= 21
1 +impK’ (21)
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where p is the density of state, and the K-matrix, which is also a 2 x 2 matrix, is defined

by the following Lippmann-Schwinger equation

K(E)=V+V

5 K (). (22)

Here P means taking the principal-value of the integration over the propagator.
We now consider the on-shell matrix element of the S-matrix Eq. (21). If the on-shell

momentum is denoted as p; for channel 7, we then have
(i1 impKj) = 6uy + impiKy, (23)

where p; = p;u;. The S-matrix element of the 1 — 1 elastic scattering is then of the

following explicit form

g _ (1 —imp1 K1) (1 + impaKag) — w2 p1pa K12 Ko
1n =

- - . 24
(1 +imp1 K1) (1 + impaKag) — m2p1pad11 Koo (24)

If we assume that at energies near the resonance energy the K-matrix can be approximated

as

9i9;
Kij~ 2700 (25)

where M is a mass parameter which is a real number, Eq. (24) can then be written as

E — M —ipiyi +ipaye
E — M +ipiy + ipays

Sy = (26)

Here we have defined v; = mg?u; > 0. If we further assume that ; is independent of
scattering energy, Eq. (26) is the commonly used two-channel Breit-Wigner formula[37,
38, 40]. Here, we will follow these earlier works and treat 71 and 7, as energy independent
parameters of the model.

Since the scattering T-matrix is related to the S-matrix by
Si(E) =14 2T, (F), (27)
Eq.(26) leads to
T(E) = Th1(E)

_ —MP1
E — M +ivipy + i72p2
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From now we use the notation T'(F) for the 1 — 1 amplitude 71 (E).

Within the two-channels Breit-Wigner model specified above, we will examine the

analytic properties of the S-matrix on the complex energy E-plane. This will also allow

us to explain clearly some terminologies which are commonly seen but often not explicitly

explained in the literatures on resonance extractions.

The on-shell momenta p; for channel 7 is defined by

p?

Ei = )
24

where
E;=E — (mj + my2).

We can define the threshold variable A between two channels by

2 A2
Bi=aL4—
2#2 2#1
where
AQ
—— = Mg + Mgy — M11 — M2
2

is the threshold energy of the second channel.

The momenta at poles of the S-matrix Eq. (26) can be determined by solving
E — M +ip1m + ipay2 = 0.
By using Eqs. (29)-(32), the above equation can be written as
P+ api +bpi + cpr+d =0,
where
a = 1dumn,
b = dpy(pays — M — yy?),

¢ = _SZM%M’yla
d = A(PiM? — ppas A?).

(30)

(31)

(32)

Eq. (34) means that the Breit-Wigner amplitude Eq. (26) has four poles. Each pole

is specified by two on-shell momenta P, = (P14, P2q) With a = 1,2,3,4. The analytic
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properties of the S-matrix Eq. (26) depends on how these poles are located on the
complex energy FE-plane. The energy plane for each channel has two Riemann sheets
because of the quadratic relation Eq. (29) between the momentum p; and energy Ej;
namely p; = \/m&@/ 2 for 1 = 1,2. For each channel, the physical (p) sheet is
defined by specifying the range of phase 0 < ¢; < 27, and the un-physical (u) sheet by
2 < ¢; < 4w. The correspondence between the momentum p;-plane and the energy
FE;-plane is similar to that illustrated in Fig. 1. For the considered two-channel case, we
thus have four energy sheets specified by the signs of Imp; and Imps: pp, up, vu, and
pu, as shown in Fig.2. Thus each of four poles P, = (pia,P2.) can be on one of these
E-sheets.

To be more specific, we now consider the case which is most relevant to our study
of nucleon resonances. That is the Re £; > 0 and Re F5; > 0 case that the poles are
all above the thresholds of both channels. From Eq. (33), we immediately notice that
if (p1a,pea) With E = E, is one of the solutions, (—pj,, —p3,) with E = E* is also a
solution. Therefore the four poles determined by Eq. (34) can be grouped into two pairs.
In the following discussions, they are denoted as (E,, E) and (Ey, E;). Without losing
generality, one can assume that one of the poles is in the range of (Rep; > 0,Reps > 0)
and the other in the range of (Rep; < 0,Reps < 0). If the first pole (pi4,p2q) is in the
region where (Repi, > 0, Repy, > 0) and (Imp;, < 0, Im py, < 0) , it is a pole, denoted
as Egr, on the uu-sheet of Fig. 2. This pole is usually called the resonance pole and is
closer than other poles on up or pu-sheets to the physical pp-sheet, as will be explained
later. In the Hamiltonian formulation considered in this work and the well developed
collision theory, a resonance pole can be mathematically derived[11] from the mechanism
that an unstable system is formed and decay subsequently during the collision. The
resonance pole Eg has an accompanied pole E}, at (—p7,, —p3,) which is also on the
uu-sheet as shown in Fig. 2. E7 is called the 'conjugate pole’ of Ef.

The second pole at (p1p, pop) with Impy, < 0 and ITmpg, > 0 ( Impy, > 0 and Im pyy, <
0) may be on the up-sheet (pu-sheet), depending on the parameters 7, and . This pole
is called the shadow pole[39]. A shadow pole on up-sheet and its conjugate pole are Eg
and g in Fig. 2.

We now note that in this simple BW model, the zeros of the S-matrix Eq. (26), where
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S11(E) = 0, is defined by its numerator
E— M —ipiy1 + ipeye = 0. (39)

The above equation can be cast into the form of Eq. (33) by simply replacing p; by
—p1. Thus solutions of Eq. (39), called the zeros of S-matrix, can be readily obtained
from the solutions (pi4, paq) and (p1p, p2) of Eq. (33). They are (—piq, p2o) with E, and
(pt,, —P5,) With EX for « = a,b. The zero at (—pyp, p2p) is on the pp-sheet, denoted as
Ezs and E ¢ in Fig. 2. Similarly, the zero at (—pia, p2q) is on the pu-sheet, shown as
E R together with its conjugate E7, in Fig. 2. Note that Fig. 2 is for the case that the
parameters 7; and 7y, are chosen such that the shadow poles Eg and its conjugate Eg are
on the up-sheet. For other possible v, and 7., the pole positions could be different from
what are shown in Fig. 2, but their close relations, as discussed above, are the same.
From the above analysis, it is clear that the poles and zeros of the S-matrix are closely
related. Their locations on the 4 Riemann sheets can be conveniently displayed on one

complex plane by introducing a variable ¢[36]

1+¢2

b1 1—752’ (0)

125) t
= 2A,[— : 41
2] 112 (41)

Hence each point in the ¢t—plane corresponds to a set of (p1,p2). In Fig. 3, the reso-

nance position Er and shadow Es poles and their conjugate poles and zeros of S-matrix
Ezs,Ezr, B, £, are shown on t-plane. The physical S-matrix at real energies, which
determine the observables, are on the bold lines. The zero energy and the threshold of
the second channel correspond to t = ¢ and ¢t = 0, respectively. One can see that the res-
onance pole Ep is closer than the shadow pole Egs to the bold lines (S-matrix) and hence
can have the largest effect on the observables. Consequently, most of the rapid energy
dependence of observables are attributed to the resonance poles, not the shadow poles or
the other poles shown in Fig.3. On the other hand, the zero £7¢ of the S-matrix is also
close to the bold lines. As seen in the derivations given above, this zero E7g is closely
related to shadow pole E5. Thus the shadow poles can also be related to the observables.
Of course, which pole is most important in determining the rapid energy dependence of

observables also depends on the residues of the T-matrix at the pole positions.
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Im E A Im E A
Er- O
Ezs X
0| g, x Re E 0 Re E
Er O
pp-sheet uu-sheet
(a) (b)
|m E A Im E A
Ezre X
Es O
0| g.o ReE 0 Re E
Ezr X
up-sheet pu-sheet

(c) (d)

FIG. 2: Poles and zeros of the simplified two-channel Breit-Wigner form (1 = p2 and A = 0)
of S-matrix on the complex E-plane which has pp , uu , up and pu sheets. The open circles
on the uu-sheet ((b)) are the resonance pole Er and its conjugate pole E}. The open circles
on the up-sheet ((c)) are the shadow pole Eg and its conjugate pole E%. The crossed on the
pp-sheet ((a)) are the zero Ezg and its conjugate E% ¢ which are at the same energies of the
shadow poles Eg and E%. The crossed on the pu-sheet ((d)) are the zero Ezp and its conjugate

E7 » which are at the same energies of the resonance poles Fr and E,.

Next, we will use a further simplified BW form to explain more clearly the close
relations between the poles and zeros of the S-matrix. In particular we will see explicitly
that the shadow pole Fg in Fig. 2, which is not on the same Riemann sheet as Eg, can
be located by the zeros of the S-matrix.

For simplicity, we assume that the threshold energies of the two channels are the
same and hence p = p; = ps and A = 0. Therefore we have simple relations between
energy and momenta : F = p?/2u = p3/2u and p = p; = £p,;. The four Riemann
sheets are classified by the sign of the imaginary part of the momentum; namely, physical
(unphysical) sheet is assigned by Imp > 0 (Imp < 0). With the simplification p = p; =
+po, we obviously have p; = p, = p on the pp and wu-sheets, and p; = —py = p on up

and pu-sheets.
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Im t
up-sheet 1 0:=0  Pp-sheet
Es-
O
pu-sheet uu-sheet

FIG. 3: The poles and zeros of S-matrix shown in Fig.2 are displayed on the complex t-plane

defined by Egs. (40) and (41).

Let us start with the case of p; = ps = p for the pp-sheet or uu-sheet. The S-matrix

element Eq. (26) of the first channel can be written as

E—M—i(y —
Su(E) = iy —2)p

It can be cast into the following more transparent form

(p+ps)(p — ps)

Su(f) = (p—pr)(p+PR)’

with

pr = \/2uM — (ys)? — iprys,
ps = \J2uM — (py-)? — ipry-,

E—M+i(n+y)p

(42)

(43)
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where

Y+ =7 £ 7. (46)

Remembering that we consider v; > 0 and 7, > 0. To make use of Fig.2 in the following
discussion, we consider the case that v, > 75 and hence v; > 0 and both pg and pg
defined in Eqgs. (44)-(45) are associated with the unphysical u-sheet. For the case of
v_ < 0, pg is associated with the physical p-sheet and the following presentation can be
easily modified to account for this case.

Clearly, Eq. (43) means that the S-matrix has a pole at p; = po = p = pg on the

uu-sheet with a resonance energy

2
p .
Ep = i =M — py3 — iy u(2M — pun?). (47)

Its conjugate pole E} is at p; = p; = p = —pj. The positions of Er and Ej, are shown
in the upper right side of Fig.2. Eq. (43) also indicates that the zero of S-matrix is at
p1 = p2 = —ps which is on the pp-sheet because of Im(—pg) > 0. The energy of this zero

of S-matrix is
2

p .
Ezs = ﬁ = M — py? — iy p(2M — pr2). (48)
Its conjugate E7 ¢ is at p; = p2 = p&. The positions of Ezs and E7 ¢ are on the pp-sheet,
as shown in the upper left side of Fig.2.
We next consider the p; = —py = p case that the poles and zeros of the S-matrix are
on the up or pu-sheets. The S-matrix Eq. (26) for this case then takes the following form

E—M—i(ni+7)p
E—M+i(y—)p
By comparing Eq. (42) and Eq. (49) and using the variables pg and pg defined by Egs.
(44) and (45), Eq. (49) can be written as

(p+pr)(p — PR)

(p—ps)(p +ps)

The above equation indicates that for the considered v_ > 0, the S-matrix has a shadow

Sll(E) - (49)

Si(E) =

(50)

pole at p; = —py = p = pg on the up-sheet. Thus its position Eg = p%/(2u) is identical

to Ezg of the zero of the S-matrix on the pp-sheet; namely

Es = Ezs
2
= g; =M — pn2 — i/ p(2M — 7?). (51)
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This means that the shadow pole Eg on the up-sheet can be found from searching for the
zero Fzgs of S-matrix on the pp-sheet.
Eq. (50) also gives a zero of S-matrix at p; = —ps = p = —pr on pu-plane because

Im(—pg) > 0. Its energy Ezp is also identical to Er defined above

EZR — ER
2
p .

The positions of Fg and Ezp and their conjugates E§ and E7, are also in the lower parts
of Fig.2.

From the above analysis for the y7_ > 0 case, we see that the energies of the resonance
poles may be obtained by studying the poles of the S-matrix on the uwu-sheet and those
of the shadow poles may be obtained from the zeros of the S-matrix on the pp-sheet.
The analysis for the v < 0 case is similar. Here we only mention that when v_ > 0 is
changed to y_ < 0, the shadow poles Eg and E§ on the up-sheet move to the pu-sheet

and zeros Fzg and 7 ¢ will be on the uu-sheet.

C. Analytic continuation method for dynamical models

With the analysis presented in the previous subsection, it is clear that the empirical
partial-wave amplitudes determined from experimental data can not be blindly used to
extract resonance parameters. To make progress, one needs to construct a reaction model
to fit the data and then extract the resonance parameters by analytic continuation within
the model. Our task in this subsection is to develop numerical methods for finding the
resonance poles from dynamical coupled-channel models which do not have analytical
forms of their solutions. We will first consider the simplest single-channel case, then

two-channel coupled case and finally unstable channels coupled case.

1. Single-channel

To be specific, we consider the two-particle reactions defined by the following well

known isobar Hamiltonian in the center of mass frame

H=Hy+H, (53)
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with

Hy = [Ey(p) + Ex(—p)] + | No) Mo (Nol , (54)
H = lg) (gl , (55)

where M, is the mass parameter of a bare particle Ny which can decay into two particle
states through the vertex interaction ¢ in H’, and FE;(p) = [m? + p*]'/2 is the energy of
the i-th particle. The scattering operator is defined by

1
t(E) :H/+H/mH/, (56)

which leads to the following Lippmann-Schwinger equation for the scattering amplitudes

in each partial-wave

v(p', q; E)t(q,p; E)
E —FEi(q) — Eax(q)’

where the integration path Cy will be specified later. The interaction in Eq. (57) is

t(p',p; E) = v, p; E) +/C dq ¢* (57)
[0]

o 9()g(p)
v(p',p; E) = E— M, (58)

Egs. (57)-(58) leads to the following well known solution

tp,pE) = E_gggo)g_(]g(E), (59)
with
2(E) = [ o f(p()) ae (60)

The resonance poles can be found from t( ) = t(po, po; E) on the unphysical Riemann

sheet defined by Impy < 0 with py denoting the on-shell momentum

E = \/m}+p+/m}+ (61)

Obviously py is also the pole position of the propagator in Eq. (57) or Eq. (60).

