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Shape Optimization for Reducing Stress at Ceramics/Metal

JointsT

Hidekazo MURAKAWA * and Yukio UEDA **

Abstract

Due to the brittleness and poor machinability, ceramics is used in the form. of composite structure with metals.
However, stress concentration occurs at the region near the edge of interface between ceramics and metal. Such high
stress may cause cracking of ceramics under thermal loads and reduce strength against external loads. In general, the
stress concentration greatly depends on the geometry or the shape of the parts. The authors investigated the possibility of
reducing stress concentration through controlling the shape of joint. For this purpose, the problem is treated as an
optimization problem and a shape optimization procedure is proposed. Further, it is applied to simple example problems,
which can be considered as linear therinal-elastic problems, to show that the proposed optimization technique can be an

useful tool to design shapes of joints between dissimilar materials.

KEY WORDS : (Shape Optimization) (Optimum Design) (Ceramics) (Metal) (Joint) (Thermal Stress) (Finite Element

Method) (Allowable Stress)

1. Introduction

New-Ceramics has a great potential in various
engineering applications because of its superiority in
resistance to high temperature and corrosion and its
unique physical or electronical functions. However, most
ceramics is brittle and poor in machinability. These
drawbacks are overcome by introducing composite
structure consisting of ceramics and metal, which has
ductility and good machinability. To integrate the two
materials to construct a composite structure, the bonding
technique plays a crucial role. In most cases, ceramics and
mctal are joined at elevated temperature, such as brazing
and diffusion bonding. Due to the large difference in
thermal expansion coefficients of two materials, significant
magnitude of residual stress is produced during the
cooling process after joining. Such residual stress created
at the bonding région may cause crackihg or reduce the
bonding strength. Thus, it is désirable to minimize the
size of the residual stress and various techniques are
developed for this purposé. One of such techniques is to
introduce the interlayer. The effects of the. thickness and
the mechanical properties of the interlayer on the
reduction of the residual stress have been investigated by
T. Terasaki et al.’'? and others¥. Another possible
technique is reducing stress through controlling the shape
of the bonding zone®. Both the proper selection of the
interlayer and control of shape are optimum design
probl'ems in their nature. However, reports in which the
problems are dealt as optimum design problem are hardly

found. v :

In this report, the authors treated the problem of
reducing the residual stress through shape control as an
optimum design problem and developed a numerical
method to automatically determine the optimum shape for
the given conditins. The formulation of the problem and
the outline of the optimization procedure are shown in
Chapter 2. Further, typical examples of optimization,
which can be idealized as thermal-elastic problems, are
presented in Chapter 3.

2. Optimization Method
2.1 Representation of shape and its modification

Two . dimensional shape optimization problem, as
shown in Fig. 1, is considered. In this report, both
ceramics and metal parts are assumed to be cylindrical
and joined coaxially, so that the problem can be treated
as axisymmetric thermal-elastic problems. The shapes of
ceramics and metal are represented by the lines in r-z
plane which correspond to surfaces and interface of the
materials.

On the other hand, the domain for the analysis is
subdivided into finite number of elements (3 node
triangular elements are used in this report) and nodes are
defined at the corners of the elements. Since the. nodes
are also defined on the surface and the interface, the
shape of the joint can be represented by their
coordinates. Further, the modification of the shape can be
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Fig. 1 Description of shape and its modification.

achieved by moving the nodes lying on the surface or the
interface. If the part of the boundary to be modified and
the direction in which the nodes can move are a priori
given, the modified shape can be uniquely defined by the
distance of move g, of the i-th node. In other words, the
shape can be defined by 4, as design parameters.

In general, the change of the shape by optimization is
fairly large. The elements near modified boundary may be
excessively distorted if only the nodes on boundary are
moved. To prevent the loss of accuracy, it is necessary to
regenerate the finite element mesh with the movements of
boundary nodes”. If only mesh distortion is concerned,
Boundary Element Method (BEM), in which no internal
nodes or elements are defined, is suitable for shape
optimization®'”, But, if the problem becomes nonlinear,
such as the thermal-elastic-plastic problem, the Finite
Element Method (FEM) seems to be superior to BEM.
Thus, FEM is employed as a simulation tool in the
present study.

2.2 Condition of optimization

The optimum shape is defined by the following two
conditions.
(1) state of stress

Maximum principal stress ¢; at the evaluation point j
(element j in case of FEM using 3 node triangular
element) are monitored. The shape is modified so that g
becomes less than or equal to the objective allowable
stress g, or the value exceeding ¢, is minimized when g
remains greater than g,.

