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0. Introduction

The decomposition theorem of automorphisms of free group is well known, and
we mention the statement in the case of rank 2.

Theorem ([11). Let G{1,2} be a free group generated by symbols 1 and 2.
Then any automorphism of G{1,2} is decomposed by three automorphisms:

o 1—-2 3: 1—12 f1-1
21 P l2o1 0 T l2aot

Recently Zhi-Xiong Wen and Zhi-Ying Wen give the decomposition theorem of
invertible substitutions of rank 2, where we say an automorphism o is an invertible
substitution if words o(1) and o (2) consist of the symbols 1 or 2.

Theorem ([2]). Any invertible substitution is generated by three invertible sub-
stitutions:

o 1—-2 a: 112 5 1-21
12->1° 121 “12-1 °

In this paper we give a simple proof of the theorem and a geometrical characta-
rization of invertible substitutions.

1. Proof of the theorem

Let us introduce the canonical homomorphism f : G{1,2} — Z? as follows:

f(i)) = +e;, i=1,2
f(W) :=f(s1) +f(s2) +--- +1f(sg) for W =s155---5, € G{1,2}

where {e;,e;} be canonical basis in R%. Then we know the following property.
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Fig. 1. K[W], W = 1121-12-11-1

ProperTY. Let us define the linear representation L, of o by
= (f(0(1)),(c(2))) -
Then the following commutative relation holds:

G{1,2} 5 G{1,2}
R |

z2 5z

A word W € G{1,2} is said to be closed if f(WW) = 0. Let P be the family of
polygon curve with integer vertices on R2, and let us define the geometrical realiza-
tion map K : G{1,2} = P by

Kt :={£)e; |0<A<1}, i=1,2

and for W = wyws - - - wi € G{1,2}
k
Klwiwz - - - wi] := | J{f(wiw; - wi—1) + Klwi]}

where ¢ + S = {x + s|s € S}.
If the word W be a closed word, then the deﬁmtlon of K[W] is modified slightly as

follows:
K[W] :=£(U) + K[W]
where U is the longest word satisfying W = UW,;U ~!.(See Fig. 1.)
Lemma 1. For any automorphism 0, we have

(%) K[6(1217'27Y)] = x + K[1217127] for some x € Z*.
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a(121-1271) A(121-12-1) y(121712-1)

-1
- -1 -1
Fig. 2. K[o(1217127 D)), 0 =, B, ¥
Proof. From Nielsen’s theorem, any automorphism o is decomposed by gener-
ators a, B and 7. On the other hand, it is easy to see that each generator of auto-
morphisms satisfies (*) property. Therefore any composition of generators also has ()

property. (See Fig. 2.) O

Sublemma 1. Let o be an invertible substitution and let a linear representation

L, of o be
a ¢
L=(22).

Assume that det L, = £1 and max{a,b,c,d} = 1. Then the invertible substitution o
is determined by the composition of a, 3 and & as follows:

list of L, list of o
1 0 o f11
0 122
01\ _, . [1-2
10 121
A L - IS § S
10 ‘121 121
L0y L, s fro12 1o
11 % 1252 g 12-2
L1y g 11 [
0 1 2512 12521
0 asa {172 o apai {172
1 1 @0%x 12 512 12521

The following sublemma is easily obtained from det L, = £1.
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Sublemma 2. Let ?, (ci be a linear representation of substitution o. Assume
that det L, = +1 and max{a, b, c,d} > 2 then we have

max{a, b, ¢,d} > max{{a,b,c,d} \ max{a,b,c,d}}.

Lemma 2. Let o be a substitution and let 0(1) and o(2) be o(1) = W; and
0(2) = Wy. Assume that
(1) a linear representation L, of o satisfies a >b>d>0anda>c>d>0
2) detL, = =1
(3) Kle(1217'27Y)] =z + K[1217127Y], =z € Z?
then there exists non empty word U such that

W1 = WzU or UWz

Before the proof of the lemma, we give a remark of the assumption (3). The word
0(12171271) is a closed word, therefore K [0(12171271)] is a closed curve in gen-
eral. And the assumption (3) says that the closed curve consists only of the boundary
of unit square.

