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Abstract
We classify blocks of category for rational Cherednik algebras and of cyclo-
tomic Hecke algebras of typ&(r, p,n) by using the “residue equivalence” for multi-
partitions.

0. Introduction

Let V be a finite dimensional vector space oy and W C GL(V) be a finite
complex reflection group. The rational Cherednik algebra= #(W) over C associ-
ated toW was introduced by [7]. It is known that the categdafy of H is a highest
weight category with standard modul¢a(X) | A € AT}, where A" is an index set
of pairwise non-isomorphic simplgV-modules overC ([11], [9]). Let 27 = J7(W)
be the cyclotomic Hecke algebra associatedWowith appropriate parameters. Let
KZ: O — 2-mod be the Knizhnik—Zamolodchikov functor defined in [9].id known
that O is a quasi-hereditary cover (highest weight cover)séf in the sense of [21].
Put S(1) = KZ(A(X)). We see that there exists a one-to-one correspondeneediet
the blocks of O and of s# thanks to the double centralizer property. Moreover, we
see that the classification of blocks 6f and of .7 is given by the linkage classes
on {A(x) | A € AT} or on {S(1) | » € At} (see 81 for details). Hence, in order to
classify the blocks of© and of 77, it is enough to determine the linkage classes on
{S() [ » € A*).

In the case wher&V is a complex reflection group of typ&(r, 1,n), 57 is also
called the Ariki—Koike algebra. In this case\™ is the set ofr-partitions of sizen,
which we denote byP, . Then the linkage classes ¢&(1) | » € A"} are given by the
equivalence relation<g”, the so called residue equivalence, &), by [17]. (Note
that the Specht modul&* (L € A™) considered in [17] does not coincide witB())
in general. However, one sees that the linkage classgsSohi € A™} coincide with
the linkage classes ofS(1) | A € AT}. See 83.)
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Our purpose is to classify the blocks ¢f and of 7# in the case wherdV is
a complex reflection group of typ&(r, p, n). As seen in the above, we should de-
termine the linkage classes diB(A) | » € AT}. Let Wi be the complex reflection
group of typeG(r, 1,n), and we denote by adding the supersctigor objects of type
G(r, 1,n). It is known thatW is a normal subgroup oW with the index p, and
that /7 is a subalgebra of#f. An index setA* of pairwise non-isomorphic simple
W-modules overC (thus, A is also an index set of standard modulesfis given
as the equivalence classes Bf; x Z/pZ under a certain equivalence relation-,”
on Pn, x Z/pZ (see 4.3 for details). We denote hyi) € A" the equivalence class
containing §,1) € Pn, x Z/pZ.

Some relations between representationss6f and of s#1 have been studied in
[2], [8], [12], [13], [14], [15] and [16] by using the Cliffat theory. Combining these
results with some fundamental properties of quasi-heagditovers, and with the clas-
sification of blocks of#! by using the residue equivalence &”, we give the classi-
fication of the blocks of® and of 2# by using a certain equivalence relatior™ on
Pnr as follows.

Let “~” be the equivalence relation oR,, defined byx ~ u if A ~r u[j] for
somej € Z, whereu[j] € P, is obtained fromu € P, by a certain permutation of
components ofx (see 4.3 for the precise definition afj]). Put I" = {L € Pn, | A #£R
wn for any u € Pnr such thatu # A}. Then our main theorem is the following.

Theorem 4.11 (i) If x € I', then A(A(i)) (resp. SA(i))) is a simple object of
O (resp. simplezZ-modulg for any i € Z. Moreovey A(L(i})) (resp. §A(i))) is a block
of O (resp. of 77) itself.
(i) For A, u e Py, \I' and i, j € Z,

both of A(A(i)) and A(u(j)) belong to the same block @?
< both of SA(i)) and Fu(j)) belong to the same block o#
& AR N
NOTATIONS. For an algebraeZ, we denote bye/-mod the category of finitely
generatedes-modules, and denote hy/-proj the full subcategory o&7-mod consist-
ing of projective objects. LeKy(«/-mod) be the Grothendieck group ef-mod. We
denote by M] the image ofM in the Ko(«7-mod) for M € «/-mod. ForM € ./-mod

and simple objecL of <«7-mod, we denote byNl : L]., the multiplicity of L in the
composition series oM. We also denote by7°PP the opposite algebra of7.

