

Title	Density properties of complex Lie groups
Author(s)	Iwamoto, Takashi
Citation	Osaka Journal of Mathematics. 1986, 23(4), p. 859-865
Version Type	VoR
URL	https://doi.org/10.18910/4773
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Iwamoto, T.
Osaka J. Math.
23 (1986), 859-865

DENSITY PROPERTIES OF COMPLEX LIE GROUPS

TAKASHI IWAMOTO

(Received January 24, 1985)

0. Introduction

Let G be a locally compact group. A subgroup H of G is called of *finite covolume* if H is closed and G/H has a finite G -invariant Radon measure.

A. Borel studied properties of subgroups of finite covolume in semi-simple Lie groups without compact factors [1] and proved:

Theorem (Borel's density theorem). *Let G be a semi-simple Lie group without compact factors and H a subgroup of finite covolume in G . Let f be a finite dimensional linear representation of G . Then every $f(H)$ -invariant vector subspace is $f(G)$ -invariant.*

H. Furstenberg showed that Borel's theorem holds for minimally almost periodic groups and those subgroups of finite covolume [2].

In this paper, applying Furstenberg's idea to some more general situations, we shall prove complex Lie group version of Borel's theorem, that is:

Theorem. *Let G be a complex analytic group and H a subgroup of finite covolume in G . Let f be a holomorphic representation of G on a finite dimensional complex vector space. Then every $f(H)$ -invariant vector subspace is $f(G)$ -invariant.*

Using this theorem, we obtain properties of subgroups of finite covolume in a complex analytic group [see Section 3].

1. Preliminary results

Let G be a locally compact group and V a finite dimensional vector space over the field K , where K is the real number field R or the complex number field C . Let f be a continuous representation of G on V .

DEFINITION 1. (G, f) is said to have *property (A)* if the following conditions are satisfied:

- (1) G has no closed subgroup of finite index.
- (2) For any $f(G)$ -invariant subspace W of V , $f(G)|_W \subset K \cdot 1_W$ or

$$\{|\det f(g)|_W|^{-1/\dim W} \cdot f(g)|_W; g \in G\}$$

is unbounded in $GL(W)$, where $f(g)|_W$ and $\det f(g)|_W$ are the restriction of $f(g)$ to W and its determinant, respectively.

Let $P(V)$ denote the projective space corresponding to V . For a subset $A \subset V$, \bar{A} denotes the canonical image of A in $P(V)$. For a vector subspace $W \subset V$, \bar{W} is called a linear subvariety. Following Furstenberg's terminology, we call a finite union of linear subvarieties a *quasi-linear subvariety*. For simplicity we denote a quasi-linear subvariety by "*q.l.v.*". By the descending chain condition for all the algebraic sets, we have that for any subset $B \subset P(V)$ there exists a minimal *q.l.v.* containing B . In this case this *q.l.v.* is determined uniquely. We denote it by $q(B)$. For a linear map t of a subspace $W \subset V$ to V , \bar{t} denotes the map of $\bar{W} \setminus \overline{\ker t}$ to $P(V)$ corresponding to t . The following lemma is essentially due to Furstenberg.

Lemma 1. *Let $\{t_k\}_{k=1}^{\infty}$ be in $GL(V)$ such that*

$$|\det t_k| / \|t_k\|^n \rightarrow 0 \quad \text{as } k \rightarrow \infty$$

where $n = \dim W$ and $\| \cdot \|$ is a suitable norm on $\text{End}(V)$.

*Then there exist a transformation T on $P(V)$ whose range is a proper *q.l.v.* $\subseteq P(V)$ and a suitable subsequence $\{t_k'\}_{k=1}^{\infty}$ of $\{t_k\}_{k=1}^{\infty}$ such that*

$$\bar{t}'_k(x) \rightarrow T(x) \quad \text{as } k \rightarrow \infty$$

for any $x \in P(V)$.

