

Title	Decomposition theorem on invertible substitutions
Author(s)	Ei, Hiromi; Ito, Shunji
Citation	Osaka Journal of Mathematics. 1998, 35(4), p. 821–834
Version Type	VoR
URL	https://doi.org/10.18910/4745
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Ei, H. and Ito, S. Osaka J. Math. **35** (1998), 821-834

DECOMPOSITION THEOREM ON INVERTIBLE SUBSTITUTIONS

HIROMI EI and SHUNJI ITO

(Received April 21, 1997)

0. Introduction

The decomposition theorem of automorphisms of free group is well known, and we mention the statement in the case of rank 2.

Theorem ([1]). Let $G\{1,2\}$ be a free group generated by symbols 1 and 2. Then any automorphism of $G\{1,2\}$ is decomposed by three automorphisms:

$$\alpha: \left\{ \begin{array}{ll} 1 \rightarrow 2\\ 2 \rightarrow 1 \end{array} \right\}, \quad \beta: \left\{ \begin{array}{ll} 1 \rightarrow 12\\ 2 \rightarrow 1 \end{array} \right\}, \quad \gamma: \left\{ \begin{array}{ll} 1 \rightarrow 1\\ 2 \rightarrow 2^{-1} \end{array} \right\}.$$

Recently Zhi-Xiong Wen and Zhi-Ying Wen give the decomposition theorem of invertible substitutions of rank 2, where we say an automorphism σ is an invertible substitution if words $\sigma(1)$ and $\sigma(2)$ consist of the symbols 1 or 2.

Theorem ([2]). Any invertible substitution is generated by three invertible substitutions:

$$\alpha: \left\{ \begin{array}{l} 1 \rightarrow 2 \\ 2 \rightarrow 1 \end{array} \right\}, \quad \beta: \left\{ \begin{array}{l} 1 \rightarrow 12 \\ 2 \rightarrow 1 \end{array} \right\}, \quad \delta: \left\{ \begin{array}{l} 1 \rightarrow 21 \\ 2 \rightarrow 1 \end{array} \right\}$$

In this paper we give a simple proof of the theorem and a geometrical charactarization of invertible substitutions.

1. Proof of the theorem

Let us introduce the canonical homomorphism $\mathbf{f}: G\{1,2\} \to \mathbf{Z}^2$ as follows:

$$\mathbf{f}(i^{\pm 1}) := \pm \mathbf{e}_i, \quad i = 1, 2$$

$$\mathbf{f}(W) := \mathbf{f}(s_1) + \mathbf{f}(s_2) + \dots + \mathbf{f}(s_k) \quad \text{for} \quad W = s_1 s_2 \cdots s_k \in G\{1, 2\}$$

where $\{e_1, e_2\}$ be canonical basis in \mathbb{R}^2 . Then we know the following property.

Fig. 1. $\mathcal{K}[W], W = 1121^{-1}2^{-1}1^{-1}$

PROPERTY. Let us define the linear representation L_{σ} of σ by

$$L_{\sigma} = (\mathbf{f}(\sigma(1)), \mathbf{f}(\sigma(2))).$$

Then the following commutative relation holds:

$$\begin{array}{c} G\{1,2\} \xrightarrow{\sigma} G\{1,2\} \\ \mathbf{f} \xrightarrow{\downarrow} & \downarrow & \mathbf{f} \\ \mathbf{Z}^2 \xrightarrow{L_q} \mathbf{Z}^2 \end{array}$$

A word $W \in G\{1,2\}$ is said to be closed if $\mathbf{f}(W) = 0$. Let \mathcal{P} be the family of polygon curve with integer vertices on \mathbb{R}^2 , and let us define the geometrical realization map $\mathcal{K}: G\{1,2\} \to \mathcal{P}$ by

$$\mathcal{K}[i^{\pm 1}] := \{ \pm \lambda e_i \mid 0 \le \lambda \le 1 \}, \quad i = 1, 2$$

and for $W = w_1 w_2 \cdots w_k \in G\{1, 2\}$

$$\mathcal{K}[w_1w_2\cdots w_k] := \bigcup_{i=1}^k \{\mathbf{f}(w_1w_2\cdots w_{i-1}) + \mathcal{K}[w_i]\}$$

where $\mathbf{x} + \mathbf{S} = \{\mathbf{x} + \mathbf{s} | \mathbf{s} \in \mathbf{S}\}.$

If the word W be a closed word, then the definition of $\mathcal{K}[W]$ is modified slightly as follows:

$$\mathcal{K}[W] := \mathbf{f}(U) + \mathcal{K}[W_1]$$

where U is the longest word satisfying $W = UW_1U^{-1}$.(See Fig. 1.)