The physical scattering amplitude at a positive energy E can be obtained from Eq.
(57) or Eq. (59) by setting F — E+ie with a positive ¢ — 0 and choosing the integration
contour Cy to be along the real-axis of p with 0 < p < co. From Eq. (57) it is clear that

t(F) has a discontinuity on the positive real £
Dis(t(E)) = t(E+ ie) — t(E — ie)

= 2mip(po)v(po, po)t(E), (62)
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Imp i

FIG. 4: The shift of the singularity (open circle) of the propagator of the two-particle scattering
equation Eq. (57) as energy E moves from physical sheet to unphysical sheet. Cf in (a) or C4
in (b) is the integration path for calculating the scattering amplitude with E on the unphysical

plane.

where p(pg) = poF1(po)Ea(po)/E. Thus the t-matrix has a cut running along the real
positive £. To find resonance poles, we need to find the solution of Eq. (57) on the
un-physical sheet with Imp < 0 on which the pole py of the propagator moves into the
lower p-plane, as shown in (a) of Fig.4. From Eq. (62), it is clear that the solution of
Eq. (57), with the contour Cy chosen to be on the real-axis 0 < p < oo, will encounter
the discontinuity and is not the solution on the unphysical sheet where we want to search
for the resonance poles. It is well-known[40-43] that this difficulty can be overcame by
deforming the integration path to the contour C] shown in (a) of Fig.4. By this the pole
will not cross the cut and the integral is analytically continued from real positive E to
the lower half of the unphysical E-sheet with Impy < 0. Obviously, the same solution
can be obtained by choosing any contour which is below the pole position pg, such as the
contour C of (b) of Fig.4.

With the solution of the form of Eq. (59), the numerical procedure of finding resonance

poles is to solve

E — My—S(E) =0. (63)
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with
N(E) = /C ; dpp® 2= Elg(p()p "B (64)
_ 2 92(]7)
- LR - (65)

for E on the unphysical Riemann sheet defined by Impy < 0. To test this numerical
procedure, let us consider the case that X(F) defined by Eq. (60) can be calculated ana-
lytically. Such an analytic form can be obtained by taking the non-relativistic kinematics
Ei(p) + Ey(p) = my +my + p?/(2u) with g = mymy/(my +ms) and a monopole form for

the vertex function
A

T 146
where (3 is a cut-off parameter. The integration in 3(FE) of Eq. (60) can then be done

9(p) (66)

exactly to give the following simple form

RN
2(po +1i6)*’

where py is defined by E = my + mq + p3/(2p). If the imaginary part of py is positive

S(E (67)

(negative), it means that we choose the poles on physical (unphysical) sheet. Only the

pole with Im py < 0 on the unphysical sheet is called resonance.

2. Two-channel coupled system

The formula for two-channels, one-resonance case can be easily obtained by extending
the equations in the case of one-channel. We introduce channel label ¢ = 1,2 and thus

have
o Vik(P's )t (¢, p; E)
E — Eu(q) — Ew2(q)’

tij(p',p; E) = vi;(p),p; E) + Z/C dqq (68)
k 0

where Ej,(p) = [m?, + p*|'/? with my,, denoting the mass of n-th particle in channel k,
and
, , 1
v (0,0 B) = 6i(0) 5= 05 () - (69)
Egs. (68)-(69) leads to
b0 ) 20 )0, (0) (10)

T E— My~ %,(E) — Sy(E)’
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with

_ 2 91%(10)
Su(E) = [, o g Fa(p) — Ba®) ()

For the physical scattering amplitude at a positive energy E, Eq. (68) is solved by setting

E — E + ie with a positive € — 0 and choosing C along the real axis 0 < p < oo.

With Eq. (70), the poles of the scattering amplitudes are defined by

The poles from solving the above equation can be on one of the four Riemann sheets,
pp, up, uu, and pu. The numerical procedure for finding the resonance poles on uu-sheet
is to solve Eq. (72) for E = E11(po1) + Er2(po1) = Ea1(po2) + Ea2(po2) with Impy; < 0
and Impgy < 0. The integration path Cy is changed to ) shown in (b) of Fig.4 to
calculate both self-energies > (F) and ¥5(FE) of Eq. (71). Of course the contour C for
the integration over the momentum for ¢-th channel must be below the pole py; defined
by E — Ei(poi) — Eia(po;) = 0. Here we note that for finding the poles on pu-sheet
(up-sheet), the contour Cj is replaced by C only for ¥o(E) (X.(E)).

To test the pole trajectory, let us consider again the non-relativistic kinematics ;1 (p)+
Ein(p) = my + myo + p?/(2u;) with p; = miymia/(mi + myz). This will allow us to find

the exact solutions by choosing the monopole form factor

Ai
We then have
33)\2
() = AL (74)

2(pi +ifi)*
With Eq. (74), the poles defined by Eq. (72) can be found by solving algebraic equations.
For numerical calculations, we consider a case similar to 7N scattering in S, partial
wave: (1)channel-1 is 7N with my; = m,; = 139.6 MeV | mis = my = 938.5 MeV, and
B = 800 MeV, (2)channel-2 is nN with mgo; = m, = 547.45 MeV | mgy = my = 938.5
MeV, and (B2 = 800 MeV, (3) bare mass My = m, + my + 600 MeV. The results are
shown in Fig.5. The dash-dotted (solid) curves are the calculated poles on uu-sheet (up-
sheet) with the coupling constants A; = 0.02 for Ny — 7N and a range of Ay = 0 — 0.02
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FIG. 5: A2 dependence of the pole positions on the uu-sheet (dash-dotted curve), up-sheet (solid

curve) and pu-sheet (dashed curve) of the two-channels, one-resonance model.

for Ny — nN. We see that when )y is 0, which is the single-channel case, the uu-pole
and the up-pole are on the same position. They then split as Ay increases.

We next evaluate Eq. (71) for E on the uu-sheet, up-sheet or pu-sheet by appropriately
choosing the path Cj, as described above. The poles are found when the calculated ¥ (E)
and YXo(F) satisfy Eq. (72). We find that the poles obtained by this numerical procedure
reproduce accurately the dash-dotted(uu-sheet), solid(up-sheet) and dashed(pu-sheet)
curve in Fig.5 and hence are omitted there. Thus this analytic continuation method can
be used in practice to find the resonance poles.

In Fig.5, the poles on the uu-sheet are represented by dash-dotted curve. The poles
on the up-sheet and pu-sheet are represented by the solid curve and the dashed curve
respectively. One can show[11] that the poles on uu-sheet are due to the process that
an unstable system is created and then decays during the collision and are called the
resonance poles. The physical interpretations of the poles on pu and up-sheets remain to
be developed.

It is interesting to point out here that the two-channel Breit-Wigner form analyzed
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in detail in the previous subsection can be derived from the two-channels, one-resonance
model if the non-relativistic kinematics is used. To see this, we first write the non-

relativistic relation between the S-matrix and the T-matrix

Tij(E) = —m\/lapilt;pitij(pi, pj; E), (76)

where p; is the on-shell momentum in channel ¢

pi = \/Q,Mz‘(E — M1 — My). (77)

With the above and the analytic form Eq. (74) for 3;(E) , we can write the 1 — 1 elastic
scattering amplitude of Eq. (76) as

—pﬂl(Pl)
T .p, E) = , , , 78
ulpnpn E) E — M(E) + ipivi(p1) + ip2y2(p2) (78)
where 7i(p;) = muig; (pi) > 0 and
2

M(E) _ M0+Zp/p2dp gk(p) ; (79)

E —myy —mpgg — £

k 2pg

where P means taking the principal-value integration. By using Eq. (75), we then have

the 1 — 1 elastic part of the S-matrix

E — M(E) — ip171(p1) + ipay2(p2)
E — M(E) +ipiyi(p1) + ipaya(p2)

If the E-dependence of M(FE) and ~;(p;) are further neglected, Eqs. (78) and (80) are

511 - (80)

identical to what are usually called the two-channel Breit-Wigner resonant amplitude

discussed in the previous subsection.

3. Dynamical model with unstable particle channels

For meson-baryon reactions, the nucleon resonances can decay into some unstable
particle channels such as the 1A, pN, 0N considered in the model of Ref.[28]. Here we
discuss the analytic continuation method to find resonance poles within such a reaction
model.

It is sufficient to consider the one-channel and one resonance case. The scattering

formula is then identical to that presented above. The only difference is that one of the
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particles in the open channel can further decay into a two particle state. To be specific, let
us consider the mA channel. Within the same Hamiltonian formulation[28], the scattering

amplitude can then be written as

R 81
with
2 g]2V*,7r (p)
SalB) = [P e D ) — a0 ) (82)
where
R 9A~n(9)
BalpB) = [ U ) (Ea(q) + B T )

To obtain the 7A self energy for complex E, the analytic structure of the integrand
of Eq. (82) should be examined first. The discontinuity of the A propagator in the
integrand of Eq. (82) is the 7N cut along the real axis between £py (—po < p < po)
which is obtained by solving

E = Ex(po) + [(mr +my)* + pg]'/%. (84)

For finding the resonance poles on uu-sheet with Impg < 0, the integration contour Cs
of Eq. (82) must be chosen below this cut which is the dashed line in Fig.6. There is also

a singularity in the integrand of Eq. (82) at momentum p = p,, which satisfies

E — Ex(ps) — Ea(ps) — Za(ps, E) = 0. (85)

Physically, this singularity corresponds to the 1A two-body scattering state. For E with
large imaginary part, p, can be below the 77 /N cut as also indicated in Fig.6. Therefore
the integration contour of momentum p must be chosen to be below the 7N cut (dashed
line) and the singularity p,, such as the contour Cy shown in Fig.6.

The singularity position gq of the propagator in Eq. (83) depends on spectator mo-

mentum p

E — E(p) = [(Ex(q0) + En(q0))* + p*]'/*. (86)

Therefore the singularity gy moves along the dashed curve in Fig.7 when the momentum p

varies along the path Cy of Fig.6. To analytically continue YA (p, E) from positive energy
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A |mp

\

h Rep

\ 4

FIG. 6: Contour Cy for calculating the mA self energy on unphysical sheet. See the text for the

explanations of the dashed line and the singularity p,.

A Imq

A 4

FIG. 7: Contour C5 for calculating the wN self energy on the unphysical sheet. Dashed curve
is the singularity go of the propagator in Eq. (83), which depends on the spectator momentum

p on the contour Cy of Fig.6.

E to the un-physical plane with Imp < 0, we need to choose the contour C5 of Eq. (83)
which must be below ¢o. A possible contour C} is the solid curve in Fig.7.

To verify the numerical procedures described above, we again consider non-relativistic
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kinematics and monopole form factor. With the similar analytic form Eq. (67), we have

) o WNWNQQA,nNﬁZ,wN

YA, EB) = — 87
alp 2k + iBann) (87)
where
B 2 1/2
k= lmﬂv <E — omy —my — — )] , (88)
2,U/7r7rN

with firey = mge(my + my)/(2m, + my). With Eq. (87), we can solve Eq. (85) and
verify its relation with 77V cut as discussed above and illustrated in Fig.6. Eq. (87) and

the chosen monopole form factor also allow us to get

2
9N+ mA 1
o =/ 2d : 89

4 02p p(1+p2/ﬁ]2\[*,ﬂ-A)2D7rA(paE) ( )

with
p2 . WMTNQQA,WNQZ,WN
2#7rA Q(k + iﬁA,ﬂN)Q .

Unfortunately, Eq. (89) can not be integrated out analytically for directly checking our

DWA(paE):E_mW_mA_ (90)

numerical procedure for searching resonance poles.

We test our analytic continuation method by the following procedure. We calculate
Eq. (89) numerically to find the pole position Eg by solving Er — My — X,a(Er) = 0 of
the denominator of Eq. (81). With the parameters:

Bnema = 800MeV | gn+rn = 0.02MeV 12,

Bamy = 200MeV , gany = 0.05MeV /2
My = 650MeV +m, +my |,

we find Er = (1679.1, —33.6i) MeV. The pole position is obtained numerically by New-

ton’s method in Appendix A. We then construct an approximate propagator

1
- E—ER’

G (E) (91)

For the positive E, we find that GR¥*" " (E) is in good agreement with the direct calculation
of Gn+(E) =1/(E— My—%,A(E)) by using Eq. (89). The results are shown in Fig.8. It
is clear that the resonance pole found by our analytic continuation method can reproduce
what is expected for a resonance propagator for real positive E. In this way our numerical

procedure is justified and can be applied to solve Egs. (81) - (83).



30 III EXTRACTION OF RESONANCE PARAMETERS
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FIG. 8: N* Green function. The solid (dash-dotted) curve is the real (imaginary) part of exact
Green function Gy+(E) =1/(FE — My —X;a(E)). They are compared with the dashed (dotted)

curve of the real (imaginary) part of the approximate Green function G3F"*

III. EXTRACTION OF RESONANCE PARAMETERS

The complex resonance energy is the position of the pole of the scattering amplitude
which is on the Riemann sheet nearest to the physical sheet. In this section, we explain
how the residues of resonance poles are extracted from a dynamical model and how the

transition form factor of the resonance are defined by the residue.

A. DPole expansion of scattering amplitudes

We assume that scattering amplitude 7" is written as the sum of meson-exchange non-
resonant amplitude ¢"°"~"** and resonant amplitude, which is expressed by N* propagator
1/D(E) and the vertex between N* and a final meson-baryon state I'; or an initial meson-
baryon state T';,

I,T,
D(E)’
D(E) = E— M, - X(E), (93)

T — tnon—res +

where M, is the mass of the bare resonance which is not coupled with meson-baryon

continuum state and X (F) is the selfenergy of N*. The resonance energy M is given as
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the pole position of the propagator on complex energy plane,
D(M) = 0. (94)

We can write the amplitude near resonance pole by Laurent expansion as

T(E):EI_QM+CO+01(E—M)+---, (95)
where
_ Tp(M)ny(M)
R = fl)/(]m, ) ) ) ) (96)
€y = ey o AODDEDA LADTAD _DIOD b ymas). (o)

D'(M) 2(D'(M))
Then the resonance form factor which describes the transition into channel ¢ can be

written as
FE.(W) = L(M)/\/D'(M). (98)

The above expressions are valid in the case of the meson-baryon system coupled with one

N*. Expressions for two N*s are given in Appendix B.

B. N-N* transition form factor

The residue of the wN elastic scattering amplitude characterizes the strength of the
coupling of the resonance with 7N channel and the transition form factor of N* can be
obtained in terms of the residue of the pole on complex energy plane. We apply the
procedure of the pole expansion to a dynamical coupled channel model which describes
MB or YN — 7N reactions. The details of our dynamical model will be given in Section
IV, so here we present essential points of the model for extracting resonance parameters.