Proof. ~We can introduce the orientation of K[o(1217127!)] naturally by using
the order of symbols in the word. And assume det L, = 1, then the orientation of
K[o(12171271)] does not change from the orientation of X[12171271].

(1) The case of W, = 1W] and W, = 2W3.

Suppose |W;| < 2, where |W| is the length of the word W;, then we can determine
the substitution o by

o 1-1 or o: 1—12
1252 7 1252

and these linear representations:

1 0 10
L”—(O 1) or L,,—(l 1).

This is contradictory to the condition (1).
Let us assume that |WW;| > 3, then W; and W, must be decomposed as W; =
12W] and W, = 21W,. By the condition (3) we can easily see from the figure of
K[o(12171271)] that W; is decomposed as W; = UW,. (See Fig. 3.)

(2) The case of W; = VW] and W = VW,, V # 0.
Assume that W} = () then W is decomposed as W, = WyU.
Assume that W) # (), then we can find V such that W; = V1W]' and W, = V2W,/,
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(1)

(2)

(3

Fig. 3. K[o(12171271)]

and moreover we see that W/’ is not empty by the condition (1). Therefore by analo-
gous discussion of case (1) we see that there exist U such that W; = UW,. (See Fig.
3)
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We can consider the case of det L, = —1 by the same manner. O

Lemma 3. Let o is an invertible substitution which satisfies the condition (1) of
Lemma 2. Then o can be decomposed by ¢ = 70 6; (i € {1,2}) with some invertible
substitution T, where 0; is given by

112 121
01:5‘{2-»1 ’ t92:5:{2—»1 :

Proof. By Lemma 1, the invertible substitution o satisfies the condition (3) of
Lemma 2 and o also satisfies the condition (2) from invertibility. So the word W, is
decomposed as W; = WoU or UW, by Lemma 2.

Let us assume that W; = W,U. Define the substitution 7 as follows:

1—-)W2
25U °

then we see that o is decomposed as 0 = 706;. Both o and 6, are invertible, therefore

T is also invertible.
The case of W; = UW, is discussed analogously. O

Notice that in the case of Lemma 3 the linear representation L, of 7 satisfies

c a-c
LT_(d b—d) and a—c<a.

Therefore the following relation holds:

max(elements of £,) > max(elements of £..).

Theorem 1. Any invertible substitution of rank 2 is decomposed by three invert-
ible substitutions: :

o {172 g 1012 o f1o2
121" 1217 121

Proof. Take any invertible substitution ¢. By Sublemma 1 if max(elements of
L,)= 1 then o is decomposed by a,  and 4. Consider the case of max(elements of

L,)> 2. By Sublemma 2 we take i, j; € {0,1} satisfying
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L1 oooain :(Z 2), a>b>d>0anda>c>d>0.

By Lemma 3 there exist substitutions 7{ and 6,, such that
alogoal =1{0b,,.

Therefore the substitution ¢ is decomposed as
oc=a"or|0fp oal.

For 71 := a' o 7{ let us continue the same procedure. Then there exists 7,, such that
max(elements of L, ) =1, and the substitution o is decomposed as

a=Tn06,,ﬂoaj"o~--00p20aj200ploajl.
where pi € {1,2} and j; € {0,1}. a

Let us give a remark related to the uniqueness of decompositions. Define the in-
vertible substitution © by

O=pFoaod (=doaopf).

and replace every substitutions foaod and doa o 3 in the decomposition of o by ©.
Then the substitution o is decomposed uniquely by «, 3, § and © in our procedure.
In fact, except the case of W, = Wo,UW, we can determine which we take o = 706,
or 0 = 7 0 6,. In the case of W; = W,UW,, o can be decomposed as

o=TodoaofB=T70B0ao0d.

Using the same discussion, we have the following result.