Proof. Let W be a subspace of V . Passing to a subsequence and taking suitable constants a_k 's such that $\|a_k \cdot t_k\|=1$ (where $\| \cdot \|$ is a suitable norm on $\text{Hom}(W, V)$), we may assume that $a_k \cdot t_k$ converges to a nonzero linear map h of W into V with respect to the natural topology in $\text{Hom}(W, V)$. We note that for $v \in W \setminus \ker h$

$$\bar{t}_k(v) \rightarrow \bar{h}(v) \quad \text{as } k \rightarrow \infty.$$

Set $W_0 = V$. There exist a subsequence $\{t_k(0)\}$ of $\{t_k\}$ and a linear map h_0 of $W_0 = V$ to V such that $\{\bar{t}_k(0)\}$ converges pointwise to \bar{h}_0 on $P(V) \setminus \overline{\ker h_0}$.

We shall define for $i = 1, 2, 3, \dots$, subspaces W_i , subsequences $\{t_k(i)\}$ of $\{t_k\}$ and linear maps h_i of W_i to V , inductively. Set $W_i = \ker h_{i-1}$. Take a subsequence $\{t_k(i)\}$ of $\{t_k(i-1)\}$ and a linear map h_i such that for $v \in W_i \setminus \ker h_i$

$$\bar{t}_k(v) \rightarrow \bar{h}_i(v) \quad \text{as } k \rightarrow \infty.$$

Since $\dim V < +\infty$, there exists an integer m such that $\dim W_{m+1} = \dim \ker h_m = 0$.

Set $T(v) = \bar{h}_i(v)$ for $v \in W_i \setminus W_{i+1}$, where $i = 0, 1, 2, \dots$. Let $\{t'_k\} = \{t_k(m)\}$.

Then the range of T is $\cup \bar{h}_i(\bar{W}_i)$ and $\{\bar{t}_k'\}$ converges pointwise to T on $P(V)$. In order to show that the range of T is proper, it is sufficient to prove $\det h_0 = 0$. By the assumption we have that

$$\begin{aligned} |\det h_0| &= |\det \lim a_k \cdot t_k(0)| \\ &= \lim |\det a_k \cdot t_k(0)| / ||a_k \cdot t_k(0)||^n \\ &= \lim |\det t_k| / ||t_k||^n = 0 \end{aligned}$$

where $|| \cdot ||$ is a norm on $\text{End}(V) = \text{Hom}(W_0, V)$ and a_k is a scalar constant. q.e.d.

Lemma 2. *Let W_i for $i=1, 2, 3, \dots, k$, be a subspace of V . If a subspace $W \subset V$ is contained in $\cup_{i=1}^k W_i$, there exists an integer $1 \leq i' \leq k$ such that $W \subset W_{i'}$.*

Proof. Suppose that W is not contained in any W_i . Then for every $i=1, 2, 3, \dots, k$, there exists a nonzero vector $v_i \in W$ which is not contained in W_i .

We shall prove that for $j=1, 2, 3, \dots, k$, there exist j real numbers t_i 's such that $\sum_{i=1}^j t_i \cdot v_i$ is not contained in $\cup_{i=1}^j W_i$, by induction on j . By the assumption of induction we can find $(j-1)$ real numbers t_i 's such that $u = \sum_{i=1}^{j-1} t_i \cdot v_i$ is not contained in $\cup_{i=1}^{j-1} W_i$. If $u \in W_j$, set $t_j = 0$. Assume that $u \notin W_j$. Since $\cup_{i=1}^{j-1} W_i$ is closed, we can find a sufficiently small number t_j such that $u + t_j \cdot v_j \notin \cup_{i=1}^{j-1} W_i$. Since $u \in W_j$ and $t_j \cdot v_j \notin W_j$, we have that $\sum_{i=1}^j t_i \cdot v_i = u + t_j \cdot v_j \notin W_j$. Consequently we can find k real numbers t_i 's such that $\sum_{i=1}^k t_i \cdot v_i \notin \cup_{i=1}^k W_i$.

