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On Kihler submanifolds of a complex projective space, J-I Hano [5] has
studied complete intersections of hypersurfaces in a complex projective space
and proved that if a complete intersection M of hypersurfaces is an Einstein
manifold with respect to the induced metric then M is a complex projective
space or a complex quadric. The purpose of this note is to investigate hyper-
surfaces of a complex Grassmann manifold by using Hano’s method. Let
G+, »(C) denote the complex Grassmann manifold of z#-planes in C"*". Let X
be a compact complex hypersurface of G,,, ,(C). Then X defines a positive
divisor on G,,,, ,(C) and hence a holomorphic line bundle {X} on G,., ,(C).
We denote by ¢(X) the Chern class of the line bundle {X}. Since the second
cohomology group H*G,,., ,(C), Z) is isomorphic to Z, we can write ¢(X)=
a(X)-o, where a(X)EN and o is a generator of H¥G,,+, ,(C), Z). We call a(X)
the degree of X. We equip an hermitian inner product on C"**. The complex
Grassmann manifold G,,,, ,(C) has a Kihler metric invariant under the action
of the unitary group U(m-+n). Moreover we may assume that m=#n. Under
these notations, we have a following Theorem.

Theorem. Let X be a compact complex hypersurface of a complex Grassmann
Manifold Gy, ,(C) and a(X) the degree of X. If a(X)Z7-+2, where r=("" ")~

mn—1 and n=2, X is not an Einstein manifold with respect to the induced metric.

1. Preliminaries

Let G,+, ,(C) be the complex Grassmann manifold of n-planes in C"**.  An
element of G,.,,(C)can be given by a non-zero decomposable n-vector
A=X, A+ ANX,=*0 defined up to a constant factor. If (e, -+, e,+,) denotes a
fixed frame in C”**, we can write

(1.1) A =21 /N o Ne, (1=t 0,1, Sm+n)

where the p; ..;,’s are skew-symmetric in their indices. The p, ..,, are called the
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Plucker coordinates in G,., ,(C). By considering p; .. as the homogeneous
coordinates of the complex projective space P*(C) of dimension p:(m;l;n)—l,

we get an imbedding j: G, ., ,(C)—P*(C).

We equip an hermitian inner product in C"**. 'Then we can define a Kahler
metric on G,, ,(C) which is invariant under the action of the unitary group
U(m-+n). We also have the Fubini-Study metric on the complex projective
spaec P¥(C) induced from the hermitian inner product in the zn-th exterior pro-
duct A"C™** of C"**. Then the imbedding j is isometric with respect to these
Kihler metrics (cf. for example [3] §8).

From now on we identify G,,., ,(C) with the image of the imbedding j.
Let I(V') denote the ideal associated to a subvariety V of P*(C). We recall the
generators of the ideal I(G,4, .,(C)). Let 4, -, 4, , be n—1 distinct numbers
which are chosen from a set {1, -, m+n} and let j,, -+, j, be n+1 distinct
numbers chosen from the same set. We define homogeneous polynomials
O(z,+++1,-1J, ' J,) of degree 2 on C**! by

(1.2) Ot tu-sfor Ju) = 28 (1) Pry 1y aPio -nen

Then it is known that Q(7,++7,_,-*jo**+J,)=0 are the generators of the ideal
I(G,.., (C)) (Sce [7] Chapter 7 §6 Theorem 2 and §7 Theorem 1). The
relations Q(4;+++1,-,Jo** J,)=0 are called the quadratic p-relations.

Let 7 denote the canonical projection of C**!—(0) onto the complex projective
space P*(C). The triple (C**'—(0), =, P*(C))is a principal C*-bundle over P¥(C).
Let E be the standard line bundle over P*(C) associated to the above principal
bundle. We denote by H!(M, 6*) the group of all equivalent classes of holo-
morphic line bundles over a compact complex manifold M. On the line bundles
over a Grassmann manifold G,,., ,(C), the following propositions are known.

Proposition 1.1. Let H denote the dual bundle of E over P*(C). Then, for
any integer k>0, the inclusion map j: G,,., (C)—>P"(C) induces the surjective map
J¥ H(PYC), H)—H%G,,+, ,(C), j*H"), that is, every holomorphic section of the
line bundle j*H* is given by the restriction of a section of the line bundle H* on
PYC).

Proposition 1.2.  The inclusion map j: G,,., ,(C)—P*(C) induces the canoni-
cal isomorphism j*: H'(P*(C), 0*)— HY(G,,+, ,(C), 6*). Moreover each positive
divisor X of G+, ,(C) is the complete intersection of G, ,(C) and a subvariety Y
of codimension 1 of P*(C). Furthermore, for an irreducible subvariety X of codi-
mension 1 in G+, ,(C), [(X)=I(G,+, ,(C))+(F) where F is an irreducible homo-
geneous polynomial on C**!,

Proof. Sec [7] chapter 14 §8 Theorem 1 and [8] Theorem 3.
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For a compact connected complex submanifold X of codimension 1 in
G yitn.(C), let [X] denote the positive divisor defined by X ard ¢(X) the Chern
class of the line bundle {X} defined by [X]. Since H*G,., .(C), Z)=Z,
¢(X)=a(X)o where a(X)E N and o is a generator of H¥G,, ., ,(C), Z). We call
a(X) the degree of X. Note that the degree of an irreducible subvariety Y of
codimension 1 of P*(C) corresponding to X is given by a(X).

2. The canonical line bundle

With respect to the hermitian inner product on C**' induced from the
hermitian inner product on C"*", the square of the norm [|z|| is given by

>3 1piyi,(2) 7 for an orthonormal frame (e, -+, e,4,) of C"*".  The function
i1 <in

[|z]|* can be regarded as a hermitian fiber metric on the stzndard line bundle £
on P*(C). A unique connection of type (1, 0) on E is determined by the fiber
metric ||2||? on E and gives rise to the curvature form —Q on P*(C). The form
Q is the associated (1, 1)-form of the Fubini-Study metric on P*(C); n*Q=
\lé;t-l d’'d” log||=|[%

Let K, K(G,+, ,(C)) and K(X) be the canonical line bundle of P¥C),
G,sn +(C) and X respectively. 'The normal bundle of X in P¥C) is a holomor-
phic vector bundle over X whose fiber dimension is r+1=p—mn+1. We
denote by N the (r+41)-th exterior product of the dual bundle of the normal

bundle of X in P¥(C). Denoting by ¢ the inclusion X G P*(C), we have
(2.1) *K = K(X)-N.

