
Title Level-two-structures and hyperelliptic curves

Author(s) Runge, Bernhard

Citation Osaka Journal of Mathematics. 1997, 34(1), p.
21-51

Version Type VoR

URL https://doi.org/10.18910/4765

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



Runge, B.
Osaka J. Math.
34 (1997), 21-51

LEVEL-TWO-STRUCTURES AND
HYPERELLIPTIC CURVES

BERNHARD RUNGE

(Received February 8, 1996)

1. Introduction

The main idea in this paper is to apply the results in ([31 ],•••, [34]) to
geometry. The paper contains some results on Specht modules due to several
exceptional isomorphisms of subgroups of the symplectic groups to symmetric
groups. The geometry of the Igusa desingularization in genus 2 and level 2 is
described.

We always choose as coordinates the theta constants of second kind. The
ordianry theta constants are used for auxiliary purposes. They give the equations
of the Humbert surfaces in genus two or of the hyperelliptic points in genus three.

2. Notations and first results

Throughout the paper we will use the following notations in accordance with
[31], [32]. General references are [9], [24], [26], [27], [29] and [37].

Hg = {τeMa.tgxg(C)\τ symmetric, Im(τ)>0},

For a subgroup Γ of finite index in Γg we denote by A(Γ)=®k[Γ,k] the ring of
modular forms for Γ and by jtf^(Γ) = Pΐoj(A(Γ)) the corresponding Satake
compactification. (This is not the standard notation.) The variety (̂Γ) contains
Hg/T as an open dense subset. Hg/T is a coarse moduli space for principally
polarized abelian varieties (ppav) with level-Γ-structure. The ring A(Γ) is a normal
graded integral domain finitely generated as an algebra over C=[Γ,0]. For
general facts about such graded rings see [30].

The thetas (of second kind) are given by (we use Mumford's notation fa)
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for aeZg. The functions /α(τ) only depend on a mod 2 hence a is regarded as
element in Fξ.

The squares of the ordinary thetas may be defined as (Veronese formula)

The group Sp(2g,R) acts on Hg by

σ<τ>=(^τ4-Jβ)(Cτ + Z>)-1 for σ = (A B}εSp(2g,R) and
\C /)/

This action induces for any keZa (right) group action on the algebra of holomorphic
functions [f\Hg-+ C] by

A holomorohic function / on Hg is a modular form of weight k and level Γ, or
in short /e[Γ,Λ], iff/| f cσ=/ for all σeΓ. In genus g=l one has to add a
condition for the cusps.

It is well known that the group Γ is generated by /=( 1 and σs —
1

where S runs over all symmetric gxg-matrices and leG/(g,Z) ([9]). If we allow
for a moment half-integral weights, the modular group Γ^ acts on the thetas by

where TgeGl(28,C) is the matrix

Because of its meaning in coding theory we call Tg MacWilliams identity. The

equation for / depends of the choice of the square root ^/det( —τ). However, on
the 2-ring, i.e. on the ring C[/α(τ)](2) = {/eC[/α(τ)] with 2|deg(/)} the action is
independent of the chosen sign.

Take Zλj = diag(/S[fl] for aeFξ) and let

Hg = (Tg, Ds for symmetric SeMg(Z}y

be the finite subgroup of Gl(28, C) generated by the elements Tg and all the Ds. If
we map / to Tg and σs to Ds we get the theta representation
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ptheta:Γg^Hg/(±\).

The kernel, denoted by Γ*(2,4), is described in [31].
We recall from [31] that the ring of modular forms of even weight is given by

2\k

Here N denotes the normalization (in its field of fractions). Moreover,

^(Γ1) = C[/β(τ)]JfS A(Γ2\2) = C\_fa(τ)-]H2 and Λ(Γ3) = C[/α(τ)]ff3. We use binary
numbers to index the thetas, i.e. (in genus g = 2)/0 =/g ,/Ί =/^ ,/2 =/γ and/3 =/j .

The Siegel Φ-operator may be defined as follows. Siegel modular forms in even
weight are always rational functions in the theta constants of second kind. On
them, the Φ-operator is given by

Φ(/g)=/a and Φ(/f)=0.

(Here a is considered as element in Fξ and £ as an element in Fξ+ί.)

3. Azygetic sets and cosets

On Fξ one has the standard scalar product with values in /Γ

2 = {0,1} and for
m = [β]<ΞF2'

g we define:

= {m,p}

Usually one takes values + 1 but we prefer the above notation. \m\ is called the
characteristic of m = \$].

We refer to the book of Rauch and Farkas [29] for proofs of some facts
which are only given as additional information. Let us start with some easy
considerations of characteristics and the bilinear form on

Lemma 3.1. 1. \m-\- n\ = \m\ + \n\ + {m,n}

2.

3.

Proof. This follows easily from the definitions. Π
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As usual a characteristic m = [*β~] is called even or odd, iff \m\ is 0 or 1
respectively. Two characteristics m and n are called azygetic iff {m,n} = \ and
three characteristics m, n and p are azygetic iff {m,n,p} = 1. A set of characteristics
is called azygetic iff every tripel of elements is azygetic.

By the lemma | | is a homomorphism on any isotropic subspace of
F2

8 . Because the bilinear form is the standard non-degenerated alternating form,
any linear form on a subspace is given by a uniquely (modulo the orthogonal
complement) defined element via the bilinear form (|jc| = {x,α} for some
a). Furthermore the group Sp(2g,F2) is operating transitively on the isotropic
subspaces of equal dimension. It follows that for any r-dimensional isotropic
subspace U there is an element av such that av 4- U is uniform.

(Let us recall the following definitions S=av+ C/is uniform iff \sι\ = \s2\Vsi9s2 e S
and even iff |,y|=0 VseS.)

If S=aυ-\-U is even, it follows easily from the lemma that λ + S is uniform
iff λ is orthogonal to U. It is easy to see that there are 2g~r~1(28~r+ 1) even sets
of type S=aυ-\-U for any r-dimensional isotropic subspace U (Rauch/Farkas,
ρ.40). All other sets of type S=av+U contain only odd characteristics or half
odd and half even ones.