Lemma 1. For any automorphism θ , we have

(*)
$$\mathcal{K}[\theta(121^{-1}2^{-1})] = \mathbf{x} + \mathcal{K}[121^{-1}2^{-1}]$$
 for some $\mathbf{x} \in \mathbf{Z}^2$.

Fig. 2. $\mathcal{K}[\sigma(121^{-1}2^{-1})], \sigma = \alpha, \beta, \gamma$

Proof. From Nielsen's theorem, any automorphism σ is decomposed by generators α , β and γ . On the other hand, it is easy to see that each generator of automorphisms satisfies (*) property. Therefore any composition of generators also has (*) property. (See Fig. 2.)

Sublemma 1. Let σ be an invertible substitution and let a linear representation L_{σ} of σ be

$$L_{\sigma} = egin{pmatrix} a & c \ b & d \end{pmatrix}.$$

Assume that det $L_{\sigma} = \pm 1$ and max $\{a, b, c, d\} = 1$. Then the invertible substitution σ is determined by the composition of α , β and δ as follows:

$$\begin{aligned} \text{list of } L_{\sigma} & \text{list of } \sigma \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Longrightarrow & \alpha \alpha : \begin{cases} 1 \to 1 \\ 2 \to 2 \\ \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow & \alpha : \begin{cases} 1 \to 2 \\ 2 \to 1 \\ \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \Longrightarrow & \beta : \begin{cases} 1 \to 12 \\ 2 \to 1 \\ \end{pmatrix} & \text{or} & \delta : \begin{cases} 1 \to 21 \\ 2 \to 1 \\ \end{pmatrix} \\ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \Longrightarrow & \alpha \delta : \begin{cases} 1 \to 12 \\ 2 \to 2 \\ \end{pmatrix} & \text{or} & \alpha \beta : \begin{cases} 1 \to 21 \\ 2 \to 2 \\ \end{pmatrix} \\ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \Longrightarrow & \beta \alpha : \begin{cases} 1 \to 12 \\ 2 \to 2 \\ \end{pmatrix} & \text{or} & \delta \alpha : \begin{cases} 1 \to 21 \\ 2 \to 2 \\ \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \Longrightarrow & \beta \alpha : \begin{cases} 1 \to 1 \\ 2 \to 12 \\ \end{pmatrix} & \text{or} & \alpha \beta \alpha : \begin{cases} 1 \to 1 \\ 2 \to 21 \\ \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \Longrightarrow & \alpha \delta \alpha : \begin{cases} 1 \to 2 \\ 2 \to 12 \\ \end{pmatrix} & \text{or} & \alpha \beta \alpha : \begin{cases} 1 \to 2 \\ 2 \to 21 \\ \end{pmatrix} \end{aligned}$$

The following sublemma is easily obtained from det $L_{\sigma} = \pm 1$.

Sublemma 2. Let $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ be a linear representation of substitution σ . Assume that det $L_{\sigma} = \pm 1$ and max $\{a, b, c, d\} \ge 2$ then we have

$$\max\{a, b, c, d\} > \max\{\{a, b, c, d\} \setminus \max\{a, b, c, d\}\}.$$

Lemma 2. Let σ be a substitution and let $\sigma(1)$ and $\sigma(2)$ be $\sigma(1) = W_1$ and $\sigma(2) = W_2$. Assume that

(1) a linear representation L_{σ} of σ satisfies $a > b \ge d \ge 0$ and $a > c \ge d \ge 0$

(2) det $L_{\sigma} = \pm 1$

(3) $\mathcal{K}[\sigma(121^{-1}2^{-1})] = \mathbf{x} + \mathcal{K}[121^{-1}2^{-1}], \ \mathbf{x} \in \mathbf{Z}^2$

then there exists non empty word U such that

$$W_1 = W_2 U$$
 or $U W_2$.