Let Uj,...;, denote an open subset of P*(C) given by {z(2)&P*(C)|p;,... (2)=*
0}. The functions u; ..;, g .5, =Pp,...8,/Pi, i,((Brs s Bo)F (11, 3 1,), Bi< < B,)
form a holomorphic coordinates systemon U, ..;,. We arrange the Pliicker coor-
dinates in the lexicographical order. Let p; ., bethe o(j;, -+, j,)-th component
of the Plucker coordinates in above order. The maps, .., : U iy C*1—(0)
defined by

o(dy-1,)
5,'1...in(y) = (uil.‘.,‘”,lz...,;(y)a tty 1, ) uil---i,,,m+1-~m+n(y)) (ye Ui;-“i,,)

is a holomorphic sectionon U; ..;, of the principal C*-bundle (C**'—(0), =, P*(C)).
We put

Bipipiyin = PiyeilPryer,

onU; .;, NUj..;, Then(g: . ., ;..;,)is the system of transition functions of the
principal bundle associated to the holomorphic local trivialization (U,-l,,.,-”, s,l,_.,n)

of the bundle. Let V; .;, denote the connected open set of G, ., ,(C) given by
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V.

iyeig =

Ui‘ ol n Gm+n,n(c)
and W, ..;, the open set of X given by
w.

ipeeiy —

Uilni,,nX'

Now we shall consider the structure of the holomorphic line bundle N on
X. Let Q(By:++B,i1,) be a homogeneous polynomial of degree 2 on C**
defined by (1.2). It is obvious that Q(8,+-83,%,***7,) has following properties:

1) O(By:++B,t+++1,) is alternating with respect to By, -+, By-1 .
(2.2) 1 2) O(By:++B,i,+++1,) is alternating with respect to B,, %, ***, 1, .

\ 3) lf {Bl, S Bn—l} c {ﬁm il, RS} in}) Q(ﬁl"'lgnil"'in)zo .

Furthermore we have a following lemma which gives the relations between
these polynomials.

Lemma 2.1. Onz"Y(U;.;),
(2) O(Bi+Byoikiy+i,) = —Q(ByeBo-skBy-iis i)

A
el gune

+ gl(—l)””ﬂle 0@+ By-okir+1,)

1oeiy

+ 3 (1 *"”’; Phiv-tuet 08,08, _yiyoriy)

tierly

(b) Q(IBI 181111 ] 1l]+1 l”k)
— le... ’j"'i,.k Q(Bl ---B”il---i”)

igeeeiy

+ ;( Pﬁl Bu-1ia Q(anl'"2j"';a"'inkil"'in)

’1 iy

1y Pt g8, ki)

iy
Proof. Straightforward computation.
Let (z,, +**, 7,) be an n-tuples such that
1=4,<5,< <, <m+n
and let (z,, *--, ,, 8, -**, $,,) be the permutation of (1, -+, m+n) such that
1< <5, =Em+n.

For a permutation (J,, -++, 1,)) of (1, -+, m), we introduce a linear order -3 on

{la B} m+n} by i1—8i2'8”'—82.”—8511%"'—85‘1,,,' We denOte{B=(Bl, ) Bn)lﬁl'%
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-++-8B,} by C(i;-++i,, -8). The associated lexicographical order on C(f,**i,, -3)
is called an admissible order with respect to (i;, ---,7,). If the linear order -3 on

{1, -+, m+n} is given by 7,-8:---87,-3s,-3+:+8s,,, the admissible order is called
principal with respect to {7, «:-,7,}. For an admissible order with respect to
(%, +++, 2,), we define a subset I(z;--7,, -8) of C(4-++1,, -3) by

‘ . 4 .
16 = (zl’ Uy vty Ly, st) ’ = 1, R }
t=1,-,m, or B=(i 1,

{,3 — (B B)

Note that I(3, -+, 7,, 8)=I(3, -+, 1,, -8") for -8, -8’ admissible orders, with
respect to (7, *-*, ¢,) and the number of elements in I(7---7,, -8) is mn--1.
Moreover Q(B1,-++7,)=0 for B I(i;-1,, -3) by (2.2) 3).

For an admissible order -3 with respect to (z,, -, 7,), we define a holomor-
phic 7-form g2..;, on C**! by

(2.3) g8, = A dQ(Biy+++i,)

BECG **in,8)= ICiunrin, 8D
where we take the exterior product of dQ(@Bi--i,) according to the admissible
order -8 on C(4+++1,, -8)—I(3;--*¢,, -8). If the admissible order -3 is principal,
we denote 72..;, by @i,...,-

Lemma 2.2. Let -8, -3’ be admissible orders with respect to (i, +++,1,). Then
we have

(24) gt (2) = &8, 8% ... (3)
for zen™(V; ..;,), where §(-8, -8")€ {£1}.

Proof. Let -8 be a linear order on {1, :--,m+n} given by i1€---—8i,,—8s,1---
-8s;,. Since the symmetric group of m elements is generatcd by transpositions
{(k, k+1)| k=1, -+, m—1}, we may assume that the admissible order -3’ is given
by a linear order

3-8 _8,1."%,311%" 'S 18"9& +1%Islk—8/s1k i 8’1, -

Let B be an element of C(i-,, -3)—I(3,-+*7,, 8’). Then B is of the form
either

1) B=(By 1 Bn)s :8:4:5'1,,» Sty in for any t=1, ., n,
2) B=(By ) B.), Bi=s,, forsometand B,+s,  for a=t,
3) B=(By, -, B.), Bi=s,,,, forsometand gB,=+s, for a=t,
4) B=(By ", Ba)» Bt'—“slkﬂ, Bia1=S$, for some t+1<n,

or 5) B:(Bl)"'len—b Stper? S,k).

In the cases of 1), 2) and 3), B C(i,-++1,, -8)—I(¢;*+-¢,, -3). In the case of 4),
Q(Bil"'in)'—:Q(Bl“':8:—131,,+.sl,,51+2‘"lgnil"'in): _Q(Bl"'B:—lst,,sl,,+1/8t+2"'Bnil"'
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i,) by (2.2) 1). Note that (8, B;-18,,8;,, ,Bis2-*B,)EC(, 1, B)—I(1,++-1,, -B).

In the case of 5), we have

Q(Bl"‘Bn—zsl,,ﬂsl,,il“'in) = —O(B1+B-25,51, 1i1"'i")

# SURHD)ig ot goovig o s .
+ az_ll(_l)a—ht-lp 'k;l. 1. Q(laﬁl”'lgn—Zslkll”'ln)
= ipeeig
x _ Psaipipiy ..
+ ;‘\:l(_l)lm-n 1 __I_fP_.I_TL Q(’bﬁl“'Bn—zsl“,ll”'zn)
ipeeei

by Lemma 2.1 (a). Note that (8, -+, B,-2$;,,5,.,)EC(1+++, 1y, -+ )—1(31++1,, -B),
i85, and i85, . By (22) 1), QBB -ssyiv i) = O(B4+ Bhossyiv-oi,
where 81, --+, B5-, is a permutation of ,, 8,, ---, B, such that B’—B --86;-,-8
S If Q@B Buessytiee+1,)EO0, then (87, o+, Bro18,)EC(E, ++y 1y ++0)—I()+

1,, 8) and B=(B1, -**, Bu-1, 5;,) is of the form of the case 2). Similarly, O(:,8;
e BugSyy, )=t Q(B1+ Bussy,, fiee+t,) Where B, -+, 87, is a permutation
of iy, By, =+, Bu-y such that B1-G-++-8841-8s,,, .. If QliByrrBoossyy. r--+in) 0,
then (B, -+, Bius, 51y, ) E Clisr+riyy -8)—L(iy-++i,y -8) and B=(B4, -+, Bi-1y 1y.,)

is of the form of the case 3). Now we get our claim by taking differential.