We recall from [29] the following:

Lemma 3.2. Let 5'={x1, ,xπ} be a set of in pairs azygetic elements in
(i.e. {xi9Xj} = l for i^j\ then we have (l)=>(2)o(3)<=>(4)=>(5) for the following
conditions:

(1) $S=2g+l
(2) S maximal
(3) Σxf = 0
(4) S linearly dependent
(5) S odd.

Proof. (3)=>(5):

If 5u{x} is in pairs azygetic, then {jc,jcί} = l, hence 0 = {0,x} = {Lxi,x}
= #5=1 contradiction.

(4)=>(3):
If S' d S and Σ^^ c—O, then 5' maximal.
(3)=>(4) is trivial.

(2)=>(3):
If ΣJC.^O, then S is linear independent, hence %S<2g. If #5 = 2̂ , then let

jc = Σxί and S'ulx} is again in pairs azygetic, contradiction. Hence there exists
an element y in F%8 with Su{y} linear independent. Hence one may solve the

equations {x,y} = {x,Xi} = l to get a bigger in pairs azygetic set Sujx}. Π
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The proof secures the existence of in pairs azygetic sets of cardinality 2g+l.

Corollary 3.3. Let B c= F\κ with $B = 2g +1, {x9y} = 1 for x^yeB an in pairs
azygetic set. Then

{T^B with %T=l(2)}-+Fj[8

7V+ΣΓ

is a bijection.

Proof. Injectivity follows from 3.2. The surjectivity follows from the formula
(see [29], p.36)

= Σ
^ i=i..g\£i -r i /

D

Lemma 3.4. Let B c Ff* H>/fλ %B = 2g+ 1, {jc,j} = 1 for x^yeB an in pairs
azygetic set. Let Ti and T2 be subsets of B. Then

{Σ7\,ΣΓ2} = WΓW(T2) + *(Tι n Γ2).

Proof. Let m = Σ(^ n Γ2), p = Σ(ΓΛΓ2) and ? = Σ(Γ2\Γ1). Then

D

Corollary 3.5. ^4« /« /?έz/rj azygetic set is azygetic.

Proof. Regard 7\ = {^/, 7̂ } and r2 = {xf, ;cfc}, Then {xi9XpXk} = {xt + xp x{ 4- xfc}

= 1. D

Proposition 3.6. Let B c F|*, #^ = 2g-hl, {A:,J} = ! /or x^yeB an in pairs

azygetic set. Let

U={xeB with \x\=0}

V={xeB with \x\ = l}
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be the even and odd subset of B and T an arbitrary subset of B. Then

1. Σt/=ΣF

2. #£/=$+1(4) and *F=g(4).

fO ι/g=0,3(4)
3. |ΣC/| = |

[1

4
*(K

5. I Σ C / + Σ 7 0 *•«•=*.

Proof. For any xeB the set ^\{^} is a basis of the /Vvectorspace Ff*. The

map Λ h-^l^lH-l is additive for 51,ly2e^\{jc} hence

= {y,j} for seB\{x}

for some jeF|g. Hence

does not depend on ^e^\{x}. By lemma 3.1. we get for SO <= B with #SΌ =

by induction. Hence

if T 4- 1

For two elements we get

for *Γ=1(2) and

hence we get altogether the formula

else
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for xφT a B. In particular, for B\{x] we get

\y + *l = \y + ΣseBUx} s\ = Lv| +g.

Now we set y = ΣP with P a B and #P=1(2). Then for s^x we get

hence the set P contains all the elements in V different from x and no element
of U except possibly x. Hence

and

If we choose x in U or V we get

#F=s mod (2).

An easy consideration of the possible cases yields now the formula in 4, 5 and 3
and by regarding the different cases for the genus g we get 2. Π

With the notation of the proof for odd genus y = Σ V is independent of the
element x and

else

but for even genus g we have y = ΣV+x and

1 for g = 0(4)

0 else

hence P={LV+s with sεB} is a principal set (Hauptreihe) in F2

g. The
characteristic of every member in a principal set is even for g = 0, 1 mod (4) and
odd for g = 29 3 mod (4).

The result in 3.6, 2) is the best possible result. If B = {x^- ,x2g+^} is an in
pairs azygetic set and WH-x/l for /Je{l, ,4} then Bf = {xί+x2 + x3,xl +x2 + x4,
Xί+x3 + x4,x2 + x3+x4,x5, -,x2g+ί} is again an in pairs azygetic set, but the
number of odd and even elements changed by four. Moreover any in pairs
azygetic set can be reached by several application of this operation.

One may regard the above proposition as a cohomological result. Let denote
by φ0(x) = \x\-\-l and by φi>J{x) = \x + xi + Xj\ and φi(x) = \x + xi\, then
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Φi + Φj = Φij + Φo and φi j + φj>k + φitk = ΦQ

as elements in Hom(F2

8,F2).

The next point is a generalization of 3.5. We denote by Jt the set of azygetic
sets of cardinality 2g + 2. Moreover we call two such sets Mγ and M2 equivalent
if MI = M2 4- v for some v. Any azygetic set remains azygetic if one adds a fixed
vector. One could denote such sets as cosets and may normalize azygetic sets
by the assumption of containing 0. For any in pairs azygetic set B of cardinality
2g+ 1 we get with #u{0} a set in Jί. On the other hand for any azygetic (co)set
MεJί and any xeM we get with

Mx = {y + x with yεM\{x}}

an in pairs azygetic set of cardinality 2g+l. The number of equivalence classes
of in pairs azygetic sets of cardinality 2g+l is for g>2 just

2g+2 ]

There is a classical discussion Stahl / Frobenius, whether it is more natural to
regard in pairs azygetic sets of cardinality 2g+l or azygetic sets of cardinality

There is a standard way to get the symplectic form on F2

g . We regard in

the /vvectorspace F%g+2 the subspaces {0,1} and H={xeF%g+2 with \x\ = Q}. The
weight \x\ is just the number of entries 1 and is used as a number in Z or in
F2 . The element 1 is just the vector with all entries 1. One has the component-wise
product of elements and on F2