Before the proof of the lemma, we give a remark of the assumption (3). The word $\sigma(121^{-1}2^{-1})$ is a closed word, therefore $\mathcal{K}[\sigma(121^{-1}2^{-1})]$ is a closed curve in general. And the assumption (3) says that the closed curve consists only of the boundary of unit square.

Proof. We can introduce the orientation of $\mathcal{K}[\sigma(121^{-1}2^{-1})]$ naturally by using the order of symbols in the word. And assume det $L_{\sigma} = 1$, then the orientation of $\mathcal{K}[\sigma(121^{-1}2^{-1})]$ does not change from the orientation of $\mathcal{K}[121^{-1}2^{-1}]$.

(1) The case of $W_1 = 1W'_1$ and $W_2 = 2W'_2$.

Suppose $|W_1| \leq 2$, where $|W_1|$ is the length of the word W_1 , then we can determine the substitution σ by

$$\sigma: \left\{ egin{array}{ccc} 1
ightarrow 1 \ 2
ightarrow 2 \end{array}
ight. ext{ or } \sigma: \left\{ egin{array}{ccc} 1
ightarrow 12 \ 2
ightarrow 2 \end{array}
ight. ,$$

and these linear representations:

$$L_{\sigma} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 or $L_{\sigma} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

This is contradictory to the condition (1).

Let us assume that $|W_1| \ge 3$, then W_1 and W_2 must be decomposed as $W_1 = 12W'_1$ and $W_2 = 21W'_2$. By the condition (3) we can easily see from the figure of $\mathcal{K}[\sigma(121^{-1}2^{-1})]$ that W_1 is decomposed as $W_1 = UW_2$. (See Fig. 3.)

(2) The case of $W_1 = VW'_1$ and $W_2 = VW'_2$, $V \neq \emptyset$. Assume that $W'_2 = \emptyset$ then W_1 is decomposed as $W_1 = W_2U$. Assume that $W'_2 \neq \emptyset$, then we can find V such that $W_1 = V1W''_1$ and $W_2 = V2W''_2$,

Fig. 3. $\mathcal{K}[\sigma(121^{-1}2^{-1})]$

and moreover we see that W_1'' is not empty by the condition (1). Therefore by analogous discussion of case (1) we see that there exist U such that $W_1 = UW_2$. (See Fig. 3.)

We can consider the case of det $L_{\sigma} = -1$ by the same manner.

Lemma 3. Let σ is an invertible substitution which satisfies the condition (1) of Lemma 2. Then σ can be decomposed by $\sigma = \tau \circ \theta_i$ $(i \in \{1, 2\})$ with some invertible substitution τ , where θ_i is given by

$$heta_1=eta:egin{cases} 1 o 12\ 2 o 1 \end{cases},\quad heta_2=\delta:egin{cases} 1 o 21\ 2 o 1 \end{cases}.$$

Proof. By Lemma 1, the invertible substitution σ satisfies the condition (3) of Lemma 2 and σ also satisfies the condition (2) from invertibility. So the word W_1 is decomposed as $W_1 = W_2U$ or UW_2 by Lemma 2.

Let us assume that $W_1 = W_2 U$. Define the substitution τ as follows:

$$au: \left\{ egin{array}{c} 1 o W_2 \ 2 o U \end{array}
ight. ,$$

then we see that σ is decomposed as $\sigma = \tau \circ \theta_1$. Both σ and θ_1 are invertible, therefore τ is also invertible.

The case of $W_1 = UW_2$ is discussed analogously.

Notice that in the case of Lemma 3 the linear representation L_{τ} of τ satisfies

$$\mathbf{L}_{ au} = \begin{pmatrix} c & a-c \\ d & b-d \end{pmatrix}$$
 and $a-c < a$.

Therefore the following relation holds:

max(elements of L_{σ}) > max(elements of L_{τ}).

