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On Kahler submanifolds of a complex projective space, J-I Hano [5] has
studied complete intersections of hypersurfaces in a complex projective space
and proved that if a complete intersection M of hypersurfaces is an Einstein
manifold with respect to the induced metric then M is a complex projective
space or a complex quadric. The purpose of this note is to investigate hyper-
surfaces of a complex Grassmann manifold by using Hano's method. Let
Gm+n n(C) denote the complex Grassmann manifold of τz-ρlanes in Cm+n. Let X
be a compact complex hypersurface of Gm+n n(C). Then X defines a positive
divisor on Gm+n n(C) and hence a holomorphic line bundle {X} on Gm+nn(C).
We denote by c(X) the Chern class of the line bundle {X}. Since the second
cohomology group H\Gm+n n(C)> Z) is isomorphic to Z, we can write c(X)=
a(X)-σ, where a(X)^N and σ is a generator of H\Gm+nn(C)y Z). We call a(X)
the degree of X, We equip an hermitian inner product on CmΛn. The complex
Grassmann manifold Gm+nn(C) has a Kahler metric invariant under the action
of the unitary group U(m-\-ri). Moreover we may assume that m^tn. Under
these notations, we have a following Theorem.

Theorem. Let X be a compact complex hypersurface of a complex Grassmann

manifold Gm+tltn{C) and a(X) the degree of X. If a(X)^r+2, where r = ( w + " ) -

mn—1 and n^2, X is not an Einstein manifold with respect to the induced metric,

1. Preliminaries

Let Gm+nn(C) be the complex Grassmann manifold of w-planes in Cnι+n. An
element of Gm+nn(C) can be given by a non-zero decomposable w-vector
A = X X A Λ-SΓMΦ0 defined up to a constant factor. If (ely •••, em+n) denotes a
fixed frame in Cm+n, we can write

(1.1) Λ rA

where the ̂ ...^'s are skew-symmetric in their indices. The ptl...tk are called the
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Plϋcker coordinates in Gm+nn(C). By considering p{ ...in as the homogeneous

coordinates of the complex projective space Pμ(C) of dimension μ=( )~~^>

we get an imbedding j : Gm+n>n(C)->Pμ(C).

We equip an hermitian inner product in Cm+n. Then we can define a Kahler

metric on GmΛn n(C) which is invariant under the action of the unitary group

[/(m+ft). We also have the Fubini-Study metric on the complex projective

spaec Pμ(C) induced from the hermitian inner product in the n-th exterior pro-

duct A.nCm+n of Cm+n. Then the imbedding j is isometric with respect to these

Kahler metrics (cf. for example [3] §8).

From now on we identify Gm+n n(C) with the image of the imbedding j.

Let I(V) denote the ideal associated to a subvariety V of Pμ(C). We recall the

generators of the ideal I(Gm+n>n(C)). Let iu •••, in^ be n— 1 distinct numbers

which are chosen from a set {1, •••, m-\-n} and let yo, -~,jn be n-\-\ distinct

numbers chosen from the same set. We define homogeneous polynomials

Q(h<-h-do'~jn) of degree 2 on Cμ+1 by

(1.2) Qih-in-ijo-jn) = i 3 o ( - l ) X . . , v i ^ o » ^ . -

Then it is known that Q{h'-in-i"'jo ~jn)~O are the generators of the ideal

I(Gm,ntH(C)) (See [7] Chapter 7 §6 Theorem 2 and §7 Theorem 1). The

relations Q(ii in-ijo"'jn)
=zQ a r e called the quadratics-relations.

Let π denote the canonical projection of Cv+ι~(0) onto the complex projective

space P'\C). The triple (CM-{0), π, Pμ(C)) is a principal C*-bundle over Pμ(C).

Let E be the standard line bundle over Pμ{C) associated to the above principal

bundle. We denote by Hι(M, θ*) the group of all equivalent classes of holo-

morphic line bundles over a compact complex manifold M. On the line bundles

over a Grassmann manifold Gm+n n(C)> the following propositions are known.

Proposition 1.1. Let H denote the dual bundle of E over Pμ(C). Then, for

any integer k>0, the inclusion map j: Gm+n n(C)-^Pμ(C) induces the surjective map

j*: H%Pμ{C\Hk)->H\Gm+nn(C)J*H% that is, every holomorphic section of the

line bundle j*Hk is given by the restriction of a section of the line bundle Hk on

P%C).

Proposition 1.2. The inclusion map j: Gm+nn(C)->Pμ(C) induces the canoni-

cal isomorphism j*: H\P\C), θ*)^H\Gm+Htn(C), (9*). Moreover each positive

divisor X of Gm+nn(C) is the complete intersection of Gm+nn(C) and a subvariety Y

of codimensίon 1 of Pμ(C). Furthermore, for an irreducible subvariety X of codί-

mension 1 in Gm+nn(C), I(X)=I(Gm+nn(C))+(F) where F is an irreducible homo-

geneous polynomial on Cμ+1.

Proof. See [7] chapter 14 §8 Theorem 1 and [8] Theorem 3.
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For a compact connected complex submanifold X of codimension 1 in

Gm+nn(C), let [X] denote the positive divisor defined by X and c(X) the Chern

class of the line bundle {X} defined by [X]. Since H\GmΛnn{C\Z)^Zy

c(X)=a(X)σ where a(X) 6ΞiV and σ is a generator of H2(GM+n>n(C)y Z). We call

a(X) the degree of X. Note that the degree of an irreducible subvariety Y of

codimension 1 of Pμ(C) corresponding to X is given by a(X).

2. The canonical line bundle

With respect to the hermitian inner product on Cμ + 1 induced from the

hermitian inner product on Cm+n, the square of the norm | |# | | is given by

Σ \Pi -i (2)\2 f° r a n orthonormal frame (eu •••, em+n) of Cm+n. The function

I \z\|2 can be regarded as a hermitian fiber metric on the standard line bundle E

on Pμ(C). A unique connection of type (1, 0) on E is determined by the fiber

metric | |s | |2 on E and gives rise to the curvature form — Ω on Pμ(C). The form

Ω is the associated (1, l)-form of the Fubini-Study metric on Pμ(C); τr*Ω=

Let Ky K(Gm+n M(C)) and K(X) be the canonical line bundle of Pμ(C),

Gm+nn(C) and X respectively. The normal bundle of X in Pμ(C) is a holomor-

phic vector bundle over X whose fiber dimension is r-\-\—μ—mn-\-\. We

denote by N the (r-fl)-th exterior product of the dual bundle of the normal

bundle of X in Pμ(C). Denoting by c the inclusion XQPμ(C)y we have

(2.1) ι*K = K(X)-N.