8^H / {0, 1} one has the standard symplectic form

{[*],!>]} = M

The symmetric group S2g+2 is acting on F2

8 + 2 by permuting the coordinates. This
action induces a map from S2g+2 -> Sp(2g,F2) which is an injection for g>2. For
genus 1 we get a surjection S4 -> Sp(29F2)^S3, for genus 2 we get an isomorphism
S6^Sp(4,F2). For even genus S2g+2 is moreover a maximal subgroup of
Sp(2g,F2). For odd genus the action of the symmetric group preserves a (unique)

quadratic form and this gives an inclusion of S^+i as a maχima' subgrop of
O+(2g,F2) for g = 3(4) and O~(2g,F2) for g=l(4). For small genus we have some

exceptional isomorphisms

and

and
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but for higher genus we get proper maximal subgroups.1 The orthogonal groups
are maximal subgroups in the symplectic groups. Hence for genus 3 Ss is maximal
in Sp(6,F2). For these results see [6]. For genus g>3 the inclusion S2g+2

c Sp(2g,F2) is unique up to conjutgation. For genus 2 there are exactly two
isomorphisms for S6 = Sp(49F2) up to conjugation. There is the extraordinary
outer automorphism of S6 . This automorphism permutes the transpositions with
the triple transpositions. For n > 6 there are no outer automorphisms (Sn = Aut(5w)).
For these results see [36] and [28].

In F2

g^2 we have fixed the hyperplane H of even elements. We fix for odd
genus g some veH and for even genus g some vφH. Then the set

T={v + x with |jt|=g+l}

is a subset of H. We fix the action of S2g+2 by permuting the entries of x. This
action is conjugated to the standard one. By abuse of notation T is also regarded
as an subset of F2

g ^ H / {0, 1 }. Moreover the subset T is stable under S2g+2 . Due
to Sasaki [35] it holds moreover

Lemma 3.7. The symmetric group S2g+2 is the stabilizer of T.

Proof. (Sasaki)
Let σεSp(2g,F2) with σ(T)=T.
First step: \x\ = 2 => \σ(x)\ = 2 or 2g.
Regard the following sets:

W={teT with 3f' and t + t = x}

\Vσ = {teT with 3f and t + t' = σ(x)}.

Remark that Γ+1 = Γ, W+l = W, Wσ+\ = Wσ. Let |σ(jc)| = 2λ;. An easy
consideration shows

2V1Λ*

and

2\kJ\g+ί-k

1 Remark the difference of this notation and the atlas notation [1], where O*g(2) denotes (for g>2)
the simple group of index two in O*(2g,F2). Then one gets the exceptional isomorphisms O~(2)^A5

and 0+(2)^A8.
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The map t\-*σ(t) is an injection of W in Wσ, but for g>k>\ we have

Second step:

We identify 1=(1,0, ), 2 = (0,1,0, ), the numbers {l, ,2g + 2} with the
corresponding standard basis vector. It is enough to show, that up to the action

of S2g + 2 one may arrange that σ(l +&)=! + k.
The proof is by induction. The first step σ( 1+2)= 1+2 is trivial. Let

σ(l+3) = α + 6, then σ(2 + 3) = l +2 + 0 + 6. Hence a or b has to be 1 or 2, but

not both cases can occur. Hence after a permutation one may assume that
σ(l+2)=l+2, σ(l+3)=l + 3, σ(2 + 3) = 2 + 3 and by induction one gets the result.

D

A second proof is as follows: We may suppose g>3. The cardinality of T

is just j(2/+?) = (2ggl). Moreover by 3.6. one may arrange up to conjugation for
odd genus that v = ΣV and S2g+2 c O*(2g,F2) = Stab(ι?) (for g^l(4) one has *= -,
for g = 3(4) one has * = + in accordance with the characteristic of v). In any case
the symmetric group is maximal in the orthogonal or symplectic group, which are
acting transitively on F|g or the odd or even elements of F|g. For higher genus
the cardinality of even or odd or all elements of F%g is much bigger than (2g

g *),
hence the result.

4. The moduli space of hyperelliptic curves

Following the notation in [33] we regard the moduli space of hyperelliptic
curves for genus g>2 as a closed subscheme in the corresponding Satake
compactification £/g = 3#(Γg) (maybe with some level structure). The result of
Thomae may be stated as follows ([27], II, 8.13):

Theorem 4.1. The moduli space of hyperelliptic curves with level-2-structure

is given by

where B runs over in pairs azygetic sets of cardinality 2g+l and

) = Proj(C[θ4[ΣF+ΣΓ] with #Γ=g, g+1 and

where B is an in pairs azygetic set of cardinality 2g+l with g+1 even and g odd

characteristics.

The number of irreducible components in J4?ypg(2) is just [*S^?(2g,F2):»Sf

2g+2].
This is stated for example in [5], p. 145. The proof, however, is not

correct. Dolgachev / Ortland assert that it is known, that ^2^+2 i§ a maximal
subgroup of Sp(2g,F2). But this is true only for even genus and genus 3. In
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general one has to argue as in the last chapter.
It follows from the smoothness of the locus of indecomposable abelian varieties

([31]) and lemma 3.7. that the irreducible components of J4?ypg(2) only have
nonempty intersection in boundary points. Or, in other words, the irreducible
components of Jί?ypg(2)nHg/Γg(2) are the connected components.

Proposition 4.2. An irreducible component of J^ypg(2) corresponds to an in
pairs azygetic set B of cardinality 2g+l. To any such set B with g-f-1 even and
g odd characteristics we get a set of defining equtions in P2s~l /Ng given by
02[ΣF+ΣΓ](τ) = 0 for %T^g,g+\, regarded as equations in the mixed fafb by the
Veronese formula.

See [33] for details. The group Ng is an extension of a finite Heisenberg
group acting on the projective space by the Schrδdinger representation. This is
a translation of Mumfords theorem 9.1. in [27], II via the following lemma.

Lemma 4.3. It is equivalent to have the following data:
(1) Let t/cMcFl* with %U=g+l and %M=2g + 2 together with an

isomorphism

( group of subsets T c MΪ « 2

($T even mod T~M\T J 2

satisfying

and

and

(2) An in pairs azygetic set B=UvV of cardinality 2g+l with even subset

U and odd subset V and # U—g-\- 1.

Proof. One fixes an element coeM\U which is mapped to 0. Then one may
write the isomorphism additively as

ίeΓ

and η becomes a homomorphism with respect to the symmetric difference
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We have

hence the second condition of (1) is equivalent to

) = 0 for ίfΓ=0(2).