Theorem 1. Any invertible substitution of rank 2 is decomposed by three invertible substitutions:

$$\alpha: \left\{ \begin{array}{ll} 1 \rightarrow 2\\ 2 \rightarrow 1 \end{array} \right\}, \quad \beta: \left\{ \begin{array}{ll} 1 \rightarrow 12\\ 2 \rightarrow 1 \end{array} \right\}, \quad \delta: \left\{ \begin{array}{ll} 1 \rightarrow 21\\ 2 \rightarrow 1 \end{array} \right\}$$

Proof. Take any invertible substitution σ . By Sublemma 1 if max(elements of $L_{\sigma})=1$ then σ is decomposed by α , β and δ . Consider the case of max(elements of $L_{\sigma})\geq 2$. By Sublemma 2 we take $i_1, j_1 \in \{0, 1\}$ satisfying

826

$$L_{\alpha^{i_1} \circ \sigma \circ \alpha^{j_1}} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}, \quad a > b \ge d \ge 0 \text{ and } a > c \ge d \ge 0.$$

By Lemma 3 there exist substitutions τ'_1 and θ_{p_1} such that

$$\alpha^{i_1} \circ \sigma \circ \alpha^{j_1} = \tau_1' \circ \theta_{p_1}.$$

Therefore the substitution σ is decomposed as

$$\sigma = \alpha^{i_1} \circ \tau'_1 \circ \theta_{p_1} \circ \alpha^{j_1}.$$

For $\tau_1 := \alpha^{i_1} \circ \tau'_1$ let us continue the same procedure. Then there exists τ_n such that max(elements of L_{τ_n}) = 1, and the substitution σ is decomposed as

$$\sigma = \tau_n \circ \theta_{p_n} \circ \alpha^{j_n} \circ \cdots \circ \theta_{p_2} \circ \alpha^{j_2} \circ \theta_{p_1} \circ \alpha^{j_1}.$$

where $p_k \in \{1, 2\}$ and $j_k \in \{0, 1\}$.

Let us give a remark related to the uniqueness of decompositions. Define the invertible substitution Θ by

$$\Theta = \beta \circ \alpha \circ \delta \ (= \delta \circ \alpha \circ \beta).$$

and replace every substitutions $\beta \circ \alpha \circ \delta$ and $\delta \circ \alpha \circ \beta$ in the decomposition of σ by Θ . Then the substitution σ is decomposed uniquely by α , β , δ and Θ in our procedure. In fact, except the case of $W_1 = W_2 U W_2$ we can determine which we take $\sigma = \tau \circ \theta_1$ or $\sigma = \tau \circ \theta_2$. In the case of $W_1 = W_2 U W_2$, σ can be decomposed as

$$\sigma = \tau \circ \delta \circ \alpha \circ \beta = \tau \circ \beta \circ \alpha \circ \delta.$$

Using the same discussion, we have the following result.

Theorem 2 (geometrical characterization of invertible substitutions). Let σ be a substitution. Then σ is invertible if and only if

$$\mathcal{K}[\sigma(121^{-1}2^{-1})] = \mathbf{x} + \mathcal{K}[121^{-1}2^{-1}]$$
 for some $\mathbf{x} \in \mathbf{Z}^2$

Proof. If σ is invertible then by Lemma 1

$$\mathcal{K}[\sigma(121^{-1}2^{-1})] = \mathbf{x} + \mathcal{K}[121^{-1}2^{-1}]$$
 for some $\mathbf{x} \in \mathbf{Z}^2$.

Oppositely, assume that

(**)
$$\mathcal{K}[\sigma(121^{-1}2^{-1})] = \mathbf{x} + \mathcal{K}[121^{-1}2^{-1}] \text{ for } \mathbf{x} \in \mathbf{Z}^2$$

827

then we know $W_1 = W_2 U$ or UW_2 by Lemma 2. In the case of $W_1 = W_2 U$ (resp. $W_1 = UW_2$) determine the substitution τ (resp. τ') such that

$$\tau: \begin{cases} 1 \to W_2 \\ 2 \to U \end{cases} \quad \left(\operatorname{resp.} \tau': \begin{cases} 1 \to W_2 \\ 2 \to U \end{cases} \right)$$

then $\sigma = \tau \circ \theta_1$ (resp. $\sigma = \tau' \circ \theta_2$) and τ satisfies (**) property. Continue the procedure, the substitution σ is decomposed by α , β and δ . So σ is invertible.

2. Interval exchange transformations and invertible substitutions

In this section, we discuss about the dynamical system called an interval exchange transformation associated with a substitution.

Assumption. Let us assume that the substitution σ satisfies the following properties:

(1) det $L_{\sigma} = \pm 1$

(2) the charactaristic polynomial is irreducible.