In our dynamical model the scattering amplitude of meson-baryon states from M B to

M'B’ is written as the sum of a non-resonant and a resonant amplitude,

— t’I’LOTZ—’/‘ES

TM’B',MB(I?/J% E) M’B/,MB(p/7p> E) + t?\ZfB/,MB(P,aP, E) (99)

The resonant amplitude is given as

g @0, E) = Z Carp j[D(E))i T s, (100)
0]
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where we sum bare nucleon resonance states i, j. The propagator of the resonant state

N* is
[D(E) ij(B) = (B — My )d;; — 2i;(E), (101)

where MY is the bare mass of N* and %, ;(E) is the selfenergy. So far we found resonance

from the resonant amplitude and the resonance energy M is determined from
det[D(M)'] = 0. (102)

The scattering amplitude 7N and YN — 7N amplitudes can be written near the

resonance energy M by using the Laurent expansion as

1

—MIBLMN CJOWB/,MB + Ozl\/['B/,MB(E — M)+, (103)

TM’B’,MB(p(])\4’B’>pJD\/[B>M) = E—M

where p° is the on-shell momentum for the total energy M,

Ex(piyp) + Es(piyp) = M. (104)

The first term in Eq. (103) represents the resonance pole and the next order correction
term is the constant C°. The above expression will be useful in the E region where we
have no other singularity of T'(F). For example, the applicability of the above formula
can be limited by the opening of a new channel. C'~! is the residue of the amplitude and

given as

CJ\_/Il’B’,MB = fﬁ/B/ff/[w (105)

TYs = > xilmsi, (106)
where y; is the eigenfunction of the inverse of N* propagator and satisfies

> (My-0ij + X4 (M))x; = M. (107)

J

We can approximate the propagator of N* around the pole with this x; as

D(E)]y; ~ 507 (108)

If there is only one bare N* state, it is easy to see that

1

= wan

(109)
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where Y/(M) = [d¥/dE]g=y;. The constant term C” in Eq. (103) has contributions from

non-resonant and resonant amplitudes, that is
Co = t"" (0S5, Do, M) (110)
o _ .y _
o |2 Carrpr i (Dap s WG (W)T i (Phr, W)W = M) | |w=n -
2%

The relation between TN elastic scattering amplitude F}y »ny with on-shell momentum

and S-matrix is given by

P’ En(p°)Ex(p°)

FWN,TrN(E) = -7 E TWN,WN(p07p07E) (111)
TN, E)—-1
_ Senan(. )=1 (112)
21
The residue of the resonance pole on scattering amplitude satisfies
. Re'®
Elgl;\l/[ Fonan(E) ~ U —F (113)
and
) OE 0 E 0y _
Reo — P ENPOEP ) bk pr (114)

M

Thus we can obtain the residue Re™ of the resonance pole on complex energy plane. The

relation between the residue and the transition form factor T'Zy is also given.

IV. DYNAMICAL MODEL OF MESON PRODUCTION REACTIONS
A. Model Hamiltonian

In this subsection we present a model Hamiltonian for constructing a coupled-channel
reaction model with YN, 7N, nN and nwN channels. Since significant parts of the
7N production are known experimentally to be through the unstable states 7A, pN
and oN, we will also include bare A, p and o degrees of freedom in our formulation.
Furthermore, we introduce bare N* states to represent the quark-core components of
the nucleon resonances. The model is expected to be valid up to £ = 2 GeV below
which 7N production is dominant and we neglect K'Y, w/N and three pion production

processes.
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Similar to the model of Refs. [34, 45] (commonly called the SL model), our starting
point is a set of Lagrangians describing the interactions between mesons (M = v, 7,1, p, o
--) and baryons (B = N, A, N* - -.). These Lagrangian are constrained by various well-
established symmetry properties, such as the invariance under isospin, parity, and gauge
transformation. The chiral symmetry is also implemented as much as we can. The
considered Lagrangians are given in Appendix C. By applying the standard canonical

quantization, we obtain a Hamiltonian of the following form

H = /h(f,t: 0)dz
— Ho+ Hi, (115)

where h(Z, t) is the Hamiltonian density constructed from the starting Lagrangians and
the conjugate momentum field operators. In Eq.(115), Hy is the free Hamiltonian and

Hr= Y Tupes+ Y, hwwrow, (116)

M,B,B’ MM’ M
where I'yp..p describes the absorption and emission of a meson(M) by a baryon(B)
such as 7N < N and 7N < A, and hy o describes the vertex interactions between
mesons such as 7w < p and y7 <> w. Clearly, it is a non-trivial many body problem to
calculate meson-baryon scattering and meson production reaction amplitudes from the
Hamiltonian defined by Egs.(115)-(116). To obtain a manageable reaction model, we
apply a unitary transformation method[34, 35] to derive an effective Hamiltonian from
Eqgs.(115)-(116). The essential idea of the employed unitary transformation method is to
eliminate the unphysical vertex interactions M B — B’ with masses my; + mp < mp
from the Hamiltonian and absorb their effects into M B — M’'B’ two-body interactions.
The resulting effective Hamiltonian is energy independent and hence is easy to be used
in developing reaction models and performing many-particle calculations. The details of

this method is explained in the Appendix of Ref.[34].
Our main step is to derive from Eqgs.(115)-(116) an effective Hamiltonian which con-
tains interactions involving 7w N three-particle states. This is accomplished by applying
the unitary transformation method up to the third order in interaction Hj of Eq.(116).

The resulting effective Hamiltonian is of the following form

Heff :H0+V, (117)
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with
Hy=)> K,, (118)

where K, = /m?2 + pa? is the free energy operator of particle o with a mass m,, and

the interaction Hamiltonian is

V =Ty + v+, (119)
where
FV = {Z(Z FN*HMB + FN*HTI’TFN) + ZhM*—»ﬂ'ﬂ-} + {C.C.} s (120)
N* MB M
Voo = Z VvB,M'B' + Unr - (121)

MB,M'B’
Here c.c. denotes the complex conjugate of the terms on its left-hand-side. In the
above equations, M B = YN, 7 N,nN, 7/, pN, o N represent the considered meson-baryon
states. The resonance associated with the bare baryon state N* is induced by the vertex
interactions 'y« g and 'y« . Similarly, the bare meson states M* = p, o can de-
velop into resonances through the vertex interaction hjs« ... These vertex interactions
are illustrated in Fig.9(a). Note that the masses MY.. and m,. of the bare states N* and
M* are the parameters of the model which will be determined by fitting the 7N and 7w
scattering data. They differ from the empirically determined resonance positions by mass
shifts which are due to the coupling of the bare states with the meson-baryon scattering
states. It is thus reasonable to speculate that these bare masses can be identified with
the mass spectrum predicted by the hadron structure calculations which do not account
for the meson-baryon continuum scattering states, such as the calculations based on the
constituent quark models which do not have meson-exchange quark-quark interactions.
In Eq. (121), vpparp is the non-resonant meson-baryon interaction and v., is the
non-resonant 77 interaction. They are illustrated in Fig. 9(b). The third term in Eq. (119)

describes the non-resonant interactions involving 77N states
U, = Vo3 + V33 (122)
with

V23 = ]\%[(UMB,MTN) + (C'C’)]

V33 = VUpxN,nxN -



36 IV. DYNAMICAL MODEL OF MESON PRODUCTION REACTIONS

M, x . LN
@ r o=, vt e b WU
M. v LS T

~ .

M. _
(c) Vo3 = /(}\
B

"7[
N

~
N -
N -

b T
Vgg = T--- --- T
N N

FIG. 9: Basic mechanisms of the Model Hamiltonian defined in Eqgs. (120)-(122).

FIG. 10: Mechanisms for vy pp of Eq. (121): (a) direct s-channel, (b) crossed u-channel,

(c) one-particle-exchange t-channel, (d) contact interactions.

They are illustrated in Fig. 9(c). All of these interactions are defined by the tree-diagrams
generated from the considered Lagrangians. They are illustrated in Fig.10 for two-body
interactions vy g and in Fig. 11 for vayp r-n. Some leading mechanisms of v, and
UrrNron are illustrated in Fig. 12. The matrix elements of these interactions are calcu-
lated from the usual Feynman amplitudes with their time components in the propagators
of intermediate states defined by the three momenta of the initial and final states, as spec-
ified by the unitary transformation methods. Thus they are independent of the collision

energy F.

B. Two body MB — MB amplitude

With the Hamiltonian defined by Egs. (117)-(122) , we follow the formulation of
Ref. [11] to define the scattering S-matrix as

Sab(E) = Oagb — (27T)ZTab(E) ; (123)
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FIG. 11: Examples of non-resonant mechanisms of vy -y with M = 7 or v (denoted by
long-dashed lines). M denotes the intermediate mesons (m, p,w).
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FIG. 12: Examples of non-resonant mechanisms of vy and vrzn zzN

where the scattering T-matrix is defined by
Tw(E) =< a|T(E)|b>
with

T(E)=V +V E). (124)

—T
E— H() + i€

Since the interaction V| defined by Egs. (119)-(122), is energy independent, it is rather
straightforward to follow the formal scattering theory given in Ref. [11] to show that
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Eq. (124) leads to the following unitarity condition
(T(E) = T (E))ay = 270 S TL(E)S(E, — EYTo(E), (125)

where a, b, ¢ are the reaction channels in the considered energy region.

Our task is to derive from Eq. (124) a set of dynamical coupled-channel equations
for practical calculations within the model space N* ® M B @ nmwN. In the derivations,
the unitarity condition Eq. (125) must be maintained exactly. We achieve this rather
complex task by applying the standard projection operator techniques[12], similar to
that employed in a study[46] of T NN scattering. The details of our derivations are given
in Appendix B of Ref. [28]. To explain the coupled-channel equations, it is sufficient to
present the formula obtained from setting I'y+_..-n = 0 in the derivations. The resulting
model is defined by Eqgs. (B74)-(B96) in Appendix B of Ref. [28]. Here we explain these
equations and discuss their dynamical content.

The resulting M B — M'B’ amplitude Ty;p_.prp in each partial wave is illustrated in

Fig. 13. It can be written as
Tvp s (E) = tupwe (E) + typars (E), (126)

The second term in the right-hand-side of Eq.(126) is the resonant term defined by

th s (B) = Z Larp—n; (E)D(E))i ;U (E) (127)
with
[D(E)ij(B) = (B — MR )d;; — 2i5(E), (128)

where MY. is the bare mass of the resonant state N*, and the self-energies are

Yij(E) = Z FN;—»MBGMB(E)FMBHN;(E) . (129)
MB

The dressed vertex interactions in Eq.(127) and Eq.(129) are (defining I'ypn- =

FjV*—)MB)
Crpon+(E) = Dypon-+ D tups (E)Gup (E)vwp—ne, (130)
M'B’
Cne—ms(E) = Dne—up+ Y Unveerp G (Bt g s (E) - (131)

M'B’
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FIG. 13: Graphical representations of Eqgs. (126)-(129).

The meson-baryon propagator G;p in the above equations takes the following form

1
- E—Kp— Ky —Syp(E) +ic’

Gup(E) (132)

where the mass shift 3,5(F) depends on the considered M B channel. It is Xy,5(E) = 0
for the stable particle channels M B = nwN,nN. For channels containing an unstable

particle, such as M B = wA, pN,0N, we have

P7r7rN T
b E) = MB MB un—connecte 133
wp(B) = [< MBlgy — K K. — ko e vIMB >] ted (133)

with
gv = N hpﬂmr S — (134)

In Eq. (133) "un-connected” means that the stable particle, = or N, of the M B state is
a spectator in the 7w N propagation. Thus X),;5(E) is just the mass renormalization of
the unstable particle in the M B state.

It is important to note that the resonant amplitude %, g up(E) is influenced by

the non-resonant amplitude tyrp mp(E), as seen in Egs. (127)-(131). In particular,
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FIG. 14: Graphical representation of the dressed I'a ,n interpreted in Refs.[34, 45].

Egs. (130)-(131) describe the meson cloud effects on N* decays, as illustrated in Fig. 14
for the A — N decay interpreted in Refs. [34, 45]. This feature of our formulation is
essential in interpreting the extracted resonance parameters.
The non-resonant amplitudes typ v in Eq. (126) and Egs. (130)-(131) are defined
by the following coupled-channel equations
tupm g (E) = Vup e (E) + M%H Vg (E)Gyrpr (E)tympr pop (E) (135)

with
Vuswp (E) = vupmp + Zupmp (E). (136)

Here Zy g vp(E) contains the effects due to the coupling with 77N states. It has the

following form

PN
7 5(E) = < MB|F s Fi\MB >
wsp (F) | E — Hy— Upen + i€ |

—[omBm X MB(E)] (137)
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with

UreN = UngNaxN + Upr + UraN,xnN » (138)

F = gy +vuBren, (139)

where gy has been defined in Eq. (134). Note that the second term in Eq. (137) is the
effect which is already included in the mass shifts ¥,,5 of the propagator Eq. (132) and
must be removed to avoid double counting.

The appearance of the projection operator P,y in Egs. (133) and (137) is the con-
sequence of the unitarity condition Eq. (125). To isolate the effects entirely due to the
vertex interaction gy = C'a—zxn + Rpsnr + Ro—snr, We use the operator relation Eq. (B33)

of Appendix B in Ref. [28] to decompose the 7w N propagator of Eq. (137) to write
Znp s (E) = 2 arw (B) + 235 s (E) . (140)
, MB,M'B’ MB,M'B'
The first term is

P,
— g | M'B' > —[6pp v Eus(E)]. (141)

E T
ZJ(\/U)RM’B'(E) = <MB| ng

Obviously, ZJ(WE])i w g (E) is the one-particle-exchange interaction between unstable parti-
cle channels 7A, pN, and oN, as illustrated in Fig. 15. The second term of Eq. (140)

is

I P7T7TN P7r7rN
2\ v (E) = < MB| P ety (B) g FT I MYB >
P7r7rN t It
< MB _— B'M'" >
+ | W Ho + i UMB N |
Pﬂ'ﬂ'N 1 Iy
< MB N 1+~ 17 . - MB >
* [ vus, NE—H0+zegV|
Pﬂ'ﬂ'
+ < MB | vy N | M'B' > . (142)

N
E—H0+Z€ MB,mrmN

Some of the leading terms of Z](\/I[)B,M’B’(E> are illustrated in Fig. 16. Here t oy oy (E) is

a three-body scattering amplitude defined by

1

t7r7r T E) = A7r7r A7r7r X ; A7r7r 143
NarN(E) = Opey + 0 NE—KW—KW—KN—UWWN—FZEU N (143)

where U.,n has been defined in Eq. (138). Few leading terms of Eq. (143) due to the

direct s-channel interaction v® of v;nn are shown in Fig. 17. These terms involve the
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FIG. 15: One-particle-exchange interactions Zf(ri),nA(E)’ Zf(ﬁ)ﬂﬂ and ZLSEN),WA of Eq. (141).
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FIG. 16: Examples of mechanisms included in Zl(é)B’ wp (E) of Eq. (142).

mrN propagator 1/(E — K, — K, — Ky + i€) and obviously can generate 7w N cut ef-
fects which are due to the 7w N vertex. This observation indicates that the 7N scattering
equation of Aaron, Amado and Young[47] can be related to our formulation if the inter-
actions which are only determined by the 77N vertex are kept in the equations presented

above.