In particular, the elements of U are mapped to even elements. If one regards

TI = {CO,X} and T2 = {ao9y}, the first condition of (1) is equivalent to in pairs
azygetic. The rest is clear. Π

EXAMPLE 4.4: The genus one case

It is well known that

with

*= (4) =/?+/?

Y= 2(2,2) = 2/0

2/?

(see for example [32]). The cusps correspond to the nontrivial involutions of the
extended Heisenberg group Nl of order 24=16. A cusp is called even /odd iff

the square of the corresponding involution is + 1 / — 1 on the ring of modular
forms (of even weight), which is our fixed homogeneous coordinate ring of the

Satake compactification. There are exactly 4^—1 = 3 nontrivial involutions (see

[33]).

The involution is given by

/o'-' /o

The cusp is even and the eigenspace condition is /ι=0. Hence X=f£ and

7=0. ^(0,1) = [1:0] = 00.

Λ(l,0)
The involution is given by
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/i ι-»/o

The cusp is even and the eigenspace condition is/0 =/i . Hence X= 2f£ = Y. R(190)
= [1:1] = 1.

Λ(U)
The involution is given by

The cusp is odd and the eigenspace condition is /t = //0 . Hence JF= 2/^ and
y=-2/0

4, hence JT+y=0. Λ(l, !) = [-!: 1]= -1.
The computation corresponds to the usual picture of a fundamental domain

for Γ1(2). In particular, we get

The group Sp(2,F2) = S3 is acting on P1^j/1(2) and permutes the cusps, hence
one may ask for the structure as a Specht module. The character table for S3 is
the following one:

(3) (2,1) (1,1,1)
(3) 1 1 1

(2,1) -1 0 2

(1,1,1) 1 -1 1 .

The columns correspond to the conjugacy classes given by the partition, the rows
correspond to the characters of the Specht modules to the partition. In particular,
the first row is the trivial representation, the last row is the signum representation
and the last column yields the dimension of the corresponding representation (or
Specht module).

To identify the action we compute the action of the MacWilliams identity.

-/1)
2)=(-^+ n

Hence we get trace 0 for involution on [Γ1(2),2], which yields

17^2X2] SS2-1

as a 53-Specht module.
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EXAMPLE 4.5: The genus two case

It is well known that

with

^ = (4) =/?+/?+/?+/?

C= 2(2,2,0,0) = 2(/0

2/2 +/2

2/3

2)

Z) = 2(2,0,2,0) = 2(/0

2/2

2+/1

2/32)

£=2(2,0,0,2) = 2(/o2/3

2 +/?/2

2)

and

is a quartic in P4 (see for example [32], the constant factors make the computation
easier). The translation to Igusas notation in [19] is given by

yί=2C+2B

y3=-2C-2D

y4=-2E-2D.

The cusps correspond to the nontrivial involutions of the extended Heisenberg
group N2 of order 26 = 64. There are exactly 4^—1 = 15 nontrivial involutions
(see [33]).

The same computation as in the genus one case yields the following tabel.

cusp defining equations
01 Q = B=C=E
02 Q = B = D = E
03 Q = B=C=D
10 A = C9 B = D = E

11 A = -C, B = E=-D
12 A = C,B=-D=-E
13 A = -C,B = D=-E

20 A=D, B = C=E
21 A=D,B=-C=-E



(6)
(5,1)
(3,3)
(2,2,2)

(2, 14)
(I6)

1
-1
__3

3
1

-1

1
1
1
1

1
1
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22 A=-D,B = E=-C
23 A = -D,B=C=-E
30 A=E,B=C=D
31 A = -E, B=C=-D

32 A = -E, B = D=-C
33 A=E, B=-C=-D.

Hence all the 15 boundary components (isomorphic to P1) are given as lines in
P4.

The group Sp(4,F2) = S6 is acting on ja/2(2) c f*4, hence one may ask again
for the structure as a Specht module. The interesting part of the character table
for S6 is the following one:

(2,2,2) (2,2,1,1) (2,1,1,1,1) (I6)

1 1
3 5
1 5
-1 5
-3 5
-1 1 .

The columns correspond to the conjugacy classes of the involutions given by the

partition, the rows correspond to the characters of the Specht modules to the
partition of dimension up to 5. In particular, the first row is the trivial

representation, the last row is the signum representation and the last column yields
the dimension of the corresponding representation (or Specht module).

To identify the action we compute the action of the Mac Williams identity. In
the basis (of the polynomial ring) A, B, C, D, E as above we get the matrix

- 1 0 - 1 0 0

0 0 0 - 2 2

- - 3 0 1 0 0

0 - 1 0 - 1 - 1

0 1 0 -1 -1 .

Hence the trace is —1. Regarding the character table we conclude, that as a
Specht module [Γ2(2),2] is isomorphic to S2'2'2 or S5Λ. But as pointed out in
the last chapter there is an (unique up to conjugation) outer automorphism of S6,
which permutes the transpositions with the triple transpositions. Hence the

structure as a S^-Specht module depends on the choice of the isomorphism
S6^Sp(4,F2). Hence we get the following result.
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Proposition 4.6. The vector space [Γ2(2),2] has two (nonisomorphic) structures
as S6-Specht module, which belong to the partition (2,2,2) or (5,1).

REMARK 4.7. In Igusas choice of the isomorphism S6^Sp(49F2) one gets the
partition (2,2,2), see [19]. However, this partition is not uniquely determined.

REMARK 4.8. In [13] the proof of (5.2.) is not correct. It is impossible to
change the Specht module structure by an outer automorphism to get a (3,3)-module
structure on a (2,2,2)-module. Also chapter 4 in [13] contains the same
mistake. The action of S6 by permutation on a 6-dimensional vectorspace with
basis {xi,-'-,*6} induces on V={x with Σ c—O} automatically the structure as a
(5,l)-module and not a (3,3)-module.

The action of the other generators of Sp(4,F2) is given as follows. The subgroup
Gl(2,F2) = S3 is acting by permuting C, D, E. The diagonal elements Ds are acting
by B\-* —B or by multiplication of two of the three elements C, D, E by ( — 1). If
one regards [Γ2(2),2] as S3^Gl(2,F2)-module one gets

[Γ2(2),2]^Sf3φS'3Θ5r3θ5f2'1.