1. Some properties of quasi-hereditary covers

In this section, we recall some notions of quasi-hereditoyers from [21], and
review some fundamental properties.
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1.1. Let & be a quasi-hereditary algebra over a field. Take a projectject
P in &/-mod, and put# = End,(P)°°’. Then we have an exact functdf =
Hom,, (P, —-): &/-mod — #-mod. Let X be a progenerator of/-mod such thatX =
P @ P’ for some projective objecP’ in «/-mod. Then Eng (X)°PP is Morita equiva-
lent to 7. We may suppose that EpgX)°P =~ o7 without loss of generality.
Throughout this section, we assume the following condition
(Al): The functorF is fully faithful when we restrict tae/-proj.
Hence, .7 is a quasi-hereditary cover aB in the sense of [21]. SincX € .«7-proj,
we have

(1.1.2) o =~ End,, (X)°PP == Endy(F(X))°.

Note thatX = P & P’. Let ¢} € End,(X) be such thap} is the identity map on
P, and 0-map orP’. We denote bypp the element ofe7 =~ End,.,(X)°PP corresponding
to ¢p. It is clear thatpp is an idempotent. Since
F(X) = Hom, (P, P) ® Hom,, (P, P’)
=~ End, (X)ep
~ ppd

as right.«7-modules, we have the following isomorphisms of algebras:

End,/om(F (X)) = End,yome(pp.a’)
= ppdpp
= (ppEnd. (X)¢p)"P
~ End,, (P)°"
= A.

Thus, we have the double centralizer property:
(1.1.2) o = Endg(F(X))°PP, % =~ Endee(F(X)).

This double centralizer property implies the isomorphigfay) — Z(%), where Z(«)
(resp. Z(#)) is the center ofe/ (resp. #). Thus, there exists a bijection between
blocks of o7 and of #.

1.2. Recall thate is a quasi-hereditary algebra. LEA(A) | L € AT} be the set
of standard modules, anfV(1) | » € A™} be the set of costandard modules @f.
For » € AT, let L(1) be the unique simple top oA(x), and P(A) be the projective
cover of L(A). Then{L(A) | » € A™} gives a complete set of non-isomorphic simple
«7/-modules.
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Forx € AT, put S(A) = F(A(1)), D(A) = F(L(»)) and A = {r» € AT | D(A) # 0}.
Since # =~ gppo/pp and F = Hom,/(P, —) = Hom,, (<7 ¢p, —), the following lemma is
standard (see e.g. [6, Appendix]).

Lemma 1.3. (i) For A € A{, we have 1) = Top F(P(%)) = Top S(1).
(i) {F(P()|Are A} gives a complete set of non-isomorphic indecomposable pro-
jective Z-modules.
(i) {D(1) | » € AJ} gives a complete set of non-isomorphic simptemodules.

1.4. For A, u € AT, we denote byP(A) ~ P(u) if there exists a sequence=
AL A2, 0 ki1 = 1 (Aj € AT) such thatP (%) and P(%; 1) have a common composition
factor for anyi = 1,...,k. Then “~” gives an equivalence relation diP(A) | A € AT}.
It is well-known thatP(1) ~ P(u) if and only if P(1) and P(u) belong to the same
block of <. Similarly, we define an equivalence relation™ on {F(P(1)) | » € Ag},
and we haveF (P(L)) ~ F(P(w)) if and only if F(P(%)) and F(P(r)) belong to the
same block of%#. Then the double centralizer property (1.1.2) implies th8ov-
ing lemma.

Lemma 1.5. For A, u € A}, we have
P(1) ~ P(x) if and only if F(P(%)) ~ F(P(w)).

Note that all the composition factors af(A) belong to the same block a# since
A(A) is indecomposable. Then, the exact fundtocombined with Lemma 1.5 implies
the following corollary.

Corollary 1.6. For eachi € A™, all the composition factors of (8) belong to
the same block of?.

1.7. From now on, we assume the following additional condition:
(A2): [A(M)] =[V(A)] in Ko(=/-mod) for anyr € AT,

By the general theory of quasi-hereditary algebras, foe A", P(1) has a
A-filtration such that P(x) : A(n)) = [V(r) : L(A)]w, Where (1) : A(r)) is the
multiplicity of A(u) in a A-filtration of P(1). Combining with the assumption (A2),
we have

(1.7.1) (P - A(w)) = [A(w) : L))

This implies the following lemma.
Lemma 1.8. For A, u € A}, we have

[F(P(): D(u)ls = Y [S(v) : D(A)]#[S(v) : D(1)]-

veAt
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1.9. For A, u € A*, we denote byS(h) ~ S(u) if there exists a sequence=
A A2, hki1 = 1 (A € AT) such thatS(h;) and S(%; 1) have a common composition
factor for anyi =1,...,k. Then “~" gives an equivalence relation qi8(1) | . € A™}.
Similarly, we define an equivalence relation™ on {A(L) | A € A™}.