q.e.d.
Let (z,-+2 ;- i,1;8,°*$,) be a permutation of (1.--m+mn). We define a linear
order <] on {1 PN m—l—n} by 7,<7- <]z°j<]---<i,,<]i,<ls1<]---<]sm. We define a
set C(t,-+1+++ z,, <) by {B8=(By+B,)| B;<1--<1B,} and a subset I(i,-+1;++i,i,,
<) of C(3y-++1-++ i,t;, <) by
( 8= (il'”;j'“il'"inijst)
: or B = (i1 ,s)
. Cl, oot oo , i .
{ ﬁe (11 1ottt <) t— 1 .. ’m ] = 1’ ey j, e n
\ or B — (ll ...... 7 z )
Lemma 2.3. A dO(,le i) =E(H ety Byt eeind)
BECU,*in, = Iy vin 4 J
X VAN dQ(viy+1,-+ i) on =7V, ..), where &@i,+i,, i,

YECG it joroami jo D= TGy dyering j, )
AR j)E {1} and the exterior product is taken according to the lexicographical
order induced from the linear order <].

Proof. Note that there isa natural bijection between C(3,-*7,, -3)—I(7,-

-8) and C(i -++2;++- s <)— I, -1 JFRRIT PN <]). We denote this map by
f: Cly+i,, 8)_](,'1...,"” B) = Cllyeetom TRTIES) B (AR e i ,], ).
Then, for B=C(i,-+i,, -8)—I(,**+1,, -8), Q(ﬁz1 -7,) and Q(f(;(-?)z1 ------ i,1;) coin-

cide up to sign by (2.2) 1) and 2). q.e.d.
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Let (3020 LuSil 10+ 84+++5,) be a permutation of (1, -+, m-n). We define
a linear order ~< on {1 <+, m+n} by
z'l-<---—<z"---—<i 8y =y e <Gy e <,
We deﬁne a set C(;1;+ L8 <) by {B=(B+-B.)| L=< -—<pB,} and a subset
I(3-++2;0++1,8, <) by
8 = i),
B = (i1, dyeiyid) s
B - (il"'ij'"insi) )
 BeC(iy 1,000, <)= | B= (il'"éj"'inij) or r
B8 = (il...{j...insk)
t: 1, ...’ kA’ ...m,
l:1: '"afa ,m,
Lemma 24. For [=1, j, - ,n,t..l ey By e, m, Q(,'l...fj. o1,
Ly Syt i,55) =(—1)*"Q(, -- iSSiyeD,) = (— 1)i+n+1Q(il...z°j. -1,
L,SiSilye n)

Proof. The first part is nothing but Lemmas 2.1 (b).

Noting that only

three terms of Q are non trivial in our case, we get the second part by the defini-

tion. q.e.d.
Now we define a linear order <1’ on {1, -, m+n} by i1<]’---<l’fj<l'-'-
<1, <V, <l <5y <T---<T§, <1’ s
We deﬁne a set C(iy+--1,-++1, J, ’) by {8=(B," ,8,,)],814’ <'B,} and a
subset I(7;+-2;-+ i, <) of C( 1 z], <) by I(i;-+2;-- i;, <). We put
V(il‘"l ceeg z!’ _<) C(zl ...... i 2k —<) I(zl... j"'lnsln <)
and
V(oo iy, <) = C(tyee2;01,05 <1’)——I(il...{l <.
Let = {(1, .y m+n}, —<)—>{(1, -, m+n}, <") be an order preserving
bijection defined by
g i) =i for i=i,s,
' ﬁ(i,') =&
CA(s) =1;.
Then % induces order preserving bijections
h: C(il'";j'"insk! <) — C(i,---fj--- i, <)

and
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s LGyt 0,8 <) —> 1(5 -i,,ij, <1).
Hence, we have an order preserving bijection
B V(igeed;oer iSe <) = V(iyet;oeiyg;, <T).
Proposition 2.5. On ﬂ'l(Vil...;,,),

/\ dQ(Bll ...... 1 sk)

757(‘1""‘/"""”%"0
biy.t !
- 8(11 lnsk’ ll ..... l l ) (w) /\ dQ('Yll l l])
Do, [ oveval i
where 6(1'1~-~fj---in9k, il-'-z «+i,i;) is constant and valued in {11}, and
t=r—(n—1)(m—1).
Proof. By Lemma 2.4, we have
Q(il'";j"'fl”'inijstzl ...... i,8;) = :tQ(,l...2}...,’1...,'”%3‘1’1...fj...,'”,'j)
for I=1, ---,f, ey, t:l, «ee, B, -+, m. In other words, for
B = (42, i zzs,)(l—l ], ey my =1, e, by ooy m)
Q(,le---z e Sk) = £OW(BYir+2;- i) .
We put

and
S(il"-f,-"'i,,i,-)
. ﬁ — (il°";"";l"'inskst) }
= Vit ooot,eee i
{Be (GRS AN <1')11_1’ gy ey b=, e By e, m
Obviously h(S(zl---z 1,8:))=8(t - 2;-+1,8;). Now we claim that on z7Y(Uj,..;,)
(25)  QBidyiys) = i“’T— OH(B)iv-+1,+isi)
+ py(...M'...)Q(fyi ..., i)
7/;).(3) er--i,, ! ’
Pa,a,

where P.,(... ) denotes a polynomial of Py ", for each

iyig iy 1y
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BE V(i +10+1,5, <) —S(iy+1,++,5).

Case 1. B= (i, ;i) sl inSslSu, +*Sn,) Where [=1, «wv, J, oo, n—1,
I<a, (a=1, -+, 1), uy=k (b=1, -+, q).

By Lemma 2.1 (b) and (2.2) 1) 2),

. 3 . 2. . o . 4 .
(2’6) Q(zl'"lj"'ll—lzllwl'”lugskzjsﬂ-l'”sl‘-qll"'zj'"znsk)

P, :; s . A A A

_ — 741 1 & 2 2. . . g ..

— (____ l)n J T"_"_ Q(zl'.'lj'“zllml'“lu;ljsksﬂ'l.”sl"qzl"'lj'“tnlj)
iy

i Pivd gty Sy Sy A T N S
+ a:tzj(_l)a“'" FEA P ey Ok jOKy Kg—1 ﬂQ(slbqll'”zj'"la'"znskll'"lj".znlj)

Pr i

1 1

'PS,‘Li;"
(1 Doty
(—1y B

-z%---z,, .o A, .. S
Q(tl”'zj'"lllml"'lmfskljsl"l'"sl"q_1sk11”'lj“'znlj) .
11°0 1,

Note that Piyeod i --‘imski,-sm'"sm,_lif*zo if and only if a=/and a=a,, **-,
a;. By (2.2) 1) and Lemma 2.4, we also have

. 2 4 . . 2 .. . 4 4 . . 2 . .
Q(sﬂqzl'”zj"'la"'znskll'“lj'"znzj) E— :tQ(zl”'zj'"la'"lnsksf"qll"'zj”.lnlj) .