For the restriction of a Specht modules with respect to some smaller Sn there is
an easy rule (see [25], p. 34), which is given in this special case as

and

Hence we have the (5, l)-structure.
If one chooses the following bases

xs = 2C+2B

one may identify this basis with tableaus

jc1= (12X34X56)

*2 = (13)(24X56)
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*3 = (13X25X46)

x4 = (14X25X36)

*5 = (12X35X46)

and gets an isomorphism S6^Sp(4,F2) with M=(12) acting via the canonical
representation belonging to (2,2,2), i.e.

M =

and some other generators correspond to

/ 1

-1 -

-1

\

-1

-1 -1

-1 1

1

\
\

/

There is a special property of the genus two case, namely that there is only
one type of decomposable points in H2. The locus of decomposable points is
just described by the vanishing of

,2 " I {—\\<<*J>f^ f\ L) Ja + aJa

and its conjugates under S/?(4,F2), hence by the usual theta squares for all even
characteristics, see for example [32].

The irreducible components after intersecting with the moduli space are
Humbert surfaces with discriminant 1 and numbered by the even characteristics.
The following table provides the equations of the 10 Humbert surfaces.

(α,/?)
00
01
02
03
10
12
20
21

defining equation

A+D-C-E=Q
A + C-D-E=Q
A+E-C-D = Q

C-B =
D + B =
D-B =
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30

33 E-B = Q.

Hence all the Humbert surfaces are hyperplane sections. Substituting this equations
into the quartic equation / one gets a complete square. Hence all the Humbert
surfaces are quadrics in P3 counted with multiplicity 2. The quadric equations
are as follows:

(α,/?) defining equation
00 B2 + CD + CE + DE
01 B2 + CE-DC-DE
02 B2 + DE-CD-CE
03 B2 + CD-CE-DE
10 AB + DE
12 AB-DE
20 AB+CE
21 AB-CE
30 AB+CD
33 AB-CD.

Hence all the Humbert surfaces are nonsingular quadrics isomorphic to
P1 xP 1 . The group S6^Sp(4,F2) is permuting the Humbert surfaces. The quartic
«β/2(2) has a beautiful geometry, which is described in the next chapter.

EXAMPLE 4.9: The genus three case

It is known that <s/3(2) is the quotient of a hypersurface in P7 by a group
N3 (see [32]). But the variety is no longer a complete intersection, although it
is normal and Cohen-Macaulay.

Again the cusps correspond to the nontrivial involutions of the extended
Heisenberg group N3 of order 28 = 256. There are exactly 4^—1=63 nontrivial
involutions (see [33]).

The group O+(6,F2) = SS is acting on j/3(2) = ̂ (Γ3(2), hence one may ask
(for every weight) again for the structure as a Specht module. The interesting
part of the character table for Ss is the following one:

(2,2,2,2)(2,2,2,1,1) (2,2,1,1,1,1) (2,16) (I8)
1 1
5 7
-5 7
4 14
-4 14
-1 1

(8) 1

(7,1) -1
(2, 16) -1
(4,4) 6
(2,2,2,2)6

(I8) 1

1
1
-1
0
0

J

1

3

3

2

2

1
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The columns correspond to the conjugacy classes of the involutions given by the
partitions, the rows correspond to the characters of the Specht modules to the
partition of dimension up to 15. In particular, the first row is the trivial
representation, the last row is the signum representation and the last column yields
the dimension of the corresponding representation (or Specht module).

To identify the action we compute the action of the Mac Williams identity. In
the basis (given in [32]) we get the matrix

2 1 \
12 -2

2 2 1
2 2 - 1

2 2 1
2 2 - 1

1 2 2 1
-- 2 2 - 1
4 8 - 8

2 - 2 2 - 2
- 2 2 2 - 2
2 2 2 2

- 2 - 2 2 2 /

Hence the trace is —5. Regarding the character table we conclude, that as a
Specht module [Γ3(2),2] is isomorphic to s2-2-2

Proposition 4.10. The vectorspace of modular forms for level 2 in weight 2
([Γ3(2),2]) is the unique irreducible Sp(6,F2)-module of dimension 15 and has as
Sg-module the structure 52,2,2,20^1,1,1,1,1,1,1,1

Proof. The first part follows from [11] and [7] and the atlas of the finite
simple groups [1], The second part follows from that and the character table.

D
Igusa proved in [22] the following:

Proposition 4.11. The closure of the locus of hyperelliptic points is defined by
the exact vanishing of one of the 36 theta squares.

Proof. We just have to check the criterion in 4.1 or 4.2. For any in pairs
azygetic set of cardinality 7 with 3 odd and 4 even characteristics we have to
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regard subsets T with #7=3,4(4) and #F^3,4. Hence T=B or Γ=0 and for the
vanishing condition we get that some theta constant is vanishing. On the other
hand for any concrete hyperelliptic τ (2sg

+1) = 35 theta constants are different from
zero. Hence any hyperelliptic point lies on exactly one hypersurface

in P7. Π

Hence from the geometric point of view the Humbert surfaces in genus 2
correspond to the locus of hyperelliptic points in genus 3. In level two the equation
corresponds to a hyperplane section in P14^/>([Γ3(2),2]). The union of the
hyperelliptic components is given as the divisor of a modular form of weight
18 called

*ιβ= Π 0[m].
even m

In the appendix we give a formula for χ18 as a polynomial in the/a following lemma
3.3 and 3.4 in [31]. We use the identities

Θ0Θ1Θ2Θ3Θ4Θ5Θ6ΘΊ=^(Θ0Θ1Θ2Θ3)
2+(Θ4Θ5Θ6ΘΊ)

2-(Θ10Θ12Θ14Θ16)
2)

= (8)-2(4,4)+8(2,2,2,2)-64(l,l,l,l, 1,1,1,1)

(as a polynomial in /α) and

to express χιs = P+Qθoθιθ2θ3θ4θ5θ6θΊ, where P and Q are polynomials (with 64
terms each) in the theta squares of Θ0, Θ1; Θ2, Θ3, Θ4, θs, Θ6, Θ7 and then we use
the Veronese formula. The writing is not unique due to the relation Θ16 — θl = φ
in the notation of [31]. (With the help of a computer one regards
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specializations as a polynomial in three variables.)