Let Uii...in denote an open subset of Pμ(C) given by {π(z)^Pμ(C) \pt ...,-„(#)=}=

0}. The functions uiy.intβr..βn=pβr..βJpir. in((βu - , Λ ) Φ ( ί i , •••,!„), A ^ - ' ^ A )

form a holomorphic coordinates system on Utv. in. We arrange the Plϋcker coor-

dinates in the lexicographical order. Let/>yr. Jn be the (r(ju "',jn)-th component

of the Plϋcker coordinates in above order. The map sίv..tn: Uir..in->Cμ+1—(0)

defined by

V

is a holomorphic section on Uii...in of the principal C*-bundle (Cμ+ι—(0), r̂, Pμ(C)).

We put

on t/f- ίjf Π Ujr..ju. Then (giv.injv..jn) is the system of transition functions of the

principal bundle associated to the holomorphic local trivialization (Uiv..in, stι...in)

of the bundle. Let ^Ir.., n denote the connected open set of Gm+nn(C) given by
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Vh...iΛ=Uir.,nϊ\Gm+n,n{C)

and Wir..in the open set of X given by

Now we shall consider the structure of the holomorphic line bundle N on

X. Let Q(βi βnh in) be a homogeneous polynomial of degree 2 on Cμ + 1

defined by (1.2). It is obvious that Q(βi' βnh in) has following properties:

ί 1) Q(βι βnh in) is alternating with respect to βu •••, βn.λ.

(2.2) ] 2) Qiβr βJi in) is alternating with respect to βn,h, •• ,in •

{ 3) if {βu -, /?„-!} C {βn, iu •-, *,}, ρ(A-/3Λ-*.)=0 .

Furthermore we have a following lemma which gives the relations between

these polynomials.

Lemma 2.1. On π'^U^...^),

(a) Qtβx-β.-fo 'i.) = -Q{β,-βn-2kβn-A-in)

ir"- 1 ^"' 1 ' 1 ^"'" Q(i.βι-β.-Jd1-i»)

P

Ph-'n

(b) Q(

Proof. Straightforward computation.

Let (zΊ, •••, 4) be an w-tuples such that

and let (iu •••, zΛ, ίx, •••, ίw) be the permutation of (1, •••, m-\-n) such that

For a permutation (lu •••, /w) of (1, - , m ) , we introduce a linear order -Q on

{1, .. , m + n } byz 1 -β/ 2 -β.. .-β4-βί / i ^.. -β5/w. We denote{/3=(A, - , βu)\βι-Q
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— Q β n ] by C(i\•••£„, -β). The associated lexicographical order on C(x\•••£„, -8)

is called an admissible order with respect to (iu •••, /„). If the linear order -8 on

{1, -~,m+n} is given by iλ-8—8*,«-8v6—Qsm, the admissible order is called

principal with respect to {iu •••,*„}. For an admissible order with respect to

(*Ί> " > *«)> w e d e f i n e a subset I(h-~in, -Q) of Cfc•••*'„, -β) by

! ί = l , —, w , o r β = (ιly ...yιn)

Note that I(ix •••,/„, -θ) = /(ίi, * ,ί», "80 for -8, ~8/ admissible orders, with

respect to (iu •••,/„) and the number of elements in I(iλ-"ίn> -Q) is mn + \.

Moreover Q(βh-iM) = 0 for βelfo-i,, -Q) by (2.2) 3).
For an admissible order -3 with respect to (iu •••, in), we define a holomor-

phic r-form gf1...in on C μ + 1 by

(2.3) ?£..,..= Λ dQ{βίι^ίn)
1 n p6Cr« » f - β ) - / C f / - β 5

where we take the exterior product of dQ(βi1 - in) according to the admissible

order ~8 on C{i^*nny -β)—/(ίr"*"»> ~6) If the admissible order -8 is principal,

we denote qfr..in by ftv..lV

L e m m a 2.2. Lei -8, -Q' fe admissible orders with respect to (il9 •••,/„).

(2.4) ?*..,.(*)

/or arew-^^...^), wA^ 6(-8, - 8 0 ^ {±1}.

Proof. Let -8 be a linear order on {1, •••, w+w} given by iλ-Q—Qin-Qs^ '

-Qslm. Since the symmetric group of m elements is generated by transpositions

{(k, k+ί)\k=ί, •••, m—l}, we may assume that the admissible order -Q' is given

by a linear order

Let /3 be an element of C(*Ί•••*"„, - 8 ' ) ~ ^ r " 2 « » "Q') T n e n Z3 i s o f t n e f o r m

either

2) β=(βι, -,βή)> βt=*i> for some ί and βΛ*slk+1 for a*t9-

3) β=(βu '"> βn)> βt—sιk+i f° r some t and /5flΦί/)fe for β φ ί ,

4) β=(βi, •-, A), βt=slk+1, βt+i=slk for some ί + l < w ,

or 5) β=(βi, ~βn-2,Sιk+1,S!k)

In the cases of 1), 2) and 3), yδeC^Ί ^ , -8)—I(h ~in> -8). In the case of 4),

0(/8v ί,)=C?(A / V A ^
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i.) by (2.2) 1). Note that

In the case of 5), we have

Y. SAKANE

A-iV/*+iA+2 ' Λ)eC(ι\ iβ>-β)-/(ί1 ίίl>-8).