C. MB — nwN amplitudes

The amplitudes Tarparp = tupars + thp s defined by Eq.(126) can be used
directly to calculate the cross sections of TN — 7w N,nN and YN — wN,nN reactions.

They are also the input to the calculations of the two-pion production amplitudes. The
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FIG. 17: Some of the leading order terms of t N rxn of Eq. (143). The open circle represents

the direct s-channel interaction v* illustrated in Fig. 10 for the MB = M'B’ = 7N case.

two-pion production amplitudes resulted from our derivations given in Appendix B of

Ref. [28] are illustrated in Fig. 18. They can be cast exactly into the following form
Tennars(E) = Tidy s (B) + Trarp(B) + Toan s (B) + Tody s (E) - (144)
with

T us(E) = <OSNE) Y vennam [0arm s
M'B’

+GM’B/(E)(tM/B/,MB(E) + tﬁ/B/’MB)”MB > 5 (145)
T77rr7rAN,MB(E> = < wi:rgV(E)’FTAHWNGWA(E)[LTA,MB(E) +th,MB(E)HMB >, (146)

TN is(E) = < SN nGon (B)tpvar(E) + iy 45 (B)|MB >, (147)

Tevas(B) = <N (B)hh e Gon(B)ltonars(E) + thy s (E)|MB > . (148)
In the above equations, the 7w N scattering wave function is defined by

<yYUN(E)| = < maN|QLN(E), (149)
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FIG. 18: Graphical representations of T,y v p defined by Eqs. (144)-(148).

where the scattering operator is defined by

1
O (B = N1+ toryeen (B . 150
7r7rN( ) <7 H + N, N( )E—KW—KW—KN—FZE] ( )

Here the three-body scattering amplitude ¢, -~ (E) is determined by the non-resonant
interactions vyq, Vrnan and Vrrn oo, as defined by Eq. (143).

We note here that the direct production amplitude T,/ 5(E) of Eq. (145) is due
to vrxnmp interaction illustrated in Fig. 11, while the other three terms are through
the unstable 7A, pN, and oN states. Each term has the contributions from the non-
resonant amplitude ¢y p(E) and resonant term 3,5 5(E). As seen in Eq. (127)-
(131), the resonant amplitude ¢, 5 5;5(E) is influenced by the non-resonant amplitude

tarp vp(E). This an important consequence of unitarity condition Eq. (125).

D. Partial wave expansion of MB — MB amplitudes

We solve Eq. (135) in the partial-wave representation. To proceed, we follow the

convention of Goldberger and Watson[11] to normalize the plane-wave state |k > by
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setting < k|k' >= d(k — k). In the center of mass frame, Eq. (123) then leads to the
following formula of the cross section of M (k) + B(—k) — M (k') + B(—k') for stable

particle channels M B, M'B' = yN,7nN,nN

do ) () purn () ! S Y | < MB|T(E)MB > ?
d k2 PR 00 + 1) (25 + 1)

mi U
J J m m'.
M’ B v’ iB

(151)
with
< M'B/|T(E)|MB >=
< i, il s, T | Tar g ars (K, K E)|jarmy,, iy J5Myy, TeMay >,
(152)
where [(jar, mj,, ), (inr, miy, )] and [(jpmj,), (TBm,,)] are the spin-isospin quantum num-

bers of mesons and baryons, respectively. The incoming and outgoing momenta k& and k&’

are defined by the collision energy F
E = Ey(k) + Eg(k) = Exp(K') + Eg (K, (153)

and the phase-space factor is
kEy (k) Ep(k)

pup(k) =7 7 : (154)

The partial-wave expansion of the scattering amplitude is defined as

1 JM, T M " JM, T M
TwpupK 6, E)= Y Y Y i (k) > T p Lsus(k K E) <Y, (]M]B)g(kﬂ
JM,TMy LS,L'S'

(155)

where the total angular vector in the spin-isospin space is defined by

‘ JM, T M~ (l%) > =

L(]M]B)S Z ’ijjAf7/LM7mi]\,j;ijjB7TBmTB >< TMT’ZMTBmZ'AImTB >

all m

X < JM|LSmpmg >< Smg|jmipmj,,m;, > Yim, (k).

(156)
Clearly, Eqgs.(155)-(156) lead to

JT /
TL’S’M’B’,LSMB(k ks E)

:/dl{;,/dl%< YJMTMT ( )|TM’B’MB(kJ ]{7 E)‘YJMTMT(II%)

L' (jh43% L(jmiB)S

(157)
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By also expanding the driving term Visp v B/(lg, K, E) of Eq. (135) into the partial-
wave form similar to Eq.(155), we then obtain a set of coupled one-dimensional integral

equations

JT / _ JT /
tL’S’M’B’,LSMB<k 7k’ E) - VL’S’M’B’,LSMB(k7k7E)

+ Z Z / k/,2dk/,Vl‘/]/€/M/B/’LIISHM//B// (k,7 k/,7 E)

M!"B!" LS
XGM//B//(k/,7 E)ti%‘S”M”B”,LSMB(kH? k, E) 5 (158)
where the driving term is
JT / _ . JT / (E)JT /
VL’S/M’B/,LSMB<k 7k) - UL’S’M/B’,LSMB(k 7k> + ZL’S’M’B’,LSMB<k ) k? E) : (159)

The above partial-wave matrix elements of the non-resonant interaction vy g yrp and one-
particle-exchange interaction ZJ(V]IE,)B,, wp(E) are given in Appendices C and E of Ref. [28],
respectively. There the numerical methods for evaluating them are also discussed in some
details; in particular on the use of the transformation from the helicity representation to
the partial-wave representation.

The propagators in Eq.(158) are given by taking the matrix elements in Appendix B
of Ref. [28] we have

Crp(h E) = 5= En (k) 1— Ep(k) + ic (160)

for stable particle channels M B = 7N, nN, and

1
Cp(k, B) = 75— Ev (k) — Ep(k) — Sap(k, E) (161)

for unstable particle channels M B = 7A, pN,ocN with

_Mma 2 MwN<Q) |fA,TrN(Q)|2
Znalk B) = 50 J s [M2y(q) + B] E = Ex(k) — [(En() + Bx(q))? + K] + e’
(162)
o my, 2 MW(Q) |fp,7r7r<Q)|2
S E) = 55 | P G A T B R T T (06
me 2 MW?T(Q) |f0,7r7r(Q)|2
Sk, B) = gy | PG R E B - R P T (Y

where the vertex function fa.n(¢) is from Ref.[34], f,:(q) and f, -(q) are from the
isobar fits[48] to the 77 phase shifts. They are given in Appendix D of Ref. [28].
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The solutions of Eq. (158) are then used to calculate the non-resonant photo-
production amplitudes. Here we use the helicity-LSJ mixed-representation that the initial
N state is specified by their helicities, Ay, Ay, but the final M B is defined by the (LS).J

angular momentum variables

L yIMIM
BNk @) = Y DD 1Y, ]M]BT )>Ui§MB,/\7ANmTN(k7qﬂ E)
JMTMyp LS AMAy
2J+1
An D]\JJ,()W—)\N)(¢qa eqa _¢q) < >"y7 /\NmTN| ) (165>

where D), (6,0, —¢) = ei(m+m/)¢dfn7m,(0) with dfn?m,(ﬁ) being the Wigner rotation func-
tion. Eq. (135) then leads to

tisus Ay ANy (ka0 E) = visus Ay ANy (b, )+ > > /kl?dk tLSMB vswp (kK E)
M'B'L'S'

XGM’B/<k/7 E),UL/SIM/Bl,A’y/\NmTN (k,a q, E) .

(166)

The matrix elements vyZ,, B, (k,q, E) considered in our calculations are given in

ANmTN
Appendix F of Ref. [28]. This unconventional representation, which is convenient for

calculations, can be related to the usual multipole expansion, as also given in appendix

G of Ref. [28].

E. JLMS model of 7N scattering

The parameters of the hadronic interactions of the dynamical model described in the
above subsections are given in Ref. [29]. The parameters are first determined by fitting
the empirical 7N elastic scattering amplitudes of SAID up to 2 GeV. Then the resulting
parameters are refined by directly comparing the predicted differential cross section and
target polarization asymmetry with the original data of the elastic #%p — 7%p and
charge-exchange 7~ p — mn processes.

We solve the coupled-channel equations defined in the previous section in the partial-
wave representation. The input of these equations are the partial-wave matrix elements
of I'y+—mp and vyp prp of Egs. (120)-(121), with M B, M'B’ = 7 N,nN, A, pN,oN,
and Z](\Z?M,B, of Eq. (136) with MB,M'B" = n/A,pN,oN. The calculations of these
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matrix elements have been given explicitly in the appendices of Ref. [28]. Here we only
mention a few points which are needed for later discussions.

In deriving the non-resonant interactions vy parp of Eq. (136) we consider the tree-
diagrams (Fig. 10) generated from a set of Lagrangians with =, n, o, p, w, N, and A
fields. The higher mass mesons, such as ag, a; included in other meson-exchange ©N
models, such as the Jiilich model [52], are not considered. The employed Lagrangians are
given in Appendix C.

To solve the coupled-channel equations, Eq. (135), we need to regularize the matrix
elements of vy p g, illustrated in Fig. 10. Here we follow Ref. [34] in order to use the
parameters determined in the A (1232) region as the starting parameters in our fits. For
the v® and v" terms of Fig. 10, we include at each meson-baryon-baryon vertex a form

factor of the following form
F(k, A) = [2/[(” + A (167)

with & being the meson momentum. For the meson-meson-meson vertex of v* of Fig. 10,
the form Eq. (167) is also used with k being the momentum of the exchanged meson. For
the contact term v, we regularize it by F(k, A)F(k', \').

With the non-resonant amplitudes generated from solving Eq. (135), the resonant am-
plitude 3 y;p Eq. (127) then depends on the bare mass My. and the bare N* — MB
vertex functions. As discussed in Ref. [28], these bare N* parameters can be taken from a
hadron structure calculation which does not include coupling with meson-baryon contin-

uum states or meson-exchange quark interactions. We use the following parameterization,

A2 (24+L/2) I
Iy mprs) (k) = ;LON* MB(LS N, MB(LS) h (168)
AP (22 iy NP AR sy + (k= kR)?

My

where L and S are the orbital angular momentum and the total spin of the M B system,
respectively. The above parameterization accounts for the threshold k* dependence and
the right power (2 + L/2) such that the integration for calculating the dressed vertex
Eq. (130)-(131) is finite.

The partial-wave quantum numbers for the considered channels are listed in Table I.
The numerical methods for handling the moving singularities due to the 77N cuts in

ZJ(\%M,B, (Fig. 15) in solving Eq. (135) are explained in detail in Ref [28]. To get the 7N
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elastic scattering amplitudes, we can use either the method of contour rotation by solving
the equations on the complex momentum axis k = ke~* with > 0 or the Spline-function
method developed in Refs. [50, 51] and explained in detail in Ref. [28]. We perform the
calculations using these two very different methods and they agree within less than 1%.
When Z](\fg g 1 neglected, Eq. (135) can be solved by the standard subtraction method
since the resonant propagators, Egs. (132), for unstable particle channels 7A, pN, and
o N are free of singularity on the real momentum axis. A code for this simplified case has
also been developed to confirm the results from using the other two methods.

The method of contour rotation becomes difficult at high E since the required rota-
tion angle # is very small. The Spline function method has no such limitation and we
can perform calculations at W > 1.9 GeV without any difficulty. Typically, 24 and 32
mesh points are needed to get convergent solutions of the coupled-channel integral equa-
tion (135). Such mesh points are also needed to get stable integrations in evaluating the
dressed resonance quantities Eqgs. (129)-(131).

The parameters associated with Z](\f])i wp of Eq. (136) are completely determined
from fitting the w7 phase shifts in Refs. [34] and [48]. Thus the considered model has the
following parameters: (a) the coupling constants associated with the Lagrangians, (b)
the cutoff A for each vertex of vyrparp (Fig. 10), (c) the coupling strength Cn« arp(rs)
and range kr and Ay« p(Ls) of the bare N* — M B vertex Eq. (168), and (d) the bare
mass M. of each N* state. We determine these by fitting the 7N scattering data.

The fitting procedure is as follows. We first perform fits to the 7N scattering data up
to about 1.4 GeV and including only one bare state, the A (1232) resonance. In these fits,
the starting coupling constant parameters of vj;p a5 are taken from the previous studies
of TN and NN scattering, which are also given in Ref. [28]. Except the TN N coupling
constant fryn all coupling constants and the cutoff parameters are allowed to vary in
the x2-fit to the 7N data. The coupled-channel effects can shift the coupling constants
greatly from their starting values. We try to minimize these shifts by allowing the cutoff
parameters to vary in a very wide range 500 MeV < A < 2000 MeV. Some signs of
coupling constants, which could not be fixed by the previous works [53], are also allowed
to change. We then use the parameters from these fits at low energies as the starting

ones to fit the amplitudes up to 2 GeV by also adjusting the resonance parameters, M.,
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(LS) of the considered partial waves
aN | oN A oN oN
Su((0,9)[(0.3)] (23  |Ly] (0.3),(23)
S31((0,3)] — (2,2) - 0,3), (2,5
Pu (L)L) (1,3 (0,3 (1), (L3)
Pz |(1,3)](1,3)] (1,3),3,3) |(2,9)] (1,3),(1,3), (3:3)
Py |(1,5)] - (1.3) - (1,3): (1,3)
Pi|(L3)] — | (1,3).3,3) | — |(1,3).,(13), (3,3)
Di3|(2,3)|(2,3)] (0,5):(2,3) |(1,5)](2.5), (0,3), (4,3)
Di5((2,3)[(2,3)](2,3) , (4,9)[(3,5)[(2,5), (2,3), (4,3)
Dy3|(2,5)] — | (0,9)(2,8) | — |(2,5),(0,3),(2,3)
Dss|(2,5)| = [(2,3), (4,3)| - |(2,3), (2,3), 43)
Fi5((3,3)|(3,3)] (1,5).3,3) |(2,3)[(3,3), (1,5), (3,3)
Fiz((3,3)[(3,3)] (3,3).(5,:3) |(4,3)|(3,3), (3,3), (5, 3)
Fis|(3:3)] — | (1,3),3,3) | — |39 (1,3), (3,3)
Fyr|(3,3)] — | 3,8).,5,3) | - (33 3,3),(53)

TABLE I: The orbital angular momentum (L) and total spin (S)of the partial waves included

in solving the coupled channel Equation (135).

Cn+mBLs), kr and Ay« arp(rs). Here we need to specify the number of bare N* states
in each partial wave. The simplest approach is to assume that each of 3-star and 4-star
resonances listed by the Particle Data Group [24] is generated from a bare N* state of
the model Hamiltonian Eq. (117). However, this choice is perhaps not well justified since
the situation of the higher mass N*’s is not so clear.