However $\sum_{i=1}^k t_i \cdot v_i \in W \subset \cup_{i=1}^k W_i$ leads to a contradiction. q.e.d.

Lemma 3. *Assume that (G, f) has a property (A). Let \bar{f} be a representation of G on $P(V)$ induced by f and μ a finite $\bar{f}(G)$ -invariant Radon measure on $P(V)$. Then the support of μ consists of $\bar{f}(G)$ -fixed points.*

Proof. If $f(G) \subset K \cdot 1_V$, there is nothing to prove. Hence we may assume that there exists a sequence $\{g_k\} \subset G$ such that

$$\{|\det f(g_k)|^{-1/\dim V} \cdot f(g_k); k = 1, 2, 3, \dots\}$$

is unbounded in $\text{End}(V)$. If necessary taking a subsequence we may assume, by Lemma 1, that there exists a transformation T on $P(V)$ whose range is a proper *q.l.v.* Q and that $\bar{f}(g_k)$ converges pointwise to T .

Let $D(x)$ be the distance from x to Q for some metric on $P(V)$. By the bounded convergence theorem, we have that for any $x \in P(V)$

$$\begin{aligned} 0 &= \int_{P(V)} D(T(x)) d\mu \\ &= \int_{P(V)} \lim D(\bar{f}(g_k)(x)) d\mu \end{aligned}$$

$$\begin{aligned}
&= \lim \int_{P(V)} D(\bar{f}(g_k)(x)) d\mu \\
&= \int_{P(V)} D(x) d\mu
\end{aligned}$$

This implies that $\text{supp } \mu \subset Q$.

Let X be the unique minimal *q.l.v.* containing $\text{supp } \mu$. X can be denoted by $X = \bigcup_{i=1}^m \bar{W}_i$ where W_i is a subspace of V . We may assume that there is no inclusion relation among W_i 's. Remark that X is also proper in $P(V)$. Since $\text{supp } \mu$ is $\bar{f}(G)$ -invariant and X is the smallest *q.l.v.* containing $\text{supp } \mu$, X is $\bar{f}(G)$ -invariant. For every $g \in G$, $f(g)W_i \subset \bigcup_{i=1}^m W_i$. By Lemma 2, there exists for every $i = 1, 2, 3, \dots, m$, there exists an integer $s(i)$ such that $f(g)W_i \subset W_{s(i)}$. Since there is no inclusion relation among W_i 's, $\bigcup_{i=1}^m W_i = f(g) \bigcup_{i=1}^m W_i \subset \bigcup_{i=1}^m W_{s(i)} \subset \bigcup_{i=1}^m W_i$ implies that $f(g)W_i = W_{s(i)}$ for $i = 1, 2, 3, \dots, m$. Thus G permutes W_i 's. Since G has no closed subgroup of finite index, G leaves each W_i invariant.

We shall show that $f(G)|_{W_i} \subset K \cdot 1_{W_i}$ for $i = 1, 2, 3, \dots, m$.

Suppose that there exists $W_{i'}$ such that $f(G)|_{W_{i'}} \not\subset K \cdot 1_{W_{i'}}$. The same argument as above with respect to $\bar{W}_{i'}$, $f|_{W_{i'}}$, and $\mu|_{\bar{W}_{i'}}$ shows that there exists a *q.l.v.* X' contained properly in $\bar{W}_{i'}$ such that $\text{supp } \mu|_{\bar{W}_{i'}} \subset X'$. Thus X contains $(\bigcup_{i \neq i'} W_i) \cup X'$ properly. This contradicts the definition of X .

Therefore $f(G)|_{W_i} \subset K \cdot 1_{W_i}$ for $i = 1, 2, 3, \dots, m$.

q.e.d.