Corollary 1.6 and Lemma 1.8 imply the following proposition

Proposition 1.10. For A, u € AT we have the following.
(i) S(A) ~ S(w) if and only if 1) and Ju) belong to the same block oB.
(i) A(X) ~ A(w) if and only if A()) and A(u) belong to the same block af.

1.11. Finally, we assume the following additional condition:
(A3): S(A) = F(A()L)) # 0 for anyr € A™.

Thanks to Proposition 1.10, we can classify blocks#f(resp. blocks ofe?) by
equivalence classes dfS(L) | A € AT} (resp.{A(L) | A € AT}) with respect to the
relation “~”. Then Lemma 1.5 and Proposition 1.10 (under the assumygaa8y) imply
the following proposition which gives a relation betweewndis of .7 and of 4.

Proposition 1.12. For A, u € AT, we have
A() ~ A(w) if and only if ) ~ S(u).

2. Rational Cherednik algebras

2.1. Let V be a finite dimensional vector space oy and W C GL(V) be a
finite complex reflection group. Letl be the set of reflecting hyperplanes \&f, and
A/W be the set ofW-orbits of A. For H € A, let Wy be the subgroup oW fixing
H pointwise, and puey = |Wy|. Take a set

Q= {kH,i eC | H e .A/W, 0<i <ey such thatkH’o = kH,eH = O}

Let H# be the rational Cherednik algebra associatedMowith parameters2 (see [9,
3.1] for definitions). By [7], it is known tha#{ has the triangular decomposition

H = S(V*) ®c CW ®¢ V) as vector spaces,

where S(V) (resp. S(V*)) is the symmetric algebra 0¥ (resp. the dual spac¥*),
and CW is the group ring ofW over C.

Let O be the category of finitely generatég-modules which are locally nilpotent
for the action of (V) \ C. Let IrW = {E* | A € AT} be a complete set of non-
isomorphic simpleCW-modules. Fora € A™, put

A(L) = H ®svyw E*,
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where (V) x W =~ S(V) ®c CW is a subalgebra oH, and we regarcE* as aS(V) x
W-module through the natural surjecti®V) x W — CW. It is known thatO turns
out to be a highest weight category with standard mod{es.) | » € A*} ([9], [11]).
Let L(A) be the unique simple top ok()), then{L(A) | » € A*} is a complete set of
non-isomorphic simple objects i@®. For A € A™, we denote byP()) the projective
cover of L(A).

2.2. Let sZ be the cyclotomic Hecke algebra &/ correspondingH (see [9,
5.2.5] for the choice of parameters). Then the Knizhnik—g@lmachikov functor (sim-
ply, KZ functor) KZ O — 2#-mod is defined in [9, 5.3]. KZ functor is a exact functor,
and represented by a projective object

Py = @ P(L)®AMKZL0) ¢ O,

rEAT

namely, we have KZ Homn(P«z, —). Moreover, by [9, Theorem 5.15], we have
A = (Endo (Pxz))P.

By [9, Theorem 5.16], KZ functor is fully faithful when we reigt to projective
objects inO. Thus, O is a quasi-hereditary cover of?.

Put &7 = Endn(X), = 2 and F = KZ, where X is a progenerator of) such
that X = Pxz & P’ for some projective objecP’ in O@. Then, these satisfy assump-
tions (Al), (A2), (A3) by [9]. Thus, all results in 81 hold fdhis setting. In partic-
ular, we putS(x) = KZ(A(%)) and D(A) = KZ(L(1)) for 1 € AT, Let AJ = {) €
A' | D()) # 0}, then{D()) | » € Aj} gives a complete set of non-isomorphic simple
2-modules.

2.3. In the rest of this section, we recall a modular system andcardposition
map described in [9]. LeC[2] be the polynomial ring overC with indeterminates
Q= {kni | He A/W, 1<i <ey —1}. We have a homomorphism: C[Q] — C of
C-algebras such thdty; — kni. Putm = Kerp. Let R be the completion oft[€]
at the maximal ideaim. Then R is a regular local ring with the unique maximal ideal
m = ((Kni —Kn.i)Hea/w, 1<i<ey—1). We have the canonical homomorphigti— C such
thatky; — kyi. Let K be the quotient field oR.

Let Hg be the rational Cherednik algebra W over R with parameters? (put
kKn,o = kne, = 0), and 77z be the cyclotomic Hecke algebra ov& associated to
Hr. Then we haveH = C ®r Hr and 27 = C ®r k. Put Hk = K ®r Hk
and 7% = K ®gr . We denote objects oveX = R or K by adding subscripiX,
e.g. Oy, A()\.)x, KZy, S()\.)X, P

Under the modular systenK( R, C), we can define the decomposition map

dk ¢ : Ko(#k-mod) — Ko(s2-mod)
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by [M]  [C ®r N], where N is an J#g-lattice of M. Thanks to [9, Theorem 5.13],
we have the following lemma.