+ g (

2LJ I —

i

(ίV ,zw, •• W(V"*«>-8),by Lemma 2.1 (a). Note that (A, •••, /3w-2,^,^+ 1)

ί.-β*,, and ή-βί/AH1. By (2.2) 1), Q&β^- β ^ s ^ Q Q i β ί β U ^ n )

where /3{, •••, β£_j is a permutation of iα, βlf •••, /3M_2 such that /S{-6—Qβn-ι~8

slk. If ρίi.A Λ . Λ ^ i J ί O , then (β'u ..., / S i . ^ e C f t , - , / „ , . . . )-/( ί i -

fΛ, -8) and β=(β[y -.., /3^_!, ί/jk) is of the form of the case 2). Similarly, Q(ibβι

••-βn-2Sιk + jι'- tn)^±Q{βί'' βn-iSιk+Jι-- in) where βl, — , ^ ί - i i s a permutat ion

of/,, A, - , &-2 such that ^ί-θ -θyQί-x-β^^. If Q(hβι-βn^tk+ιh-in)mθ9

then (/3 ί ,- ,^- 1 ,^ + 1 )eC(/ 1 . ^,-6)-/(/1.../M,-8) and β=(βl,-, βί-uS^J

is of the form of the case 3). Now we get our claim by taking differential.

q.e.d.

Let (ii' ij- 'iJjSi- -Sn) be a permutation of (l w+w). We define a linear

order <1 on {1, •••, m+n} by ί ι<] <Iίi<l <lfn<iJ<lίi<l <lίΛ. We define a

set C(i1"'iί"iJp < ) b y { ^ = ( A - Λ ) I A < - < A } and a subset/(fV- y - ί ^ ,

<)of C(ix—ih-iniμ <)by

or β = (h—ij ~inst)

t — 1, •••, m ; / = 1, * , 7 , •••,«

o r ^ = (h'"*j"'ΐntj)

Lemma 2.3. /\ dQ(βi1"'in)=ε(i1"'in9 h"'ij"nniJ)

X A Λ A dQ(eγi1-'ij"'inij) on π~\Vlr..t^ where E(iλ-ήn,iλ

ij'-'ijj)^ {±1} and the exterior product is taken according to the lexicographical

order induced from the linear order <\.

Proof. Note that there is a natural bijection between C(i1"'iny -8)—/(ίΊ

*«> ~8) a n d C(\'"ij'"iJj> <3)—I(h'"ij'"inij> <3) We denote this map by

Then, for βeCfr-i., -β)—/(A—ί,., -8), Q(βiι-i») and
cide up to sign by (2.2) 1) and 2).

v ^ •"*>',-) coin-
q.e.d.
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Let (ii*"tijt'%inskijSι* έk"-sm) be a permutat ion of (1, •••, # H - n ) . We define

a linear order -< on {1, • ••, m+n} by

h< <ij <in<Sk<ij<si< <4"< Om

We define a set C(v-'V"*A, -<) by {/β=(/31 . /3M)|/31-<-"-</9j and a subset

V
t y — ί /

β = (ii—tj—iHij) or

ί = 1, •-, ky ~'tn,

Ί 1 *

L e m m a 2.4. For / = 1 , •• , j , •••,», ί = l , •••, ^, •••, m, Qiii^'i^-'ii

Proof. The first part is nothing but Lemmas 2.1 (b). Noting that only
three terms of O are non trivial in our case, we get the second part by the defini-
tion, q.e.d.

Now we define a linear order <1/ on {1, •• ,m+n} by /!<]'• • <|/ί;.<]'•••

We define a set C^—ιy—tΛty, <Γ) by {/9=(/3i—/S^l/S^' ^ / S j and a

subset I(h""ij' iniji < 0 of C(il'"tj "inijy <i') by Hί\' 9ίj "inij> <1). We put

and

Let ^ = {(1, •••, m+w}, -<)->{(l, •••, w+w}, ^ ^ be an order preserving
bijection defined by

5(i) = i for tΦ/ y, j A

Then A induces order preserving bijections

My, < 0
and
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h: /(ίi — V-ίΛ, "<) -* ̂ Γ 'V' Vy ^ 0 *

Hence, we have an order preserving bijection

h: Ffc-V ίA, -<) - V& ij-iJ,, < 0

Proposition 2.5. Ow ^ ( ^ v - ϋ '

Λ A dQ{βix-ir-insk)

Y Λ

S(t1*"ij'"in^kyi1"'iJ'"tnij) is constant and valued in {±1},

Proof. By L e m m a 2.4, we have

for / — I , * ,y, •••, n, ί— 1, •••, k, •••, m. I n other words, for

We p u t

and

' ' V y b < 0

= 1, —,7, —, n; ί = 1, —, fe, — ,

^=(V' V' ™ ) 1
7 , * Λ t ί

Obviously h(S(i1'"tj'"insk))=S(i1-'tj"'inij). Now we claim that on τr~1(i7f 1...f lι)

(2 .5 ) ρ ( ^ - v i A ) = ± p t ι ^ J ' " ^ i
Piy in

where denotes a polynomial of ^ ± \ for each
Pir>.
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Case 1. β = (ii'''tj''-ilL1ltΛl'-'iμ.fyijSμi-»sμ,9) where / = 1, ••, j , •••, n-1,

Kaa ( f f=l , —, t), μbΦk (b=ί, •••, q).

By Lemma 2.1 (b) and (2.2) 1) 2),

(2.6) Q{h'''tr''iι^ai'-

— /r_1\»-;+l^<Γw/-<>ig*

Note that ^v../.... iΓ../Λ/.. i^s^js^-s^ .ja*0 if and only if α^/and

at. By (2.2) 1) and Lemma 2.4, we also have

Put

Then

for
By Lemma 2.1 (a) and (2.2) 2),

Λ Λ Λ

/ Ό T \ / " i / • • • • • * . . . . »

+ N Γ ~ 1 / - i \ f f 4 - n — 1 • L ^ P ' Q — i ^ l *' * ^ β * * ' ^ n f \ ( ' • • • • • • _ • •

^ i ^ Ij ^ V^β^l' " ^ " ' ί / ί ^ t ' ' ' ^ o j ^ ^ } fin ' ' *^Mff _ 2 ^ 1 " ' ^ ' "

a f): #

 1 1 *

+ Σ ( — l ) + w x — Q(hh••'ij- iιiai t€ΰtsktjSμi

%"Sμq^l'^tj*"intJ)
b Pii-in

Note that

0 ( M V y ^ Λ l ^ > > y M ; ) (+ = n—

and
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if q^2. Thus the first term in the right hand side of (2.7) is identically zero.