2. Main theorem

Let G be a locally compact group and f a continuous representation of G on a finite dimensional vector space V over K .

Lemma 4. *Assume that (G, f) has property (A). Let H be a subgroup of finite covolume in G . Then for 1-dimensional subspace W of V , W is $f(G)$ -invariant if and only if W is $f(H)$ -invariant.*

Proof. In order to prove the lemma it is sufficient to show “if” part. Set $p = \bar{W} \in P(V)$. Define the map π of G/H to $P(V)$ by

$$\pi: G/H \ni gH \mapsto \overline{f(g)p} \in P(V).$$

Then π carries a finite G -invariant measure on G/H to a finite $\bar{f}(G)$ -invariant measure on $P(V)$. Since p is contained in the support of this measure, by Lemma 3, p is a $\bar{f}(G)$ -fixed point. q.e.d.

For a representation f of G on a vector space V , the k -th exterior product representation $\Lambda_k f$ of f on $\Lambda_k V$ is defined by

$$\begin{aligned}
&\Lambda_k f(g)(v_1 \wedge v_2 \wedge v_3 \wedge \cdots \wedge v_k) \\
&= f(g)v_1 \wedge f(g)v_2 \wedge f(g)v_3 \wedge \cdots \wedge f(g)v_k
\end{aligned}$$

where $g \in G$ and $v_i \in V$.

DEFINITION 2. (G, f) is said to have *property (B)* if for $k=1, 2, 3, \dots$, $\dim V, (G, \Lambda_k f)$ has property (A).

Theorem 1. *Assume that (G, f) has property (B). Let H be a subgroup of finite covolume in G . Then for any subspace W of V , W is $f(G)$ -invariant if and only if W is $f(H)$ -invariant.*

Proof. In order to prove the theorem it is sufficient to show “if” part. Let k be $\dim W$. Taking k -th exterior product of f , we can reduce the proof to Lemma 4.

Proposition 1. *Let G be a complex analytic group and f a holomorphic representation of G on a finite dimensional complex vector space V . Then (G, f) has property (B).*

Proof. If f is holomorphic, so is $\Lambda_k f$. Thus, in order to prove the proposition, it is sufficient to show that (G, f) has property (A). Since G is connected G has no closed subgroup of finite index. In order to show the condition (2) of Definition 1 we may assume that $W=V$, for the restriction $f|_W$ of f to a invariant subspace W is also holomorphic.

Let G' denote the complex linear group $f(G)$ and \hat{G}' its Lie algebra. For $A=(a_{ij}) \in \text{End}(V)$, we define the norm of A by $\|A\| = (\sum_{i,j} |a_{ij}|^2)^{1/2}$.

For nonzero $X \in \hat{G}'$, set

$$f_X(z) = \|\exp n z X\| / |\det \exp z X|$$

where $n = \dim V$ and $z \in C$. We note that $f_X(z)$ can be written the form;

$$f_X(z) = (|f_1(z)|^2 + |f_2(z)|^2 + \dots + |f_m(z)|^2)$$

where $m = n^2$ and $f_i(z)$ is a holomorphic function of z . Thus there exist only two possible cases:

Case 1. There exists a nonzero $X \in \hat{G}'$ such that $f_X(z)$ is unbounded. Since $f_X(z) = \|\exp n z X\| / |\det \exp z X| \leq \|\exp z X\|^n / |\det \exp z X|$, we have that

$$\{|\det \exp z X|^{-1/n} \cdot \exp z X; z \in C\}$$

is unbounded.

Case 2. For every $X \in \hat{G}'$, $f_X(z)$ is constant. In this case each element of the matrix $(\exp n z X) / (\det \exp z X)$ is constant. Substituting 0 for z , we have that

$$(\exp n z X) / (\det \exp z X) = 1_V$$

for all $z \in C$ and all $X \in \hat{G}'$. Consequently we have that

$$\exp z X \in C \cdot 1_V \quad \text{for all } X \in \hat{G}.$$

Since $f(G) = G'$ is connected, $f(G) \subset C \cdot 1_V$. q.e.d.

