

Title	On the structure of the class groups of metacyclic groups			
Author(s)	Hironaka, Yumiko			
Citation	Osaka Journal of Mathematics. 1979, 16(3), p. 831-841			
Version Type	VoR			
URL	https://doi.org/10.18910/4775			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ON THE STRUCTURE OF THE CLASS GROUPS OF METACYCLIC GROUPS

Yumiko HIRONAKA

(Received September 18, 1978) (Revised Jaunary 10, 1979)

Let Λ be a **Z**-order in a semisimple **Q**-algebra A. We mean by the class group of Λ the class group defined by using locally free left Λ -modules and denote it by $C(\Lambda)$. Define $D(\Lambda)$ to be the kernel of the natural surjection $C(\Lambda) \rightarrow C(\Omega)$ for a maximal **Z**-order Ω in A containing Λ and $d(\Lambda)$ to be the order of $D(\Lambda)$.

Let ZG be the integral group ring of a finite group G. Then ZG can be regarded as a Z-order in the semisimple Q-algebra QG, and hence C(ZG) and D(ZG) can be defined.

In this paper we consider only finite groups. We will treat the semidirect product $G=N\cdot F$ of a group N by a group F. Define $D_0(\mathbf{Z}G)$ (resp. $C_0(\mathbf{Z}G)$) to be the kernel of the natural surjection $D(\mathbf{Z}G)\to D(\mathbf{Z}F)$ (resp. $C(\mathbf{Z}G)\to C(\mathbf{Z}F)$). First we will give

[I] Let $N=N_1\times N_2$ be the direct product of groups N_1 and N_2 and $G=N\cdot F$ be the semidirect product of the group N by a group F. Assume that F acts on each N_i , i=1,2. Denote by G_i the subgroup $N_i\cdot F$ of G, i=1,2. Then $D(\mathbf{Z}F)\oplus D_0(\mathbf{Z}G_1)\oplus D_0(\mathbf{Z}G_2)$ (resp. $C(\mathbf{Z}F)\oplus C_0(\mathbf{Z}G_1)\oplus C_0(\mathbf{Z}G_2)$) is a direct summand of $D(\mathbf{Z}G)$ (resp. $C(\mathbf{Z}G)$).

For an abelian group A and a positive integer q, $A^{(q)}$ denotes the q-part of A and $A^{(q')}$ denotes the maximal subgroup of A whose order is coprime to q. In particular, we write $O(A) = A^{(2')}$. For any module M over a group H we define $M^H = \{m \in M \mid \tau m = m \text{ for every } \tau \in H\}$.

We will apply [I] to some metacyclic groups. Denote by C_m the cyclic group of order m. Using induction technique we will give, as a refinement of a result in [1],

[II] Let $G=C_n \cdot C_q$, and define e_p by $p^{e_p}||n$ for each prime divisor p of n. Assume that C_q acts faithfully on each Sylow subgroup of C_n and that (n,q)=1. Then

$$D(\mathbf{Z}G) \cong D(\mathbf{Z}C_q) \oplus \bigoplus_{p|n} D(\mathbf{Z}C_{p^ep})^{C_q} \oplus \left(\mathbf{Z}/\frac{q}{(2, q)}\mathbf{Z}\right)^{\sum_{F|n}^{2, ep}} \oplus \operatorname{Ind}_{C_n}^G D(\mathbf{Z}C_n)^{(q)} \oplus K$$
,

where K is the complementary subgroup of $\bigoplus_{p|n} D(\mathbf{Z}C_{p^{e_p}})^{c_q}$ in $(D(\mathbf{Z}C_n)^{c_q})^{(q')}$ (cf. § 1).