We thus start the fits including only the bare states which generate the lowest and
well-established N* resonance in each partial wave. The second higher mass bare state
is then included when a good fit can not be achieved. We also impose the condition that
if the resulting MY. is too high > 2.5 GeV, we remove such a bare state in the fit. This
is due to the consideration that the interactions due to such a heavy bare N* state could

be just the separable representation of some non-resonant mechanisms which should be
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included in vy . In some partial waves the quality of the fits is not very sensitive
to the N* couplings to 7A, pN, and o/N. But the freedom of varying these coupling
parameters is needed to achieve good fits.

It is rather difficult to fit all partial waves simultaneously because the number of
resonance parameters to be determined is very large. We proceed as follows. We first
fit only 3 or 4 partial waves which have well established resonant states, and whose
amplitudes have an involved energy dependence. These are the Si;, Pi1, S31 and Pss
partial waves. These fits are aimed at identifying the possible ranges of the parameters
associated with vyparp. We then gradually extend the fits to include more partial
waves. For some cases, the fits can be reached easily by simply adjusting the bare N*
parameters. But it often requires some adjustments of the non-resonant parameters to
obtain new fits. This procedure has to be repeated many times to explore the parameter
space as much as we can. We use the fitting code MINUIT and the parallel computation
facilities at NERSC in US and the Barcelona Supercomputing Center in Spain.

The most uncertain part of the fitting is to handle the large number of parameters
associated with the bare N* states. Here the use of the empirical partial-wave amplitudes
from SAID is an essential step in the fit. It allows us to locate the ranges of the N*
parameters partial-wave by partial-wave for a given set of the parameters for the non-
resonant vy arp,. Even with this, the information is far from complete for pinning
down the N* parameters. Perhaps the N* parameters associated with the 7N state
are reasonably well determined in this fit to the 7N scattering data. The parameters
associated with nIN, 1A, pN and oN can only be better determined by also fitting to
the data of TN — nN and 7N — 7w N reactions. This will be pursued in our future
calculations.

It is useful to note here that the leading-order effect due to Z*) of the meson-baryon
interaction Eq. (136) on 7N elastic scattering is

SUrN AN = 3 Van i BCrn(B) 25 oy Gar (B)osrpran . (169)
MB,M'B'=rA,pN,cN

We have found by explicit numerical calculations that dv.y ny is much weaker than

Uzn=n and hence the coupled channel effects due to Z](WE])i wpe on mN elastic scattering

amplitude are weak. One example obtained from our model is shown in Table II. Thus

we first perform the fits without including Z) term to speed up the computation. We
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then refine the parameters by including this term in the fits.

Re[tzn,xn]|Reltzn, v (217 = 0)]| [ Im[trn,zn] | Imftzy v (27 = 0)]
S11| —0.00481 —0.00557 0.0841 0.0827
Pi1| 0.0937 0.103 0.636 0.640
Pis 0.169 0.181 0.275 0.275
Dy3|  0.202 0.194 0.299 0.309
Dys|  0.117 0.116 0.0179 0.0179
Fis 0.290 0.291 0.157 0.155
7| 0.0360 0.0359 0.00293 0.00289
Ss1| —0.433 —0.437 0.496 0.504
P3| —0.253 —0.230 0.434 0.448
P33 0.0506 0.0306 0.510 0.457
D33| —0.00504 —0.0135 0.106 0.104
Ds35|  0.0551 0.0551 0.0540 0.0537
Fys| —0.0214 —0.0229 0.0259 0.0283
F37|  0.0625 0.0626 0.00502 0.00512

TABLE II: The effect of Zj(\fj)g wrpe on the mIN° scattering amplitudes ¢,y N from solving

Eq. (135) at E = 1.7 GeV. The normalization is t,y.y = (e?¥*N — 1)/(2i), where ,y is
the mIN scattering phase shift which could be complex at energies above the 7 production

threshold.

We first locate the range of the parameters by fitting the empirical 7V scattering
amplitude of SATD [20]. We then check and refine the resulting parameters by directly
comparing our predictions with the original 7N scattering data.

Our fits to the empirical amplitudes of SAID [20] are given in Figs. 19-20 and Figs. 21-
22 for the T'=1/2 and T = 3/2 partial waves, respectively. The resulting parameters are
presented in Appendix D. The parameters associated with the non-resonant interactions,
vypmp With MB, M'B" = 7 N,nN, tA, pN,oN, are given in Table IX for the coupling
constants of the starting Lagrangian and Table X for the cutoffs of the form factors
defined by Eq. (167). The resulting bare N* parameters are listed in Tables XI-XIII

From Figs. 19-22, one can see that the empirical 7N amplitudes can be fitted very
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FIG. 19: Real parts of the calculated 7N partial wave amplitudes (Eq. (126)) of isospin 7' = 1/2

are compared with the energy independent solutions of Ref. [20].

well. The most significant discrepancies are in the imaginary part of S3; in Fig.22. The
agreement is also poor for the Fi; in Fig.19-20 and D35 in Figs.21-22, but there are rather
large errors in the data. Our parameters are therefore checked by directly comparing our
predictions with the data of differential cross sections do/dS) and target polarization
asymmetry P of elastic 75p — 7%p and charge-exchange 7~ p — 7°n processes. Our
results (solid red curves) are shown in Figs.23-27. Clearly, our model is rather consistent
with the available data, and are close to the results (dashed blue curves) calculated
from the SAID’s amplitudes. Thus our model is justified despite the differences with the
SAID’s amplitudes seen in Fig.19-22.

It will be important to further refine our parameters by fitting the data of other 7N
scattering observables, such as the recoil polarization and double polarization. Hopefully,
such data can be obtained from the new hadron facilities at JPARC in Japan.

Our model is further checked by examining our predictions of the total cross sections
o' which can be calculated from the forward elastic scattering amplitudes by using the

optical theorem. The total elastic scattering cross sections ¢ can be calculated from the
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predicted partial wave amplitudes. With the normalization < E|lg’ >=0 (E — K ) used in
Ref. [28], we have

(E)= Y o(E) (170)

T=1/2,3/2
with
. (47)? (2J+1)
o) = () S B g s b )P, (1)

JLS
where p.n(E) = nkE(k)En(k)/E with k determined by E = E.(k) + Ex(k) and the
amplitude Tg,é,(wN)vLS(WN)(k, k; E) is the partial-wave solution of Eq. (126). Similarly, the

total TN — nN cross sections can be calculated from

(2J+ 1)

o (4JT)2 2
Oy = o PN BV (B) Y Ty s K R E)P - (172)

JLS
where p,n(E) = nk'E,(K')En(K')/E with k' determined by E = E, (k') + Ex(k'). We
can also calculate the contribution from each of the unstable channels, 7A, p/N, and o N,

to the total TN — 7w N cross sections. For example, we have for the 71N — 7A — N
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FIG. 23: Differential cross section for several different center of mass energies. Solid red curve
corresponds to our model while blue dashed lines correspond to the SP06 solution of SAID [20)].

All data have been obtained through the SAID online applications. Ref. [20].

contribution in the center of mass frame

e/ [ETTE Mxn wA(k E)/(2 )
TEE) = [ M S ) B S B

where k is defined by M,y = E(k) + Ex(k), Exn(k) = [M2y + K?]Y/2, LAk, E) is
defined in Eq.(162), I'ya(k, E) = —2Im(X,a(k, E)), and

27 + 1
(2Sy + 1)(25, + 1)| waw s v ws) (ks ko B)[*

(174)

O-TrN—>7rA(k7 E)<173)

O-TrN—ﬂrA(ky E) = 47TPwN(k0)P7rA(k’) Z
'S/ LS, ]

where kg is defined by E = E; (ko) + En(ko) and pup(k) = mkE,(k)Ey(k)/E. The ampli-
tude T g a5y (s ko; ) is the partial-wave solution of Eq.(126). The corresponding
expressions for the unstable channels pN and o N can be obtained from Egs. (173)-(174)
by changing the channel labels.

The predicted o' (solid curves) along with the resulting total elastic scattering cross

el

sections 0 compared with the data of 7p reaction are shown in Fig. 28. Clearly, the
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tion as Fig. 23. All data have been obtained through the SAID online applications. Ref. [20].

model can account for the data very well within the experimental errors. Here only
the T' = 3/2 partial waves are relevant. Equally good agreement with the data for
7~ p reaction are shown in the left side of Fig. 29. In the right side, we show how the
contributions from each channel add up to get the total cross sections. The comparison
of the contribution from 7N channel with the data is shown in Fig. 30. It is possible to
improve the fit to this data by adjusting N* — nN parameters. But this can be done
correctly only when the differential cross section data of 7N — nN are included in the
fit.

The contributions from 7A, pN and o N intermediate states to the 7~p — 7w N total
cross sections calculated from our model can be seen in the right side of Fig. 29. These
predictions remain to be verified by the future experiments. The existing 7N — 71N
data are not sufficient for extracting model independently the contributions from each

unstable channel.
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FIG. 25: Target polarization asymmetry, P, for several different center of mass energies. Sim-
ilar description as Fig. 23. All data have been obtained through the SAID online applica-
tions. Ref. [20].

The results shown in Figs. 28-30 indicate that our parameters are consistent with the

total cross section data.

F. Pion electroproduction

We perform a dynamical coupled-channel analysis of p(e,e’m)N data in the region
of F < 1.6 GeV and Q* < 1.45 (GeV/c)® This model is an extension of the analysis
[30] of pion photoproduction reactions. With the hadronic parameters of the employed
dynamical coupled-channels model determined in analyzing the 7N reaction data [29, 55|,
the only freedom in analyzing the electromagnetic meson production reactions is the
electromagnetic coupling parameters of the model. If the parameters listed in Ref. [28] are
used to calculate the non-resonant interaction, the only parameters to be determined from
the data of pion electroproduction reactions are the bare v*N — N* helicity amplitudes

for the lowest N* states in P33, P11, S11 and D3 partial waves. Such a highly constrained
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FIG. 26: Target polarization asymmetry, P, for several different center of mass energies.
Description as in Fig. 23. All data have been obtained through the SAID online applica-
tions. Ref. [20].

analysis was performed in Ref. [30] for pion photoproduction. It was found that the
available data of vp — 7%, 7tn can be fitted reasonably well up to invariant mass
E < 1.6 GeV. In this work we extend this effort to analyze the pion electroproduction
data in the same E region.
The resonant amplitude is given by replacing initial meson-baryon state in Eq. (127)
with v* N,
s 5 0. B.Q) = 3 M pymn (b B Dig (B s 0, (0. B. Q%) (175)

N;,N¥

where Sy = 1/2 is the nucleon spin, F = w + Exn(q) is the invariant mass of the v*N
system. The dressed N* — 7N vertex I'{« ;g v (k, E) and N* propagator D; ;(E) have
been determined and given explicitly in Ref. [30]. The dressed v*N — N* vertex function

is

T nonn (6 B, Q%) = Ty, (0, Q)
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tions. Ref. [20].
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FIG. 28: The predicted total cross sections of the 77p — X (solid curve)and 7tp — 7tp
(dashed curve) reactions are compared with the data. Squares and triangles are the corre-

sponding data from Ref. [24].
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+ > > / KK T psipp (K E)Grrs (K, EYol i sy (K 0, Q%).

M'B"L'S’
(176)

We define the bare v*N — N* vertex functions F]‘{,*7/\7/\N(q, Q?) of Eq. (176). We param-

eterize these functions as

1 [ my g .
FJ*7)\,Y)\N(Q,Q2) = (27_(_)3/2 EN](\;) |q7]§|G)\(N 7Q2)5)\,()\7—)\N)7 (177)

where g and qo are defined by My« = qr + En(qr) with N* mass and F = gy + En(qo),

respectively, and

GA(N*,Q%) = A\(N*,Q?), for transverse photon, (178)
= Sy(N*,Q%), for longitudinal photon. (179)

We also cast the helicity amplitudes of the dressed vertex Eq. (176) into the form of
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FIG. 30: The predicted total cross sections of mp — np reaction are compared with the data [74,
75].

Eq. (177) with dressed helicity amplitudes

A)\(N*vQQ) - AA(N*aQ2)+A§LC.(N*>Q2)7 (180)
SA\(N*, Q%) = Sy(N*, Q%) + Sy (N*, Q?), (181)

where AP (N* Q?) and SP¢(N*, Q?) are due to the meson cloud effect defined by the
second term of Eq. (176). Here we emphasize these helicity amplitudes are defined at the
real mass of N* in order to discuss the difference between bare amplitudes and dressed
amplitudes due to the shift by meson cloud effects. Helicity amplitudes in terms of the
residue of resonance poles on complex energy plane will be given and discussed in Section
V.

We first try to fix the bare helicity amplitudes by fitting to the data of op + €0, orr,
and o7 of p(e, €'7®)p in Ref.[56] which covers almost all (E, Q?) region we are considering
(see Table.III). The formula for calculating o, from the amplitudes are given in Ref. [44].
In a purely phenomenological approach, we first vary all of the helicity amplitudes of 16
bare N* states, considered in analyzing the 7N — 7N, 77N data [29, 55], in the fits to
the data. It turns out that only the helicity amplitudes of the first N* states in Sy1, Pi1,
P33 and Dq3 are relevant in the considered E < 1.6 GeV. Thus in this paper only the
bare helicity amplitudes associated with those four bare N* states (total 10 parameters)

are varied in the fit and other bare helicity amplitudes are set to zero. The numerical fit
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FIG. 31: Fit to p(e, e'm")p structure functions at Q* = 0.4 (GeV/c)?. Here 6 = 0%. The solid
curves are the results of Fitl, the dashed curves are of Fit2, and the dotted curves are of Fit3.

(See text for the description of each fit.) The data are taken from Refs. [56, 59].

is performed at each @? independently, using the MINUIT library.

The results of the fits are the solid curves in the top three rows of Figs. 31-33. Clearly
our results from this fit agree with the data well. We obtain similar quality of fits to the
data of Ref. [56] at other Q? values listed in Table. ITI. We have also used the magnetic
M1 form factor of v*N — A(1232) extracted from previous analyses as data for fitting.
The results are shown in Fig. 34. We refer the results of this fit to as “Fit1”.

In Fig. 35, we present the G%,, G}, and G form factors of v*N — A(1232) transition
obtained from Fit1 (solid points). In the same figure, we also show the meson cloud effect
in the form factors. Within our model, it has a significant contribution at low @2, but
rapidly decreases as Q* increases, particularly for G% and G§. These results are similar
to the previous findings [45, 57].