Obviously

by (2.2) 1). Inductively we get

( 2 8 ) Q{h-^j ''hL1'

for some polynomial functions P 7 . Hence we get our claim (2.5) in this case.

By the same way, we can show our claim in the following cases:

Case 2. β = (ι\ i. - itiΛi - ί Λ ί ί ^ sμf)

( β = l , , ί )

Case 3. /? = (ίΊ /. ί

Case 4. β = (h-ij-hi^-W^-s^)

j y (α =

Hence, on τr""1(ιFί i... ί r t), we have

dQ{βh-iΓ*insk) = ±dQ{h(β)iι --ir iui,)

for β^S(i1"'iJ'"iJlsk) and

+ Σ

for /3<Ξ ̂ (ίV V-ί>*, <)—S(i1'"tj-'insk).

Since A is order preserving and the number of elements in Sfa -ij - inSk) is

(«— l)(m— 1), we get Proposition 2.5. q.e.d.

Proposition 2.6. For n-tuples (iu •••, iΛ), ( Ί, •• ,7n) ( l ^ ί Ί
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on π~ι(y^ ,in)y where £{jι% %jnj h'"ΐn) *s constant and valued in {±1}.

Proof. I t is enough to see that for w-tυples (ily •••, in) and (ii ija iιSkiι+1 "in)

ί

(2-9)
i' ~iH\ ~

on ^-YF,. ,. ).

By Lemma 2.2, 2.3 and Proposition 2.5, the equality (2.9) holds on

Since §r-r iyi/Sjfef/+r. ,-„ and ?tl...Iw are holomorphic forms on Cμ+1, the equality (2.9)

holds on ^(V^...^). q.e.d.

Lemma 2.7. For n-tuples (iV••£„), C/i—Λ), (*i "*»)ι £(h'~in>ji~-jn)£(ji~-jn,

Proof. Since

? ί r •/» = (Ax .ίrtW)r Λ (rf/)β),+other terms,

^ . . . , » Φ 0 for af

By Proposition 2.6, we get

on 7r*1(Fί 1...I rt)n7r-1(F;i...yw)Π7Γ-1(F,i..J. Since S^-i^j,-],) is constant, we

get our claim. q.e.d.

Lemma 2.8 (Principle of monodromy). Z^ί G fo «n abelian group and M a

simply connected manifold. Let VL= {U^}^ be an open covering of M such that each

Ua is connected. Then H\VL9 G)=(0).

Proof. See Weil [12] Chap. 5 Lemma 1.

Applying Lemma 2.8, for the complex Grassmann manifold GM+nn(C) and

the system of transition functions {G(ii" in,ji" jn)}> w e g e t a system of constant

functions {δ(v '4)} (δfr ••/„): ^...^-^{±1}) such that Sfa-i,, jr"jn) =

S(/i \/VΓ1S(v 4). We put qi^.i^ih-i^Qi^in' Then, by Proposition 2.6,

we have
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By Proposition 1.2, a compact complex hypersurface X of Gwz4w W(C) is the

complete intersection of Gm+n n(C) and an irreducible sub variety Y of codimen-

sion 1 in Pμ(C). Let (F) denote the homogeneous ideal associated to Y. Note

that the degree of homogeneous polynomial F on Cμ + 1 is the degree of X and

Wtr.,={π(z)e:Vtr.JF(z)^0}.

Lemma 2.9. On π'ι(Wtl J , qtχ.. ίnΛdF*0.

Proof. Suppose that there is a point z^π'^W^...^) such that (qti...inΛdF)ZQ

= 0 . Since π~\X) is a complex submanifold of Cμ+1—(0), there are an open

neighborhood U of z0 in Cμ + 1 —(0) and holomorphic functions fj(j=\, •••, r + 1 )

are linearly independent for # e ί/ΠTr" 1 ^). By the Nullstellensatz for prime

ideals ([4] chap, 2A Theorem 7),

where £yΛ, Ay are holomorphic functions on U and QΛ are generators of the ideal

I(Gm+ntΛ(C)). Thus we have

fj)20 - Σ ϊy.

By Lemma 2.1 a) and b) and (2.2), we see that for each Ort

r + 1

for some C Λ ( γ ) e C . Hence, /\ (dfJ)zo=c(qii .tnΛdF)2o for some c e C and hence

/Λ (df j)Zςi—Q. This is a contradiction. q.e.d.

We define a local holomorphic section ί̂ ..., of the line bundle iV on Wiγ..tn

by

(2.Π) tt ^ ) = (stί^*(qt^tHAdF))x

for x^.WH .ίM.

L e m m a 2.10. The system of transition functions associated to the local

trivialization (Wlr .lw, tlχ ..lfj) o/ ίfe /zW bundle N is (ι*gtl .,MtJl . . ; / r 4 C ~ 0 J

o/ X /n particular, N= 4*£ 2 r + e - / .

Proof. By Lemma 2.9, we have ίti.. ίΛ(jc)Φθ for any x^Wir..in. Since

O(βiι -in) are of degree 2 and JF is of degree a,
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\ o i l - tn,J1 - Jn\ / / ιι" ιn\ t

on Wtι.imΠ WJv..Jn, by (2.10). q.e.d.

The canonical line bundle K of Pμ(C), the holomorphic line bundle of co-

vectors of bi-degree (μ, 0) on Pμ(C), is isomorphic to Eμ+1. By (2.1) and

Lemma 2.10,

(2.12) K(X) = ι*Em+M-°,

since t=r—(n—l)(m^-ί).

REMARK. Let j : Gm , Λ Λ(C)->Pμ(C) be the inclusion. Then U : ( G M H n Λ(C))=

j*βm-in ^ j] §16). Let X be a compact complex submanifold of codimension 1

in G w + W Λ(C) and . 0 : X-+Gm+H,H(C) the inclusion. Then .fi:(A)=0"0<o)*£Λ+n~β>

by considering the normal bundle N(X, Gm+nn{C)) of X in GW + I I^(C) and by

Proposition 1.2.