(2) arc length of the boundary to be modified
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In case of practical engineering problems, there are
certain restrictions so that the product can be machined or
produced and fulfill the required function. The shape is
also subjected to various constraints. As one of the
constraint, the arc length is assumed to be constant and
optimum shape is searched under this condition. In other
words, when the original arc length is L,, the arc length
of the optimum shape is kept aL,, where o is a given
constant and referred to as arc length factor.

2.3 Objective function '

The optimization problem described in the preceding
section can be formulated as a least square type
optimization problem. If the value of stress exceeding the
objective allowable stress, i.e. w; = (6;— a0), Is large, the
corresponding shape is considered to be inferior. Hence,
the magnitude of excess w; can be considered as a local
measure of the poorness of the shape. Further, their
weighted sum W can be used as an objective function or
a global measure, such that

W = ZAj 'LU,'2 (1)
where, A; are proper weights and

if o> 0
if o< o0

Wi =— 05— Oy

w,~=0

On the other hand, the coordinates of the boundary
nodes on the modified boundary must satisfy the
constraint on the arc length. However, this condition is
nonlinear and it is difficult to satisfy it a priori. To
overcome this difficulty, the optimization problem is
modified to that without subsidiary condition.

2.4 Optimization problem without subsidiary condition

By introducing Lagrange’s multiplier A, the subsidiary
condition can be embedded in the objective function and
new objective function W* in the following form is
derived.

W*(ai, A) = ]ZAi{wi(ai)}z—)\[gi(xk+l_$k)z
+(yk+1~ yk)zl'“_ aLo] (2)

where, (xy, i) are coordinates of the node on modified
boundary. It should be noted that the variables g; or A are
not subjected to any subsidiary condition and the
optimum shape can be obtained through the stationarity
condition of the objective function W*.

If the boundary to be modified is the side surface of
the metal which is parallel to z axis as shown in Fig. 1 and
the nodes on the boundary can move in r direction, the
objective function W* can be given as,
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W*(ai, /1) = ;A,-{wj(ai)}z— /\[;{(xﬁ+1+ak+1_«’€f¢_ak)2

+(y%+1—y%)2[1/2"0{lm] (3)

where

ax :distance of move

M :summation over the elements in the region to be
' monitored

2 :summation over the nodes on the boundary to
' be modified

(xk, yb) :coordinates of the k-th node in the original

shape
2.5 Iterative procedure
The objective function given by Eq. (3) is a highly

nonlinear function of 4; and A. Thus, the stationarity
condition, i.e.

OW*/9a; =0, dW*/01 =0 4)

become nonlinear and the solution can not be found in
single step. Therefore, iterative solution procedure is
employed. Let Ag; and AX be the corrections to the
approximate values found in the n-th step, o and A", the
new approximation can be given as,

ai"“ - ain+Aai, AT = A"+ A (5)

On the other hand, if the objective function W* is
expanded in Taylor series and the terms higher than the
second order in Ag; and AA are neglected, the objective
function W* can be reduced to,

W*Aa;, AN = Wi¥(a:", A")+ Wi¥(Aa, AN
+ W*(4a;, AN (6)

where W,*, W;* and W,* are constant, linear and second
order terms in Ag, and A which are defined as,
W/o* = ZAi{ws(ain)}z_/\n[Ln—aLo] (7)
ow;
m* = QZAjw,-(ai"%Aak—A/\[L"—aLo]
K

"—2/1!1[4_12(55?(“ _xl()&+ak+1—ak)(Aak+l_Aak)

Aai }T Fa l 8
AV ) K &

Jw; Ow;
W/z* = ZAiTZ %AaiAak

—2L7 2z — et axr— aw) AN Aaw s — Aax)
— 1722 L2 (ywer— yi)/ (Aacsi — Aar)*

1 Aa) | Kea Ke | [Aa
"2 A | Kea Ko A/\}

&)
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Also, the arc length ", at the n-th step, is given by,
LM = Tk — xhF o —aw) + (g — g 17?

The objective function W* given by Eq. (6) can be
rewritten in a matrix form, such that,

Aai T Fa
W*Aa, AN = W ¥a", A")—
] Ar) | K
+_;_ Aa; " ‘ Ksa Kao { Aax (10)
A/l Kba Kbb A/\
Further, applying the following stationarity condition,
OW*/3Aa; =0, OW*/0AA =0 (11)

a set of linear algebraic equations in terms of Ag; and AA
are derived, such that

2
=1r
Solving Eq. (12), the correction values Ag; and AA are
obtained and the new approximate values are given by
Eq. (5). This procedure is repeated until the convergence

is attained and the optimum shape for the given arc
length oL, is obtained.