Put
. 4 4 .
v = (11"'zj°"la'“lnsksl-‘q) .
Then
yre A 4. ..
Vil (ll'“lj'“zlza}l"'lwgzjsksi"l'"sl"q)
for a=1.

By Lemma 2.1 (a) and (2.2) 2),

4

. 4 . . . . 4 .
(2.7) Q(ll'"lj”'zllml"'lw;skljsl-'-lu's!"q_lskzl."lj“.lnlj)

B 4 4. . . . . . .
— ‘“Q(ll'"1,'""1%,""msk’j-‘ul"'s#q»zsksﬂ-,_111“",'""»’;)

_ Ps,.a _aydgd .. 4 4. . . . . ..
+ az (__1)a+n 1 __J_lf_.“__f Q(lall""j”‘lllal"'%;gskl,s;b,'“5#{,_25#1"";“'1»1;)
zl.--tn

_ P ’ A .. 4 4. . . . 4 ..
+ ? (__1)b+n 1 Mg(lbll'"l]'"lllwl".1m¢skljsi"1“.sl-"q_lzl'"lj“'lnzj)

Piyei,
Note that
Oyt + by i St Sy 11,8 )=0 (1= n—1),
Oy 1y By lg Syl oo+ 1y03,1)=0 (141 = n—1)

and
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. 4 4. . . . 2 o eN__
Q(zl“'lj“.llzwl.“lutskzjsl"l".s#q_zsks#q_llln.lj”.lnlj)zo

if g=2. Thus the first term in the right hand side of (2.7) is identically zero.
Obviously

. 4 4. . . . 4 ..
O/ R P skz eyttt Syttt hdg)
4 . 4 .« .
—— ——Q(zbzllllz ".zlldl za‘zjsksllll s"tq_lll"'lj...zﬂlj)

by (2.2) 1). Inductively we get

. 4 4 . o 4 ..
(2.8) Oty 2yl L S Sy St S "1 L)
_ P-y( Payr, '")Q(’Yix"'f,-"-ini,-)
'Y;’h(ﬂ) p‘l in

for some polynomial functions P,. Hence we get our claim (2.5) in this case.
By the same way, we can show our claim in the following cases:
Case 2. B = (i +1; iy "+ i SiSp," " Su,)
=1,y g, oy n—1,t20, 22, I<a,*]
(a=1,, ) u=*+k(b=1,-+9).

. 4 4.
Case 3. B = (e 1, 1y "t S0, """ S,)

I=1, e, g, oy n—1,220, ¢22, I<a,*j (a=1,,1)
pkk(b=1,,9).

Case 4. B = (i;+++1,-23

ml“'iw:snl”‘%)
I=1, e, J, ooy m, t20, g=22, I<a,+j (@a=1, 1)
wyFk (b =1, - Q) .

Hence, on z(V;,..;,), we have

dQ(Biy- -2+ 1,8:) = £dQR(B)ir+-1; i)

for ,GES(il---z +++1,5,) and
dQ(Bll » sk) — P’l""l""nsh dQ(h(,B)ll e, 1)
+ Py( Pr ---)dQ(«yif-f,----ini»

Y7 i

for BE V(i 1, ++,55 ~<)—S(iyr++2,+1,8y).
Since % is order preserving and the number of elements in S(z;:++2;-+1,5,) is

(n—1)(m—1), we get Proposition 2.5. q.e.d.

Proposition 2.6. For n-tuples (i, -+, 2,), (J1, ***» Ju) (120, <+ <5, Sm+n,
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Prysa
q/'l In 8(]1 ]m Z1 n)( a ) qxl in

’1 in

on "'V, ), where &(j,-+],, i,-+-1,) is constant and valued in {41}.

ll 1

Proof. It is enough to see that for n-tuples (i, «++, 7,) and (zl-nf oSyt l,)
(1 ;<—11< <ij<i1<sk <i1+1< <l"§m’[—n)

(2.9)

iy oty ispiger ta = E(i 2, Syl L, ll""n)(

b i‘?f;"i“_l:l:’ln)t G
Piyeiy .
onz YV, ;).
By Lemma 2.2, 2.3 and Proposition 2.5, the equality (2.9) holds on

7 (Vi) N (Vs

ip f 1- z] LSkttt z,,)'

Since g;,. .} and g; .., are holomorphic forms on C**}, the equality (2.9)

sk in
holds on 77XV ..; ). q.e.d.

Lemma 2.7. For n-tuples (1,+++1,), (J1**Ju), (Ri-**R,), €@ ++Tyy J1o+* J)E(T1 Jus
k -k )E(kl n) Zl ln):1 on V;l‘ iy N V“,..jn N Vkl. ke

Proof. Since

iy (%) = (i, 4,(3)) AN (dps).+other terms,

BECU " in, B~ Iy in, B

@',-14,,,-"(3):!:0 for ze n“(V,-r,_;") .
By Proposition 2.6, we get

e(il'“in)jl'"jn)g(jl'"jm kl"'kn)e(kl'“km il'"in) =1

on z NV, .. ) Nz (V, ;) N7~ (Vi .,). Since &@-++1y, j1-+j,) is constant, we
get our claim. g.e.d.

Lemma 2.8 (Principle of monodromy). Let G be an abelian group and M a
simply connected manifold. Let U= {U,}, be an open covering of M such that each
U, is connected. Then H'(1, G)=(0).

Proof. See Weil [12] Chap. 5 Lemma 1.

Applying Lemma 2.8, for the complex Grassmann manifold G, ,(C) and
the system of transition functions {&(;-+*,,j,***j,)}, We get a system of constant
functions  {8(¢,++2,)} (8(4y++4,): Vi .i,—>{1}) such that &@i-i,, jivej,) =

8(jy-+ju) 18 +1,).  We put ¢ .;,=8(i, **1,)q;,. i, Then, by Proposition 2.0,
we have
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t
(2.10) qmuzeiﬂqmuon¢%KNJ
Diyi,
By Proposition 1.2, a compact complex hypersurface X of G,,., (C) is the
complete intersection of G,,., ,(C) and an irreducible subvariety ¥ of codimen-
sion 1 in P¥(C). Let (F) denote the homogeneous ideal associated to Y. Note

that the degree of homogeneous polynomial F on C**' is the degree of X and
W, .={=(=xeV,.., | Fz)=0}.

Lemma 2.9. On = YW,

1y tp

) 4., AAF %0,

Proof. Suppose that there is a point z,&z (W, ..;,) such that (g, ..., AdF),,
=0. Since #7!(X) is a complex submanifold of C**'—(0), there are an open
neighborhood U of %, in C**'—(0) and holomorphic functions f,(j=1, ---,7+1)
such that U Nz (X)={z€U|f(2)=0, j=1, ---,r+1} and (df).(j=1, -+, 7+1)
are linearly independent for z& U Nz "}(X). By the Nullstellensatz for prime
ideals ([4] chap. 2A Theorem 7),

fj = ; qjan+hiF

where ¢,,, %, are holomorphic functions on U and Q, are generators of the ideal
I(G, ., .(C)). Thus we have

()2 = 23 4a(20)(@Qu)zo R (20(dF ).,
By Lemma 2.1 a) and b) and (2.2), we see that for each Q,
[@Qu) = 2 CalMEO(Viy++i,)),

YEV Gy in

for some C,(v)=C. Hence, /r/\il(dfj)zozc(q,-1 +,/\dF), for some c€C and hence
i=1

;S (df;).,=0. This is a contradiction. q.e.d.
We define a local holomorphic section ¢, ..., of the line bundle N on W, ..,

by

(2.11) t, () = (5, ¥(q o, AAF)),

for xs W,

ty octat

Lemma 2.10. The system of transition functions associated to the local
trivialization (W, ., ,t, ..)) of the line bundle N is (g, ., , ., 7" *""), where a is

the degree of X. In particular, N=/*E***"",

Proof. By Lemma 2.9, we have t, ., (x)#0 for any x€W, Since

Q(Bi,-+-1,) are of degree 2 and F is of degree a, s
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e T

Iy

= (i, iy 1 (R ()
on W, ., NW;..,, by (2.10). q.e.d.