Lemma 2.4. For » € AT, we have
de.c([Sc(W)]) = [S(V)]-

3. Case of typeG(r, 1,n)

In this section, we consider the complex reflection gratpof type G(r, 1, n),
i.e. W=G6,x (Z/rz)". In this case,”# is often called the Ariki—Koike algebra, and
many results for representations .6 are known by several authors.

3.1. In this section, we use the modular systek, R, C) given in the previous
section, and we take parameters as follows.

Let V be ann dimensional vector space ov€r with a basis{ey, ..., e}. Then
we haveW C GL(V). Let s, t; € W be reflections such that

(3.1.1)

e If k=1 e if k=1
s@)= e if k=2, tl(q)={eK otherwise, (¢ = &XP@V=1/r),
e otherwise,

and Hg, (resp. H;,) be the reflecting hyperplane correspondingsto(resp.t;). Then
{Hs,, Hy,} gives a complete set of representatives\bbrbits of A, and we havey, = 2
andeHtl =r. Hence, we can take parametéhs ky, ..., k 1} (resp.{h, Ky, ..., Kki_1})
of H (resp.Hx (X = R or K)) such thath = ky_ 1 (resp.h = k1) andkj = Ky, ,j
(resp.kj =k, ,j) for 1= j <r—1. Then? (resp. g, #k) is the associative algebra
over C (resp.R, K) defined by generator§, Ty, ..., Th_1 with defining relations:

(To—1)(To— Q1) -+ (To— Qr-1) =0,
(To—1)(To+4q) =0,

(3.1.2) ToT1ToTy = ThToT1 To,
TTuTi=TuTiTya A<i=sn-1),
TT, =TT (i—jl>1),

where Q; = exp(2rv/—1(ki +i/r)), q = exp(2r~/—1h) (resp. Qi = exp(2r v—1(ki +
i/r)), q = exp(2r v/—1h)).
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3.2. Let
A0 =0,09, . ) ezlywith 20 =280 > ...
Par =44 =0W, ..., 20| I
" DI
k=1 i>1

be the set ofr-partitions of sizen. It is well-known that the isomorphism classes of
simple CW-modules are indexed b, ,, thus we haveA™ = P,;.

3.3. By [5], it is known that % (X = K, R or C, we may omit the subscript
X when X = C) is a cellular algebra with respect to a posdtt( >), where " is
the dominance order om™. We denote byS; the Specht (cell) module fok € AT
constructed by using the cellular basis in [5].

It is known that.# is semi-simple, andS; | » € A} gives a complete set of
non-isomorphic simple’ -modules.

By the general theory of cellular algebras (see [10] or [19]¢ can define the
canonical bilinear form{ , ): S x " — C by using the cellular basis. Put R& =
{xe S| (x,y) =0 foranyy € S}} and D* = S'/RadS". Let K, be the set of
Kleshchev multi-partitions containing ik (see e.g. [3] and [18] for the definition).
Then it is known that{D* | » € K,,} gives a complete set of non-isomorphic simple
2-modules by [3].

It is known that all composition factor 08" belong to the same block of#.
Let “~” be an equivalence relation ofS* | A € A*} defined in a similar way as
the equivalence relation~" on {S(A) | A € AT} in the previous section. Then it is
known that

(3.3.1) S'~ 9 ifandonlyif S"and$S* belong to the same block of7.

By (3.3.1), we can classify the blocks o# by the equivalence classes P8 | A €
AT} with respect to 4", and such equivalence classes are described by using some
combinatorics in [17] as follows. For € A™, put

W ={Gj.Kezd|1<j<a¥ 1<k<r}.
For x = (i, j, k) € [A], we define

QP Q1 if gq#1andQey#0,
res) = {(j —i, Quer) if g=1 andQ_1 # Qx_1 for k #1,
Qk-1 otherwise,

where we putQo = 1. Put Resfi*) = {resk) | x € [A] for someAr € A*T}. Then, we
define an equivalence relation (called residue equivajehsg” on A™ by

A~rp if #{xe[r]|resk)=a} =#{yec[u] |resly) =a} for all acRes@A™).
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Theorem 3.4 ([17, Theorem 2.11]). For A, u € A, we have
St~ ifand only if A ~gpu.

3.5. We take IrtW = {E* | » € AT} such thatk ®c E* >~ S; via the isomorphism
M = K ®c CW. SinceS; = K ®r S; and S' = C Qg S, we have

(3.5.1) de.c((S]) =[S
It is also well-known thatk ®¢ E* =~ S (1) via the isomorphismi# =~ K ®c CW

(see before [9, Theorem 5.13]). Thus, we h&fe =~ Sc(1) as #k-modules. Then
Lemma 2.4 together with (3.5.1) implies that

(3.5.2) [S0)] =[S'] in Ko(#-mod) for e A™.