Next we will study the class groups of generalized quaternion groups in connection with those of dihedral groups. Denote by H_n the generalized quaternion group of order 4n; $H_n = \langle \sigma, \tau | \sigma^n = \tau^4 = 1, \tau^{-1}\sigma\tau = \sigma^{-1} \rangle$ and by D_n the dihedral group of order 2n; $D_n = \langle \sigma, \tau | \sigma^n = \tau^2 = 1, \tau^{-1}\sigma\tau = \sigma^{-1} \rangle$. Fröhlich and Wilson have studied the 2-part of $D(\mathbf{Z}H_{p^t})$ for an odd prime p ([5], [11]), and Cassou-Noguès has given some information on $D(\mathbf{Z}H_n)$ for an odd integer n ([2]).

[III] Let $n \ge 3$ be an odd integer and define e_p by $p^{e_p}||n$ for each prime divisor p of n. Then;

- i) $D(\mathbf{Z}H_n) \oplus D(\mathbf{Z}D_n) \cong D(\mathbf{Z}H_n/(\tau^2+1)) \oplus D(\mathbf{Z}D_{2n})$
- ii) $D(\mathbf{Z}H_n) \cong O(D(\mathbf{Z}D_{2n})) \oplus D(\mathbf{Z}D_n)^{(2)} \oplus (\mathbf{Z}/2\mathbf{Z})^{\sum_{p \mid n} ep} \oplus L$, where L is an extension of $D(\mathbf{Z}D_n)^{(2)}$ by an elementary 2-group. In particular, if $n=p^t$ for an odd prime p,

$$D(\mathbf{Z}H_{p^t}) \cong D(\mathbf{Z}D_{2p^t}) \oplus (\mathbf{Z}/2\mathbf{Z})^t$$
.

1. Decomposition of class groups

The following theorem will play an essential part in this paper.

Theorem 1.1. Let $N=N_1\times N_2$ be the direct product of groups N_1 and N_2 and $G=N\cdot F$ be the semidirect product of the group N by a group F. Assume that F acts on each N_i , i=1, 2. Denote by G_i the subgroup $N_i\cdot F$ of G, i=1, 2. Then $D(\mathbf{Z}F)\oplus D_0(\mathbf{Z}G_1)\oplus D_0(\mathbf{Z}G_2)$ (resp. $C(\mathbf{Z}F)\oplus C_0(\mathbf{Z}G_1)\oplus C_0(\mathbf{Z}G_2)$) is a direct summand of $D(\mathbf{Z}G)$ (resp. $C(\mathbf{Z}G)$). In particular, if $F=\{1\}$, $D(\mathbf{Z}G_1)\oplus D(\mathbf{Z}G_2)$ (resp. $C(\mathbf{Z}G_1)\oplus C(\mathbf{Z}G_2)$) is a direct summand of $D(\mathbf{Z}G)$ (resp. $C(\mathbf{Z}G)$).

Proof. We denote the augmentation ideal of ZN (resp. ZN_i) by I_N (resp. I_{N_i}). There is an exact sequence

$$0 \to D_0(\mathbf{Z}G) \to D(\mathbf{Z}G) \xrightarrow{\alpha} D(\mathbf{Z}F) \to 0$$
,

where α is induced by $M \to \mathbf{Z}G/(I_N) \underset{\mathbf{Z}G}{\otimes} M$. Let $\beta \colon D(\mathbf{Z}F) \to D(\mathbf{Z}G)$ be the induction map. Then it is easy to see that $\alpha \circ \beta = id_{D(\mathbf{Z}F)}$. So we have that $D(\mathbf{Z}G) \cong D(\mathbf{Z}F) \oplus D_0(\mathbf{Z}G)$ (cf. [10]).