The canonical line bundle K of P*(C), the holomorphic line bundle of co-
vectors of bi-degree (z,0) on P¥C), is isomorphic to E**!. By (2.1) and
Lemma 2.10,

(2.12) K(X) = F*E""°,
since t=r—(n—1)(m-—1).

Remark. ILetj: G, ., (C)—P*(C) be the inclusion. Then K(G,,, .(C))=
7*E™ " ([1] §16). Let X be a compact complex submanifold of codimension 1
in G, ,(C) and ¢: X—G,,,, ,(C) the inclusion. Then K(X)=(jor)*E" "¢,
by considering the normal bundle N(X, G,,., ,(C)) of X in G,., ,(C) and by
Proposition 1.2.

The first Chern class of X, which is the Chern class of the dual bundle
K(X)* of K(X), is thc cohomology class containing the form (m+n—a)w, where
w=1:*() is the Kihler form on X associated to the induced Kihler metric on X.
We shall determine a local section &, .., of K(X)* on each W, . so that the
system of transition functions associated to the local trivialization (W,
18 (i, i "™ ™). We put

(2.13) [ . =(=1yermt A 5ou

1y *+1 14 Lo, 01 @
1 n 1 "Y1 ”
(R A PRI ’

on U, .;,, where we take the exterior product of 8/0u, ..,, , a, according to the
natural lexicographical order. Then (U; ., ,,, 1, ..,) is the local trivialization of
the holomorphic line bundle K on P*(C) and the system of transition functions

is (gt1-~-tn,71---]nM+l)'

Lemma 2.11.  Let k; . ,, be a local holomorphic section of K(X)* on W,
defined by

(2.14) koo () =4 @) Lt (%)

for x€W, ., , where |_ denotes the right interior multiplication. Then the system of
transition functions associated to the local trivialization (W, .., , k, ) of K(X)* is

1 in
(L*gil gt .]na—(m% n)).

Proof. By (2.1) and Lemma 2.10, (k;,..;, W;,..;,) is a local trivialization of
K(X)* and the system of transition functions is (¢*g; .., ;.. , ) ®*** 7" Since

—(p+1)+2r4+a—t=a—(m-+mn), we get our claim. q.e.d.

1o
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3. The relation between volumes
Let C, denote the set {(i}, *-+, 7,) | 1=4, < o <P, Sm+-n}.
i=(, -, 1,)E€C,, we put

(3.1) g =23 Hi A, dpa, A+ Ndpy,

For an element

where the summation runs over all Ay 5 A)EC, X+ X C, such that A <+ <,

r

with respect to the lexicographical order < on C,. Note that Hy . 5 are homo-

geneous polynomials of degree 7.

Proposition 3.1. There exist homogeneous polynomials H, .

(n—1)(m—1) on C**! such that

(3.2) H’I\l-*r:P'{HM---M on wWV,) foreah icC,.

Proof. By (2.10), we have

(3.3) Hi .\ =~ (%‘)' { .,

j

on z Y(V;NV,) for each (A, =+, X,). Thus we get

Hi (=D m=1) FT i
(3.4) Ty (&) Ty
pi b p;

A, Of degree

On V;NV,. Hence, {H il,,,,‘,/pi}iec” define a holomorphic section of the line
bundle j*H® D@~ Note that a holomorphic section of line bundle H*~D®~1
on P¥(C) is nothing but a homogeneous polynomial of degree (n—1)(m—1) on
C**'. By Proposition 1.1, there is a homogeneous polynomial H, ., of degree

(n—1)(m—1) on C*** such that
Hy.n,  Hi.,

= on V;.
P:‘(”_l)(m—l) P:
Thus we get (3.2).
Now we have
(3'5) q; == P: 2 H>‘1"‘)‘;dp>‘l/\ A /\dp)\'
on z~}(V,) for each i€ C,, and hence
(3.6) @ NAF = pi 3 Gy, 800N Npr,

on 7z Y(W;), where G, .a,,,
degree (n—1)(m—1)+(a—1).

For homogeneous polynomials Py, -+, P, on C**!, we put

(M <+ <\, ;) are homogeneous polynomials of
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AP\ - NdP; = 31 Py adpr N\ -+ Adp,,
where the summation runs over all (A, +++, \,) € @SX-C;,, such that ;< <,
with respect to the lexicographical order < on C,, and we define
(3.7) [[dPyA -« NAP(|(z) = 23| Py .2 (3)1?
for zeC**'. Then we have
(3.8) llg ANAF (=) = [pi(3)[* 22 Gy, 4(3) I?
for zex"Y(W)).

Now we can define a C~-function ¢: X — R by

NdF||4(z

3.9 P(x) = ]p,(z){Zlflﬁlz/l?z“""II)S”‘BI)*?":”
where ze77}(x).

Note thatp(x)= (221 Gy, ., ,(3) 1))/ [z|[(@=D0=DT@D) for zez™(x), xeX.

Since the dual bundle K(X)* of the canonical line bundle K(X) is the line
bundle of (mn—1) vectors of bi-degree (mn—1, 0), the set of hermitian fiber
metrics on K(X)* and the set of positive volume elements on X are canonically
in one to one correspondence. Let b denote the volume element on X corre-
sponding to the fiber metric ¢*||2][*“~™ ") on K(X)*. Then thc curvature form
of the connection determined by the fiber metric *|||*“~ ") is (m+n—a)ow,
where w=¢*Q 1s the Kihler form of the induced metric on X.

Now the relation between two volume elements »™ ! and b is given by the
following Proposition.

Proposition 3.2. Let @ be a C-function on X defined by (3.9). Then

(mn—1)!

3.10 miol —
( ) @ (zﬂ)mn—-l

b on X.

We need several lemmas to prove Proposition 3.2. Note that the norm defined
by (3.7) does not depend on the choice of unitary cartesian coordinates on C**!.
That is, for a unitary matrix 4 & U(p+1) and homogeneous polynomials P;, we
put Pj(w)=P (A 'w) for we C**'. Then

(3.11) lldpy A - AdpJI(z) = lldpi A -+ Adpl||*(w)
for w=Az, s C*'.