The first Chern class of X, which is the Chern class of the dual bundle

K{X)* of K(X), is the cohomology class containing the form (m-\-n—a)ω, where

ω=£*Ω is the Kahler form on X associated to the induced Kahler metric on X.

We shall determine a local section kti...tn of K(X)* on each Wiγ. in so that the

system of transition functions associated to the local trivialization (Wtr. in, kiy..ln)

(2.13) /.,..,. = ( - l Γ ' - ' - 1 Λ ψuH..in,ai..an
CΛ1 Q5M)φCί1 ί W )

on Uti ,.;w, where we take the exterior product of djdutr. tnCύi <Xιn according to the

natural lexicographical order. T h e n (£/ t ., ίw, / . tn) is the local trivialization of

the holomorphic line bundle K on Pμ(C) and the system of transit ion functions

is (P μ+1>l

L e m m a 2.11. Let kiy ln be a local holomorphic section of K{X)* on Wir..in

defined by

(2.14) V'.(*) = /

 1 ..(*)L'.,-..(*)

for x^W, tn, where L denotes the right interior multiplication. Then the system of

transition functions associated to the local trivialization {WH.. tn, kH tJ of K{X)* is
(,*O a-{m-\n)\
\L Siι -in,j1 Jn ) '

Proof. By (2.1) and Lemma 2.10, {kiv.in, Wir..in) is a local trivialization of

K(X)* and the system of transition functions is {ι*gir..ιnjr.; J-< μ + 1 ) + 2 f + β -*. Since

— (μ-\-l)+2r-)Γa—t=a—(mJrή), we get our claim. q.e.d.
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3. The relation between volumes

Let Cn denote the set {{ίu •••, ίΛ)| l ^ / i < < ί » ^ w + w } . For an element

^ ( V — , t « ) e C Λ , weput

(3.1) qi-ΈHir.λdpλiA-Άdpλr

where the summation runs over all (λ^ , Xr) e Cn X X Cn such that λj. < • < Xr

with respect to the lexicographical order < on Cn. Note that Hχr .λr are homo-

geneous polynomials of degree r.

Proposition 3.1. There exist homogeneous polynomials Hλi...λr of degree

(n-l)(m-l) on Cμ+1 such that

(3.2) H^.i^plH^ on π~\Vt) for each /eC,.

Proof. By (2.10), we have

on π~ι(V{ Π Vj) for each (λj, •••, \r). Thus we get

(3.4) y ' - rA ι r

V Pi KP/ PJ

On VgΓWj. Hence, {H^.^Jpty iζΞCn define a holomorphic section of the line

bundley*#<«-i)(*-D. Note that a holomorphic section of line bundle #<«-D(*-υ

on Pμ(C) is nothing but a homogeneous polynomial of degree (w — l)(m— 1) on

C μ + 1 . By Proposition 1.1, there is a homogeneous polynomial i/ λ l . λ y of degree

( n — l ) ( m - l ) on C μ + 1 such that

o n

Thus we get (3.2). q.e.d.

Now we have

(3.5) qt=pmH,r..

on π'^Vf) for each i^Cin and hence

(3.6)

on π'^Wj), where G λ . . . λ r 4 1 (^i< " # < ^ r u ) a r e homogeneous polynomials of

degree (n—\)(m—\)+(a—\).
For homogeneous polynomials Pu ••-, P s on C μ + 1 , we put
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where the summation runs over all (λ2, , Xs) e Cn X X Cn such that λ2 < < λ s

with respect to the lexicographical order < on CΛ, and we define

(3-7) l ,

for z<=Cμ+1. Then we have

(3.8) \\q,ΛdF\\\*) = l*. (*)ΓΣIGvλ,+1(*)l2

for ztΞπ-^WΊ).

Now we can define a C~-function φ: X-+R by

(3.9)

where
1««-1>+<β-1^ for ^ ) ,

Since the dual bundle i£(X)* of the canonical line bundle K(X) is the line

bundle of (mn—l) vectors of bi-degree (mn—l> 0), the set of hermitian fiber

metrics on K(X)* and the set of positive volume elements on X are canonically

in one to one correspondence. Let b denote the volume element on X corre-

sponding to the fiber metric **| |#| | 2 ( e"" ( w l τ w ) ) on K(X)*. Then the curvature form

of the connection determined by the fiber metric £*||#||2 ( C- ( 'H n)) is (m-\-n—a)ω,

where ω=£*Ω is the Kahler form of the induced metric on X.

Now the relation between two volume elements α)""'"1 and Ό is given by the

following Proposition.

Proposition 3.2. Let φ be a C°°-function on X defined by (3.9). Then

(3.10) ωmn~ι = ( ι y m ~ ~ 1 ) > b on X.

We need several lemmas to prove Proposition 3.2. Note that the norm defined

by (3.7) does not depend on the choice of unitary cartesian coordinates on Cμ+1.

That is, for a unitary matrix i e U(μ-\-ί) and homogeneous polynomials P ; , we

put P/

J(to)=Pj(A-1to) for w s ί Γ 1 . Then

(3.11)

for w=Az,

In order to prove Proposition 3.2, it suffices to verify (3.10) at an arbitrary

point XQGIX. Fix a point xQ^X and let z0 denote an element of Cμ + 1 such that
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I|jsro|I = 1 and π(zo)=xo. For an element A&U(μ+l), letp\ denotepΊ=^A J

tp p

i

where A=(Aj), and put w=( ,p',, •••). For a homogeneous polynomial P of
degree k on Cμ +\ putP'(w)=P(A-1w), P'io(w)=P'(w)l(p',o)

k, where ί o =(l, - , n ) e
C, and put M ; ^ * ) ^ ^ ) / / ^ * ) ^ * - ^ * ) ) . λeC,, (λΦi0).

Lemma 3.3. 7/ * o e IF, (iΈC,), ίΛere ΰ an element A e t/(μ+1) ίwc/ί ί/wί
/»ίβ(«o)=l, #(*<,)= 0 /or i e C B , >Φί0 anrf (^'(/3, »),„),„ (β^C(i, -Q)-I{i, -Q))
(where the order is principal with respect to i), (dF'o)Xo are lineat combination of

(du:oλ)xo (λeC(i 0, <)-/( ί 0 , < ) , (ΛίOil2...,-i,+i),o

Proof. By a routine computation of linear algebra.