Note thatS(1) % S* as.#-modules in general. Hence, T&)) % Top S* in general.
Moreover,Aar # Knr in general. Let

0: AS_ — ICnyr

be the bijection such thab(1) = D’® as.#-modules. Then we have the follow-
ing proposition.

Proposition 3.6. For A € AT and u € Af, we have
[AQ) : Lo = [SA) : D(W)]»r =[S : D"W] .
Proof. The first equality is clear since the KZ functor is exd&y (3.5.2), we have
[S(M)] = [S'] in Ko(s#-mod), andD(i) = D@, Thus, we have the second equality.

O]

The following theorem gives a relation between blocksbaind blocks of77. In
particular, we obtain the classification of blocks©@fby using the residue equivalence.

Theorem 3.7. For A, u € A", we have
A(R) ~ Ap) & S(A) ~ S(u) & S~ " & A ~r 1.

Proof. The first equivalence is Proposition 1.12. The secemqvalence follows
from (3.5.2). The third equivalence is Theorem 3.4. []

REMARK 3.8. By [21], under a certain condition for parameters, iknewn that
O is equivalent ta¥}, .-mod as highest weight categories, wherg, is the cyclotomic
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g-Schur algebra associated & defined in [5]. In this case, we ha&X) =~ S', and

6 is the identity map (in particulard{ = Kn,). So, the above theorem is known by
[17]. However, the above theorem claim that a classificatbmlocks of O is given

by the equivalence relation~}” on A™ (residue equivalence) even if the case where
O is not equivalent to}, -mod.

4. Case of typeG(r, p, n)

In this section, we consider the case whékeis the complex reflection group
of type G(r, p, n), wherer = pd for somed > 1. It is well-known that the com-
plex reflection group of typ&s(r, p, n) is a normal subgroup of the complex reflection
group of typeG(r, 1,n) with the index p, and we will study some relations between
type G(r, 1,n) and typeG(r, p, n). Hence, we denote by’ the complex reflection
group of typeG(r, 1,n), and we use the results in the previous section\ér. In
this section, we use the notations in 82 for correspondirigotd of typeG(r, p, n),
and we denote by adding the supersciigbr corresponding objects of typ&(r, 1,n),
e.g. 1, 2%, AT(V), KZT, ST(A), . ... Let Imrwt = (E™ | L € P} be a complete set
of non-isomorphic simpleCW'-modules considered in the previous section.

4.1. Let V be ann dimensional vector space ov€r with a basis{ey, ..., ey}.
Then we haveV C GL(V). Recall thats;,t; € GL(V) is a reflection defined in (3.1.1).
Then g (resp.tlp in the case wherg # r) is a reflection contained iW, and let
Hs, (resp.Hr) be the reflecting hyperplane correspondingstdresp.ty). In the case
where p # r, {Hg, Hep} gives a complete set of representatives\igforbits of A,
and we haveey, =2 and ey = d. Hence, we can take parametéls ki, . .., Kg_1}
(resp.{h,ky, ..., kq-1}) of H (resp.Hx (X = R or K)) such thath = k1 (resp.h =
K, 1) andkj = kHtlp,,- (resp.k; = kHtlp,j) for 1< j <d—1. On the other hand, in the
case where = p, A is the W-orbit of A itself. Hence{ (resp.Hx (X = R or K))
has a parametefh} (resp.{h}).

Then o7 (resp. /R, k) is the associative algebra ov€r (resp. R, K) defined
by generatorsa, a;, &, &, . . ., a,—1 With defining relations:

(@ — 1)@ —x1) - -+ (a0 — Xg-1) = O,
(@ —-1)@ +a9) =0, @-1@+q) =0 (1<i<n-1),
apdja; = ajady, A = A, (ajay)? = (Ajaia)?
aa =ga (2<i=n-1), ag=aa (B=]=n-1),
81802218121 - - - = 031802303430 " * *,

p+1 factors p+1 factors
38118 = a1ad+1 (1=i=n-2),
gaj=aja (1<i<j-1=n-2),
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wherex; = exp(2r v—1(k; +i/d), q = exp(2r v/—1h) (resp.x; = exp(2r v/—1(k; +i/d),
q = exp(2rv/—1h)) (see [4] or [2] for braid relations).

4.2. Put
+ . cC j Cc-p+] .
kc_p+,-—kc+a+—p— - (0<c<d-1,0<j=<p-1),
i . cC j c-p+j .
kc_p+j—kc+a+—p—7 (OSCSd—l,ijip—l),

where we seky = kg = 0.

