

Title	Pseudorank functions on crossed products of finite groups over regular rings			
Author(s)	Kado, Jiro			
Citation	Osaka Journal of Mathematics. 1985, 22(4), p. 821-833			
Version Type	VoR			
URL	https://doi.org/10.18910/4771			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

PSEUDO-RANK FUNCTIONS ON CROSSED PRODUCTS OF FINITE GROUPS OVER REGULAR RINGS

JIRO KADO

(Received November 16, 1984)

$$\bar{x}\bar{y}=t(x,y)\bar{x}\bar{y}$$
 $r\bar{x}=\bar{x}r^{\tilde{x}}$

for all $x, y \in G$ and $r \in R$. Here the twisting $t: G \times G \to U(R)$ is a map from $G \times G$ to the group of units of R and for fixed $x \in G$, the map $\tilde{x}: r \to r^{\tilde{x}}$ is an automorphism of R. We assume throughout this note that the order |G| of G is invertible in R. The Lemma 1.1 of [9] implies that R^*G is also a regular ring. First we will study the question whether a pseudo-rank function P of R can be extended to one of R^*G . We shall show that P is extensible to R^*G if and only if P is G-invariant, i.e., $P(r) = P(r^{\tilde{x}})$ for all $r \in R$ and $x \in G$. More precisely for a G-invariant pseudo-rank function P, put $P^G(\alpha) = |G|^{-1} \sum_{i=1}^{n} P(r_i)$ for $\alpha \in R^*G$ if $R(R^*G\alpha) \cong \bigoplus_{i=1}^{n} Rr_i$, where $r_i \in R$. Then P^G is a desired one of P.

R admits a pseudo-metric topology induced by each $P \in P(R)$. In [2, Ch. 19], K.R. Goodearl has studied the structure of the completion of R with respect to P-metric. Let \overline{R} be the P-completion of R, let \overline{P} be the extension of P on \overline{R} and let $\phi \colon R \to \overline{R}$ be the natural ring map, Our theorems are following:

(1) There exists a crossed product \bar{R}^*G and a ring map $\bar{\phi} \colon R^*G \to \bar{R}^*G$ such that the following diagram commute

$$\begin{array}{ccc}
R & \xrightarrow{\phi} \bar{R} \\
\downarrow & \downarrow \\
R*G & \xrightarrow{\bar{\phi}} \bar{R}*G
\end{array}$$

and $ar{P}$ is also G-invariant and we have $P^G = (ar{P})^G ar{\phi}$

(2) If P is in $\partial_{\epsilon}P(R)$, then \overline{R}^*G is a P^G -completion of R^*G and $(\overline{P})^G$ is an extension of P^G . We have that $P^G = \sum_{i=1}^n \alpha_i N_i$, where $N_i \in \partial_{\epsilon}P(R^*G)$ and $0 < \alpha_i < 1$ and $\sum_{i=1}^n \alpha_i = 1$.

Let $\theta \colon P(R^*G) \to P(R)$ be the natural restriction-map and we use $N|_R$ to denote the image of $N \in P(R^*G)$ by θ . We shall show that for any $N \in \partial_e P(R^*G)$, there exists some positive real number $\alpha \le 1$ and some $N' \in P(R^*G)$ such that $(N|_R)^G = \alpha N + (1-\alpha)N'$.

In the second section we study types of crossed products of finite groups G over directly finite, left self-injective, regular rings R. We shall show that R*G is of Type II_f if and only if R is of Type II_f .

In the final section we study the fixed ring of a finite group of automorphisms of a regular ring. We shall show that for any $P \in \partial_{\epsilon}P(R)$, $P|_{R^G}$ is a finite convex combination of distinct extremal elements in $\partial_{\epsilon}P(R^G)$. Under the assumption that R is a finitely generated projective right R^G -module, we shall show that for any extremal element $Q \in \partial_{\epsilon}P(R^G)$, there exist some $P \in P(R)$ some $Q' \in P(R^G)$ and some real number $0 < \alpha \le 1$ such that $P|_{R^G} = \alpha Q + (1-\alpha)Q'$.

1. Extensions of pseudo-rank functions

Let R be a regular ring and we use FP(R) to denote the set of all finitely generated projective left R-modules. For modules A, B, $A \leq B$ implies that A is isomorphic to a submodule of B.

DEFINITION [2, p. 226]. A pseudo-rank function on R is a map $N: R \rightarrow [0, 1]$ such that

- (1) N(1)=1.
- (2) $N(rs) \leq N(r)$ and $N(rs) \leq N(s)$ for all $r, s \in R$.
- (3) N(e+f)=N(e)+N(f) for all orthogonal idempotents $e, f \in R$.
- If, in addition
- (4) N(r) > 0 for all non-zero $r \in R$,

then N is called a rank function. We use B(R) to denote the set of all pseudorank functions on R.

DEFINITION [2, p. 232]. A dimension function on FP(R) is a map $D: FP(R) \rightarrow \mathbb{R}^+$ such that

- (1) $D(_RR)=1$
- (2) If A, $B \in FP(R)$ and $A \leq B$, then $D(A) \leq D(B)$.
- (3) D(A+B)=D(A)+D(B) for all $A, B \in FP(R)$.

Let D(R) denote the set of all dimension functions on FP(R).

Pseudo-rank functions on R and dimension functions on FP(R) are equivalent functions as follows.

Lemma 1 [2, Prop. 16.8]. There is a bijection $\Gamma_R: P(R) \rightarrow D(R)$ such that $\Gamma_R(P)(Rr) = P(r)$ for all $P \in P(R)$ and $r \in R$.