Now we p u t ^ = Σ B)p'k and Ci=(6a ί fλ/8«ίoΛ)(*o).

Lemma 3.4.

(3.12) c\ - (B;O)-\B\B;«-B)BI»)

for λ Φ i , pφι'01 λ> ̂ C , ,

Proof. Straightforward computation.

Let J{iOί < ) denote J(ί0, < ) - {/0> ( 1 2 - n - l n + 1 ) } . We put J(i0, < ) =

{"1. •'•> ̂ n-l} With ^<Z/ Λ + 1 . (Λ=1, ••', lfflf-2), 'C(ί, -8)-/(ί , - 8 ) = {A, ••*, βr)
with β,-Qβl+1(l=l, - , r - 1 ) and C(i0> < ) - / ( i 0 , < ) = { λ i , •••, λ r} with λ s < λ s 4 1

(f=l,-,r-l).

Lemma 3.5. L ί̂ /̂ t fo ίÂ  holomorphic section of K(X)* on Wt defined in
Lemma 2.12. Then, at x o e Wh

(3.13) A,(*o) = (- lrω-i .s^.μet ίCi)]" 1

/ # o , Λ2 r +

\ / > , / ( ί 0 > i 2 » i » + i , ; o x , , , ; 0 , λ , )

χ ( 3 K , i Λ Λ3/9<, V κ , . ι ) ί 0 .

Proof. For a homogeneous polynomial P of degree k on C"1"1, put Pt=Pj(pt)
k

on (7,. By the definition,

ί,(*o) = δ(ί>f(rfO(A, i)Λ-ΛdQ(βr, i)ΛdF)X0.

Thus

, i),Λ-ΛdQ(βr, i),ΛdF,)X0

r*'{dQ'(βu i)10Λ-ΛdQ'(βr, i),0ΛdF',χ

On the other hand, we have
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Λ

By Lemma 3.3, we get (3.13). q.e.d.

Now the local expression of the volume element t> at x0 is given by the

following Lemma.

Lemma 3.6.

(3.14) *xo = ( v / ^ Ϊ Γ M - 1 ) 2 1 det (Ci) 12 | (#0//>,)(*0) I -2<«+»+2">

where (dv%0={du'tQtVlΛ

Proof. By the definition,b is the volume element on X corresponding to

the fiber metric t*\\z\\*tt-(M+n»on K(X)*. Note that

Σ

Put

Then bxo is given by

1

Hence

b j r o = (V^ϊ) '"" 1 - 1 * 2 1 det (Cϊ) 12 I (pίo//>,)(*o

\ iy ^ -,-—£ ^ y (χo)
q.e.d.

Lemma 3.7. ^4ί ̂ 0 ^ Wh

(3.15) ^ o ) = I (P'JpX*o) 12ί i g ί z ? — ^ — ^ T T T { X o )

t0,12 «-!
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Proof. Fix ceC* so that |K(x o ) | | 2 =l. Then M 2.(l+ΣI(A./A)(*o)l 2)=l

and M2=|(K,/Λ)(*o)|-2. Note that

φ(χ.) = Mil
/ \ U/ i 1 9 / 1 1 /

(l, 0 ^ 1 ' °) by (3 11)

j 2 (

Since

and

* i i ) ( l , 0 , ...,0) = 0 for * = 1 , . . . ,r, ^ ( l , 0 , ••,()) = 0

for j

' (A, t),0> - , O'(βr,i)H, F',o)

by Lemma 3.3. q.e.d.
By Lemma 3.3, the Kahler form ω of the induced metric on X is given by

at

Hence,

Lemma 3.8.

(3.17) | d e t ( C i ) | 2 = WJP,)

Proof. Put D*=BlBh-BtBi» for λ φ ί , vφί0, λ, i »eC r Note that

I det (Z)ΐ) 12 = det (Di). det '(Di) = det (( Σ Z>iD^λ τ ± 1 ) ,

and that
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since

Thus

I det (DS) 12 = det (δ λ r I Bf* \ 2+Bl»BU)

= I β/o I * det (δKτ

Now

I det (C )̂ 12 = \Bh\-^\det(Di)\2

Since i?*lo=(/>ί//>ίo)(#o)> w e g e t 0 U Γ claim. q.e.d.

Proof of Proposition 3.2.
By Lemma 3.6, Lemma 3.7 and Lemma 3.8, we have

Since

r—t = (TW— 1)(W— 1) = m w (

^ + l + ί—2r—m—7^ = μ-\-l—r—(m-\-ri)—mn-\-m-\-n

= μ-fl— r—w»-1 = 0 .

Hence

Now our claim follows from (3.16).

Corollary of Proposition 3.2 (cf. Hano [5] Corollary of Proposition 2).
Let g0 denote the Kdhler metric on X induced from the Fubini-Study metric on

Pμ(C). Then (X, g0) is an Einstein manifold if and only if φ is a constant function
onX.

Proof. The Ricci form of the Kahler metric £0 on X is the curvature form
of the connection of type (1.0) on the holomorphic line bundle K{X)* determined
by the volume element ωmn~ι. Suppose that g0 is Einstein, that is, the Ricci form
is a constant multiple of the Kahler form ω. Then the Ricci form is harmonic.
On the other hand, the volume element Ό determines the curvature form
(m+n—a)ω, which is also harmonic. Since the Ricci form and (m-{-n—ά)ω are
both curvature form of the bundle K{X)*, they are cohomologous. Thus the
Ricci form must be (m+n~a)ω. Since ωmn~ι and Ό define the same curvature
form, dfdtr log φ=0, and hence log φ is a harmonic function on X. This implies
that φ is a constant function. Conversely, if φ is a constant function, then the
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metric g0 is Einstein. q.e.d.