Let μ be the maximum eigenvalue of L_{σ} and $\begin{pmatrix} 1 \\ \alpha \end{pmatrix}$ and $\begin{pmatrix} 1 \\ \beta \end{pmatrix}$ be column and row eigenvectors of μ , that is,

$$L_{\sigma}\begin{pmatrix}1\\\alpha\end{pmatrix} = \mu\begin{pmatrix}1\\\alpha\end{pmatrix}$$
 and ${}^{t}L_{\sigma}\begin{pmatrix}1\\\beta\end{pmatrix} = \mu\begin{pmatrix}1\\\beta\end{pmatrix}$.

Let l be the contracting invariant line of L_{σ} , then l is given by

$$\boldsymbol{l} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \middle| \left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} 1 \\ \beta \end{pmatrix} \right) = 0 \right\}.$$

Let l_1 and l_2 be unit seguments spanned by e_1 and e_2 , that is,

$$\mathbf{l}_1 := \{ \lambda \boldsymbol{e}_2 \mid 0 \le \lambda \le 1 \}$$
$$\mathbf{l}_2 := \{ \lambda \boldsymbol{e}_1 \mid 0 \le \lambda \le 1 \}.$$

Let us consider a set of unit seguments on lattice points:

$$\mathsf{S}_{\beta} := \left\{ (\boldsymbol{x}, \boldsymbol{\mathsf{l}}) \in \boldsymbol{Z}^2 \times \{ \boldsymbol{\mathsf{l}}_1, \boldsymbol{\mathsf{l}}_2 \} \left| \begin{array}{c} (\boldsymbol{x}, \binom{1}{\beta}) \geq 0 \\ (\boldsymbol{x} - \boldsymbol{e}_i, \binom{1}{\beta}) < 0 \text{ if } \boldsymbol{\mathsf{l}} = \boldsymbol{\mathsf{l}}_i \end{array} \right\} \right\}.$$

We call the union of elements of S_{β} the stepped curve of the line l and it is denoted by

$$S_{\beta} := \bigcup_{(\boldsymbol{x}, \boldsymbol{l}_i) \in \mathsf{S}_{\beta}} (\boldsymbol{x} + \boldsymbol{l}_i).$$

Let us consider the finite union of S_{β} as follows:

$$\mathcal{G} := \left\{ \sum_{\lambda \in \Lambda} (\boldsymbol{x}, \boldsymbol{l})_{\lambda} \left| \begin{array}{c} {}^{\sharp} \Lambda < +\infty, (\boldsymbol{x}, \boldsymbol{l})_{\lambda} \in \mathsf{S}_{\beta} \\ (\boldsymbol{x}, \boldsymbol{l})_{\lambda} \neq (\boldsymbol{x}, \boldsymbol{l})_{\lambda'} \text{ if } \lambda \neq \lambda' \end{array} \right\}.$$

DEFINITION. On the notation of

$$\sigma(1) = s_1 s_2 \cdots s_k,$$

$$\sigma(2) = t_1 t_2 \cdots t_l$$

and

$$L_{\sigma}^{-1} = (\boldsymbol{f}_1, \boldsymbol{f}_2)$$

let us define a map Σ_{σ} on \mathcal{G} as follows: for r = 1, 2

$$\Sigma_{\sigma} : (\mathbf{0}, \mathbf{l}_{r}) \mapsto \left\{ \left\{ \sum_{j; s_{j} = r} \left(\sum_{i=j+1}^{k} \boldsymbol{f}_{s_{i}}, \mathbf{l}_{1} \right) \right\} + \left\{ \sum_{j'; t_{j'} = r} \left(\sum_{i=j'+1}^{l} \boldsymbol{f}_{t_{i}}, \mathbf{l}_{2} \right) \right\} \right\}$$
$$\Sigma_{\sigma}(\boldsymbol{x}, \mathbf{l}_{r}) := L_{\sigma}^{-1}(\boldsymbol{x}) + \Sigma_{\sigma}(\mathbf{0}, \mathbf{l}_{r}), \boldsymbol{x} \in \boldsymbol{Z}^{2}$$

and

$$\Sigma_{\sigma}(\sum_{p}(\boldsymbol{x}_{p},\boldsymbol{\mathsf{I}}_{r_{p}})):=\sum_{p}\Sigma_{\sigma}(\boldsymbol{0},\boldsymbol{\mathsf{I}}_{r_{p}}).$$

The map Σ_{σ} is called the canonical form of σ .