We always view R as a subring R^*G via the embedding $r \to r1$. Then there exists a restriction-map $\theta \colon P(R^*G) \to P(R)$. We consider the same connections between $D(R^*G)$ and D(R). For all $D \in D(R^*G)$ and $A \in FP(R)$, define $(D|_R)(A) = D(R^*G \otimes_R A)$. We can easily see that $D|_R$ is a dimension function on FP(R) and $\Gamma_{R^*G}(N)|_R = \Gamma_R(N|_R)$.

Lemma 2. Let N be in P(R*G) and D be in D(R*G). Then we have that $(N|_R)(r)=(N|_R)(r^{\tilde{x}})$ and that $(D|_R)(Rr)=(D|_R)(Rr^{\tilde{x}})$ for all $r \in R$ and all $x \in G$.

Proof. Since $R^*G \otimes_R Rr \cong R^*Gr \cong R^*Gx^{-1}rx = R^*Grx \cong R^*G \otimes_R Rr^{\tilde{z}}$, we have $(D|_R)(Rr) = (D|_R)(Rr^{\tilde{z}})$ and $(N|_R)(r) = (N|_R)(r^{\tilde{z}})$.

Now we shall define an extended dimension function on R*G for a G-invariant $D \in D(R)$. Note that for $A \in FP(R*G)$, $_RA \in FP(R)$.

Proposition 3. Let D be a G-invariant dimension function on FP(R). Put $D^G(A) = |G|^{-1}D(_RA)$ for all $A \in FP(R^*G)$. Then D^G is a dimension function on $FP(R^*G)$ and $D^G|_R = D$.

Proof. Since $_R(R^*G)$ isomorphic to |G| copies of R, $D^G(R^*G)=1$. We can easily check that D^G satisfies the properties (2) and (3). Since $_R(R^*Gr)\cong\bigoplus_{x\in G}Rr^{\tilde{x}}$ and D is G-invariant, then we have $D^G(R^*Gr)=|G|^{-1}\sum_{x\in G}D(Rr^{\tilde{x}})=D(Rr)$ for all $r\in R$. Every $A\in FP(R)$ is isomorphic to a finite direct sum of cyclic left ideals of R. Therefore we have $(D^G|_R)(A)=D(A)$ for all $A\in FP(R)$.

Corollary 4. Let P be a G-invariant pseudo-rank function on R. Define $P^{G}(\alpha) = (\Gamma_{R}(P))^{G}(R^{*}G\alpha)$ for all $\alpha \in R^{*}G$, then

- (1) P^G is a pseudo-rank function on R^*G and $P^G|_R=P$
- (2) We have $P^{G}(\alpha) = |G|^{-1} \sum_{i=1}^{n} P(r_{i})$, if $R(R^{*}G\alpha) \cong \bigoplus_{i=1}^{n} Rr_{i}$, where $r_{i} \in R$.

Proof. (1) is clear by lemma 1 and Proposition 3. Recall that $\Gamma_R(P)$ is G-invariant dimension function on FP(R) by Lemma 1. Since $P^G(\alpha) = |G|^{-1}\Gamma_R(P)(_R(R^*G\alpha)) = |G|^{-1}\sum_{i=1}^n \Gamma_R(P)(Rr_i) = |G|^{-1}\sum_{i=1}^n P(r_i)$, we have completed the proof.

Lemma 5. Let N be a pseudo-rank function on R*G. Then we have that $N(\alpha) \leq |G|(N|_R)^G(\alpha)$ for all $\alpha \in R*G$.

Proof. Put $N|_R = P$. Since $\Gamma_{R^*G}(N)|_R = \Gamma_R(P)$, then we have $\Gamma_R(P)(_R(R^*G\alpha)) = (\Gamma_{R^*G}(N)|_R)((_R(R^*G\alpha)) = \Gamma_{R^*G}(N)(R^*G\otimes_R R^*G\alpha)$. On the other hand, there exists a natural epimorphism $(R^*G\otimes_R R^*G\alpha) \to R^*G\alpha$. Since this map splits, we have $N(\alpha) = \Gamma_{R^*G}(N)(R^*G\alpha) \le \Gamma_{R^*G}(N)(R^*G\otimes_R R^*G\alpha)$. We have obtained that $N(\alpha) \le |G|(P^G(\alpha))$ by Corollary 4.

DEFINITION [2, Ch. 19]. Let P be in P(R). R admits a pseudo-metric δ by the rule: $\delta(r, s) = P(r-s)$. Note that δ is a metric if and only if P is a rank function. We call δ the P-metric. Let \overline{R} be the completion of R with respect to δ and we call it the P-completion of R. \overline{R} is a unit-regular, left and right self-injective ring by [2, Th. 19.7]. There exists a natural ring map $\phi \colon R \to \overline{R}$ and a continuous map $\overline{P} \colon \overline{R} \to [0, 1]$ such that $\overline{P} \phi = P$. By [23, Th. 19.6], \overline{P} is a rank function on \overline{R} . Put ker $P = \{r \in R \colon P(r) = 0\}$, which is a two-sided ideal. P induces the rank function \widetilde{P} on $R/\ker P$. Then R is equal to the \widetilde{P} -completion of $R/\ker P$ and $\ker \phi = \ker P$.