4. The dual map and Veronese map

In this section we recall the dual map and Veronese map due to Hano [5].
Let /Y+1(Cμ+1)* denote the (r+l)-th exterior product of the dual space of

the vector space Cμ+1. We identify the tangent space of Cμ+1 at a point with
Cμ + 1 itself. We regard (qtΛdF)2 as an element in Λ r + 1(Cμ + 1)*. Let (fλl...λr+1)
be the standard base of /\r+1(Cμ+ψ. Then

Now we define a map G: C μ + 1 - * Λ r + 1 ( c μ + 1 ) * hY

We denote by P\C) the complex projective space associated to the complex

vector space Λ'+ 1(Cμ + 1)*, where e+l = (^+^. Since the map G: Cμ+1->

Λ r + 1(Cμ + 1)* is a polynomial map of degree (n—l)(m—l)+(a-l) and G(s)Φθ
for z^π~1(X)y it induces a holomorphic map g: X->P\C). We call^ the dual
map of X in Pμ(C). Let |M| be the norm of an element w in /Y+1(Cμ+1)*
induced from the hermitian inner product on CM1. Let Ω' be the Fubini-Study
form on Pe(C) determined from \\w\\2.

Proposition 4.1 (cf. [5] Proposition 3). The induced metric g0 on X is
Einstein if and only if the reciprocal image of the Fubin-Study metric on Pe(C) under

the dual map g is (n— \){m— \)-\-{a— 1) times of the induced metric; g*Ω' =

Proof. Since the degree of G is (n— \){m— l)+(α— 1), the reciprocal
image of the standard line bundle E' over P\C) under the map g is
^E(n-i)(m-i)+(a-i) w h e re E denotes the standard line bundle over Pμ{C). We
regard |M| 2 as the fiber metric on E/ over Pe(C). Its reciprocal image under g
is the restriction of ΣIG λ l... λ r + 1(^) | 2 to π~1(X) and is a fiber metric on

iKm-i)na-i)m Then

= -V^1 d'd" log (ΣI Gχr..χr+1 W12)

Now our claim follows from Corollary of Proposition 3.2. q.e.d.
Let Sk be the vector space of homogeneous polynomials on CM * of degree

k and 5? the dual space of Sk. We denote by Pd(C) the complex projective
space associated to Sf, where d-\-l=dim Sk. Each point ^eC^Mefines a linear
function ψ(#) on Sk given by ψ(z)(P)=P(z) for P<=Sk. We denote by ψ the
map z\->Ψ(z). The polynomial map Ψ induces an injective holomorphic map



HYPERSURFACES OF COMPLEX GRASSMANN MANIFOLD 91

(4.2) ψ: Pμ{C)->Pd{C)

if k^\. The map ψ is called the Veronese map of degree k.

For simplicity we denote the Plϋcker coordinate (-",pn •••) by (z09 •••, Zμ).

With respect to the hermitian inner product on Sk induced from the one on C μ + 1 ,

the set of all monomials

(4.3) Zov°-zM(vo\-vμ\γ'\ vQ+..-+pμ = k

is a unitary base of Sk. Moreover

(4.4) | * . ^ 0 ! ^ μ ! ) 1 / 2 | 2 = IWI2*/*!.

Obviously the reciprocal image of the standard line bundle over Pd(C) under the

map Λ]T is Ek. By (4.4), if Ω" denotes the Fubini-Study form on Pd(C), then

y]r*£lf/=kCl. That is, the Veronese map ψ is homothetic and the ratio of the

metrics is the degree k of the map ψ .

Now we specify k to be (n—\)(m—1)+(#—1), and define a linear map

L: 5 (*- 1 ) ( l l l- 1)+( β- 1)-*Λ r + 1(ί ? i + 1)* s o t h a t Loψ=G on the cone π'\X). Let

(£vo vμ) be the dual base of the unitary base of Su-iKra- o+Cβ-i) chosen above.

Since G f

λ l...λ r + 1 is of degree (Λ— l){m— l ) + ( α — 1),

(4.5) G λ l . λ r + 1 - Σ ^ λ i λ,^; i/o ^ X ^ o ^ / ί i / o ! - ^ ! ) 1 7 2 ) .

Using these coefficients, a linear map L is defined by

(4.6) L(fVo..VfA) = Σ « ( λ i " λ r + ι

By the way L is defined, it is clear that

(Loψ)(z) = G(z) for

Consider the rational map /: Pd(C)-+Pe(C) induced from the linear map

L: S(ϊ_1)( l ( l_.1)+(β-i)-*Ar+1(C ί t+1)* The map / is holomorphic at a point x^Pd(C)

if the image under L at a point of S^DGn-D-f («-D lying over x is not zero. Since

I\qt/\dF\|2 vanishes nowhere on π~\Wt), L does not vanishes at each point on

the image of 7r~1(X) under ψ. Therefore / is holomorphic on

Proposition 4.2. Let be ψ the Veronese map of degree (n—\){m— \)-\-{a— 1)

of Pμ(C) into Pd(C) and let g be the dual map of X into Pe(C). Then there is a

protective transformation I of Pd{C) into P\C) which is holomorphic on ψ(X) and

satisfies the equality (l°ψ)(x)—g(x) for Λ E I Moreover the induced metric on X

is Einstein if and only if the restriction of I to yjr(X) is everywhere locally isometric

with respect to the induced metric on ψ(X) and the Fubini-Study metric on Pe(C).

Proof. By Proposition 4.1 and the above observation (cf. [5] Proposition 4).
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Now we have the following Lemma due to Hano ([5] Lemma 7).

L e m m a 4.3. Let Φ be a litiear map of Cs+ι into Ct+1 and φ the induced pro-
tective transformaticn of PS(C) into P\C). Let U be a connected algebraic sub-
manifold in PS(C) which is not contained in any hyperplane in P\C). We equip on
U the metric induced from a Funibi-Study metric on PS(C), and on P*{C) a Fubini-
Study metric. Suppose that the restriction of φ to U is holomorphic and locally
isometric everywherey then Φ is a constant multiple of an isometry, and particularly
Φ is injective.

Now we have the following necessary condition from Lemma 4.3.