In order to prove Proposition 3.2, it suffices to verify (3.10) at an arbitrary
point x,€X. Fix a point x,€X and let z, denote an element of C**! such that
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[lzoll=1 and 7(2,)=x,. For an element A= U(n+1), let p; denote p{:Zj] Alp,,

where 4=(A41%), and put w=(-++, p7, -=*). For a homogeneous polynomial P of
degree k on C**!, putP/(w)=P(A 'w), P! (w)=P'(w)/(p:,)", where {;=(1, ---,n)E
C, and put u] \(x)=pi(2)/pi,(2)(zE77(x)). AEC,, (N=F1).

Lemma 3.3. If x,c W, (i€C,), there is an element A= U(pn—+1) such that
Pi(3)=1, pi(2)=0 for jEC,, j*i, and (dQ'(B,1).,)s, (BEC(, 8)—1( -8))

(where the order is principal with respect to i), (dFY )., are linear combination of
(Auly2)sy (MNEC(E, <)—1I(t,, <), (duly 10 n-1241)x0 -
Proof. By a routine computation of linear algebra.
Now we put p,= Z} B pi and Cl=(0u; A[0u!, ,)(%,).
Lemma 3.4.
(3.12) C’ = (B/o)™(B}B/o—BYBv)
for X=Fi, v=Ei, N, veC,
Proof. Straightforward computation.

Let J(i, <) denote I(iy, <)— {ip, (12:-:n—1n+41)}. We put J(z, <)=
{Vb Ty an—l} Wlth Vk<vk+l (k: 17 Ty mn'iz)’ :C(Z, %)_I(Z) '_8): {Bla ttty 187}
with 8,-88,1, (=1, -+, r—1) and C(¢y, <)—1(Zp, <)={N1, =, N} with A, <Ay
(s=1, -+, r—1).

Lemma 3.5. Let k, be the holomorphic section of K(X)* on W, defined in
Lemma 2.12. Then, at x,c W,,

(3.13) k(%) = (—1)"®71.8(7) - [det (C3)] !
; 2r+a 6 / b ; o / ,,i . F{O
y <p»o(x0)> (Q'(By,7) O'(Brs 1)y F1)

4 /7 ’
8(u10,12~n—1n+1) Uigap " uio,)\,)

o (%)
X (a/aui/ov.’l /\ o /\ a/au{O»an— 1)"0 *
Proof. Forahomogeneous polynomial P of degree k on C**!, put P,=P/(p;)*

on U,. By the definition,

£,(%0) = 8()sT(O(Br, DA - NdO(B,, ) NdF),, .
Thus

t,(x0) = 8()dO(By, i) A\ -+ NdO(B,, 1), NdF),,

= 3(1)(pio/p)(x0)" (dQ"(Brs Do\ NAQ' (B 0)i, NAF )5,

On the other hand, we have
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det @) N 0w =( A Bl ),

¥ECG, 8- 1) BECC10, <)~

By the definition of &,,
ki(xo) = (—1)""718(3) - [det (C)] ™ (p7,/pi) (%a)**
<
X( /N 0[ouly g L (dQ"(By, )i A -+ AAQ(B,, 1),y AAFY ),

BEC (19, <O~ {10}

By Lemma 3.3, we get (3.13). q.e.d.
Now the local expression of the volume element b at x, is given by the
following Lemma.

Lemma 3.6.

(4) b= (VD) det (C) % |(plyfp,) () | 20w+
OB D QB Do T) ) ™ (ay ),

[ a7
6(“10112 n=1n-+1 uzo )\1v ot vulo')\r)
where (An'),,=(dul, , N\ Ndul, ., )z

Proof. By the definition,b is the volume element on X corresponding to
the fiber metric ¢*||z|?*~@+mon K(X)*. Note that

1+ ‘)Z; [ (Palb)(®0) |* = 1 (P7o[P:)(%0)|* -

Put
T\(%5) = (—1)7718(z) - [det (C3)] ™
’ 1’.10’“ O, 4] 'O’F{o
< (Bfporre - LB By 7 DB Do F)

4
8( lo 12-n—1n-+1> ulo Ap " ‘y utoA)

(x0)

Then b, is given by
T (x ( Tow) |2 L(p!,/[p:) () |7~ (dn’ A A7) -
0
Hence
= (v 1) D% det (C) |2+ [ (p1/p.) (%) |27 im0
| ’ - ... ’ . F: s
| 6(9 (18;) l)zoa ) Q (Bn 1)107 0) (xo) (d"7'/\d"'l')x0

: ’ ’ Y
i 6(ui0,12~~~n—1ﬂ+1, ulo,)\la ’ ulg,}\,)

Lemma 3.7. At x,cW,,

QB ) OBy D L) )

( 19,12 - n—1n+1» ulo Ap ”'7”1‘0,)\7) l .

(15) gl = (PP 5
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Proof. Fix c&C* so that |lesi(x)|[’=1. Then |¢|?(1+4 3] (pa/p)(x0) ) =1
@y
and [c|®=|(p7,/p;)(%)| *. Note that
g AdEIesi(xo)  _ NlgEAFIXL 0, -, 0) p o (3 9y,

R YA e I P

Since
00 (B )1, 0, ., 0)= 0 for k=1, -7, O

J ’ (1,0, +++,0) = 0
apio ap

and
00" (B 1) e OV — 0O (Bis D)ig,
6])5 (1, O’ ’ O) au','o,i <(‘X0) ’

oF’ oF! . ..
817(1’0’ e, 0) = au,"—(xo) for jeC,, j*i,,
J

gt AAFIF(L, 0, -, 0)
= |ldO(By, ) A -+ NdQ'(B,, ) \AF'|[*(1, 0, -+, 0)
‘G(QI(BU i)io’ R) Q,(Bn i)l()) F,/O) (x) z

= 7 ’ 7
i a(uio,12~--n—ln+h Uigy "y uio,)\,)

by Lemma 3.3. q.e.d.
By Lemma 3.3, the Kihler form o of the induced metric on X is given by

V=1 ! _,
= U; v du at X, X .
wxo 27f (VEJ(Z;‘O,<) ‘o, /\ ‘0,1‘)0 OE

Hence,

7 (mn-1)? —1)! -
(3.16) ot = =1 )= DY g n G,
(272?')"1" 1

Lemma 3.8.
(3.17) |det (C3) |2 = | (pi,/p.)(0) [HHD
Proof. Put D}=Bj};B/o— BBy for N=1, v=iy, A, veC,. Note that
[det (D3)|? = det (D3)-det {(D3) = det (( E DD )
and that ’
Y DiD; = > (BB lo— BYB,'0)(B*B/o— B*B/0)

= DV (ByB{o—B{B)o)(B*B/o— BB }0)
aEly,

= 8| Bio|*+BoB,
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since 3 B*B*=3§, .

aECy

Thus
|det (DY) |2 = det (8y.| Bio| >+ ByeBis)
= | B/o|* det (8;,+(ByoBlo|| Bo|?)
= |Bfo|*(1+ X3 | Bio/B/o|?)
AFrg
= | Bjo|%.
Now
| det (CC) |2 = | Bfo| 2% |det (D¢)|2
— ‘B,’0| —2x2}&>< IB::°'2“L_1) — IBiiOI —2(M#+1)
Since B o=(p;/p},)(%,), we get our claim. q.e.d.