The helicity amplitudes of S, P11, and D;3 resulting from Fitl are shown in Fig. 36.
The solid circles are the absolute magnitude of the dressed helicity amplitudes (180)
and (181). The errors there are assigned by MIGRAD in the MINUIT library. More
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FIG. 32: Fit to p(e, e/m")p structure functions at Q% = 0.9 (GeV/c)?. Here 6§ = 0%. The data

are taken from Ref. [56].

detailed analysis of the errors is perhaps needed, but will not be addressed here. The
meson cloud effect (dashed curves), as defined by AY-* and SP*“ of Egs. (180) and (181)
and calculated from the second term of Eq. (176), are the necessary consequence of the
unitarity conditions. They do not include the bare helicity term determined here and are
already fixed in the photoproduction analysis [30]. Within our model (and within Fit1),
the meson cloud contribution is relatively small in Sj; and A;/, of Di3 even in the low
Q? region.

Here we note that our helicity amplitudes defined in Egs. (180) and (181) are different
from the commonly used convention, say A{" and S§, which are obtained from the
imaginary part of the v*N — 7N multipole amplitudes [58]. This definition leads to
helicity amplitudes which are real, while our dressed amplitudes are complex. It was
shown in Ref. [45] that for the A(1232) resonance our dressed helicity amplitudes (180)
and (181) can be reduced to AS™ and S§™, if we replace the Green function G,y with its
principal value in all loop integrals appearing in the calculation. However, such reduction
is not so trivial for higher resonance states because the unstable 7A, pN,ocN channels

open, and thus the direct comparison of the helicity amplitudes from other analyses
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FIG. 33: Fit to p(e,e/7")p structure functions at Q* = 1.45 (GeV/c)?. Here § = §%. The data

are taken from Ref. [56].

becomes unclear. We will again discuss the complex helicity amplitudes in terms of
resonance poles and residues in Section V.

At Q* = 0.4 (GeV/c)?, the data of all structure functions both for p(e,e/r%)p and
ple,e€m)n are available as seen in Table. III. To see the sensitivity of the resulting
helicity amplitudes to the amount of the data included in the fits, we further carry out
two fits at this Q?, referred to as Fit2 and Fit3, respectively. Fit2 (Fit3) further includes
the data of Refs. [59-61] (Ref. [59]) in the fit in addition to those of Ref. [56] which are
used in Fitl. This means that Fit2 includes all available data both from p(e, ¢/7%)p and
p(e, e'm™)n, whereas Fit3 includes the same data but from p(e, e'7%)p only. The results
of each fit are the dashed and dotted curves in Fig. 31 for p(e,e'n%)p and Fig. 37 for
p(e, e'nt)n, respectively.

The resulting bare helicity amplitudes are listed in the third (Fit2) and fourth (Fit3)
columns of Table IT and compare with that from Fitl. The corresponding change in the
YN — A(1232) form factors and the dressed helicity amplitudes are also shown as open
circles and triangles in Figs. 35 and 36. A significant change among the three different

fits is observed in most of the results except G}, in Ps3. This indicates that fitting the
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FIG. 35: The v*N — A(1232) form factors. Solid points are from Fitl; dashed curves are the
meson cloud contribution. Open circles and triangles at Q% = 0.4 (GeV/c)? are from Fit2 and
Fit3, respectively. The three points are almost overlapped in G3},;. The solid point at Q%> =0is

obtained from the photoproduction reaction analysis in Ref. [30].

data listed in Table III are far from sufficient to pin down the v*N — N* transition
form factors up to Q% = 1.45 (GeV/c)?. Tt clearly indicates the importance of obtaining
data from complete or over-complete measurements of most, if not all, of the independent
p(e, e'm)N polarization observables. Such measurements were made by Kelly et al. [62]
in the A (1232) region and will be performed at JLab for wide ranges of E and Q? in the
next few years [5].

It has been seen in Fig. 37 that all of our current fits underestimate or of p(e, €7 )n at



F  Pion electroproduction

Q? (GeV/c)® v*p —

Y'p—7n

6

0.3
0.4
0.5
0.525
0.6
0.65
0.75
0.9
1.15
1.45

or+e€or, orr, orr [56]; o [59]

or+eor, orr, orr [56]

or +eor, orr, orr [60]

or+e€or, orr,

or +e€or, orr, orr [60]¢

or +eor, o, orr [60]°

or+e€op, opr, orr [56]; o [59] opp [61]

or+eoyr, orr, orr [56]

or +e€or, orr, orr [56]

or +e€or, orr, orr [56]

or +e€or, orr, orr [56]

?The data are available up to £ = 1.51 GeV
’The data are available up to E = 1.41 GeV

TABLE IV: Ambiguity of resulting bare helicity amplitudes [the results are at Q2

TABLE III: Available structure function data at Q% < 1.45 (GeV/c)?.

Fitl

Fit2

Fit3

(Ref. [56] data) (Refs. [56, 59-61] data) (Refs. [56, 59] data)

S Aijp
S11 S1)2
Py Ay
P11 Sy)2
P33 Az
Ps3 Ay)o
P33 S1/9
D13 Asgjo
Di3 Aqj2
D13 Sz

100.80 + 1.46
—119.30 £ 20.41
33.18 £ 2.11
37.29 + 2.26
—146.00 £ 0.60
—54.47 £0.61
7.80 £1.25
—-44.01 £1.31
97.11 £8.51
—18.35 +1.37

83.25 £1.21
—9.85 £1.69
—15.68 = 1.00
52.23 £ 3.16
—137.50 £ 0.56
—62.57 £ 0.69
—7.66 £1.22
—67.01 +£1.99
14.34 £1.26
19.43 +1.45

48.29 + 5.46
—53.53£4.75
20.17 £10.37
131.00 + 5.87

—150.80 £1.03
—46.29 +1.73
7.34£1.69
—98.63 £ 2.92
70.02 +4.83
4.11 +£2.76

(GeV/c)?]. The errors are assigned by MIGRAD in the MINUIT library.

orT [60]; arrT’ [61]

7

0.4
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FIG. 36: Extracted helicity amplitudes for S;; at E = 1535 MeV (upper panels), Pj; at
E = 1440 MeV (middle panels), and D13 at E = 1520 MeV (lower panels). The meaning of

each point and curve is same as in Fig. 35.

forward angles. We find that this can be improved by further varying the S3; and P;3 bare
helicity amplitudes within their reasonable range. In Fig. 38, the results with the nonzero
S31 and Py3 bare helicity amplitudes (solid curves) are compared with the results with-
out varying those amplitudes (dashed curves). The resulting values of the bare helicity
amplitudes are (A77, S7%) = (121.6,59.6) and (A3}, AT%3, S15) = (—73.2,—42.9,41.5).
The parameters of Fit2 are used for Sy;, Pi1, P33, and Dq3 in both curves. In the figure
we have just shown the results at £ ~ 1.3 GeV. We confirm that the same consequence
is obtained also at other E, and find that the Py3 (S31) has contributions mainly at low
(high) E. We also find that the inclusion of the bare Ss; and Pj3 helicity amplitudes
does not change other structure functions than or of p(e,e/7t)n (at most, most of the
change is within the error). This indicates that those two helicity amplitudes are rather
relevant to p(e, e'7)n, but not to p(e, e'7®)p. As shown in Table III, however, no enough
data is currently available for p(e, ¢'T™)n above Q? = 0.4 (GeV/c)?. The data both of the

ple, em%)p and p(e, e'm)n at same Q? values are desirable to pin down the Q* dependence
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FIG. 37: Structure functions of p(e, /7" )n at Q? = 0.4 (GeV/c)?. Here § = §*. The solid curves
are the results of Fitl, the dashed curves are of Fit2, and the dotted curves are of Fit3. (See
text for the description of each fit.) As for the op7v, results at £ = 1.14,1.22,1.3,1.38,1.5,1.58
GeV (from left to right of the bottom row) are shown, in which the data are available. The

data in the figure are taken from Ref. [60, 61].

of the S3; and Pi3 helicity amplitudes.

We now turn to show the coupled-channels effect. In Fig. 39, we see that when only
the 7N intermediate state is kept in the M’ B’ summation of the non-resonant amplitude
[Eq. (135)] and the dressed v*N — N* vertices [Eq. (176)], the predicted total transverse
and longitudinal cross sections o7 and o7, of p(e,e/n%)p are changed from the solid to
dashed curves. This corresponds to only examining the coupled-channels effect on the
electromagnetic (Q*-dependent) part in the v*N — 7N amplitude. All coupled-channels
effects on the non-electromagnetic interactions are kept in the calculations. We find
that the coupled-channels effect tends to decrease when Q? increases. This is rather
clearly seen in op. In particular, the coupled-channels effect on op at high £ ~ 1.5
GeV is small (10-20%) already at Q* = 0.4 (GeV/c)?. (The effect is about 30-40% at
Q? = 0[30].) This is understood as follows. In Eq. (175) we can further split the resonant

amplitude t® as t® = &+t  where tf . and t2  are the same as t® but replacing

m.cC.
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FIG. 38: Contribution of the S3; and Pi3 helicity amplitudes at Q% = 0.4 (GeV/c)2. The left
(right) panels are the structure functions of p(e,e/n%)p [p(e, e/nt)n] reaction at £ = 1.3 GeV
(E =1.29 GeV). Solid (dashed) curves are the results with (without) nonzero Ss; and P35 bare
helicity amplitudes. The parameters of Fit2 are used for the Si1, P11, P33, and Di3 helicity

amplitudes in both curves. The data are from Refs. [56, 59-61].

f}{,*’/\w\N with its bare part F}{,*’/\W\N and meson cloud part [the second term of Eq. (176)],
respectively. The coupled-channels effect shown in Fig. 39 comes from tisNﬂN, Ay and
tft . We have found that the relative importance of the coupled-channels effect in each
part remains the same for increasing Q. However, the contribution of non-resonant
mechanisms both on #/ SyaN Ay and tf _ to the structure functions decreases for higher
Q? compared with ¢ . This explains the smaller coupled-channels effect compared with
the photoproduction reactions [30]. The decreasing non-resonant interaction at higher

Q? is due to its long range nature, thus indicating that higher (Q? reactions provide a
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clearer probe of N*. We obtain similar results also for p(e, /7" )n.

It is noted, however, that the above argument does not mean coupled-channels effect
is negligible in the full v*N — 7N reaction process. In the above analysis we kept the
coupled-channels effect on the hadronic non-resonant amplitudes, the strong N* vertices,
and the N* self-energy, which are Q*-independent and remain important irrespective of
Q?. We have found in the previous analyses [29, 55] that the coupled-channels effect on
them is significant in all energy region up to £ = 2 GeV.

In Fig. 40, we show the coupled-channels effect on the five-fold differential cross section.
The coupled-channels effects are significant at low E, whereas they are small at high
E. This is consistent with the above discussions because the five-fold differential cross
sections are dominated by op. Here we also see that our full results (solid curves) are
in good agreement with the original data, although we performed the fits by using the
structure function data listed in Table III.
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FIG. 39: Coupled-channels effect on the integrated structure functions or(E) and o (F) for
Q? = 0.4, 0.9, 1.45 (GeV/c)? for p(e,en%)p reactions. The solid curves are the full results
calculated with the bare helicity amplitudes of Fitl. The dashed curves are the same as solid

curves but only the 7N loop is taken in the M’B’ summation in Eqgs. (135) and (176).
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FIG. 40: Coupled-channels effect on the five-fold differential cross sections
F;l[da/(dEe/dQe/de‘r)] of p(e,e/7m®)p (upper panels) and p(e,e/7T)n (lower panels) at
Q* = 0.4 (GeV/c)? Here § = 0% and ¢ = ¢%. The solid curves are the full results calculated
with the bare helicity amplitudes of Fitl. The dashed curves are the same as the solid curves
but only the 7N loop is taken in the M’'B’ summation in Eqs. (135) and (176). The data are

taken from Ref. [63]



F  Pion electroproduction 73

V. RESULTS AND DISCUSSIONS
A. Analytic continuation and pole positions

To extract the information of resonance poles from the dynamical coupled channel
model described in Section IV, it is necessary to choose the proper integral path for
analytic continuation. We need to choose the contours C;p and C3 appropriately to
solve the coupled channel problem for E on various possible unphysical sheets of the
Riemann surface as described in Section II. This requires careful examinations of the
locations of the on-shell momentum of each propagator Gyp(k, E) and the 77N cut in

the self energies, such as ¥ a(k, E) of Eq. (162), of the unstable particle channels.

800

oN X
600 | :

X pN
400 | 1

200 r

Im p (MeV)

-200
X nN

-400 |

6 260 400
Re p (MeV)
FIG. 41: Singularities and integral path on the complex momentum plane at £ = 1357 — 764
MeV. Red crosses are singularities of meson-baryon propagator given by Egs. (182) and (183).
Green line and square (blue line and circle) are 77N cut and a branch point for the selfenergy

of TA by Eq. (185) (¢ N and pN by Eq. (185)). Red line shows an integral path.

Here we present one example, the case for a pole on P;; partial wave amplitude which
corresponds to N*(1440). In Fig. 41, the singularities of meson-baryon propagator on
complex momentum plane at £ = 1357 — 76¢: MeV, that turns out to be the pole position
on complex energy plane as a result of the pole search, are shown by red crosses. Each

singularity of meson-baryon propagator is obtained by solving

E — En(p) — Eg(p) =0, (182)



74 V' RESULTS AND DISCUSSIONS

for stable particle channels M B = 7 N,nN, and

FE — EM(p) — EB(p) — EMB(]?, E) = O, (183)

for unstable particle channels M B = tA, pN,cN. The left-hand side of these two equa-
tions are the denominator of propagator Gy/p(p, E') given by Eq. (160) and (161). The

branch point of 77N cut in the self energy X.a , Yoy and X,y are given as

E = E.(po) + [(mx +mn)*+p2]V*  for wA, (184)

E = En(po) + [2ma)? + p2]"*  for pN and oN, (185)

and they are shown in Fig. 41 by green line and square for 7A and by blue line and circle
for pN and oN. Actually, the singularities for each meson-baryon channel are on the
different momentum plane and we can choose a different integral path for each channel
independently, which means we can choose a different Riemann sheet of each channel.
Here, for simplicity, we illustrate all singularities on the single complex plane and take
the same path for every channel in Fig. 41, where the path is shown by red line. The
real part of the considered energy is 1357 MeV, that is above the threshold energies for
N and mw N, and below that for n/N, ¢ N and pN. So the unphysical sheet for 7N
and 7N is the nearest sheet from the physical region and we choose the path below the
singularities of 7N and 77N for analytic continuation to the unphysical sheet of them.
On the other hand, the physical sheet for nIN, ¢ N and pN is the nearest sheet from the
physical region and we take the path above the singularity of n/N. Singularities of o N
and pN are on the upper half of complex momentum plane, which means we look at the
physical sheet for such channels by the considered path. We choose the unphysical sheet
of mA in Fig. 41, though the both of unphysical and physical sheets for 7A are close to
the physical region because the mA threshold is just close to 1357 MeV. Thus we can
calculate the amplitude at the complex energy F = 1357 — 76: MeV.