Now let R^*G be a given crossed product of a finite group G over a regular ring R and let P be a G-invariant pseudo-rank function. Since P is G-invariant, ker P is G-invariant ideal and therefore each automorphism \tilde{x} induces an automorphism \tilde{x} of $R/\ker P$ and \tilde{x} is uniformly continuous with respect to the induced metric. Consequently we have an automorphism of R, which is again denoted by \tilde{x} , such that $\phi(r)^{\tilde{x}} = \phi(r^{\tilde{x}})$ for all $r \in R$. Let a map $t' \colon G \times G \to U(R)$ be $t'(x,y) = \phi(t(x,y))$ for all $x,y \in G$. Here of course $t \colon G \times G \to U(R)$ is the given map for R^*G . We define a crossed product R^*G of G over R using multiplication formula $(a\tilde{x})(b\tilde{y}) = (ab^{\tilde{x}^{-1}}t'(x,y))\overline{xy}$ for $a,b \in R$ and $x,y \in G$, and define a map $\Phi \colon R^*G \to R^*G$ by the rule: $\Phi(\sum_{x \in G} r_x \tilde{x}) = \sum_{x \in G} \phi(r_x)\tilde{x}$. Then Φ is a ring homomorphism and the following diagram is commutative

$$\begin{array}{ccc}
R & \xrightarrow{\phi} \bar{R} \\
\downarrow & & \downarrow \\
R^*G & \xrightarrow{\bar{\phi}} \bar{R}^*G
\end{array}$$

Proposition 6. Let P be a G-invariant pseudo-rank function on R, let \bar{R} be a P-completion, let \bar{P} be a continuous extension of P and let $\phi: R \to \bar{R}$ the natural map. Then we have the relationship between P^G and $(\bar{P})^G$ such that the following diagram is commutative

$$R^*G \xrightarrow{P^G} [0, 1]$$

$$\bar{\phi} \downarrow \\ \bar{R}^*G \xrightarrow{(\bar{P})^G} [0, 1]$$

Proof. For $\alpha \in \mathbb{R}^*G$, we assume that $_{\mathbb{R}}(\mathbb{R}^*G\alpha) \cong \bigoplus_{i=1}^n \mathbb{R}r_i$, where $r_i \in \mathbb{R}$. We have

$$\Gamma_{\bar{R}}(\bar{P})(_{\bar{R}}(\bar{R} \otimes_{R} R^{*}G\alpha) = \Gamma_{\bar{R}}(\bar{P})(\bigoplus_{1}^{n} \bar{R}\phi(r_{i}))$$

$$= \sum_{1}^{n} \Gamma_{\bar{R}}(\bar{P})(\bar{R}\phi(r_{i}))$$

$$= \sum_{1}^{n} \Gamma_{R}(P)(Rr_{i})$$

$$= \Gamma_{R}(P)(_{R}(R^{*}G\alpha)) \cdots (*)$$

Consider the natural map $v: \overline{R} \otimes_R (R^*G\alpha) \to \overline{R} \overline{\phi}(R^*G\alpha) = (\overline{R}^*G)\overline{\phi}(\alpha)$. Since v is an epimorphism as a \overline{R} -module, we have

$$_{\bar{R}}((\bar{R}^*G)\bar{\phi}(\alpha)) \lesssim \bar{R} \otimes_R (R^*G\alpha)$$
.

Therefore we have

$$\begin{split} (\bar{P})^{G}(\bar{\phi}(\alpha)) &= (\Gamma_{\bar{R}}(\bar{P}))^{G}((\bar{R}^{*}G)\bar{\phi}(\alpha)) \\ &= |G|^{-1}\Gamma_{\bar{R}}(\bar{P})(_{\bar{R}}(\bar{R}^{*}G)\bar{\phi}(\alpha)) \\ &\leq |G|^{-1}\Gamma_{\bar{R}}(\bar{P})(_{\bar{R}}(\bar{R}\otimes_{_{\bar{R}}}(R^{*}G\alpha)) \\ &= |G|^{-1}\Gamma_{_{\bar{R}}}(P)(_{_{\bar{R}}}(R^{*}G\alpha))\cdots \text{ (by (*))} \\ &= P^{G}(\alpha) \,. \end{split}$$

Since $(\bar{P})^{G}(\bar{\phi}(\alpha)) \leq P^{G}(\alpha)$ for all $\alpha \in R^{*}G$, we have $(\bar{P})^{G}\bar{\phi} = P^{G}$ by [2, Lemma 16.13].

DEFINITION [2, Ch. 16 and Appendix]. For a regular ring R, we view P(R) as a subset of the real vector space \mathbf{R}^R , which we equip with the product topology. Then P(R) is a compact convex subset of \mathbf{R}^R by [2, Prop. 16.17]. A extreme point of P(R) is a point $P \in P(R)$ which cannot be expressed as a positive convex combination of distinct two points of P(R). We use $\partial_{\epsilon}P(R)$ to denote the set of all extreme points of P(R). The important result is that P(R) is equal to the closure of the convex hull of $\partial_{\epsilon}P(R)$ by Krein-Milman Theorem.

Theorem 7. Let R*G be a crossed product of a finite group G over a regular ring R with $|G|^{-1} \in R$. Let P be a G-invariant extreme point of P(R), let \overline{R} be the P-completion of R, let $\phi: R \rightarrow \overline{R}$ be the natural ring map and let \overline{P} be the continuous extension of P over \overline{R} .

- (1) The crossed product \bar{R}^*G of G over \bar{R} defined above, is the completion of R^*G with respect to P^G -metric.
- (2) The extension P^G can be expressed as a positive convex combination of finite distinct elements in $\partial_{\epsilon}(R^*G)$, i.e., $P^G = \sum_{i=1}^n \alpha_i N_i$, where $N_i \in \partial_{\epsilon} P(R^*G)$, $0 < \alpha_i < 1$ and $\sum_{i=1}^n \alpha_i = 1$.