REMARK 4.12. In genus 3 the group S8^O+(6,F2) is up to a root of unity
just the image of Γ3(l,2). For details see [34].

5. The geometry of s/2(2)

In this chapter we continue to describe the geometry of «β/2(2) For a
hypersurface it is very easy to describe the singular locus and the blowing up of
the singular locus, which is just the desingularization first studied by Igusa in [23].

We recall the hypersurface equation.

This equation is S6-invariant (the action is described in the last chapter). For the
singular locus we first remark that the indecomposable points are smooth (see
[31]). Hence we may assume that the singular point lies on one of the Humbert
surfaces, so after a ^-action we may assume

which is the equation of #(3,3). Moreover we get

AB-CD = 0

from the quartic. We shall use the well-known Jacobian criterion. The conditions
for a singular point are as follows:

2AB2 = 2CDE

) = 2ADE+2CB2

2D(C2 + D2) = 2ACE+2DB2

2E(C2 + D2) = 2ACD + 2EB2

hence only the following equations remain:

AB=CD and B3 +A2B = B(C2 + D2).

If B = Q then CZ> = 0 and we get as solution the boundary lines Λ(Ol) and
R(Q2). If B^Q we get two nonsingular quadrics

B2+A2 = C2+D2 and AB=CD.
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We have the lines £(10), /?(20), R(22) and R(U) in the intersection, hence (by
[16] 1.7.7.) we get

3, 3) =

for exactly 6 lines R(m).

It is easy to check the following statements from the explicit description of
the hyperplanes H(q) and the lines R(p).

= \J R{p)

Every line R(p) intersects six other lines in three points.
Any intersection point lies on exactly 3 R(pt) and it holds

=Q and \p1 \ + \p2\ + \p3\ = 0.

There are exactly 15 lines R(p) and 15 intersection points.
On any Humbert surface H(q)n^2(2) are exactly six lines R(p).
Any line R(p) lies on exactly four Humbert surfaces H(q)n<$/2(2).
If R(pi) c H(q)nj*2(2) for ι=1..6, then \pi\ = l for all i iff ? = 0 or 1̂ = 1 for

exactly two lines. Moreover

£>; = () and X /7f = ̂ = X /?f.
|P<| = 0 |Pί| = l

REMARK 5.1. Some of these results are contained in [13]. Van der Geer
studied Humbert surfaces of arbitrary discriminant, which yields more geometry
on stf2(2\ Moreover, he computed the Chern numbers of the desingularization
«β/2(2) However, the Chern number c3(j/2(2)) is not correct [38].

REMARK 5.2. Some of these results are contained in [5]. For example
theorem 5 on page 157. But the proof is not correct. Dolgachev / Ortland are
pointing out, that it would be known, that Γ2(2) has no torsion element and acts freely
on the Siegel half space, which would indeed imply, that H2/Γ2(2) is
nonsingular. However, Gottschling computed the torsion [14, 15]. It is known
that Γg(ri) acts freely for «>3, but Γg(2) always contains torsion elements, see
[9]. Nevertheless, the above computation proves that H2/Γ2(2) is nonsingular,
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but the proof is quite different.

The next point is the following easy observation. Instead of regarding the

theta nullwerte, one may have regarded the theta functions

J a\ 9 / /_, I I I \ > /
*ez* \ L 2J \ 2 /

as analytic functions on Hg x C8. The finite group Hg is acting on the theta

functions in the same way as on the theta constants. On Hg x Cg we have the

action of the semidirect product Z2g x Γg by the following formulae:

β\
) is acting by A/(τ,z) = (Af<τ>, '(•

C D;

and

Z2g is acting by

It is easy to check that one gets an action of the semidirect product. After

dividing out the action of Z2g one gets the universal family of principally polarized

abelian varieties together with the projection to Hg. If one moreover divides out

the action of Γ (̂2), one gets the universal Kummer variety. The theta functions

fa just induce a map of this universal Kummer variety to P2g~l /Ng. By fixing

τ on gets the embedding of the Kummer variety K(τ) into the projective space

divided out by the Heisenberg group Ng (see for example [12], [11]). Moreover

the image of (τ,0) is just the moduli point of the Kummer variety K(τ).

Now lets come back to the genus two case. The quartic equation remains

the same, if one interprets the/α as/fl(τ,z) in the definition of A, B, C, D, E. Hence

the intersection

is just the Kummer variety by dimension reasons. (It has to be a hyperplane

section and the image of τ must be a singular point, hence the hyperphlane is the

tangent plane.) This is theorem 6.1 in [13]. In higher genus we get only an

embedding.

In genus one the theta map just fixes an isomorphism of the Kummer curve

K(τ) with P1 together with fixing 4 points {!, — !, oo,τ}.

REMARK 5.3. The next general point is the Prym map. It is given by the

Schottky substitution on the graded rings of modular forms in level 2. For details

we refer to [33]. In small genus the Prym map is just invers to the Siegel

Φ-operator, which induces the embedding of a cusp. The finite group Hg permutes

the cusps, so it is enough to regard the cusp at infinity.
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Although the Schottky substitution is a morphism of graded rings, some
problems come from the fact, that it is given only for weight divisible by 4.

In the genus one case the computation is as follows:

=VΓ00W001+400>Γ001)r LooJ LoiJ LioJ LnJ

=VΓ10V[1(Ί
2 LooJ LoiJ

Hence we get the following map

S(X2)=A2-C2-E2

S(XY)=AD-CE

) = D2-B2

It is easy to check that this induces a ring homomorphism (due to the quartic
equation) which is invers to the Φ-operator.

In genus 0 one has the computation:

S(Γ) = (ι

2) = (4)-(2(2,2))2

= X2-Y2.

The ring homomorphism S is obviously not defined on the whole polynomial ring,
but for the projective schemes it is enough to have a homomorphism on the
subring of weight divisible by 4.