Proof of Proposition 3.2.
By Lemma 3.6, Lemma 3.7 and Lemma 3.8, we have

B)0s, = (v D) (P fp) ) 2 ! Ay,
Since
r—t = (m—1)(n—1) = mn—(m+n)+1,
put+14+t—2r—m—n = p+1—r—(m+n)—mn+m+n—1
= u+l—r—mn—1=0.
Hence

P00,y = (V=D (dr Nd7),, .
Now our claim follows from (3.16).

Corollary of Proposition 3.2 (¢f. Hano [5] Corollary of Proposition 2).

Let g, denote the Kdhler metric on X induced from the Fubini-Study metric on
PY(C). Then (X, g is an Einstein manifold if and only if @ is a constant function
on X.

Proof. The Ricci form of the Kihler metric g, on X is the curvature form
of the connection of type (1.0) on the holomorphic line bundle K(X)* determined
by the volume element »™~!. Suppose that g, is Einstein, that is, the Ricci form
is a constant multiple of the Kihler form w. Then the Ricci form is harmonic.
On the other hand, the volume element b determines the curvature form
(m+mn-—a)o, which is also harmonic. Since the Ricci form and (m+n—a)o are
both curvature form of the bundle K(X)*, they are cohomologous. Thus the
Ricci form must be (m+n—a)w. Since """ ! and © define the same curvature
form, d’d” log =0, and hence log @ is a harmonic function on X. This implies
that @ is a constant function. Conversely, if ¢ is a constant function, then the
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metric g, is Einstein. q.e.d.

4. The dual map and Veronese map

In this section we recall the dual map and Veronese map due to Hano [5].

Let /\"(C**)* denote the (r+1)-th exterior product of the dual space of
the vector space C**!. We identify the tangent space of C**! at a point with
C**itself. We regard (¢, AdF), as an element in /\"*(C**")*. Let ({y .a,,,)
be the standard base of /\"*!(C**')*. Then

(q iN dF)z = (Pz(z))t 2 G)‘l"')‘r+1(z)§}‘1'“)‘: 41 for zE”_l(Wi) '
Now we define a map G: C*"'— /\""(C*+")* by
(4'1) G(z) = 2 G'\1"'Ar+1(z)§"1' Arir”

We denote by P(C) the complex projective space associated to the complex

vector space /\"*}(C**')*, where e—}—l:(fj__ll). Since the map G: C*"'—

/\TH(C*1)* is a polynomial map of degree (n—1)(m—1)+(a—1) and G(2)=*0
for xex"!(X), it induces a holomorphic map g: X —>P(C). We call g the dual
map of X in P*(C). Let ||w|| be the norm of an element @ in /\"*}(C**!)*
induced from the hermitian inner product on C'*!. Let Q' be the Fubini-Study
form on P‘(C) determined from ||z||%.

Proposition 4.1 (cf. [5] Proposition 3). The induced metric g, on X is
Einstein if and only if the reciprocal image of the Fubin-Study metric on P‘(C) under
the dual map g is (n—1)(m— 1)+ (a—1) times of the induced metric; g*Q' =
(n—1)(m—1)+(a—1))o.

Proof. Since the degree of G is (n—1)(m—1)+(a—1), the reciprocal
image of the standard line bundle E’ over P%C) under the map g is
(FE®-Dm-D@-1) where E denotes the standard line bundle over P*(C). We
regard ||w||* as the fiber metric on E” over P(C). Its reciprocal image under g
is the restriction of 23|Gy .., ,,(?)|* to z7'(X) and is a fiber metric on
L*E(n-l)(m—l)—f(a—l)' Then

rrghy = VL g (DG, (2.

Now our claim follows from Corollary of Proposition 3.2. q.e.d.
Let S, be the vector space of homogeneous polynomials on C**! of degree
k and S¥ the dual space of S,. We denote by P%C) the complex projective
space associated to S¥, where d4+1=dim S,. [Each point 2z C**'defines a linear
function W(2) on S, given by ¥(2)(P)=P(z) for P=S,. We denote by 4 the
map —¥(z). The polynomial map ¥ induces an injective holomorphic map
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(4.2) Y P¥C) — P(C)
if k=1. The map +r is called the Veronese map of degree k.

For simplicity we denote the Pliicker coordinate (--+, p,, **+) by (2o, ***, 2u).
With respect to the hermitian inner product on .S) induced from the one on C**},
the set of all monomials

(4.3) 2g0- 2 m[(vol e v ) vt v = R
is a unitary base of S,. Moreover
(+4) zg0ee (g o 2 = [l
Obviously the reciprocal image of the standard line bundle over P*(C) under the
map  is E*. By (4.4), if " denotes the Fubini-Study form on P%(C), then
Y*Q"=kQ. That is, the Veronese map +r is homothetic and the ratio of the
metrics is the degree k of the map .

Now we specify k to be (n—1)(m—1)4-(a—1), and define a linear map
L: S%_hm-vi@-n—>/\""(C**)* so that Lor=G on the cone z7}(X). Let

(Ey, ) be the dual base of the unitary base of S¢,-1)(m-1+(-1 chosen above.
Since Gy, ..a,,, is of degree (n—1)(m—1)+(a—1),

— 2 a(xl'")‘r—l; yo...yu)(zovo...z;p,/(yol...y“!)l/Z) .
VoV,

45) Gy

Using these coefficients, a linear map L is defined by

(4:6) L(E sy ) = a0 My v m)agon, ., -
By the way L is defined, it is clear that

(Loy)(2) = G(2) for zex Y(X).

Consider the rational map /: P(C)—P*(C) induced from the linear map
L: S -vim-n+a-0—>/\"(C**")*.  The map [ is holomorphic at a point x& P*(C)
if the image under L at a point of S¢_)(,-1): ,-1) lying over x is not zero. Since
lg, A dF|[? vanishes nowhere on z~'(W,), L does not vanishes at each point on
the image of #7'(X) under y». Therefore / is holomorphic on r(X).

Proposition 4.2.  Let be < the Veronese map of degree (n—1)(m—1)+(a—1)
of P¥(C) into P*(C) and let g be the dual map of X into P(C). Then there is a
projective transformation 1 of P*(C) into P(C) which is holomorphic on \(X) and
satisfies the equality (lo\r)(x)=g(x) for x& X. Moreover the induced metric on X
is Einstein if and only if the restriction of | to \r(X) is everywhere locally isometric
with respect to the induced metric on \y(X) and the Fubini-Study metric on PY(C).

Proof. By Proposition 4.1 and the above observation (cf. [5] Proposition 4).
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Now we have the following Lemma due to Hano ([5] Lemma 7).

Lemma 4.3. Let ® be a linear map of C°*' into C'** and ¢ the induced pro-
iective transformaticn of P*(C) into P{(C). Let U be a connected algebraic sub-
manifold in P*(C) which is not contained in any hyperplane in PS(C). We equip on
U the metric induced from a Funibi-Siudy metric on P*(C), and on P'(C) a Fubini-
Study metric. Suppose that the restriction of ¢ to U is holomorphic and locally

isometric everywhere, then ® is a constant multiple of an isometry, and particularly
D is injective.