Theorem 2 (geometrical charactarization of invertible substitutions). Let o be a
substitution. Then o is invertible if and only if

Klo(1217127 )] = = + K[1217227Y]  for some =z € Z*

Proof. If o is invertible then by Lemma 1
Klo(1217127)] = = + K[1217127] for some =z € Z>.
Oppositely, assume that

(%) Klo(121727 )] =z + K[1217'27!] for =z € Z?
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then we know Wy = WoU or UW,; by Lemma 2. In the case of W; = WU (resp.
W1, = UW,) determine the substitution 7 (resp. 7') such that

- 1—)W2 res /. 1—+W2
N2-U PT 12U

then o = 706, (resp. 0 = 7'06,) and 7 satisfies (x*) property. Continue the procedure,
the substitution ¢ is decomposed by a, § and 6. So o is invertible. O

2. Interval exchange transformations and invertible substitutions

In this section, we discuss about the dynamical system called an interval exchange
transformation associated with a substitution.

AssumpriON. Let us assume that the substitution ¢ satisfies the following proper-
ties:
(1) detL, ==1
(2) the charactaristic polynomial is irreducible.

Let p be the maximum eigenvalue of L, and (}) and ([13) be column and row
eigenvectors of u, that is,

e o) =m(a) wo o (5)=(5)

Let I be the contracting invariant line of L, then ! is given by

={GIG) - (5)) =0

Let 1; and 1, be unit seguments spanned by e; and es, that is,

IL:={lex | 0< A< 1)
I :={\e; [0 <A< 1}

Let us consider a set of unit seguments on lattice points:

(z, () >0 }

Sp = {(:z:,l) € Z% x {1, 1} (z - e, (é)) <0ifl=1

We call the union of elements of S; the stepped curve of the line I and it is denoted
by

Sg= |J (@+1).
(m,li)ESp
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Let us consider the finite union of Sg as follows:

g .= {Z(a:,l),\

A < +oo, (2,1)r € Sp }
AEA

((L‘,l)/\ # (w7l))\’ if A 7é A

DerintTION.  On the notation of

o(l) = sys9--- 5%,
0'(2) = tltz"'tl

and
L;' = (f1,f2)
let us define a map ¥, on G as follows:
forr=1,2
k l
HEE(R SEEREED DN B DI M8 ' B RO W B W 98 P
jisj=r \i=j+1 J'itj=r i=j'+1
(1) := L7 (z) + ,(0,1,),z € Z2
and

oD (@ps1,) = Y To(0,1,,).

4 P

The map ¥, is called the canonical form of o.
Remark. The canonical form of o has another expression, which is for r = 1, 2

£,(0,1,)

= Z (ﬁzfsl"*_el’ll) + Z "th,—‘*‘ez,b
i=1 i=1

jis;=r j'itjr=r

By the definition of canonical form, Arnoux-Ito ([3]) gives following propositions.

Let i and U' be U = (e1,l;) + (ey,12) and U’ = (0,1;) + (0,1;). We define the
geometrical realization map K : G — {polygons on Rz} as follows:

K:(z,],)»x+1, forr=1,2
K[Zi(mi’lri )] = Ui(mi + lv‘,‘))
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and let I, 5 be a projection from R? to the line I along (1).
Let us define domains, which is finite union of intervals on ! in general, as follows:
Ha,ﬁ[K(ovli)] = DEO)I
I, 5[K(e:, 1;)] = D
0 0)'
DO := Ui=1,2 Dg )= Ui:1,2 Dz( )
and
. 5[K(Z,(0,1;))] =
I 5[K(Ss (e, 1))] = D‘“
1 1)’
DY) .= Ui=1,2 Dg ) = Uz_—l 2 D( )
Then the following general interval exchange transformation on D© and D) are
well-defined:
Wi : D@ — DO
zr— -l pe; if € Dgo)
Wy : DO — DO
z+— z—Tapf;, if zeD®,

and the following propositions hold.