‘ Kaa Kab
Kba Khb

{Aai
AA

(12)

2.6 Optimality of the solution

The formulation and the optimization procedure is
shown in the preceding section. In this section, the
optimality of the solution is examined.

In general, optimum solution is the solution which
minimizes the objective function among the all possible
alternatives which satisfy the given constraint conditions.
Thus, for the optimality in the strict sense, the objective
function must be defined in such a way that any
subjective or ambiguous element is excluded. Also, the
solution must be searched among the all possible
alternatives.

Concerning these two requirements, the solucion
obtained by the proposed method can bot be an optimum
solution in the strict sense. One reason may be found in
the fact that the evaluation of the stress state involves
objective allowable stress g, and weight A4;, which are
given relatively arbitraryly. The variation of these "values
may cause change in optimum shapes. As for the search
area, the boundary to be modified and its arc length are a
priori given. This implies that the obtained solution is a
local optimum within the above conditions.

However, the proposed method can be regarded as
one of the tools for practical design. Though the criteria
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Fig. 2 Example model and region to be modified:

Table 1 Mechanical properties of materials

: Al20s Cu
Young's modulus (GPa)| 370 130
Poisson's ratio ; 0.25 0.3
Thermal expansion coef. (1/K)| 7.9X107®%| 17.7X107®

for the crack initiation is not clearly understood yet, if it
is assumed that the crack initiates when the maximum
tensile stress reaches the given critical stress, it is
necessary to reduce the magnitude of the stress below the
critical value. In such a case, the proposed method based
on the objective allowable stress is quite suitable for this
purpose. On the other hand, it may be desirable to
control the shape of metal rather than ceramics due to
machinability. It is also desirable to limit the degree of
shape modification in order to ensure the designed
function of the product. Thus, the idea of prescribing the
boundary to be modified and its arc length is also
practical.

In the case when the optimum shape close to the
optimum in the strict and global sense is required, the
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Fig. 3 Distribution of the largest principal stress in the original
model under thermal load.

solution must be searched with changing the boundary to
be modified and its arc length. The optimization process
and the optimum shapes are shown for simple examples in
the next chaptef. Especially, the effects of the prescribed
constraining conditions and loading conditions on the
optimum shape are discussed.

3. Example of Shape Optimization

3.1 Example model

The model for the examplé problem is shown in Fig. 2.
It consists of ceramics (Al,O3) and metal (Cu) parts with
the same size. Their height and the diameter are 10 mm
and 20 mm, respectively. It is assumed that the variations
of material constants with temperature can be neglected
and the values at room temperature are used. Table 1
shows the Young’s moduli, Poison’s ratios and thermal
expansion coefficients for the two materials.
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Fig. 4 Optimum shapes obtained for the case under thermal
load.

3.2 Condition of optimization

The shapes are optimized under the conditions which
are given as the combination of the following loading
conditions and constraints.
loading condition
(1) thermal stress due to temperature drop by 100°C
(2) uniform stress of 100 MPa is acting in z direction as
an external load

(3) the two loads described by (1) and (2) are acting
simultaneously.

boundary to be modified

The side surface A-B of the metal, the length of which
is 2 mm, is modified under five different arc length, i.e.

L = 1.005L,, 1.01 Ly, 1.02L,, 1.05L,, 1.10L,

In the present problem, it is assumed that crack occurs
only in the ceramics and stress state is monitored only in
the ceramics. Hence, the first term in the right hand side
of Eq. (2) becomes the summation over the elements in
the ceramics part. On the other hand, the weight A,
involved in the objective function is assumed to be 1.0 for
simplicity.

3.3 Procedure of optimization

The procedure of the optimization is shown using the
problem under the thermal load as an example. The
distribution of the largest principal stress in the original
shape is shown in Fig. 3. The maximum value of the
stress occurs at point P, which is at the edge of the
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Fig. 5 Changes of maximum tensile stress in ceramics and metal
during iteration process.

interface, and its value gpa, is 324.5 MPa. The shape is
optimized by setting the objective allowable stress as 50%
of omax. In general, certain type of singularity is expected
at the edge of the interface. However, the effect of such
singularity may not be fully counted in the present
method which uses discrete approximation by FEM.

As discussed in the preceding chapter, the optimum
shape is searched through an iterative procedure based on
the linearization of the objective function. It is necessary
to give a set of proper initial values. The following values
are used as initial values for the case in which ¢ = 1.10.

a; =0, A= 10

Once the solution for ¢ = 1.10 is obtained, it is used as
an initial value to get the solution for o = 1.05. The
solutions for the remaining values of arc length factor can
be determined successively.