Proof. Since $P \in \partial_{\epsilon} P(R)$, \overline{R} is a simple, left and right self-injective, regular

ring by [2, Th. 19.2 and Th. 19.14]. Since |G| is invertible in \overline{R} , we can easily check that \overline{R}^*G is self-injective on both sides by the routin way. Since \overline{R} is a simple ring, \overline{R}^*G is a finite direct product of simple rings by [8, Cor. 3.10]. Therefore, by [2, Cor. 21.12 and Th. 21.13], R^*G is complete with respect to the metric induced by any rank function and so is especially with respect to the $(\overline{P})^G$ -metric. We have already shown that $(\overline{P})^G\overline{\phi}=P^G$ by Proposition 6. Finally we shall show that Im $\overline{\phi}$ is dense in \overline{R}^*G with respect to $(\overline{P})^G$ -metric. For any $\alpha = \sum_{x \in G} a_x x \in \overline{R}^*G$ and any $\varepsilon > 0$, there exist $r_x \in R$ for each a_x such that $\overline{P}(a_x - \phi(r_x)) < \varepsilon |G|^{-1}$. Put $\beta = \sum_{x \in G} r_x x$. Then we have that

$$\begin{split} (\bar{P})^{G}(\alpha - \bar{\phi}(\beta)) &= (\bar{P})^{G}(\sum_{x \in G} (a_{x} - \phi(r_{x}))\bar{x}) \\ &\leq \sum_{x \in G} (\bar{P})^{G}((a_{x} - \phi(r_{x}))\bar{x}) \\ &\leq \sum_{x \in G} (\bar{P})^{G}((a_{x} - \phi(r_{x})) \\ &< \mathcal{E} \,. \end{split}$$

Thus we have completed the proof of (1). Since the P^{G} -completion $\overline{R}^{*}G$ of $R^{*}G$ is a finite direct product of simple rings, P^{G} is a positive convex combination of finite distinct extreme points in $P(R^{*}G)$ by [2, Th. 19.19].

A simple, left and right self-injective, regular ring R has a unique rank function N and it is complete with respect to N-metric and these rings are classified into two types according to the range of N, namely

- (1) R is artinian if and only if the range of N is a finite set.
- (2) R is non-artinian if and only if the range of N equal to [0, 1] ([4]).

For a given $Q \in \partial_{\epsilon} P(R)$, the Q-completion \overline{R} of a regular ring R is a simple, left and right self-injective, regular ring by [2, Th. 19.14]. Hence we call Q to be discrete if \overline{R} is artinian and to be continuous if \overline{R} is non-artinian.

DEFINITION. Let P be a G-invariant pseudo-rank function on R. If $P^G = \sum_{i=1}^{n} \alpha_i N_i$, where $N_i \in \partial_e P(R^*G)$, $0 < \alpha_i < 1$ and $\sum_{i=1}^{n} \alpha_i = 1$, then we call N_1, \dots, N_t to be associated with P.

Proposition 8. For a given crossed product R*G, let P be a G-invariant extremal pseudo-rank function on R and let N_1, \dots, N_t be extremal pseudo-rank functions associated with P. Then the following conditions are equivalent:

- (1) P is discrete.
- (2) N_i is discrete for some i.
- (3) N_i is discrete for all $j=1, \dots, t$.

Consequently the following conditions are also equivalent:

- (1) P is continuous.
- (2) N_i is continuous for some i.
- (3) N_j is continuous for all $j=1, \dots, t$.

Proof. Let \bar{R} be the P-completion of R and let \bar{P} be the extension of P on R. By Theorem 7, the crosseds product \bar{R}^*G is the P^c -completion of R^*G and $(\bar{P})^c$ is the extension of P^c . Let \bar{N}_i be the continuous extension of N_i on \bar{R}^*G . The each ker \bar{N}_i is a maximal two-sided ideal and each $\bar{R}^*G/\ker \bar{N}_i$ is a regular, left and right self-injective ring by [2, Th. 9.13]. Since $0 = \ker(\bar{P})^c = \bigcap_{i=1}^t \ker \bar{N}_i$, then we have $\bar{R}^*G \cong \prod_{i=1}^t \bar{R}^*G/\ker \bar{N}_i$.

And $\bar{R}^*G/\ker \bar{N}_i$ is isomorphic to the N_i -completion of R^*G . We assume that P is discrete. So $\bar{R}=R/\ker P$ is a simple artinian ring. Then the crossed product \bar{R}^*G is semi-simple by [9, Lemma 1.1]. In particular each $\bar{R}^*G/\ker \bar{N}_j$ is an artinian ring, and thus N_j is discrete for all j. Next we assume that some N_i (say i=1) is discrete. Let \overline{N}_1 be the induced rank function on $\bar{R}^*G/\ker \bar{N}_1$ by \bar{N}_1 and let $\pi\colon \bar{R}\to \bar{R}^*G/\ker \bar{N}_1$ be the map obtained by compositing $\bar{R}\to \bar{R}^*G\to \bar{R}^*G/\ker \bar{N}_1$. Then π is monomorphism and we have $\overline{N}_1\pi=\bar{P}$. By the assumption, the range of \overline{N}_1 is a finite set and so is the range of \bar{P} . Then P is discrete. Since each extremal pseudo-rank function is either discrete or continuous, latter assertion is clear.

For $N \in \partial_e P(R^*G)$, we have the following relationship between N and $(N|_R)^G$.

Theorem 9. Let R^*G be a crossed product of a finite group G over a regular ring R with $|G|^{-1} \in R$ and let N be extremal pseudo-rank function on R^*G . Then we have $(N|_R)^G = \alpha N + (1-\alpha)N'$ for some $N' \in P(R^*G)$ and some positive real number $\alpha \leq 1$.