Throughout this section, lex (resp.?—LI< (X = R or K)) be the rational Chered-
nik algebra associated /' with parametergh, kI, RV kffl} (resp.{h,ki,..., kffl})
such thath = kTHST1 (resp.h = kTHSl’l) and kJT = kLtl,j (resp.kJT = kTHtl,j) forl<j <
r —1. Since

{5t 220)) 5 )

= x££ = exp(2rv/=1/p)),

where we putxo = 1 (similar forki_pﬂ-), the defining relation (3.1.2) of# (resp.j‘fxT)
replaced by

(Te = 1)(TS —xD) -+~ (T9 = x§_,) = 0.

Since %KT is semi-simple (thusOTK is also semi-simple) by [1], we can obtain any
results for typeG(r, 1,n) in the previous sections even if the case of these parasaeter
By [2, Proposition 1.6], there is the injective algebra homoophisme: 5% —
A} (X = C, R or K) such thatg(ag) = T, (@) = Ty 'TiTo, (@) =T (1 <i <
n—1). Under this injective homomorphisp, we regards# as a subalgebra o}fXT

4.3. For MT e CW'-mod, we denote by | the restriction of the action tG'W.
Fora=(W,..., A0y e P, andi € zZ, we definer[i] = (AW[i1Y, ..., A[i1D) € P, by

Ai]EPHD) = 3P0 (0<c<d-1,1<] <p),

wherec-p<c-p+k<(c+1)-p such thatk=j +i mod p. For an example, if
r =6 andp = 3, we have

A[1] = 0@, 1O 2@ 1 16) 1 6) (@),
A2] = (W@, A0 2@ 156 1@ 56,
A[3] = (A(l), RCIORS IO A(G)) =
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Let ¢ be the minimum positive integer such thaf;,] = A. It is clear that¢, | p.
Puto; = p/t.. Then we have\[i + &] = A[i]. Let ~, be the equivalence relation on
Pnr X Z/pZ defined by

()~ @il c-oi+ 1) (b cen),

where we denote byn the image ofme Z in Z/pZ. Let A+ be the set of equivalence
classes ofP,, x Z/pZ with respect to the relatior-,, and we denote by (j) € A*
the equivalence class containing, {) € P, x Z/pZ. Thus we have.(j) = A[i](j) =
Ac-0;, + )y =AJi]l{c-0, + j) for i,c € Z. Then it is known that,

(4.3.1) E*| M| ~E*W g...0 E*®™) (i € Z) asCW-modules,

for some simpleCW-modulesE*) (1< j <9,), and{E*I)|A(j) € A*} gives a com-
plete set of pairwise non-isomorphic simgBV-modules. Hence, we have

IrCW = {E*) | A(j) € AT},

Moreover, we have

(4.3.2) EMIp ~ EPM g ... @ ETMB] as Wi-modules(1< | < 0,).

4.4. For M' € s#-mod, we denote byM'| the restriction of the action toz.

On the other hand, foN € J#-mod, we denote byN 1 the induced modulééﬂxT ®.% N.
Then, by (4.3.1), we have

(4.4.1) SO = SO(1) -+ & S(h(0:) for A€ Py
and, by (4.3.2), we have
(4.4.2) SOt = SeA) @@ SLeLs]) for A(j) € 4™,

We define the group homomorphism ResKo(g%”xT—mod) — Ko(s%-mod) by
[MT] = [MT]]. We also define the group homomorphism ndK(#%-mod) —
KO(%XT-mod) by N] — [N1]. Since %XT is a free right #-module, induced func-

tor from J#-mod to %”)(T—mod is exact. Thus Indis well-defined. Then we have the
following lemma.

Lemma 4.5. (i) For » € P,,, we have
[STO) = [SG(I)] + -+ + [S((:))] in Ko(#-mod).
(i) For A(j) € A*, we have

[SG-(IN1M] = [STAD] + -+ - + [STRED] in - Ko(s#T-mog.
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Proof. (i) By Lemma 2.4 and (4.4.1), we have

di c([SkOID) = dic.c ([SCIN] + -+ + [Sc R (:)])
= [S(I] + - - - + [SA()]-

On the other hand, by the definition of decomposition maps haxe

de.c([SL ) = [STR)I-

Then (i) was proven. By using (4.4.2) together with Lemma, 2w have (ii) in a
similar way as in (i). []

4.6. We recall some relations between simpgté-modules and simplgZ’-modules
which have been studied in [8] and [16]

Let {S™ | » € Py} be the set of Specht modules ¢ constructed in [5] as seen
in the previous section. ThefD™ | 1 € K} is a complete set of simple#’f-modules.