The optimum shapes for the five different values of o
are shown in Fig. 4. The process of the iterative
procedure is described by Fig. 5, which shows the
variation of the maximum stress in both ceramics and
metal with the iteration steps. As seen from Fig. 5, 14
steps are required to get the convergence for the first case
with ¢ = 1.10. Only 5 or 6 iterations are necessary for the
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Fig. 6 Distribution of the largest principal stress in the model
with optimum shape under thermal load ( @ =1.10).

convergence in the successive cases with ¢ = 1.05, 1.02,
1.01. However, large number of iterations are required
when ¢ = 1.005 because of the change of the mode of
shape from concave to convex form. The distribution of
~the maximum principal stress for the optimum shape with
a = 1.10 is shown in Fig. 6. Comparing Figs. 3 and 6, the
optimum shape has an undercut type form and the point
where the maximum stress occurs shifts about 0.8 mm
downwords in the ceramic part from the interface. The
value of stress itself is reduced by 40% compared to that
in the original shape. The reduction ratio of the stress in
ceramics increases with the depth of the undercut, in
other words the value of o, as shown by Fig. 5. The
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Fig. 8 Comparison of two possible types of shapes effective to
reduce residual stress.

stress in the metal also shows the same
tendency and decreases with o. As mentioned earlier, the
finite element mesh is automatically redefined at every
step of optimization. The finite element meshes near the
interface in original and optimum (e = 1.10) shapes are
compared in Fig. 7. Though, the automatic remeshing is
employed, the element near the edge of the interface is
largely distorted. Thus, the expected accuracy of the
stress analysis in this case may be poor compared to other
cases with small value of .

In case of this example, the initial value of A is

maximum

assumed to be positive number, namely A= 10*, and
optimization is started from o = 1.10. If negative value,
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such as —10% is used as an initial value of A and the
optimization is started from o = 1.005 toward large value
of a, the convex forms are obtained as optimum shapes as

AZ

-100 /I

Fig. 9 Distribution of the largest principal stress in the original
model under external load.
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Fig. 10 Optimum shapes and the maximum stresses in ceramics
under external load.

shown in Fig. 8. It should be noted that the stress can be
reduced by both concave and convex forms when only
thermal stress is considered.

3.4 Loading condition and optimum shape

It is found that both concave and convex form is

+Z

100 MPa.

r
_».

Fig. 11 Distribution of the largest principal stress in the original
model under combination of thermal and external loads.
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Fig. 12 Optimum shapes and the maximum stresses in ceramics
under combined loads.
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effective to reduce the stress when only thermal load is
acting. However, external loads, such as the centrifugal
force, may act on the ceramics/metal joint in practical
situation. Hence, the optimum shapes under external load
alone and combination of thermal and external loads are
computed. By comparing the results of optimization, the
effect of the loading condition on the optimum shape is
examined in this section.

Figure 9 shows the stress distribution in the original
shape under the external load alone. The external load is
acting uniformly in z direction and its magnitude is
assumed to be 100 MPa. The maximum stress occurs at
point P and its value g,y is 164.8 MPa. The shape is
optimized with setting the objective allowable stress g, as
75% of the maximum stress gp.x. The maximum stresses
in the ceramics are plotted against arc length factor ¢ in
Fig. 10. The convex forms are obtained when a positive
value is chosen as the initial value of A. On the contrary,
if initial value of A is negative, concave shapes are
obtained. The stable converged solutions are obtained
only for small values of ¢ and those for large «, denoted
by open circles in Fig. 10, are rather unstable.

In contrast to the case under thermal stress, The stress
in the optimum shape rapidly increases with ¢ if the shape
is convex. Thus, only concave form is effective to reduce
the stress in the case where external load is acting.

Similarly, the shape is optimized for the case in which
both thermal and external loads are acting. The stress
distribution in the original shape is shown in Fig.‘ 11. The
maximum Sstress gp.. in this case is 479.2 MPa. The
objective allowable stress is chosen to be 50% of g,y In
this case, only concave shape is obtained as stable
optimum shapes as shown by Fig. 12. The reduction ratio
of the stress becomes approximately 35% when o = 1.10.

4. Conclusion

A shape optimization technique is proposed as one of
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the method to reduce the stress at the ceramics/metal
joints. The mathematical formulation and the
optimization procedure are presented in this report.
Further, it is shown through numerical examples that the
proposed technique can be a promissing tool for the
design of the joints between dissimilar materials.

However, the fracture criteria for ceramics, the
singularity in stress distribution at the edge of interface
and the effect of nonlinearity such as plastic deformation
of metal have not been discussed in the present report.
These will be taken as the next research subjects.
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