Proof. Put $N|_R=P$, then P is G-invariant by Lemma 2. Let T be the P^G -completion on R^*G and let $\overline{P^G}$ be the extension of P^G on T. Since N is uniformly continuous with respect to P^G -metric by Lemma 5, we have the continuous extension \overline{N} of N on T. By [2, Th. 19.22], there exists a non-zero central idempotent $e \in T$ such that $\ker \overline{N} = (1-e)T$ and Te is a simple ring. Since Te has the unique rank function, $\overline{P^G}$ and \overline{N} induce the same rank function Q on Te, i.e., $Q(te) = \overline{P^G}(e)^{-1}\overline{P^G}(te) = \overline{N}(te) = \overline{N}(t)$ for all $te \in Te$. Put $L(t) = \overline{P^G}(1-e)^{-1}\overline{P^G}(t(1-e))$ for any $t \in T$, then L is a pseudo-rank function on T. We have

$$\overline{P^{G}} = \overline{P^{G}}(e)N + \overline{P^{G}}(1-e)L$$

by investigating the decomposition $T=Te\oplus T(1-e)$. Let $\phi: R^*G\to T$ be the natural map and let $N'=L\phi$ and let $\alpha=\bar{P^G}(e)$. Then we have that $(N|_R)^G=\alpha N+(1-\alpha)N'$.

REMARK. For a G-invariant element $P \in \partial_e P(R)$, let N_1, \dots, N_t be elements in $\partial_e P(R^*G)$ associative with P. We can easily prove that $\{N_1, \dots, N_t\}$ is

equal to the set $\{N \in \partial_{\epsilon}P(R^*G): \theta(N)=N|_{R}=P\}$, where $\theta: P(R^*G) \to P(R)$, by theorem 7 and Theorem 9. Unfortunately we don't know whether $N|_{R}$ is always extremal for any extremal pseudo-rank function N on R^*G or not.

Now we consider a pseudo-rank function P which is not necessarily G-invariant. For each $x \in G$, put $P^x(r) = P(r^{\tilde{x}^{-1}})$ for all $r \in R$. Then P^x is also a pseudo-rank function and $\ker P^x = (\ker P)^{\tilde{x}}$. Put $t(P) = \sum_{x \in G} |G|^{-1}P^x$, then t(P) is G-invariant pseudo-rank function with $P \leq |G| t(P)$. We call t(P) to the *trace* of P.

Proposition 10. Let R^*G be a crossed product of a finite group G over a regular ring R whit $|G|^{-1} \subseteq R$. Let P be in $\partial_{\epsilon} P(R)$ which is not necessarily G-invariant and let t(P) be the trace of P. Then the extension $t(P)^G$ can be expressed as a positive convex combination of finite distinct elements in $\partial_{\epsilon} P(R^*G)$.

Proof. Let \bar{R} be the t(P)-completion of R. Since t(P) is a finite convex combination of extreme points in P(R), \bar{R} is a finite direct product of simple regular self-injective rings by [2, Th. 19.19], R^*G is also a finite direct product of simple regular self-injective rings. In the same way as in the proof of Theorem 7, we can prove that \bar{R}^*G is the $t(P)^G$ -completion of R^*G and that $t(P)^G = \sum_{i=1}^n \alpha_i N_i$, where $N_i \in \partial_e P(R^*G)$, $0 < \alpha_i < 1$ and $\sum_{i=1}^n \alpha_i = 1$.

Corollary 11. Let R^*G be a crossed product of a finite group G over a regular ring R with $|G|^{-1} \in R$. If $\partial_e P(R)$ is a finite set, then $\partial_e P(R^*G)$ is also a finite set.

Proof. Let $\partial_{\epsilon}P(R) = \{P_1, \dots, P_t\}$ and let $\{N_{ij}: j=1, \dots, s(i)\}$ be extremal pseudo-rank functions associated with $t(P_i)$ for each $i=1, \dots, t$ by Proposition 10. We shall show that $\partial_{\epsilon}P(R^*G) = \{N_{ij}: i=1, \dots, t \ j=1, \dots, s(i)\}$. We choose $N \in \partial_{\epsilon} P(R^*G)$ and put $P = N \mid_{R}$. Since P(R) is equal to the convex-hull of $\{P_1, \dots, P_t\}$ by [2, A.6], $P = \sum_{i=1}^{n} \alpha_i P_i$, for some $0 < \alpha_i < 1$ and $\sum_{i=1}^{n} \alpha_i = 1$. Put $Q = \sum_{i=1}^{t} \alpha_{i} t(P_{i})$, then Q is G-invariant and $Q^{c} = \sum_{i=1}^{t} \alpha_{i} t(P_{i})^{c}$. Since $P_i \leq |G| t(P_i)$ for each $i=1, \dots, t$, $P \leq |G| Q$ and so $P^c \leq |G| Q^c$. Let T be the Q^{G} -completion of $R^{*}G$ and $\overline{Q^{G}}$ (resp. $\overline{P^{G}}$) be the extension of Q^{G} (resp. P^{G}) on T. Since $N \leq |G|P^G$ on R^*G by Lemma 5, $\bar{N} \leq |G|P^G$ on T, where \bar{N} is the extension of N on T. Since $\overline{N} \leq |G|^2 \overline{Q^G}$ on T, $\ker \overline{Q^G} \subset \ker \overline{N}$. Let \overline{N}_{ij} be the extension of N_{ij} on T for each i, j. Since Q^G is a convex combination of $\{N_{ij}: i=1, \dots, t \ j=1, \dots, s(i)\}$ in $\partial_{\epsilon}P(R)$, \overline{Q}^{G} is a convex combination of $\{\overline{N}_{ij}: i=1, \dots, t \ j=1, \dots, s(i)\}$ in P(T). Then we have $\bigcap_{i,j} \ker \overline{N}_{ij} = \ker \overline{Q}^G$ and therefore $\ker \bar{N}_{ij} \subset \ker \bar{N}$ for some i, j by primeness of $\ker \bar{N}$. $\ker \bar{N}_{ij}$ is also a maximal ideal by [2, Th. 19.22], $\ker \bar{N}_{ij} = \ker \bar{N}$. sequently we have $\bar{N}_{ij} = \bar{N}$ by [5, Prop. II. 14.5] and hence $N_{ij} = N$.