Let \mathfrak{a} be a projective left ideal of ZG_1 such that the class $[\mathfrak{a}]$ is in $D_0(ZG_1)$. Then $ZG \underset{ZG_1}{\otimes} \mathfrak{a}$ is isomorphic to $ZN_2 \underset{Z}{\otimes} \mathfrak{a}$ as ZG-modules. Since $[ZG/(I_N) \underset{ZG}{\otimes} \mathfrak{a}] = [ZG_1/(I_{N_1}) \underset{ZG}{\otimes} \mathfrak{a}] = 0$ in D(ZF), $[ZN_2 \underset{Z}{\otimes} \mathfrak{a}]$ is in $D_0(ZG)$. Hence we have the map $\varphi_1 \colon D_0(ZG_1) \to D_0(ZG)$ and similarly we get the map $\varphi_2 \colon D_0(ZG_2) \to 0$

 $D_0(\mathbf{Z}G)$. Further, for a projective left ideal $\mathfrak b$ of $\mathbf{Z}G$ such that $[\mathfrak b] \in D_0(\mathbf{Z}G)$, $[\mathbf{Z}G_1/(I_{N_1}) \underset{\mathbf{Z}G}{\otimes} (\mathbf{Z}G/(I_{N_2}) \underset{\mathbf{Z}G}{\otimes} \mathfrak b)] = 0$ in $D(\mathbf{Z}F)$, so $[\mathbf{Z}G/(I_{N_2}) \underset{\mathbf{Z}G}{\otimes} \mathfrak b] \in D_0(\mathbf{Z}G_1)$. Hence we have the map $\psi_1 \colon D_0(\mathbf{Z}G) \to D_0(\mathbf{Z}G_1)$ and similarly we get the map $\psi_2 \colon D_0(\mathbf{Z}G) \to D_0(\mathbf{Z}G_2)$. For every projective left ideal $\mathfrak a$ of $\mathbf{Z}G_1$ such that $[\mathfrak a] \in D_0(\mathbf{Z}G_1)$, $\psi_1 \circ \varphi_1[\mathfrak a] = [\mathbf{Z}G/(I_{N_2}) \underset{\mathbf{Z}G}{\otimes} (\mathbf{Z}N_2 \underset{\mathbf{Z}G}{\otimes} \mathfrak a)] = [\mathbf{Z}G_1 \underset{\mathbf{Z}G}{\otimes} \mathfrak a] = [\mathfrak a]$ in $D_0(\mathbf{Z}G_1)$. In $\psi_2 \circ \varphi_1[\mathfrak a] = [\mathbf{Z}G/(I_{N_1}) \underset{\mathbf{Z}G}{\otimes} (\mathbf{Z}N_2 \underset{\mathbf{Z}G}{\otimes} \mathfrak a)]$, N_2 acts on $\mathbf{Z}G/(I_{N_1})$ and N_2 via group action and F acts on $\mathbf{Z}G/(I_{N_1})$ via group action, and we know that $\psi_2 \circ \varphi_1[\mathfrak a] = [\mathbf{Z}G_2] = 0$ in $D_0(\mathbf{Z}G_2)$. Consequently we see that $(\psi_1 \oplus \psi_2) \circ (\varphi_1 \oplus \varphi_2) = id_{D_0(\mathbf{Z}G_1) \oplus D_0(\mathbf{Z}G_2)}$. This implies that $D_0(\mathbf{Z}G_1) \oplus D_0(\mathbf{Z}G_2)$ is a direct summand of $D_0(\mathbf{Z}G)$.

If $F = \{1\}$, then $D_0(\mathbf{Z}G) = D(\mathbf{Z}G)$ and $D_0(\mathbf{Z}G_i) = D(\mathbf{Z}G_i)$, hence we see that $D(\mathbf{Z}G_1) \oplus D(\mathbf{Z}G_2)$ is a direct summand of $D(\mathbf{Z}G)$. The assertion for $C(\mathbf{Z}G)$ can be proved in the same way as for $D(\mathbf{Z}G)$.

Throughout this paper p stands for a rational prime. In case where G is metacyclic, (1.1) will become as follows.