In [33] we proved an idealtheoretical version of the result of Donagi in
[2]. Moreover the Prym map

= Jtg x ̂ (2) -* s/g_ ,(2)
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extends to a morphism

together with a diagram
Torelli Th

Jtg(2) -> A?g(2) -* P(g)

Prym, »Prym"B

\ T \ T

Torelli Th

It follows immediately from this diagram that the Prym maps are proper,
which is a theorem in [3]. For small genus the dimensions are

Torelli Th

12 - 15 - 31

Prym, «Prym"5

Torelli Th

9 -* 10 -> 15

Prym "Prym"

s, ί \ ί
Torelli Th

Prym "Prym"

s, T s, t
Torelli Th

3 ^ 3 -» 3.

Now we come to Igusas desingularization, as described in [23]. It is nothing
but just the blowing up of j/2(2) along its singular locus ^2(2)sing which is an
arrangement of 15 lines. We denote the blowing up by «a/2(2)

Proposition 5.4. The blowing up s/2(2) is nonsingular.

Proof. The question is local and only unclear for points on the strict transform
of some line in the boundary. Because of the group action we may assume, that P
is some point on the strict transform of Λ(01), different from {!, — !}. Hence we
may assume

β=C=E=0 and A2^D2.

The blowing up with respect to the ideal (B9C9E) is locally given in P4xP2 by
the equations
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bC=Be, eC=cE, bE=eB,f.

Up to permutation we may assume ft=l, hence C=Bc, E=eB. The quartic
equation yields for the strict transform the equation

B2(\+c2e2-c2-e2)+A2+D2(c2 + e2-l) =

The singularity condition is

2A = 2Dce

2D(c2+e2-\) =

B2( -2c + 2ce2) + D2(2c) = 2ADe

B2( -2e + 2ec2) + D2(2e) = 2ADc.

The blowing down of P has coordinates (A : 0 : 0 : D : 0), hence we get the conditions:

A=Dce

D(cD-Ae) = Q

D(eD-Ac) = Q.

If D = 0 it would follow A=Q, which is impossible, also ce^Q. Hence we get

A D
c — —e — e—

D A

which implies A2 = D2, contradiciton. Π

REMARK 5.5. Igusa proved more generally, that the blowing up is a
desingularization for g<3. For arbitrary genus this may be regarded as a special
toroidal desingularization, but for genus two the blowing up is more elementary.

REMARK 5.6. It is easy to see that the strict transform of the Humbert surfaces
are double lines. By blowing them down, one gets the dual hypersurface in P4, which
is known as Segres cubic primal, see [5] for more details. In the coordinates of
4.8. the cubic primal is given by

which is the unique S6 -in variant cubic. It has 10 singular points
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[3:0:1:1:1]

[3:0:1:-!:-!]

[3:0:-1:1:-1]

[3:0: -1 :-!:!]

[0:1:0:0:^8]

[0:1:0:0:-^]

[0:1:0:^/8:0]

[0:1:^/8:0:0]

and also a beautiful geometry. Hence j/2(2) is the common desingularization of
a quartic and a cubic hypersurface in P4.

Appendix

In this appendix we give a formula for χ18 as a polynomial in the theta
constants of second order. The way of computation is described after 4.11.. The
notation is according the conventions in [31,32]. In weight 18 (degree 36) there
are 190 admissible monomials for polynomial cusp forms (i.e.genus 3 as
monomial). Unfortunately 185 coefficients are nonzero. The result is

2 (29,1,1,1,1,1,1,1) -10 (17,13,1,1,1,1,1,1)
-1 (28,2,2,0,2,0,0,2) -22 (17,9,5,1,1,1,1,1)
1 (26,4,2,0,2,0,2,0) 160 (17,7,3,1,3,1,1,3)

-10 (25,5,1,1,1,1,1,1) 108 (17,5,5,5,1,1,1,1)
4 (24,6,2,0,2,0,0,2) -84 (17,5,5,1,5,1,1,1)

-1 (24,4,4,0,4,0,0,0) 240 (17,5,3,3,3,3,1,1)
1 (24,4,2,2,2,2,0,0) -2 (16,12,4,0,4,0,0,0)

32 (23,3,3,3,1,1,1,1) -3 (16,12,2,2,2,2,0,0)
-4 (22,8,2,0,2,0,2,0) 8 (16,10,6,0,2,0,0,2)
-2 (22,6,4,0,2,2,0,0) -17 (16,10,4,2,2,0,2,0)
-16 (22,4,4,2,2,0,0,2) -4 (16,8,8,0,4,0,0,0)
-56 (22,2,2,2,2,2,2,2) -4 (16,8,6,2,2,2,0,0)
18 (21,9,1,1,1,1,1,1) -7 (16,8,4,4,4,0,0,0)
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28 (21,5,5,1,1,1,1,1) -9 (16,8,4,0,4,0,4,0)
-80 (21,3,3,1,3,1,1,3) -62 (16,8,4,0,4,0,0,4)
-5 (20,10,2,0,2,0,0,2) -65 (16,8,4,0,2,2,2,2)
3 (20,8,4,0,4,0,0,0) -34 (16,6,6,4,2,0,0,2)
3 (20,8,2,2,2,2,0,0) 56 (16,6,6,0,6,0,0,2)