2. Directly finite left self-injective regular rings

In this section, we consider a crossed product of a finite group G over a directly finite, left self-injective, regular ring R with $|G|^{-1} \in R$. K.R. Goodearl has constructed a structure theory on self-injective regular rings. Now we refer to [3, Ch. 10] for definitions and notations. We study types of crossed products R*G. We begin with the following lemma.

Lemma 12 [4, II. 14.5]. Let R be a directly finite, left self-injective, regular ring. We define a map $v: \partial_e P(R) \to \operatorname{Max}(R)$ by the rule: $v(P) = \ker P$. Then v is a bijection.

Theorem 13. Let R be a directly finite, left self-injective, regular ring and let G be a finite group such that $|G|^{-1} \in R$. Then the following conditions are equivalent.

- (1) A crossed product R*G of G over R is of Type II_f .
- (2) R is of Type II_f .

Proof. We know that R*G is a directly finite, left self-injective, regular ring.

- (1) \Rightarrow (2). It suffices to prove that R has no simple artinian homomorphic images, by [3, Th. 7.10 and Th. 10.24]. Assume that there exists $M \in \text{Max}(R)$ such that R/M is artinian. By Lemma 12, we have $P \in \partial_{\epsilon}P(R)$ such that $\ker P = M$. Let H be the stabilizer of M in G and let Λ be a transversal for H in G with $1 \in \Lambda$. Let $I = \bigcap_{y \in \Lambda} M^{\tilde{y}}$, then I is G-invariant and $I = \prod_{y \in \Lambda} I =$
- (2) \Rightarrow (1). Assume that there exists $N \in \partial_e P(R^*G)$ such that $R^*G/\ker N$ is artinian. Put $P=N|_R$. Since $\ker P=\ker N\cap R$ and $\ker N$ is a maximal ideal of R^*G , $\ker P=\bigcap_{x\in G}I^{\tilde{x}}$, where I is a maximal ideal of R by [7, p. 295]. Let K be the stabilizer of I in G and let Λ be a transversal for K in G with $1 \in \Lambda$. Then $R/\ker P \cong \prod_{y\in \Lambda} R/I^{\tilde{y}}$, where $R/I^{\tilde{y}}$ is a simple, left and right self-injective, regular ring. We claim that all $R/I^{\tilde{y}}$ is artinian. Since $\ker P$ is a G-invariant ideal, there exists a crossed product $(R/\ker P)^*G$ of G over $R/\ker P$ such that $R^*G/(\ker P)^*G\cong (R/\ker P)^*G$. By [8, Cor. 3.10], $R^*G/(\ker P)^*G$ is a finite direct of simple, left and right self-injective, regular rings. Since $(\ker P)^*G \subset \ker P^G \subset \ker N$, $R^*G/\ker N$ is isomorphic to a simple component of $R^*G/(\ker P)^*G\cong (R/\ker P)^*G$. By considering $\prod_{y\in \Lambda} R/I^{\tilde{y}} \to R^*G/\ker N$. Then we have a ring-monomorphism $f'\colon T=\prod_{y\in \Lambda'} R/I^{\tilde{y}} \to R^*G/\ker N$ for some

 $\Lambda' \subset \Lambda$. Let N be the unique rank function of $R^*G/\ker N$ and let P_y be the unique rank function of $R/I^{\tilde{y}}$ and put Q=Nf'. This is a rank function on T. Let e_y be a central idempotent of T which is identity element for $R/I^{\tilde{y}}$. By the uniqueness of rank function on $R/I^{\tilde{y}}$, we have $P_y(\alpha)=Q(e_y)^{-1}Q(\alpha)$ for all $\alpha \in R/I^{\tilde{y}}$. By our assumption, the range of N is a finite set and so is the range of Q. Consequently the range of P_y is a finite set. Therefore $R/I^{\tilde{y}}$ is a simple artinian ring by [4]. This is a contradiction by [2, Th. 10.29].

Even when R is a self-injective regular ring, $N|_R$ is not necessarily extremal for $N \in \partial_{\epsilon} P(R^*G)$. If each maximal ideal of R is G-invariant, then $N|_R$ is extremal. In fact, since $\ker(N|_R) = \ker N \cap R$ is a maximal ideal by [7, p. 295], $N|_R$ is extremal by Lemma 12. Hence we shall consider the map $\theta \colon \partial_{\epsilon} P(R^*G) \to \partial_{\epsilon} P(R)$. We denote the set of all central idempotents of R by B(R).

Lemma 14. Let R be a directly finite, left self-injective, regular ring and let G be a finite group of automorphisms of R. The following conditions are equivalent;

- (1) Every maximal ideal of R of G-invariant.
- (2) Every extremal pseudo-rank function on R is G-invariant.
- (3) Every central idempotent of R is G-invariant.

Proof. $(1) \Rightarrow (2)$ It is clear by Lemma 12.