Proposition 1 ([3]).
N SUDUand T,U DU
Moreover, S, U —U =S, U' - U'.

(2) Assume that (x,1;) € Sg then we have ¥,(z,l;) € G.
(3) Assume that (z,);) # (x',1;) then we have

T, (z, )N, (' 1) =0

Proposition 2 ([3]). Let W(1)|p(o) be the induced transformation of W(y) to the
set D). Then we have
1) Wylpo = W)
(2)  Wu)lpw has o-structure, that is, for i =1, 2

W'D c DY for 1 < j < k and WD =D

W{l)_ll) 0) C Dg:’) for 1< jl <1 and W(ll)Dgo) _ Dgo)’.
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Using the decomposition theorem in section one, we obtain the following other
charactarization of invertible substitutions.

Theorem 3. A substitution o is an invertible substitution if and only if the inter-
val exchange transformation Wy associated with o is 2-state interval exchange trans-
formation.

Proof. If o is an invertible substitution then from the decomposition theorem the
substitution ¢ is decomposed by the generators «, 3 and 4. So it is enough to show
that the interval exchange transformations associated with «, 8 and é are 2-state inter-
val exchange transformations. (See Fig. 4.)

Oppositely, assume the interval exchange transformation W ;) assosiated with o is
2-state interval exchange transformation. Without the loss of a generality, we assume

that L, = (z (ci) satisfies a > b > d and a > ¢ > d by taking a’ oo oa’ if necessary
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(1) ) @) 4

: e, i -
X -
n ] ‘s [

Fig. 5. K[Z,U']

where i, j € {0,1}.
From the fact that a + b > ¢ + d, that is,

the number of 1; in K[X,4'] > the number of I in K[X,i']

and K[X,U'] belongs in the stepped curve Sz from Proposition 1 (2), we see that
there are no (x,l;) such that (z,l;) and (z + ej1,l2) € £,U’, and ¥, has the same
property by Proposition 1 (1). Let us consider 4 cases;

e The ends of K[X,{’'] are not constructed by lp------- (1)

e One of the ends of K[X,U'] is constructed by 15 ------ 2) 3

e Both of the ends of K[X,U'] are constructed by 1, --- (4)
(See Fig. 5.)

The case of (4) is impossible since X, does not contain both (x,ly) and (x +

e1,lz) for any x.
For the case of (1) and (2), if (x,l2) is in ¥,U’ then (x,l;) is also in LU’ from the
connectedness of K[X,U']. So by the definition of ¥, we have

k l
{fskvfsk +fsk__l7""2fs,'} ) {ft,7.ft1 +ft(_17"',z.fti}'
i=1 i=1
Then there exists Ef:j S5, such that f, = Zf: ; I, and by operating L, we have

k
f(t) =) f(s:), f(t),f(s:) € {e1,e2}.

i=j

Therefore we have
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f(t[) = f(sk) and t; = si.
Continue the same procedure, we obtain
U = Sk, ti—1 = Sk—1," "y t1 = Sk—141-

This means that W; is decomposed as W; = UW,.
For the case of (3), if (x + ez,lp) is in X,U’' then (x + e,l;) is also in LU’ from
the connectedness of K[X,U']. So by the remark we have

{fsl>fsl +.f32a"‘,

k l
fsi} > {ftlaftl +.ft27"',z-ft,-}'
i= i=1

=1

Then by the same procedure as the case of (1) and (2), W; is decomposed as W; =
W,oU. Using same discussion as Lemma 3 in section one, there exists §; and 7 which
decompose o as 0 = 70 6;. And notice that

¥, = 20.- 0%,
we can say the substitution 7 also has 2-state interval exchange transformation, since
the interval exchange transformations associated with o and @; are 2-state interval ex-

change transformations. Continue the same procedure, there exists 7,, which satisfies
that

max(elements of L, ) =1
and we obtain that
0=Tp00, 00’ 0---00,, 0a0f, oa

where p;, € {1,2} and j; € {0,1}.
So the substituiton o is invertible. O
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