Let o be the algebra automorphism ot defined byo(To) = €T (€ =
exp(2t~/—1/p)), o(T) =T fori =1,...,n—1. Then we see that the restriction
ol of o to 7 is the identity map on”. We also define the algebra automorphism
t of #T by t(X) = Ty IxTo for x € 1. Then we haver (J#) = 7.

For Mt e s#f-mod, let MT)° be the twisted’-module of M via o. Sinceo|»
is identity map, we haveM )’ | = M| as.#-modules. Similarly, forN € .#-mod,
let N* be the twisted7#-module of N via .

For & € Ky, andi € Z, we definer[i]” by (D*)”" = DT, Let ¢ be the mini-

mum positive integer such thaf]” = A (thus ©1)"" = D), and putd, = p/..
Let D be a simples#-submodule ofD*|. Then by [8, Lemma 2.2]p, is the min-

imum positive integer such thdd®™* =~ D. Moreover we have, foi € K, andi =
1,....¢,

. b_
(4.6.1) D =DM D@D ®---@ D" as.-modules.

Let ~, be the equivalence relation d6,, x Z/pZ defined by

(O §) ~ (i e + 1) (,cen).

We denote by (., x Z/pZ)/~. the set of equivalence classes /6f; x Z/pZ with
respect to the relation-,, and we denote by.(j)" € (Kn, x Z/pZ)/~,. the equiva-
lence class containing\( j) € K, x Z/pZ. Then, by [8, Lemma 2.2] (see also [16,
Proposition 2.4]),

(DM 1A (j) € (Kny X Z/PZ)/~)
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gives a complete set of pairwise non-isomorphic simpé-modules, where we put
D) = D” for some simples-submoduleD of D (see (4.6.1)).
By [8, Lemma 2.2], we also have, for(j)’ € (Kn; x Z/pZ)/~,

(4.6.2) DM’} =~ DY g ... @ DY as #t-modules.

REMARKS 4.7. (i) Fori e Knr, A[i]” (1<i <¢) is described in [13] (the case
of type D), [15] (the case of typ&(r, r, n)) and [8], [16] (general case).
(i) Recall that{D(A(i)") | A(i)’ € A} gives a complete set of non-isomorphic simple
#-modules (Lemma 1.3). Hence, there exists the bijection] — (Knr XZ/pZ)/~,
such thatD(A(i)’) = D"¢())

Now we have the following proposition.

Proposition 4.8. For A € Pn, and u € Knr, we have the following.
() Y24 [S((s)): DM, = Z JASHIT DIHIT] L (1< <), 1<) < t).
(i) YU [S{i) : DH]p = YE [P DI (L<i <0, 1<) <€),

Proof. Let
Sl =My DM 1D---DM; D Mg=0

be a composition series &™*li1 in #T-mod such thaM, /M,_; 2= D, Applying the
restriction functor, we have the filtration

S| = Ml D M1l D+~ D M1| D Mgl =0
such thatM; | /M,_1| = D'* | in J#-mod. Thus, by (4.6.1), we have

¢

(4.8.1) [Smj]i . Du(i)"]%, = Z[ST/\[J] . DTu[t]b]%h
t=1

On the other hand, by (3.5.2) and Lemma 4.5 (i) together 8ith| >~ Sl
(4.8.2) (sl . pr®) Z[S(A ) : D],
s=1

(4.8.1) and (4.8.2) imply (i). Next we prove (ii). Let

SA(i) =Nk DNke1D---DODNgDNp=0
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be a composition series @& (i)) in #-mod such thatN,/N,_; = D*{1)". Applying
the induced functor, we have the filtration

SA(INT =Nt D Niea? D--- DNt D Not =0
such thatN,1/Ny,_11 = D#{)"4 in s#t-mod. Thus, by (4.6.2), we have

b
s

(4.83) [SG.())1 : DI e = D IS((i)) : D]

s=1

On the other hand, by (3.5.2) and Lemma 4.5 (ii), we have

€,
(4.8.4) S(L(iNT DTM[J]"]%T = Z[Sﬂlt] . DTM[J’]"]%T_
t=1

(4.8.3) and (4.8.4) imply (ii). O

4.9. Recall that ~g" is the residue equivalence oR,, defined in the previous
section. We define an equivalence relation™on P, by A ~ u if A ~g u[j] for
somej € Z. Put

I'={L€Pnr |1 ru for any u € Py, such that # A}.

We see easily that ~g n if and only if A[i] ~g w[i] for any i € Z. Thus, we have
AMil e I if A € I'. Then we have the following proposition.

Proposition 4.10. For A € P, \ I', we have
S(A (1)) ~ S(A(2)) ~ -+ ~ S(A(0;)).