REMARK. The canonical form of σ has another expression, which is for r = 1, 2 $\Sigma_{\sigma}(\mathbf{0}, \mathbf{l}_{r}) = \left\{ \left\{ \sum_{j; s_{j} = r} \left(-\sum_{i=1}^{j} \boldsymbol{f}_{s_{i}} + \boldsymbol{e}_{1}, \mathbf{l}_{1} \right) \right\} + \left\{ \sum_{j'; t_{j'} = r} \left(-\sum_{i=1}^{j'} \boldsymbol{f}_{t_{i}} + \boldsymbol{e}_{2}, \mathbf{l}_{2} \right) \right\} \right\}$

By the definition of canonical form, Arnoux-Ito ([3]) gives following propositions.

Let \mathcal{U} and \mathcal{U}' be $\mathcal{U} = (e_1, \mathbf{l}_1) + (e_2, \mathbf{l}_2)$ and $\mathcal{U}' = (\mathbf{0}, \mathbf{l}_1) + (\mathbf{0}, \mathbf{l}_2)$. We define the geometrical realization map $\mathbf{K} : \mathcal{G} \to \{\text{polygons on } \mathbf{R}^2\}$ as follows:

$$\begin{aligned} \mathbf{K} &: (\boldsymbol{x}, \mathbf{l}_r) \mapsto \boldsymbol{x} + \mathbf{l}_r \ \text{for} \ r = 1, 2 \\ \mathbf{K} &[\sum_i (\boldsymbol{x}_i, \mathbf{l}_{r_i})] := \bigcup_i (\boldsymbol{x}_i + \mathbf{l}_{r_i}), \end{aligned}$$

and let $\Pi_{\alpha,\beta}$ be a projection from \mathbf{R}^2 to the line l along $\binom{1}{\alpha}$. Let us define domains, which is finite union of intervals on l in general, as follows:

$$\Pi_{\alpha,\beta}[\mathbf{K}(\mathbf{0},\mathbf{l}_i)] = \mathbf{D}_i^{(0)'}$$
$$\Pi_{\alpha,\beta}[\mathbf{K}(\boldsymbol{e}_i,\mathbf{l}_i)] = \mathbf{D}_i^{(0)}$$
$$\mathbf{D}^{(0)} := \bigcup_{i=1,2} \mathbf{D}_i^{(0)} = \bigcup_{i=1,2} \mathbf{D}_i^{(0)'}$$

and

$$\Pi_{\alpha,\beta}[\mathbf{K}(\Sigma_{\sigma}(\mathbf{0},\mathbf{l}_{i}))] = \mathbf{D}_{i}^{(1)'}$$
$$\Pi_{\alpha,\beta}[\mathbf{K}(\Sigma_{\sigma}(\boldsymbol{e}_{i},\mathbf{l}_{i}))] = \mathbf{D}_{i}^{(1)}$$
$$\mathbf{D}^{(1)} := \bigcup_{i=1,2} \mathbf{D}_{i}^{(1)} = \bigcup_{i=1,2} \mathbf{D}_{i}^{(1)'}.$$

(1)

Then the following general interval exchange transformation on $\mathbf{D}^{(0)}$ and $\mathbf{D}^{(1)}$ are well-defined:

$$\begin{split} W_{(0)} &: \mathbf{D}^{(0)} \longrightarrow \mathbf{D}^{(0)} \\ & \boldsymbol{x} \longmapsto \boldsymbol{x} - \Pi_{\alpha,\beta} \boldsymbol{e}_i \quad \text{if} \quad \boldsymbol{x} \in \mathbf{D}_i^{(0)} \\ W_{(1)} &: \mathbf{D}^{(1)} \longrightarrow \mathbf{D}^{(1)} \\ & \boldsymbol{x} \longmapsto \boldsymbol{x} - \Pi_{\alpha,\beta} \boldsymbol{f}_i \quad \text{if} \quad \boldsymbol{x} \in \mathbf{D}_i^{(1)}, \end{split}$$

and the following propositions hold.

Proposition 1 ([3]).