Proposition 4.4 (cf. [5] Hano §8). Let X be a hypersurface of Gm+nn(C) of
degree a. If the induced is metric on X Einstein, then

(4.8) dim {S^D^^+^DlIi^m^D+u^^e+l = ( j ^ )

where /(;z_i)(m-i)-ι(fl-i)=^(»-i) (m-iu-u-\) Π I{X)

Proof. For P<=S(n-lHm-1)+ia-lh the equation <£, P>=0,
defines a hyperplane in Pd(C). By the definition of the Veronese map ψ, a
homogeneous polynomial P in 5(M_1)(w_1)+(β_1) defines a hyperplane containing
λjr(X) if and only if P belongs to I(tt-i)(m-i)+(a-i) Thus, the minimal linear
variety Pd'(C) containing ψ(X) is the intersection of these hyperplanes each of
which is associated to a polynomial in /(w-i)(w-iM(β-i). Its dimension df is given
by dim(5ί(n_1)(,M_1)+(α_1)//(w_1)(m-i)+(fl-i))— 1. Let Crf/+1 be the subspace in
S(5_iχw_i)+(β-i) perpendicular to the subspace /(n_1)(w/_1)+(c_1). Let U be the
restriction to Cd'+1 of the linear map L: S^u^u^-*^1^1)*, and let /'
be the restriction to Pd\C) of projective transformation /. Now the connected
algebraic submanifold ψ(X) in Pd (C) is not contained in any hyperplane of
Pd\C). By Proposition 4.2, the restriction to ψ(X) of /' is everywhere locally
isometric. Applying Lemma 4.3, to ψ(X) in Pd (C), we see that the linear map

is injective, and hence we get (4.8). q.e.d.

5. Proof of Theorem

Let J denote the ideal I(Gm ,n>n(C)) of homogeneous polynomials £ on Cμ[1.

L e m m a 5.1. Let Jk denote J (Ί Sk. Then

dim (StIJk)=h f
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Proof. By Proposition 1.1, the inclusion ';: GWί+wn(C)~>Pμ(C) induces a
surjective linear map

;*: H\P\C\ H>) - H\Gm+ntn{Cl j*H*).

Noting that H°(Pμ(C), Hk) is the space of homogeneous polynomials Sk of
degree k>

Ktrj*={PeSk\P(z) = O for any

Hence, dim (S4//4)=dim H°(Gm+H_n(C),j*H").
On the other hand, by a Theorem of Borel-Weil [2] and the dimension

formula of Weyl [10], we have

dim H<>(Gm+nn(C),j*Hk) = Π ff" ^ Φ M
1=1 y=»+i ^ — z

q.e.d.

Lemma 5.2. Let Ik denote I(X) Π Sk. Then

dim (5,//,) = dim (SkIJk)-dim (SkJJk.a)

if k~2ta, where a is the degree of X.

Proof. Let [X] denote the non-singular divisor defined by X and {^L} the
holomorphic line bundle on Gm+nn(C) defined by [X], Then there is an exact
sequence

(5.1) 0 ->j*Hk- -*j*H" -> ι*Hk -> 0

of holomorphic sheaves on Gm+nn(C). (cf. [6])

Then (5.1) induces the following exact sequence of cohomologies

(5.2) 0 - H%Gm+n_n(C), j*H»-°) - H\Gm^n{C), j*H>)

- H\X, ι*H») - H\Gm+,,in(C),j*H><-°) - ». .

Since H1(Gm+KιX(C),j*Hk-'!)=0 if k^a, by a theorem of Bott [2],

dimH°(X, c*H") = dimHχGm+n..(C),j*Ht)-dimH'>{Gm+UιΛ(C),j* H>-<).

On the other hand, j * : H°(P*(C), Hk)-^H%Gm,nιn(C),j*Hk) is surjective, and
hence t*: H\Pμ(C), H")-^H\X, ι*Hk) is surjective if k ̂  a. Noting that
Keτι*=I(X)f\Sk, we have

dim (StIIt) = dim H*(X,ι*H*)

= dim H\Gm+n<lι(C),j*Hk)-dimH\Gm+n_κ(C),j*Hk-η

= dim (^/7έ)--dim (Sk.JJ^β).
q.e.d.
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Proof of Theorem. Put k=(n—l)(m-l)+(a—l). If n^l and m^w,

then k^a. Thus, by Lemma 5.2,

d i m (5 r ( w _ 1 )( w ί _ 1 ) + ( β _ 1 )//( w _ 1 )( m _i)-f( β -i))

= d i m (5( w _ 1 ) ( w ί _ 1 ) + ( f l _ 1 )//( w _ 1 ) ( w z - i ) + ( c - i ) )

— dim (Sin-tiin-ti-ilJin-ϋin-ti-i) .

By Lemma 5.1, we see that dim (Sk/Ik) is increasing in k. Hence, it is
enough to prove the following inequality (5.3) by Proposition 4.4;

(5-3) dim (5μ_(B1+B)+2/^-(»+»)+2)>

By Lemma 5.1, we have

dim (Sin=
K kUk> \.22-nn-mn-{m+\γ-ι-(m+n-\)

Thus

dim (5 μ . ( f .

I'22 y-nn-- mn {m+iγ-1-{m+n-l)
_ (mn—m—n+l)(mn—m—n-\-2)2 (mn—m—iy~1(mn—m)n (mn—n)"

\'22-nn-tn'\m+ϊγ-1-(m+n-ί)

l 2 3 (βwι)

>
\tnn)!

X(μ-rn-n+3)-(μ+l)μ(μ-l)'~(μ + 2-mn)

— (mn-m-n+l)(mn-m-n)2'- (mn-M)n' (Mn-nyχmn-n

Now we have

χ(μ—m+l)n-2'--(μ--m,—n+4)~(μ—m--n+2)' '(μ—nιn+2)}

>(μ+l)μ(μ—l)--(μ—mn-{-3)(mn—m--n+2).

On the other hand,

(μ-mn+3)-(mn-n-m+2) -
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Thus we have

— l)—(μ—tnn+3)(mn—ui—n+2)

x(mn~?n—n+l)>(μ+l)μ- -(μ—Mn+3)(mn—M—n+2)—(2mn—m--m)''

x (mn—m—n+2)(mn~m—n+l)>0 .

Hence, we get (5.3). q.e.d.

REMARK. In the case of G52(C), we can see that if the degree a(X) of X

satisfies a(X)^3 a hypersurface X is not an Einstein manifold with respect to the

induced metric by the same way. But we do not know the cases when
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