We search for poles of the total amplitudes from finding the zeros of the determinant of
D~1(E) defined by Eq. (128). Here we use the well-established Newton iteration method
in Appendix A. We have performed searches in the (m,+mxy) < Re(E) < 2000 MeV and
—Im(E) < 350 MeV region within which PDG’s 3- and 4-stars resonances are listed. Poles
with very large widths are more difficult to locate precisely with our numerical methods

and hence will not be discussed here. In Table V, the extracted resonance poles positions
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MY, Mg Location PDG

(MeV) (MeV) MeV)

St 1800 (1540, 191

1880 (1642, 41

(

uuuupp) (1490 - 1530, 45 - 125)
(1640 - 1670, 75 - 90)
(

Py 1763 (1357, 76 1350 - 1380, 80 - 110)

(

(uuuupp)
(upuupp
(

)
1763 upuppp)

1763

)
)
)
1364, 105)
1820, 248)

)

o~ o~ o~ o~ o~ o~

(uuuuup) (1670 - 1770, 40 - 190)
( )

2037 (1999, 321) (uuuuuu

P53 1711 — 1660 - 1690, 57 - 138

D3 1899 wuuupp) (1505 - 1515, 52 - 60

EN|

1655 - 1665, 62 - 75

Fys 2187

(

Dy5 1898 (1654, 77
( 1665 - 1680, 55- 68
(

) ( )

) (uuuupp)

1674, 53) (uuuupp)
Sy 1850 ) ( )

u—uup—) (1590 - 1610, 57 - 60

P33 1391 (1211, 50) (u-ppp-) (1209 - 1211, 49 - 51
1600 — 1500 - 1700, 200 - 400

D33 1976 (1604, 106) 1620 - 1680, 80 - 120

uup—

( )
( )
( )
( )
( )
Py 1900 — (1830 - 1880, 100 - 250)
( )
( )
( )
( )

0 1825 - 1835, 132 - 150

(
Fy5 2162 (1738,
2162 (

(

(u-uup-)
110) (u—uuu—)

1928, 165) (u-wuu-)
F37 2138 ) ( )

1858, 100) (u—uwuu—) (1870 - 1890, 110 - 130)

TABLE V: The resonance pole positions Mg [listed as (Re Mg, —Im Mp)] extracted from the
dynamical model in the different unphysical sheets are compared with the values of 3- and
4-stars nucleon resonances listed in the PDG [24]. “—" for P33(1600), P35 and Ps; indicates
that no resonance pole has been found in the considered complex energy region, Re(E) < 2000

MeV and —Im(E) < 350 MeV.

(Mg) are compared with the bare N* masses (M) of our model and the 3- and 4-star
values listed by PDG [24]. Like the previous works [64, 67], we only look for poles which
are close to the physical region and have effects on 7wV scattering observables. All of these

poles are on the unphysical sheet of the 7N channel, but could be on either unphysical
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(u) or physical (p) sheets of other channels considered in this analysis. We will indicate
the sheets where the identified poles are located by (Szn, Syn, SN, Szas SpN; Son ), Where
syp and Sprn can be u or p or — denoting no coupling to this channel. Let us remark
that the only physical sheet is the (pppppp). On that sheet the full amplitude should be
analytic except for a bound state pole and a unitary cut. Any other sheet is unphysical.

With the exception of the P33(1600), Py3 and Ps; cases, all pole positions listed by
the PDG are consistent with our results. One possible reason for not finding these poles
is that their imaginary part may be beyond the —Im(Mg) < 350 MeV region where
our analytic continuation method is accurate and is covered in our searches. Another
possibility is that these resonances, if indeed exist, are perhaps due to the mechanisms
which are beyond our model, but are particularly sensitive to these partial waves. The Py
pole at 1999 —3217 MeV has no corresponding resonance on the PDG. The imaginary part

of this pole is so large that we might hardly compare it with the analysis of experimental

results.
0
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FIG. 42: Trajectories of the evolution of Pj; resonance poles A (1357, -76), B (1364, -105), C
(1820, -248) and D(1999, -321) from a bare N* with 1763 MeV and 2037 MeV, as the couplings
of the bare N* with the meson-baryon reaction channels are varied from zero to the full strengths

of our model.

For P;; channel we find four poles below 2 GeV. Two of them near 1360 MeV are close
to the mA threshold. This finding is consistent with the earlier analysis of VPI[26] and
Cutkosky and Wang[27], and the recent analysis by the GWU/VPI[67] and Juelich[68]
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Analysis Py; poles (MeV)

This work (JLMS model) (1357, -76) (1364, -105)
GWU/VPI [67] (1359, -82) (1388, -83)
Jillich model [68] (1387, -74) (1387, -T71)

TABLE VI: Py resonance poles extracted from three different approaches and near the Roper

resonance position of PDG are compared.

groups as seen in Table VI. We find that they are on different sheets: (1357, -76) and
(1346, -105) are on the unphysical and physical sheet of the 7A channel, respectively.

Within our model, we can further study the dynamical origin of these two nearby poles
around the 7A threshold. The way the identified resonance poles evolve dynamically from
their bare masses (listed in Table V) through their coupling with reaction channels can
be examined by tracing the zeros of det[D™Y(E)] = det[E — M3 — X vp yssMas(E))
in the region 0 < yyp < 1, where My, p(F) is the contribution of channel M B to the
self energy defined by Eq. (128). Each yyp is varied independently to find continuous
evolution paths through the various Riemann sheets on which our analytic continuation
method is valid.

For the P;; case we found the three poles are associated to one bare state as shown in
Fig. 42. The poles A(1357, -76), B(1364, -105) and C(1820, -248) evolve from the same
bare state with a mass of 1763 MeV. The pole D(1999, -321) corresponds to the other
bare state with a mass of 2037 MeV. The poles A and B are on the physical sheet of the
1NN channel and their difference occurs due to the choice of the sheet for 7A channel. The
green curve indicates how the bare state evolves through varying all coupling strengths
except keeping y.an = 0, to about Re(Mpg) ~ 1400 MeV. By further varying y,a to
1 of the full model, it then splits into two trajectories; one moves to pole A on the
unphysical sheet and the other to B on the physical sheet of 7A channel. Our finding
suggests that the number of resonance poles found from the analysis of pion-nucleon
scattering amplitudes does not necessarily correspond to the number of the 'bare’ states.
The dynamical coupled channel induces multi-poles from a single bare state. Although a
cusp-like move may be seen in the trajectory to the pole C, it is not actually a cusp but

a differentiable curve. It is due to the influence of the upper resonance D.
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Next, we apply the procedure for extracting residues of resonance poles developed in
Section III by presenting the results for P33, D3 and P;; partial waves. The extracted
residues Re', defined in Eq.(114), for 7N amplitude are compared with some of the
previous works in Table VII. We see that the agreement in P33 and D;3 are excellent.
For Py, there are significant differences between four analysis. As discussed in Ref.[27],
it could be mainly due to the differences in the employed reaction models. On the other
hand, the difference between the predicted P;; amplitudes at £ > about 1.6 GeV could
be the reason why the third Py; pole is not found in Juelich analysis[68].

EBAC-DCC GWU-VPI[67]  |Cutkosky[3] Juelich[68]
R ¢ R ) R ) R ¢
P33(1210) 52 -46 52 -47 53 —47 47 =37
D13(1521) 38 7 38 -6 35 —12 32 -18
Py1(1356) 37 111 38 -98 52 —100| 48  -64
(1364) 64 -99 86 -46 - -
(1820) 20 -168 - - 9 -167 - -

TABLE VII: The extracted 7N residues Re'® defined by Eq.(114).

B. Electromagnetic form factors

We extract the electromagnetic transition form factor of N* in terms of the residue of
resonance poles. This procedure is applied to A(1232) P33, N*(1520) D3 and N*(1440) Py
resonances. The resulting form factor is compared with the previous works and the
analysis by CLAS. It is noted that helicity amplitudes defined at a real energy introduced
in Section IV must be distinguished from the results in this section, which is extracted
directly from the resonance pole with complex energy.

For the pion electromagnetic production helicity amplitudes, we replace the initial 7N

state as yN in Section III. Eq. (106) leads to the following expression of electromagnetic

form factor,

f"I\/{*N = ZX@'f‘fy*N,i(qoa Mp), (186)
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where

M2+ Q2 + m?2 2
qo = J( i 25\24]% N) —m?\,. (187)

The electromagnetic N-N* transition form factor is defined by matrix element of the

electromagnetic currents between nucleon and N*

Aga(Q?) = X < N*,s, =3/2| — J(Q*) - €[N, sy = 1/2 >, (188)
Aa(Q?) = X < N'ys, =1/2] = J(Q*) - €[N, sy = —1/2 >, (189)
51/2(Q2) = X< N%s,= 1/2\J0(Q2)]N, sy=1/2>, (190)

where €, = —(& +i9)/V2,

with K = (M% — m3%)/(2Mpg). The above definition was originally introduced for the
constituent quark model[66]. If < N*| is a resonance state, then the above expression at

resonance position Mg must be evaluated by using Eq.(106). We thus have

A32(Q) = XX'Y xTng(Q% Mr, Ay = 1,0y = —1/2), (191)
J
47

Here the additional factor X’ is due to our normalization of the vertex function I'. The
above helicity amplitudes are in general complex number. A;/; and S;/; have similar
expressions.

To extract helicity amplitudes using Eq.(191), we use the multipole amplitudes cal-
culated from using the parameters determined in Ref.[31]. Our results at photon point
are listed in Table VIII. We observe that the real parts of our results for P33 and Dq3
are in good agreement with several previous results[l, 69-71]. The large differences in
Py indicate that more investigations are needed to understand the differences between
our resonance extraction method within a coupled-channel model and other methods
which are mainly based on the Breit-Wigner parametrization of single channel K-matrix
amplitudes.

For P33 we can use the standard relation[34] to evaluate the N-A magnetic transition

form factor G}, in terms of helicity amplitudes. The real parts of our results are the solid
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EBAC |Arndt04/96|Ahrens04/02|Dugger07|Blanpied01

P33(1210) | A3/ |-269+12i -258 -243 -267
Ay ja|-132+38i -137 -129 -136

Di3(1521)| A3y 125422i| 165+5 | 147£10 | 14242
Ayjg| 42481 | —20£73 | —28+3 | —28+2

P11(1356) | Ay jo| -1242i | —63£5 —51+2

(1364) |A, )5 | -14+22i

TABLE VIIIL: The extracted YN — N* helicity amplitudes are compared with previous results.

circles in Fig. 43, which are in good agreement with the previous analysis. In the same
figure, we also show that the imaginary parts of our results are much weaker. This result
and the results of Table VIII suggest that we can only make meaningful comparisons with
the results from analysis based on the Breit-Wigner parametrization of single channel K-
matrix amplitudes only for the cases that the imaginary parts are small. This turns out
to be also the case of the Dj3(1521) resonance. In Fig. 44, we see that the real parts of
our Az, and Ay, are in good agreement with the results from CLAS collaboration|73].
The large differences in Sy /» perhaps are mainly from the fact that the longitudinal parts

of the amplitudes can not be well determined with the available data.
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FIG. 43: The magnetic N-A (1232) transition form factor G%,;(Q?) defined in Ref.[34].
Gp = 1./(1 + Q*/v*)? with b2 = 0.71 (GeV/c)?. The solid circles (solid triangles) are the

real (imaginary) parts of our results. The other data points are from previous analysis[72].
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FIG. 44: The solid circles are the real parts of the extracted YN — N*(D13(1520)) form factors.

The data are from CLAS collaboration[73]. transition form factors
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FIG. 45: The extracted YN — N*(1356), N*(1364), N*(1820) transition form factors of Pj;.

The solid circles (solid triangles) are their real (imaginary) parts.

For Pj;, almost degenerate two poles are related to the resonance and the imaginary
parts of the calculated helicity amplitudes for the three poles are very large. Thus it is
not clear how to compare our results with previous results. We thus show both the real
parts (solid circles) and imaginary parts (solid triangles) in Fig. 45. It seems that the
structure of the pole at 1356 MeV and that of 1364 MeV are similar. In particular their
real parts of A;, change sign at low @, similar to what haven been seen in the results
from CLAS collaboration[73].

In this subsection, we have extracted the electromagnetic form factor from each pole
associated with N*(1440) Py, respectively, but we should treat two poles at the same time
because the both of them have influence with the physical sheet. We will investigate
the double pole structure and try to develop the method for extracting the resonance

parameter of Roper from these two poles in the next subsection.
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C. Two pole approximation for P;; amplitude

It has been known that two poles are associated with N*(1440)P;; and we have shown
the dynamical origin of the two poles is the single bare resonance in this section. The
residues of those poles are extracted but it has not been known how to interpret the
information of the two poles to understand the nature of the Roper resonance. Here
we will present that we can successfully reproduce the 7N elastic amplitude for P;; by
applying two-channel Breit-Wigner formula described in Section II to two poles associated
with N*(1440). At present this is a phenomenological attempt for the approximation, but
this is an essential step toward extracting the transition form factor of Roper resonance
and investigating the method for interpreting resonances which has two-pole structures.

When the resonance energy is close to the threshold energy of opening of a new channel,
the convergence radius of Laurent expansion is limited. It is however when we take
account of the threshold effects which appear in phase space integral we can extend the
pole expansion of the scattering amplitude in a wider energy region. An example is
two-channel Breit-Wigner form discussed in Section II,

. Rip,
E — M +iyip1 + iv2pa’

F(E) = (193)

where p; and py are the on-shell momentum for the first and second channel. We have
seen that two-channel Breit-Wigner formula can be naturally derived from the coupled
channel equation.

When the resonance energy is close to the threshold of some channel, we may use
an approximate form of the above formula, since only the closest threshold may play a
significant role. We use the following formula with the channel momentum p of the newly
opening channel,

R+4'p
E — (Mres + ,yp)

F(E) = — FC 4 (194)

This parameterization generates two resonance poles in physical and unphysical sheet of
the opening channel. In other words, a single resonance can have a pole in two Riemann
sheet. The above parameterization will be extremely useful when both of the two res-

onance poles are close to the threshold. We write Laurent expansion of the resonance
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poles as

F(E) = — o, (195)

with ¢ = 1,2 for the poles at physical and unphysical sheets. In this case we can derive
resonance parameters R, M ~ ~' C from the residue and resonance energy of Eq. (195)
from each resonance pole. The parameters are given as
Myes — Mges

P1— P2
Mres — M{es — p1,

)

\2\
l
— —~ —~ —~ —~
—
Ne)
oo

P1— P2
R = Ry(1 —~dp1/dE) — p17, 199
C = C,—dp, 200
g- GG (201
P1 — D2
5 dp; /dE~ + Rivd*p;/dE? /2
1 —~dp,/dFE

The above formula can be derived assuming C' = ¢, + ¢p and neglect ¢, term since we
have not included higher order of the energy dependence.