(1) $\Sigma_{\sigma}\mathcal{U} \supset \mathcal{U} \text{ and } \Sigma_{\sigma}\mathcal{U}' \supset \mathcal{U}'$

Moreover,
$$\Sigma_{\sigma}\mathcal{U} - \mathcal{U} = \Sigma_{\sigma}\mathcal{U}' - \mathcal{U}'$$
.

- (2) Assume that $(\mathbf{x}, \mathbf{l}_i) \in S_\beta$ then we have $\Sigma_{\sigma}(\mathbf{x}, \mathbf{l}_i) \in \mathcal{G}$.
- (3) Assume that $(\mathbf{x}, \mathbf{l}_i) \neq (\mathbf{x}', \mathbf{l}_j)$ then we have

$$\Sigma_{\sigma}(\boldsymbol{x}, \mathbf{l}_i) \cap \Sigma_{\sigma}(\boldsymbol{x}', \mathbf{l}_i) = \emptyset.$$

Proposition 2 ([3]). Let $W_{(1)}|_{\mathbf{D}^{(0)}}$ be the induced transformation of $W_{(1)}$ to the set $\mathbf{D}^{(0)}$. Then we have

(1) $W_{(1)}|_{\mathbf{D}^{(0)}} = W_{(0)}$ (2) $W_{(1)}|_{\mathbf{D}^{(0)}}$ has σ -structure, that is, for i = 1, 2 $W_{(1)}^{j-1}\mathbf{D}_{1}^{(0)} \subset \mathbf{D}_{s_{j}}^{(1)}$ for $1 \leq j \leq k$ and $W_{(1)}^{k}\mathbf{D}_{1}^{(0)} = \mathbf{D}_{1}^{(0)'}$ $W_{(1)}^{j'-1}\mathbf{D}_{2}^{(0)} \subset \mathbf{D}_{t_{i'}}^{(1)}$ for $1 \leq j' \leq l$ and $W_{(1)}^{l}\mathbf{D}_{2}^{(0)} = \mathbf{D}_{2}^{(0)'}$.

Fig. 4. $W_{(1)}$

Using the decomposition theorem in section one, we obtain the following other charactarization of invertible substitutions.

Theorem 3. A substitution σ is an invertible substitution if and only if the interval exchange transformation $W_{(1)}$ associated with σ is 2-state interval exchange transformation.

Proof. If σ is an invertible substitution then from the decomposition theorem the substitution σ is decomposed by the generators α , β and δ . So it is enough to show that the interval exchange transformations associated with α , β and δ are 2-state interval exchange transformations. (See Fig. 4.)

Oppositely, assume the interval exchange transformation $W_{(1)}$ assosiated with σ is 2-state interval exchange transformation. Without the loss of a generality, we assume that $L_{\sigma} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ satisfies $a > b \ge d$ and $a > c \ge d$ by taking $\alpha^i \circ \sigma \circ \alpha^j$ if necessary

H. EI AND S. ITO

Fig. 5. $\mathbf{K}[\Sigma_{\sigma}\mathcal{U}']$

where $i, j \in \{0, 1\}$. From the fact that a + b > c + d, that is,

the number of l_1 in $K[\Sigma_{\sigma}\mathcal{U}']$ > the number of l_2 in $K[\Sigma_{\sigma}\mathcal{U}']$

and $\mathbf{K}[\Sigma_{\sigma}\mathcal{U}']$ belongs in the stepped curve S_{β} from Proposition 1 (2), we see that there are no (x, \mathbf{l}_2) such that (x, \mathbf{l}_2) and $(x + e_1, \mathbf{l}_2) \in \Sigma_{\sigma}\mathcal{U}'$, and $\Sigma_{\sigma}\mathcal{U}$ has the same property by Proposition 1 (1). Let us consider 4 cases;

- The ends of $\mathbf{K}[\Sigma_{\sigma}\mathcal{U}']$ are not constructed by $\mathbf{l}_2 \cdots \cdots \cdots (1)$
- One of the ends of $\mathbf{K}[\Sigma_{\sigma}\mathcal{U}']$ is constructed by $\mathbf{l}_2 \cdots \cdots (2)$ (3)
- Both of the ends of $\mathbf{K}[\Sigma_{\sigma}\mathcal{U}']$ are constructed by $\mathbf{l}_2 \cdots$ (4) (See Fig. 5.)