Proof. If ¢, = p, there is nothing to prove sinag = 1. Hence, we assume that
¢, # p. First, we show the following claim.

Claim. For » € P\ I" such thatt;, # p, we can takew € P such thath ~g u,
and thatt, = p (thuso, = 1).

Sincei € Py \ I', we can takeu € P, such thath ~g u and u # 1. By [17,
Theorem 2.11], it is known that ~r w if and only if A ~; u, where “~;" is the
Jantzen equivalence oR,, (see [17, Definition 2.8] for definitions). By the defin-
ition of the Jantzen equivalence, we may assume jghabtained by unwrapping a rim
hook r} from A, and wrapping another rim hoak’ from [A] \ r}. Namely, we have
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[A]\r} =[u] \ry (See [17] for notations here). Suppose that 1) andy e u().
Then p]\r} = [p] \ ry implies that

(4.10.1) A0 2 5O 50 2 40 and 20 = 41O for | £, .

Note thatu® #£ @ if A0 = A0) andi # j. Thus, we havex®) # O for any| # i

such thatt =i mod¢, andc-p<I| <(c+1)-pwhenc-p<i <(c+1)-p. This
implies that
(4.10.2) € 1€, unless ¢, =p.

In the case wherep is a prime number, (4.10.2) implies, = p sincet, =1
by ¢ | p and ¢, # p. In the case wherg = 4, one can easily check thaf = p
directly. Let p > 6 be not a prime number. Assume tltat# p. Then we have; ¢ ¢,
by (4.10.2). In a similar way as in the above arguments, wee fiavt ¢, (note that
¢, # p). By the conditionsp > 6, ¢, t ¢, and¢t, { ¢,, one sees that there are at least
three integers«, Xz, X3 such thata®) £ ™) (I =1, 2, 3). However, this contradicts
to (4.10.1). Thus we havg, = p, and the claim was proved.

Thanks to the claim, we can take € P,, such thatA ~g p, and thato, = 1.
Then we can take a sequenkte= A, . .., Ax = u satisfying the following two condi-
tions:

e St and St% have a common composition fact&™ .

e There exists an integdrsuch thatv,, # 1 for anyi <, and thato,, = 1.

By Proposition 4.8 (i), one sees thay; (1)) has a composition factdp” " for anyi €
{1,...,0,} (note thaw,, = 1). On the other hand, by Proposition 4.8 (ii), one sees that
S(h-1(j)) (1 < j <9,,,) has a composition factdd” (" for somei € {1,...,d" }. Thus,

we haveS(i (1)) ~ S(Ai_1(j)) forany j =1,...,0;_,. This implies thatS(x_1(1)) ~
Sh—1(2)) ~ -+ ~ S(X_1(0;,_,)). By using the (backword) inductive argument combined
with Proposition 4.8, we have the proposition. O

Theorem 4.11. (i) Forae " andi=1,...,0;,, we have B.(i}) (resp. A(r(i)))
is a simplesZ-module(resp. a simple object ab). Moreover S(A(i)) (resp. A(A(i)))
is a block of 7 (resp. of Q) itself.
(i) For A, pn € P\ I and i, j € Z, we have

AM()) ~ A(u(])) < S(A(i) ~ S(u(j)) & 2 =~ u.
Proof. Suppose tha&(x(i)) andS(u(j)) have a common composition factbr )’

Then, by Proposition 4.8 (i)™l and Sf#li'1 have a common composition factrf*
for somei’, j’. This implies that

(4.11.1) SO0 ~ S((j)) only if A~ u.
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() Suppose thak € I", then S is a simple.”T-module from the definition of
. If S(u(i)) ~ S(u(j)) for someu(j) € A*, we haver ~ u by (4.11.1). This im-
plies that there exists an integersuch thati = u[l] since A € I'. Thus, we have
w(j) = w[l1{j) = A(j) from the definition of A*. Now we may assume th&(x(i))
and S(x(j)) have a common composition fact@*®". If A(i) # A(j) (i.e.i # j

modd,), we have} 2" ,[S(r(s)) : D*'] , > 2. On the other hand, we ha\Efil[ST* :
D]+ < 1 since S™* is simple. These contradict to Proposition 4.8 (i). Thus we
have (i) = A(j) = u(j). This implies (i).

Next we prove (ii). Fori, u € Py, \ I', suppose thag* and S* have a common
composition factoD . Then, by Proposition 4.8 (i)S(A(i)) and S(u.(j)) have a com-
mon composition factoD”(!)" for somei, j (and for anyl). Thus, S(A(i)) ~ S(u(j)).
Combining Proposition 4.10 and (4.11.1), we obtain the o []
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