From Theorem 1 and Proposition 1, it follows that:

Theorem 2. *Let G be a complex analytic group and H a subgroup of finite covolume in G . Let f be a holomorphic representation of G on a finite dimensional complex vector space. Then every $f(H)$ -invariant subspace is $f(G)$ -invariant.*

REMARK. There are several other cases in which property (B) holds. If G is minimally almost periodic and f is an arbitrary representation, or if G is an analytic group and f is a unipotent representation (G, f) has property (B). In both the cases Theorem 1 holds [2, 4].

3. Density properties

In this section G always denotes a complex analytic group, H a subgroup of finite covolume in G and f a holomorphic representation of G on a finite dimensional complex vector space V .

Corollary 1. *Every element of $f(G)$ is a linear combination of elements of $f(H)$.*

Proof. Let W be the subspace spanned by the elements of $f(H)$ in $\text{End}(V)$. The action of G on $\text{End}(V)$

$$G \times \text{End}(V) \ni (g, A) \mapsto f(g) \circ A \in \text{End}(V)$$

defines a holomorphic representation of G on $\text{End}(V)$. Since W is H -invariant under this action Theorem 2 concludes that W is G -invariant. Thus we have that for every $g \in G$

$$f(g) = f(g) \circ 1_V \in W. \quad \text{q.e.d.}$$

From Corollary 1, it follows immediately that:

Corollary 2. *The centralizer of $f(H)$ in $\text{GL}(V)$ coincides with the centralizer of $f(G)$.*

Corollary 3. *$f(G)$ and $f(H)$ have the same Zariski closure in $\text{GL}(V)$.*

Proof. Let G' and H' be the Zariski closures of $f(G)$ and $f(H)$, respectively. Clearly $H' \subset G'$. By Chevalley's theorem we can find a rational representation r of $\text{GL}(V)$ on a complex vector space E and a nonzero vector $v \in E$ such that

$$H' = \{x \in \text{GL}(V); r(x)v \in C \cdot v\}.$$

Since $r \circ f$ is a holomorphic representation of G and $C \cdot v$ is $r \circ f(H)$ -invariant, by Theorem 2, $C \cdot v$ is $r \circ f(G)$ -invariant. Thus we have that $f(G) \subset H'$. q.e.d.

Appendix. Professor Goto pointed a criterion for property (A). This criterion seems to make the meaning of property (A) clear.

Let V be a finite dimensional complex vector space. An endomorphism A on V is called *conformal* if A is semi-simple and the real part of every eigen value of A is equal to each other. Let the totality of the conformal endomorphisms on V be denoted by $c(V)$. For a representation f of a Lie group by df we denote the associated representation of its Lie algebra.

Proposition (M. Goto). *Let G be an analytic group and \hat{G} its Lie algebra. Let f be a representation of G on a finite dimensional complex vector space V . Assume that for every $f(G)$ -invariant subspace W of V $df(\hat{G})|_W \subset c(W)$ implies that $df(\hat{G})|_W \subset C \cdot 1_W$. Then (G, f) has property (A).*

References

- [1] A. Borel: *Density properties of certain subgroups of semi-simple groups without compact components*, Ann. of Math. **72** (1960), 179–188.
- [2] H. Furstenberg: *A note on Borel's density theorem*, Proc. Amer. Math. Soc. **55** (1976), 209–212.
- [3] J. von Neumann and E.P. Wigner: *Minimally almost periodic groups*, Ann. of Math. **41** (1940), 746–750.
- [4] A.I. Mal'cev: *On a class of homogeneous spaces*, Amer. Math. Soc. Transl. **39** (1951).

Department of Mathematics
 Kyushu University 33
 Hakozaki, Fukuoka 812
 Japan