The case of (4) is impossible since $\Sigma_{\sigma} \mathcal{U}$ does not contain both (x, \mathbf{l}_2) and $(x + e_1, \mathbf{l}_2)$ for any x.

For the case of (1) and (2), if (x, l_2) is in $\Sigma_{\sigma} \mathcal{U}'$ then (x, l_1) is also in $\Sigma_{\sigma} \mathcal{U}'$ from the connectedness of $\mathbf{K}[\Sigma_{\sigma} \mathcal{U}']$. So by the definition of Σ_{σ} we have

$$\{\boldsymbol{f}_{s_k}, \boldsymbol{f}_{s_k} + \boldsymbol{f}_{s_{k-1}}, \cdots, \sum_{i=1}^k \boldsymbol{f}_{s_i}\} \supset \{\boldsymbol{f}_{t_l}, \boldsymbol{f}_{t_l} + \boldsymbol{f}_{t_{l-1}}, \cdots, \sum_{i=1}^l \boldsymbol{f}_{t_i}\}.$$

Then there exists $\sum_{i=j}^{k} f_{s_i}$ such that $f_{t_i} = \sum_{i=j}^{k} f_{s_i}$ and by operating L_{σ} we have

$$\mathbf{f}(t_l) = \sum_{i=j}^k \mathbf{f}(s_i), \quad \mathbf{f}(t_l), \mathbf{f}(s_i) \in \{\mathbf{e}_1, \mathbf{e}_2\}.$$

Therefore we have

$$\mathbf{f}(t_l) = \mathbf{f}(s_k)$$
 and $t_l = s_k$.

Continue the same procedure, we obtain

$$t_l = s_k, t_{l-1} = s_{k-1}, \cdots, t_1 = s_{k-l+1}.$$

This means that W_1 is decomposed as $W_1 = UW_2$. For the case of (3), if $(\mathbf{x} + \mathbf{e}_2, \mathbf{l}_2)$ is in $\Sigma_{\sigma} \mathcal{U}'$ then $(\mathbf{x} + \mathbf{e}_1, \mathbf{l}_1)$ is also in $\Sigma_{\sigma} \mathcal{U}'$ from the connectedness of $\mathbf{K}[\Sigma_{\sigma} \mathcal{U}']$. So by the remark we have

$$\{f_{s_1}, f_{s_1} + f_{s_2}, \cdots, \sum_{i=1}^k f_{s_i}\} \supset \{f_{t_1}, f_{t_1} + f_{t_2}, \cdots, \sum_{i=1}^l f_{t_i}\}.$$

Then by the same procedure as the case of (1) and (2), W_1 is decomposed as $W_1 = W_2 U$. Using same discussion as Lemma 3 in section one, there exists θ_i and τ which decompose σ as $\sigma = \tau \circ \theta_i$. And notice that

$$\Sigma_{\sigma} = \Sigma_{\theta_i} \circ \Sigma_{\tau}$$

we can say the substitution τ also has 2-state interval exchange transformation, since the interval exchange transformations associated with σ and θ_i are 2-state interval exchange transformations. Continue the same procedure, there exists τ_n which satisfies that

max(elements of
$$L_{\tau_n}$$
) = 1

and we obtain that

$$\sigma = \tau_n \circ \theta_{p_n} \circ \alpha^{j_n} \circ \cdots \circ \theta_{p_2} \circ \alpha^{j_2} \circ \theta_{p_1} \circ \alpha^{j_1}$$

where $p_k \in \{1, 2\}$ and $j_k \in \{0, 1\}$. So the substituiton σ is invertible.

References

- [1] Marshall Hall, Jr.: The theory of groups, The Macmillan Company 1959, 90-112.
- [2] Z.-X. Wen and Z.-Y. Wen: Local isomorphisms of invertible substitutions, C. R. Acad. Sci. Paris, 318 Série I (1994), 299-304.
- [3] P. Arnoux and S. Ito: *Pisot substitutions and Rauzy fractals*, prétirage, Institut de Mathématiques de Luminy, 18 (1998).

H. EI AND S. ITO

H. Ei Department of mathematics Tsuda College 2-1-1 Tsudamachi Kodaira Tokyo, 187–8577, Japan

S. Ito

Department of mathematics Tsuda College 2-1-1 Tsudamachi Kodaira Tokyo, 187–8577, Japan