Now we have the following necessary condition from Lemma 4.3.

Proposition 4.4 (cf. [5] Hano §8). Let X be a hypersurface of G,,.., ,(C) of
degree a. If the induced is metric on X Einstein, then

(4.8) dim (St --1+@-0H -0 -0 +-n) =e+1 = f_fﬁl) ’

where 1,1 (-1 +-0=S -1 m-14 - N L(X).

Proof. For PES(,-1)(m-1+G-1, the equation <&, Py=0, EES{ _1)m-1)4+a-»
defines a hyperplane in PY(C). By the definition of the Veronese map +, a
homogeneous polynomial P in S¢,_)(m-1+-1 defines a hyperplane containing
Y(X) if and only if P belongs to I(,_1)(u-1)+G-n- Thus, the minimal linear
variety P*(C) containing y»(X) is the intersection of these hyperplanes each of
which is associated to a polynomial in I(,_1)(u-1)4 .- Its dimension @’ is given
by dim (St pm-v+e-n/L-vm-Di@-p)—1. Let €“*' be the subspace in
S¥ _Hm-D+@-p perpendicular to the subspace I(,_)(u-1+-n. Lt L’ be the
restriction to C**! of the linear map L: SE_pou-v+ (e-p—/\V(CH)*, and let V
be the restriction to PY'(C) of projective transformation . Now the connected
algebraic submanifold +(X) in P?(C) is not contained in any hypcrplane of
P(C). By Proposition 4.2, the restriction to y(X) of /' is everywhere locally
isometric. Applying Lemma 4.3, to y(X) in P?'(C), we sce that the linear map

L’ Cd’ﬂ — //\H—I(C!H 1)*
is injective, and hence we get (4.8). q.e.d.
5. Proof of Theorem

Let J denote the ideal I(G,,,, ,(C)) of homogencous polynomials .S on C*''.

Lemma 5.1. Let ], denote JNS,. Then

dim (Syg) = f1 T HH

=1 j=ni1 ]——z
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Proof. By Proposition 1.1, the inclusion j: G, ,(C)—P*C) induces a
surjective linear map
Jj*: H(PY(C), H*) — H*G,,., ,(C), j*HY).

Noting that H(P*(C), H*) is the space of homogeneous polynomials S, of
degree &,

Kerj* = {PeS,|P(2) =0 forany z&z7 4G, , (C))}
=Jn Sk .

Hence, dim (S,//,)=dim H%G,,., ,(C), j*H").
On the other hand, by a Theorem of Borel-Weil [2] and the dimension
formula of Weyl [10], we have

dim HY(G,u.,(€), j*H) = 11 11 BT
i=1j=ne1 j—q
Lemma 5.2. Let I, denote [ X)NS,. Then
dim (Sy/1,) = dim (S,/],)—dim (S,-o/Je-0)
if k=a, where a is the degree of X.

Proof. Let [X] denote the non-singular divisor defined by X and {X} the
holomorphic line bundle on G,,,, ,(C) defined by [X]. Then there is an exact
sequence

) A
(5.1) 0—j*H**— j*H* — *H* — (
of holomorphic sheaves on G,,,, ,(C). (cf. [6])
Then (5.1) induces the following exact sequence of cohomologies
(5.2) 0 — HYG,+, ,(C), j*H* %) — H(G .+, .(C), j*H*)
— HYX, *H*) — HY(G,,, ,(C), j*H* ") — -+,
Since H(G,,+, .(C), j*H*"*)=0 if k=a, by a theorem of Bott [2],

dim HOX, *H) = dim G- ,(C), J*HY)—dim HY(Gy1, (C), J**H™)
On the other hand, j*: HY(P*C), H*)—~H"G,,., .(C), j¥*H") is surjective, and
hence ¢*: HY(P*(C), H*)— H"(X, *H*) is surjective if k=a. Noting that
Ker (*=I(X)NS,, we have

dim (Sy/I,) = dim H(X, *H*)
= dlm HO(Gm-Hz,n(C)r j*Hk)_—dlm HO(G»H-n,n(C)! j*Hk—a)

= dim (S,/J,)—dim (Si_o/Ji-d) -
q.c.d.
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Proof of Theorem. Put k=(n—1)(m—1)+(a—1). If n=2 and m=n,
then k=a. Thus, by Lemma 5.2,

dim (S -1 tm-1+a-D/ 4= m=1+(a=1)
= dim (S (-0 m-1+a-D/J =D m-1+a=1)
—dim (St,-pm-v-1/J -0 m-v-1) -

By Lemma 5.1, we see that dim (S,/],) is increasing in k. Hence, it is
enough to prove the following inequality (5.3) by Proposition 4.4;

. 1
(53) dim (S sallaccsn)> (01

mn
By Lemma 5.1, we have

dim (8,/],) = ot D2 (k)" (k) (ko m 1) (ko n—1)

1 -22...n”...mn.<m+1)”—1...(m+n_1)

Thus

dim (Su-(mim+o/ Lo mew +1) — ('UJ—'_ 1)

mn
_ (e ED)EH(p— 1> (p—nt2)"(p—m+2) (p—mA- 1) o (p—m—n+3)
1.22.33...0" e .(m+1)"_1...(m+n_l)
_ (mn—m—n+1)(mn—m—n+2)*--(mn—m—1)""(mn—m)"---(mn—n)"
1 -22...n”...m”(m+1)""1...(m_+_n_ 1)

X (mn—n+1)*""--(mn—1)

_ (et Dp(p—1)(p+2—mn)
12:3.++(mn)

> (;:ﬁ {1 (p— 1) (p—n+2)" - (p—n—+2)" (p—m+ 1)1

X (p—m—n4-3)— (4 D(— 1)+~ (+ 2—mn)
—(mn—m—n+1)(mn—m—n)--(mn—m)"--«(mn—n)"(mn—n—+1)""*--(mn—1)}

Now we have

(b D 1o 2 (4 2) (ot 1o (u—m—n+ 3)
—(ut Daa—1)-++(u+ 2—mm)
— (D 1)ee- (e m—n-t 3) (s Vo4 2o (oA 25
X (p—m+1)""2 o (p—m—n+4)—(p—m—n-+2)-+(p—mn+2)}
>(p+Dp(p—1)(p—mn+3)(mn—m—n-+2) .
On the other hand,

(n—mn+-3)—(mn—n—m-+2) = (mj;n>—2mn—}—m—i—n>0 .
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Thus we have

(4D —1)--~(p—mn-t 3)(mn—ti—n-+2)
—(mn—1)-+-(mn—m—n+1)""*(mn—n)"---(mn—m)"(mn—m—1)*"1...
X (mn—m—n+-1)>(p+1)p- - (p—mn+3)(mn—m—n—+2)— (2mn—m—m)---
X (mn—m—n~+2)(mn—m—n-+1)>0.

Hence, we get (5.3). q.e.d.

REMARK. In the case of G;,(C), we can see that if the degree a(X) of X
satisfies a(X) =3 a hypersurface X is not an Einstein manifold with respect to the
induced metric by the same way. But we do not know the cases when
a(X)=1, 2.
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