We applied the above formula for two poles of Pj; obtained at Section IIT A. Fig. 46
shows the full amplitude of P;; by our model shown by red circles and green triangles
agrees well with the approximated amplitude by Eq. (193) indicated by red and green
lines, which means two-channel Breit-Wigner formula can well describe the amplitude
with two-pole structure. If 4 in Eq. (193) is sufficiently small, we can regard R as
the 'residue’ of the Roper resonance and extract the transition form factor from it, but
more discussions may be needed to declare what is the most appropriate method for

understanding a resonance with multi-pole structure.

VI. SUMMARY

We have developed an analytic continuation method for extracting resonance param-
eters such as mass, width, electromagnetic transition form factors from a dynamical

reaction model for 1N — 7N and v*N — 7N amplitudes. This is the first application of
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FIG. 46: wN elastic amplitude of P;;. The solid circles (solid triangles) are their real (imaginary)
parts by the dynamical model. Red (green) line is the real (imaginary) part of approximated

amplitudes by Eq. (193).

the analytic continuation method to a dynamical model which includes unstable particle
channels oV, pN and A coupled with 77 N.

We have also applied the analytic continuation method to the dynamical coupled chan-
nel model of meson production reactions developed in Ref.[28-31]. From the dynamical
model, we have extracted pole positions of the all partial wave amplitudes and residues of
P33, D3, and Pyp partial waves. Except the P33(1600), Py3 and Ps; cases, pole positions
of 3- and 4-star resonances listed by the PDG are consistent with our results. We have
shown that two poles associated with N*(1440)P;;, which are different in the Riemann
sheet of 7A channel, are originated in the single bare resonance dynamically and another
pole at 1820 MeV on Pj;; has the same origin as the two poles. For residues associated
with 7N channel, we agree with most of the previous results[3, 26, 67, 68] for Ps3(1232),
D13(1521) and two Py; poles near 1360 MeV. For residues associated with v*N channel,
the corresponding helicity amplitudes for Ps3(1232) and D;3(1521) are dominated by their
real parts which are in good agreement with other analysis based on the Breit-Wigner
parametrization of K-matrix amplitudes. We have successfully reproduced the 7N elastic
amplitude of P;; from two poles corresponding to the Roper resonance by using approx-
imation with two-channel Breit-Wigner formula. With the progress made in this work,
we can proceed to extract electromagnetic form factor of P;;(1440) from two poles and

that of all the other resonances.
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APPENDIX A: NEWTON’S METHOD

We use Newton’s method to obtain a pole position numerically as a zero point of the

inverse of N* propagator on the complex energy plane.

1. Function of single variable

Usual Newton’s method for a function of single variable is

f@n) + f'(@n) (041 — 2n) =0, (A1)

T T T )
n

where f(z,) and x, are real. Starting from z; close to a zero point of f(x), we can expect

f(z,) ~ 0 for sufficiently large n.

2. Function of multi variables

Supposing two real functions f; and f; and two real variables x and y, Newton’s

method for them is

Si(@n, yn) n e f1(@n, Yn) a%fl(xna Yn) Lot = In | 0 (A3)
fo(; yn) a%f2($m Yn) a%f2($m Yn) Yn+1 = Yn 0
or
f(fn) + J(fn)(fn—kl - fn) = 67 (A4)

where the matrix J is

! %f?(xnayn) c’%fQ(xnayn)

Zpi1 18 obtained by

—

Byt = T — @) F(&). (A6)

The both of fi(x,,y,) and fo(x,,y,) are expected to be zero for large n.
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3. Complex function

If we write f; and f, by a complex analytic function f(z) as

fi(®n, yn) = Re[f<xn +1yn)] = Re| ~(Zn)]a
fZ(Ina yn) = Im[];(xn + Zyn)] = Im[.f(zn)]7 (A8)

we can obtain the zero point of f (z) in the same way as the case of real functions.

APPENDIX B: POLE EXPANSION WITH TWO RESONANCES

In this appendix, we present pole expansion of scattering amplitude with two reso-
nances. Assuming there are two resonances coupling with the meson-baryon system, the

propagator of resonant particles becomes a matrix,

1
Zfres = er,a(ﬁ)a,ﬁri,ﬁa (Bl)
o,
where
Daﬁ = (W — ma)éaﬁ — Za,,@- (BQ)

The explicit expression of 1/D for 2 x 2 matrix is

1 N
- = B3
D A? ( )
A = Dy1Day — DyaDay, (B4)
Dy —D
N — 22 12 (B5)
—Dy Dny
The resonance energy is obtained by
A= DHDQQ - D12D21 = 0. (B6)

The expansion of the t-matrix around resonance pole is given as

R
T(W):W_M+Co+---, (B7)
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and
R = TF(M)N(M)Ti(M)/A'(M), (B8)
CO _ tnonfres(M) + F/];T(M)N(M)Fl(j\i)/(—;_wl‘_)‘?(M)N<M)F;(M)
T NN o + S g e (B9)

Residues for 1N — 7N scattering (R,,) and pion electroproduction v*N — 7N
(R,+r) are written using 7N and yN form factors (Fy, F)

R.. = F,F,, (B10)
Ry p = F.F,.. (B11)

In our model Dy = Dy, therefore A(M) = 0 means
Dll(M)D22(M) = D%Z(M) = D§1(M)- (B12)

Using this one can define form factor as

Fx = aFLl + bl—‘$72, (B].g)
Doy (M)
B14
a A,<M) ? ( )
D12(M)

= — . B15
\/DQQ(M)A'(M) 1

APPENDIX C: LAGRANGIANS

In this appendix, we specify a set of Lagrangians for deriving the non-resonant inter-
actions vy pvp which is the input to the coupled-channel equations Eq.(135). In the

convention of Bjorken and Drell[65], the Lagrangian with 7, n, N, and A fields are

L:ny = —f;iVNlﬁN%%ﬁ/JN N (C1)

™

Lova =~ gy 0,47, (2)

™
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APPENDIX D: PARAMETERS FROM THE FITS

89

(C3)

(C9)

(C10)

(C11)

(C12)

(C13)

(C14)

In this appendix, we show the parameters for the dynamical coupled channel model

in section IV. They have been obtained by the fitting with the partial wave amplitudes



90 D PARAMETERS FROM THE FITS

Parameter SL Model

F2yn/(47)0.08 {0.08
frna  |2.2061]2.0490
fann  |3.8892|—
gonN  |8.7214]6.1994

Kp 2.654 [1.8250
guNN  |8.0997/10.5
K 1.0200(0.0

JgoNN  |6.8147|—
Gprr |4 6.1994
fran  |1.0000|—
fona  |7.516 |-
Jonr  |2.353 |—
Jorp  |6.955 |—
goan  |3.3016|—
Kpaa | 2.0000|—

TABLE IX: The parameters associated with the Lagrangians Eqs. (C1)-(C14). The results are
from fitting the empirical 7N partial-wave amplitudes [20] of a given total isospin 7' = 1/2 or

3/2. The parameters from the SL model of Ref. [34] are also listed.

from VPI analysis and 7N cross section. The parameters associated with the Lagrangians
are listed in Table IX. Table X shows cut-off momentums of the meson-baryon-baryon
vertices. The masses of the bare resonances are listed in Table XI. Coupling constants

and cut-off momentums of the bare N* — M B vertex functions are shown in Tables XII

and XIII.
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Parameter|(MeV) |SL model (MeV)

Axnn  [809.05 |642.18
Axna  |829.17 |648.18
A,nn o [1086.7 [1229.1
Aprre 110932 1229.1
Auonn  [1523.18|—

Aynn 62356 |—
Aoy |781.16 |—
Apva 12000 |—
Azaa  |600.00 |—
Aprr |1200.0 |—
Awrp  |600.00 |—
Apan  [600.00 |—

TABLE X: Cut-offs of the form factors, Eq. (167), of the non-resonant interaction vasp apr-
The results are from fitting the empirical 7N partial-wave amplitudes [20] of a given total

isospin 7' = 1/2 or 3/2. The parameters from the SL model of Ref. [34] are also listed.
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PDG’s Mass(MeV)

D PARAMETERS FROM THE FITS

My (MeV) M, (MeV)

F35
F37

1535; 1655
1630
1440; 1710
1720
1910
1232; 1600
1520; 1700
1675
1700
1960
1685
1890
1930

1800
1850
1763
1711
1900.3
1391
1899.1
1898
1976
2187
2162
2137.8

1880

2037

1602
1988

TABLE XI: The masses of the nucleon excited states included in the fits (second and third

columns). The first column contains the masses of the nucleon resonances given by PDG [24].
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TN nN TA oN pN
S11 (1) [7.0488 1/9.1000 |/ —1.8526 —2.7945 ||2.0280 |.02736
S11(2)1]/9.8244  ||.60000 ||.04470 1.1394  ||-9.5179|-3.0144
Ss1 {|5.275002]| — —6.17463 — —4.29895.63817
Pip (1)(]3.91172 {/2.62103 ||—9.90545 —7.1617 ||—5.1570(3.45590
P1q (2)]19.9978  ||3.6611 ||—6.9517 8.62949 ||—2.9550|—0.9448
P13 ]|3.2702 ]| —.99924||—9.9888 |—5.0384 |/1.0147 —.00343|1.9999 |—.08142
P3 ||6.80277 || — 2.11764 — 9.91459 10.15340
P33 (1)(/1.31883 ||— 2.03713 [9.53769 ||— —.3175 |1.0358 |0.76619
P33 (2)([1.3125  ||— 1.0783 1.52438 || — 2.0118 |—1.2490{0.37930
Dq3 (1)[].44527 ||—.0174 ||—1.9505 [.97755 —.481855(|1.1325 |—.31396|.17900
Dq3 (2)]].46477 |.35700 |(9.9191  [3.8752 —5.4994 |[.28916 [9.6284 |—.14089
Dys |].31191 —.09594(4.7920 .01988 —.45517 ||—.17888|1.248 —.10105
D33 |1.9446 — 3.9993  |3.9965 — 16237 |3.948 —.85580
Fi5  ]].06223 ]|0.0000 |[1.0395 .00454 1.5269 —1.0353|1.6065 |—.0258
Fs5  [].173934 || — —2.96090|—1.09339|| — —.075818.0339 |—.06114
F37  ]|0.25378 || — —0.3156 |—0.0226 ||— .100 .100 .100
TABLE XII: The coupling constants Cn«jrrs;vp of Eq. (168) with MB =

TN, nN,7A, 0N, pN for each of the resonances. When there are more than one value for 1A

and pN channels, they correspond to the possible quantum numbers (LS) listed in Table L.
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TN nN TA oN pIN

S11 (1) ]|1676.4 ||598.97 |[554.04 801.03 |[1999.8 |1893.6

S11 (2)(533.48 |[500.02 |{1999.1 1849.5 {|796.83 |500.00
S31 - {/2000.00(— 500.00 — 500.031[500.00

Pry (1) []1203.62(/1654.85((729.0 1793.0 |/621.998|1698.90

P11 (2)]/646.86 ||897.84 |[501.26 1161.20{/500.06 |922.280
Py |[1374.0 |[500.23 |[500.00 [500.770(/640.50 [|500.00 |{500.10 |1645.2
Py ||828.765||— 1999.9 — 1998.8 |2000.6

P33 (1) ||880.715||— 507.29 [501.73 ||— 606.78 [1043.4 |528.37

P33 (2)]|746.205||— 846.37 |780.96 ||— 584.98 [500.240(1369.7

Dy3 (1)]|1658.  {|1918.2 |(976.36 |1034.5 ||1315.8 ||599.79 |1615.1 |1499.50

Dq3 (2)]|1094.0 ||678.41 |[1960.0 |660.02 ||1317.0 ||550.14 |597.57 |1408.7
Dys ||1584.7 |[1554.0 |[500.77 |820.17 (|507.07 [|735.40 |749.41 |937.53
D33 ||806.005||— 1359.38 |608.090|| — 1514.98]1998.99|956.61
Fi5 |[1641.6 |[655.87 |[1899.5 [522.68 (|500.93 [|500.76 |500.0 [1060.9
Fs5 1/11035.28||— 1227.999|586.79 || — 1514.3 |593.84 [1506.0
F37 ]/1049.04 || — 1180.2 [1031.81||— 600.02 [{600.00 |600.02

TABLE XIII: The range parameter Ay+ jrrs.vp (in unit of (MeV/c)) of Eq. (168) with M B =

TN, nN,7A, 0N, pN for each of the resonances. When there are more than one value for 1A

and pN channels, they correspond to the possible quantum numbers (LS) listed in Table L.



TN nN TA oN pN
S11(1540)|400 - 2201|300 - 3001|300 - 2201|400 - 2201|400 - 220 i
S11(1642)|350 - 110i|350 - 1101|350 - 1101|350 - 110i{350 - 110 i
P11(1357)|300 - 100i|300 - 100i|100 - 2001|330 - 150i| 330 - 150i
P11(1364)|300 - 1201|300 - 1201|200 - 150i|330 - 150i| 330 - 150i

D13 [350 - 1101|350 - 2001|350 - 110i|350 - 110i| 350 - 110i
D15  [300 - 1201|300 - 120i|300 - 150i|{300 - 150i| 300 - 150i
F15 {300 - 120i|300 - 120i|300 - 150i|300 - 150i| 300 - 150i
S31 300 - 1201|260 - 180i|300 - 150i|300 - 150i| 300 - 150i
P33 1200 - 1001|200 - 1001|200 - 1001|200 - 100i{200 - 100 i
D33 300 - 1201|300 - 1801|300 - 150i|{300 - 150i| 300 - 150i
F35(1738) (300 - 120i{300 - 1801|300 - 150i|300 - 1501|300 - 150 i
F'35(1928) (300 - 1501|300 - 1801|300 - 150i|300 - 1501|300 - 150 i
F37 {300 - 1201|300 - 180i|300 - 150i|300 - 150i| 300 - 1501
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TABLE XIV: Integral path on complex momentum plane for calculating on-shell 7N scattering

amplitude at the resonance pole.
APPENDIX E: INTEGRAL PATH

Tables XIV and XV shows the integral path of each channel, 7N, nN,7A o N and
pN, for calculating wN scattering and electromagnetic form factor at the energy of the
resonance pole, respectively. The paths are determined to choose the considered Riemann
sheet and avoid singularities from the non-resonant potential. For example, in the case of
calculating electromagnetic form factor, the path of 7A momentum at the pole position
on Ps3 partial wave is chosen as the straight line of 0 — 200—100¢ — 800 —507 — oo —50:
MeV.
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mN nN TA oN pN

P33 200 - 1001|200 - 1001|200 - 100i ; 800 -501{200 - 1001|200 - 1001

P11(1357){300 - 1001|300 - 1001|100 - 200i ; 800 -50i|330 - 1501|330 - 150i

P11(1364)|300 - 1201|300 - 1201|200 - 150i ; 800 -50i|330 - 1501|330 - 150i

D13  |350 - 1101|350 - 200i 400 - 1101 350 - 1101|350 - 1101

TABLE XV: Integral path on complex momentum plane for calculating the electromagnetic

form factor at the resonance pole.
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