- (1)⇒(3) Take $e \in B(R)$ and $g \in G$. For $M \in \text{Max}(R)$, we have $e \in M$ or $1-e \in M$ by [3, Th. 8.20]. Since $e-e^g = (1-e^g) (1-e)$, $e-e^g \in M$: $M \in \text{Max}(R)$. By [3, Cor. 8.19], we conclude $e=e^g$.
- $(3)\Rightarrow (1)$. Let M be any maximal ideal of R and let g be any element in G. By [3, Th. 8.20 and Cor. 8.22], $(B(R)\cap M)R$ is a G-invariant, minimal prime ideal. Since any minimal prime ideal of R is contained in a unique maximal ideal by [3, Cor. 8.23], $M=M^g$.
- In [4], the Grothendieck group $K_0(R)$ of a regular ring R is investigated as a partially ordered abelian group with order-unit. We refer to [4, 8] for the terminologies of partially ordered abelian groups.

We shall study conditions under which θ is a homeomorphism.

Theorem 15. Let R be a left self-injective, regular ring of Type II_f and R*G be a crossed product of a finite group G over R with $|G|^{-1} \in R$. We assume any $M \in \text{Max}(R)$ is G-invariant. Let $\theta: \partial_e P(R*G) \rightarrow \partial_e P(R)$ be a natural restriction map. Then the following conditions are equivalent:

- (1) θ is a homeomorphism.
- (2) The natural map $f: K_0(R) \to K_0(R^*G)$, defined by $f([A]) = [R^*G \otimes_R A]$ for $A \in FP(R)$, is an isomorphism as a partially ordered abelian group with order-unit.

(3) B(R) = B(R*G).

Proof. We know that R*G is a left self-injective regular ring of Type II_f by Theorem 13.

- (1) \Rightarrow (2). By Lemma 12, $\partial_{\epsilon}P(R)$ and $\partial_{\epsilon}P(R^*G)$ are compact. Combining [8, Th. 3.6] with [9, Prop. II. 3.13], we see that $(K_0(R), [R]) \simeq (C(\partial_{\epsilon}P(R), \mathbf{R}), 1)$ and $(K_0(R^*G), [R^*G]) \simeq (C(\partial_{\epsilon}P(R^*G), \mathbf{R}), 1)$, where 1 is the constant function with value 1. Therefore we have that $f: (K_0(R), [R]) \simeq (K_0(R^*G), [R^*G])$ is an isomorphism.
- $(2)\Rightarrow (3)$. Let e be any element in $B(R^*G)$. For the element $[R^*Ge] \in K_0(R^*G)$, we choose an element $[A] \in K_0(R)$, such that $f([A]) = [R^*Ge]$, where $A \in FP(R)$. First we shall show that $A \leq R$. In fact, since $[R^*G \otimes_R A] = [R^*Ge]$, $R^*G \otimes_R A \cong R^*Ge$ by [3, Prop. 15.2]. Let $A \cong \bigoplus_{i=1}^n Rr_i$, where $r_i \in R$. For any $P \in \partial_e P(R)$

$$\sum_{1}^{n} P(r_{i}) = \sum_{1}^{n} \Gamma_{R}(P)(Rr_{i})$$

$$= \Gamma_{R}(P)(A)$$

$$= \Gamma_{R^{*}G}(P^{G})(R^{*}G \otimes A)$$

$$= \Gamma_{R^{*}G}(P^{G})(R^{*}Ge)$$

$$\leq 1$$

Then we have $A \leq R$ by [8, Cor. 2.7]. We may assume that $R^*Ge \cong R^*Gh$ for some idempotent $h \in R$. As e is central, we have e = h. On the other hand, since any $h' \in B(R)$ is G-invariant by Lemma 14, h' is central in R^*G .

 $(3)\Rightarrow (1)$. In general, θ is a continuous epimorphism. We shall that θ is a monomorphism. Assume that there exist $N_1 \pm N_2 \in \partial_{\epsilon} P(R^*G)$ such that $\theta(N_1) = \theta(N_2)$. By Lemma 12, $\ker N_1 \pm \ker N_2$ and so $B(R^*G) \cap \ker N_1 \pm B(R^*G) \cap \ker N_2$ by [3, Th. 8.25]. Then there exists $e \in B(R^*G)$ such that $N_1(e) = 0$ and $N_2(e) = 1$. However since $e \in B(R)$ and $\theta(N_1) = \theta(N_2)$, we have a contradiction. Hence θ is a monomorphism. Next let W be any clopon set in $\partial_{\epsilon} P(R^*G)$. Then $W = \{N \in \partial_{\epsilon} P(R^*G) \colon N(e) = 0\}$ for some $e \in B(R^*G)$. Now it is easy to see that $\theta(W) = \{P \in \partial_{\epsilon} P(R) \colon P(e) = 0\}$. Therefore $\theta(W)$ is an also clopon set in $\partial_{\epsilon} P(R)$ and so θ is a homeomorphism.

3. Fixed subrings of a finite group of automorphisms

In this section, let R be a regular ring and let G be a finite group of automorphisms of R with $|G|^{-1} \in R$. We shall consider a relationship between P(R) and $P(R^G)$. For any $P \in P(R)$, the restriction of P on R^G , which is denoted by $P|_{R^G}$, is also a pseudo-rank function on R^G . If P is extremal, then we have the following result.

Proposition 16. For $P \in \partial_{\epsilon} P(R)$, $P|_{R^G}$ can be the expressed as a positive convex combination of finite distinct elements in $\partial_{\epsilon} P(R^G)$.

Proof. Since P is not necessarily G-invariant, we consider the trace t(P) of P instead of P. Let \overline{R} be the t(P)-completion of R. Since t(P) is a finite convex combination of extreme points in P(R), \overline{R} is a finite direct product of simple regular self-injective rings by [2, Th. 19.19]. Let $t(\overline{P})$ be the extension of t(P) on \overline{R} . Since $P|_{R^G} = t(P)|_{R^G}$ on R^G , $(\overline{R})^G$ is the $P|_{R^G}$ -completion of R^G . By [8, Cor. 3.10], $(\overline{R})^G$ is also a direct product of simple regular self-injective rings. Therefore $P|_{R^G}$ can be the expressed as a positive convex combination of finite distinct elements in $\partial_x P(R^G)$ by [2, Th. 19.19].