-10 (20,6,6,0,2,0,0,2) 62 (16,6,6,0,4,2,2,0)
8 (20,6,4,2,2,0,2,0) 40 (16,6,4,2,4,2,0,2)
16 (20,4,4,4,4,0,0,0) 12 (16,4,4,4,4,4,0,0)
44 (20,4,4,0,4,0,0,4) 342 (16,4,4,4,2,2,2,2)
94 (20,4,4,0,2,2,2,2) 64 (15,11,3,3,1,1,1,1)
-96 (19,7,3,3,1,1,1,1) -64 (15,9,3,1,3,1,3,1)
-16 (19,5,3,1,3,1,3,1) 128 (15,7,7,3,1,1,1,1)
5 (18,12,2,0,2,0,2,0) 64 (15,7,5,1,3,3,1,1)
-1 (18,10,4,0,2,2,0,0) -384 (15,5,5,3,3,1,1,3)
4 (18,8,6,0,2,0,2,0) -2048 (15,3,3,3,3,3,3,3)
31 (18,8,4,2,2,0,0,2) 4 (14,14,4,0,2,2,0,0)
-10 (18,6,6,2,4,0,0,0) -4 (14,12,6,0,2,0,2,0)
-32 (18,6,4,0,4,0,2,2) -8 (14,12,4,2,2,0,0,2)
-152 (18,6,2,2,2,2,2,2) 12 (14,10,6,2,4,0,0,0)
-130 (18,4,4,2,4,2,2,0) 16 (14,10,4,4,2,2,0,0)
48 (14,10,4,0,4,0,2,2) 44 (12,8,6,6,2,2,0,0)
208 (14,10,2,2,2,2,2,2) -52 (12,8,6,2,6,0,0)
-48 (14,8,8,2,2,0,0,2) 80 (12,8,6,2,4,0,2,2)
-12 (14,8,6,4,2,0,2,0) -56 (12,8,4,4,4,4,0,0)
-8 (14,8,6,0,6,0,2,0) 68 (12,8,4,4,4,0,4,0)
-44 (14,8,6,0,4,2,0,2) -52 (12,8,4,4,2,2,2,2)
-40 (14,8,4,2,4,2,2,0) -112 (12,6,6,4,6,0,0,2)
24 (14,6,6,6,4,0,0,0) 40 (12,6,6,4,4,2,2,0)
-16 (14,6,6,2,4,4,0,0) -264 (12,6,6,0,6,0,0,6)
112 (14,6,6,2,4,0,0,4) -344 (12,6,6,0,4,2,2,4)
32 (14,6,6,2,2,2,2,2) -224 (12,6,4,2,4,2,4,2)
40 (14,6,4,4,4,0,2,2) -112 (12,4,4,4,4,4,4,0)
-160 (14,4,4,2,4,2,2,4) -64 (11,11,7,3,1,1,1,1)
8 (13,13,5,1,1,1,1,1) -96 (11,11,5,1,3,3,1,1)

-32 (13,11,3,1,3,1,1,3) 64 (11,9,7,1,3,1,3,1)
4 (13,9,9,1,1,1,1,1) 288 (11,9,5,3,3,1,1,3)

-136 (13,9,5,5,1,1,1,1) -128 (11,7,7,7,1,1,1,1)
56 (13,9,5,1,5,1,1,1) -64 (11,7,7,3,5,1,1,1)
-160 (13,9,3,3,3,3,1,1) 384 (11,7,5,5,3,3,1,1)
-192 (13,7,7,1,3,1,1,3) -128 (11,7,5,1,5,1,3,3)
-128 (13,7,5,3,3,1,3,1) -832 (11,5,5,3,5,3,3,1)
144 (13,5,5,5,5,1,1,1) -22 (10,10,10,2,4,0,0,0)
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528 (13,5,5,1,5,1,1,5) -38 (10,10,8,4,2,2,0,0)
1088 (13,5,5,1,3,3,3,3) 8 (10,10,8,0,6,2,0,0)

2 (12,12,8,0,4,0,0,0) -38 (10,10,8,0,4,0,2,2)
-16 (12,12,6,2,2,2,0,0) -28 (10,10,6,6,4,0,0,0)
-16 (12,12,4,4,4,0,0,0) 96 (10,10,6,2,4,4,0,0)
12 (12,12,4,0,4,0,4,0) -192 (10,10,6,2,4,0,4,0)

-60 (12,12,4,0,2,2,2,2) -272 (10,10,6,2,2,2,2,2)
-2 (12,10,10,0,2,0,0,2) -204 (10,10,4,4,4,0,2,2)
22 (12,10,8,2,2,0,2,0) -32 (10,8,8,6,2,0,0,2)
40 (12,10,6,4,2,0,0,2) 96 (10,8,8,2,6,0,0,2)

-28 (12,10,6,0,6,0,0,2) -6 (10,8,8,2,4,2,2,0)
8 (12,10,6,0,4,2,2,0) 76 (10,8,6,4,6,0,2,0)

52 (12,10,4,2,4,2,0,2) -88 (10,8,6,4,4,2,0,2)
4 (12,8,8,4,4,0,0,0) 120 (10,8,6,0,6,0,6,0)
4 (12,8,8,0,8,0,0,0) 108 (10,8,6,0,6,0,2,4)
6 (12,8,8,0,4,4,0,0) 200 (10,8,6,0,4,2,4,2)

92 (12,8,8,0,4,0,0,4) 236 (10,8,4,2,4,2,2,4)
126 (12,8,8,0,2,2,2,2) -80 (10,6,6,6,4,4,0,0)

-416 (10,6,6,6,2,2,2,2) -408 (8,8,8,0,6,2,2,2)
224 (10,6,6,2,6,2,2,2) -282 (8,8,8,0,4,4,4,0)
88 (10,6,6,2,4,4,4,0) -144 (8,8,6,6,6,2,0,0)

352 (10,6,4,4,4,4,2,2) 180 (8,8,6,6,4,0,2,2)
316 (9,9,9,5,1,1,1,1) 20 (8,8,6,2,6,2,4,0)
-68 (9,9,9,1,5,1,1,1) -144 (8,8,6,2,4,4,2,2)
-64 (9,9,7,3,3,3,1,1) 8 (8,8,4,4,4,4,4,0)

-120 (9,9,5,5,5,1,1,1) -48 (8,6,6,4,6,4,0,2)
-184 (9,9,5,1,5,1,5,1) 104 (8,6,6,4,6,0,0,6)
-608 (9,9,5,1,3,3,3,3) -232 (8,6,6,4,4,2,2,4)
-320 (9,7,7,5,3,1,1,3) -1008 (8,4,4,4,4,4,4,4)
128 (9,7,7,1,7,1,1,3) 640 (7,7,7,7,5,1,1,1)
192 (9,7,7,1,5,3,3,1) -256 (7,7,7,3,5,5,1,1)
128 (9,7,5,3,5,3,1,3) 128 (7,7,5,5,5,1,3,3)
240 (9,5,5,5,5,5,1,1) -256 (7,5,5,3,5,3,3,5)
448 (9,5,5,5,3,3,3,3) 192 (6,6,6,6,6,2,2,2)
80 (8,8,8,8,4,0,0,0) -48 (6,6,6,6,4,4,4,0)

-140 (8,8,8,4,8,0,0,0) 512 (6,6,6,2,4,4,4,4)
132 (8,8,8,4,4,4,0,0) -992 (5,5,5,5,5,5,5,1)
746 (8,8,8,4,2,2,2,2)
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