In this section, R^*G implies the skew group ring of G over R. Put $e=|G|^{-1}\sum_{g\in G}g$ in R^*G , then e is an idempotent. Between eR^*Ge and R^G , there exists an isomorphism by the rule: $a\rightarrow ea$. Put $X=eR^*G$, then X is a (R^G, R^*G) -bimodule. Throughout this section, we assume

(*) R is a finitely generated projective right R^{G} -module

Since $\operatorname{Hom}_{R^*G}(X, R^*G) \cong R^*Ge \cong R$ as a right R^G -module, $\operatorname{Hom}_{R^*G}(X, A)$ is a finitely generated projective right R^G -module for all $A \in FP(R^*G)$. Therefore, for $D \in D(R^G)$, $D(\operatorname{Hom}_{R^*G}(X, A))$ gives an unnormalized dimension function on $FP(R^*G)$. We note that $D(R_R^G) \geq 1$, because $R_R^G \supset R^G$. We define

$$D^{R*G}(A) = D(R_{R^G})^{-1}D(\operatorname{Hom}(X, A))$$
 for $A \in FP(R*G)$,

then D^{R*G} is a dimension function on FP(R*G). For a given pseudo-rank function Q on R^G , put $D_Q = \Gamma_{R^G}(Q)$. We define

$$N_{\mathcal{Q}}(x) = D_{\mathcal{Q}}(R_{R^{\mathcal{G}}})^{-1}D_{\mathcal{Q}}(\operatorname{Hom}(X, xR^*G))$$
 for $x \in R^*G$.

Then by Lemma 1, N_Q is a pseudo-rank function on R*G. Especially for an idempotent $x \in R*G$, we have

$$N_{\it Q}(x) = D_{\it Q}(R_{\it R^G})^{-1} D_{\it Q}((xR^*Ge)_{\it R^G})$$
 ,

because $\operatorname{Hom}_{R^*G}(X, xR^*G) \cong xR^*Ge$ as a right R^G -module. For the induced pseudo-rank function $N_Q \in P(R^*G)$ by $Q \in P(R^G)$, the restriction-function on R, denoted by P_Q , is also a pseudo-rank function on R. $P_Q|_{R^G}$ is not necessarily equal to Q, but we have the following relations between them.

Lemma 17. Let R be a regular ring, let G be a finite group of automorphisms of R with $|G|^{-1} \in R$ and let R^*G be a skew group ring of G over R. We assume that R satisfies the condition (*). Then for a given $Q \in P(R^G)$, we have the following relation;

$$Q(a) \leq D_Q(R_{R^G})(P_Q|_{R^G})(a)$$
 for all $a \in R^G$.

Proof. For any idempotent $b \in \mathbb{R}^{G}$,

$$Q(b) = D_{\mathcal{Q}}(bR^{\mathcal{G}}) = D_{\mathcal{Q}}(beR^*Ge) = D_{\mathcal{Q}}(ebR^*Ge)$$
 .

Since there exists a natural epimorphism $bR^*Ge \rightarrow ebR^*Ge$ as a R^G -module, we have $ebR^*Ge \leq bR^*Ge$. Then we have

$$Q(b) \leq D_{\mathcal{Q}}(bR^*Ge) = D_{\mathcal{Q}}(R_{R^G})(P_{\mathcal{Q}}|_{R^G})(b)$$
 .

Proposition 18. Let R be a regular ring and let G be a finite group of automorphisms of R with $|G|^{-1} \in R$. We assume that R satisfies the condition (*). Then, for a given extremal pseudo-rank function Q on R^G , we have

$$P_Q|_{R^G} = \alpha Q + (1-\alpha)Q'$$

for some $Q' \in P(R^G)$ and some $0 < \alpha \le 1$.

Proof. We consider R as a ring with $P_Q|_{R^G}$ -metric. By Lemma 17, Q is continuous with respect to the metric. Therefore there exist some $Q' \in P(R^G)$ and some real number $0 < \alpha \le 1$ such that $P_Q|_{R^G} = \alpha Q + (1-\alpha)Q'$, using the same way as Theorem 9.

References

- [1] E.M. Alfsen: Compact convex sets and boundary integrals, Springer-Verlag, Berlin, 1971.
- [2] K.R. Goodearl: Von Neumann regular rings, Pitman
- [3] K.R. Goodearl: Directly finite aleph-nought-continuous regular rings, Pacific J. Math. 100 (1982), 105–122.
- [4] K.R. Goodearl and D.E. Handelman: Simple self-injective rings, Comm. Algebra 3 (1975), 797-834.
- [5] K.R. Goodearl, D.E. Handelman and J.W. Lawrence: Affine representations of Grothendieck groups and applications to Rickart C*-algebras and *\mathbb{K}_0\-continuous regular rings, Mem. Amer. Math. Soc. 234.
- [6] M. Lorenz and D.S. Passman: Prime ideals in crossed products of finite groups, Israel J. Math. 33 (1979), 89-132.
- [7] M. Lorenz and D.S. Passman: Integrality and normalizing extensions of rings, J. Algebra 61 (1979), 289-297.
- [8] M. Lorenz and D.S. Passman: Observation on crossed products and fixed rings, Comm. Algebra 8 (1980), 743-779.
- [9] D.S. Passman: It's essentially Masche's Theorem, Rocky Mountain J. Math. 13 (1983), 37-54.

Department of Mathematics Osaka City University Osaka 558, Japan