Proposition 1.2. Let $G=C_n \cdot C_q$ and define e_p by $p^{e_p}|n$ for each p|n. Denote by G_p the subgroup $C_{p^{e_p}} \cdot C_q$ of G. Assume that (n, q)=1 and that $\operatorname{Ker}(C_q \to \operatorname{Aut} C_{p^{e_p}})=C_r$ for every p|n. Let d denote the order of $C_q|C_r$. Then

$$D(\mathbf{Z}G) \cong D(\mathbf{Z}C_q) \oplus \bigoplus_{\mathfrak{o} \mid \mathbf{z}} D_{\mathfrak{o}}(\mathbf{Z}G_p) \oplus M$$
 ,

where M is an extension of an abelian group whose exponent divides d by the group $\operatorname{Ker}\left[\operatorname{Ind}_{C_n \times C_r}^G \mathcal{D}(\mathbf{Z}C_n \times C_r) \to \bigoplus_{b \mid n} \operatorname{Ind}_{C_p^{e_p} \times C_r} \mathcal{D}(\mathbf{Z}C_{p^{e_p}} \times C_r)\right].$

Proof. It follows from (1.1) that $D(\mathbf{Z}C_q) \oplus \bigoplus_{p \mid n} D_0(\mathbf{Z}G_p)$ is a direct summand of $D(\mathbf{Z}G)$. Now we determine the remaining factor M. Define the subgroup $D_1(\mathbf{Z}C_n \times C_r)$ (resp. $D_1(\mathbf{Z}C_{p^{e_p}} \times C_r)$) of $D(\mathbf{Z}C_n \times C_r)$ (resp. $D(\mathbf{Z}C_{p^{e_p}} \times C_r)$) as the complementary subgroup of $D(\mathbf{Z}C_r)$. Then there is a commutative diagram with exact rows and columns

$$0 \longrightarrow \operatorname{Ker} \alpha \longrightarrow M \longrightarrow \operatorname{Ker} \gamma \longrightarrow 0$$

$$0 \longrightarrow \operatorname{Ind}_{C_n \times C_r} D_1(\mathbf{Z}C_n \times C_r) \xrightarrow{\varphi} D_0(\mathbf{Z}G) \longrightarrow \operatorname{Coker} \varphi \longrightarrow 0$$

$$0 \longrightarrow \bigoplus_{p \mid n} \operatorname{Ind}_{C_{p^e p} \times C_r} D_1(\mathbf{Z}C_{p^e p} \times C_r) \xrightarrow{\varphi'} \bigoplus_{p \mid n} D_0(\mathbf{Z}G_p) \longrightarrow \operatorname{Coker} \varphi' \longrightarrow 0$$

$$0 \longrightarrow \bigoplus_{p \mid n} \operatorname{Ind}_{C_{p^e p} \times C_r} D_1(\mathbf{Z}C_{p^e p} \times C_r) \xrightarrow{\varphi'} \bigoplus_{p \mid n} D_0(\mathbf{Z}G_p) \longrightarrow \operatorname{Coker} \varphi' \longrightarrow 0$$

$$0 \longrightarrow \bigoplus_{p \mid n} (\mathbf{Z}C_{p^e p} \times C_r) \xrightarrow{\varphi'} 0 \longrightarrow 0$$

where φ and φ' are the inclusion maps and α , β , and γ are the natural maps. By the induction theorem (cf. [3]) we know that the exponent of Coker φ divides 834 Y. HIRONAKA

d, and hence the exponent of Ker γ also divides d. Next consider the commutative diagram with exact rows and columns

$$0 \to \operatorname{Ker} \alpha \to \operatorname{Ind}_{C_n \times C_r} D_1(\mathbf{Z}C_n \times C_r) \xrightarrow{\alpha} \bigoplus_{\substack{p \mid n}} \operatorname{Ind}_{C_p e_p \times C_r} D_1(\mathbf{Z}C_{p^{e_p}} \times C_r) \to 0$$

$$0 \to \operatorname{Ker} \alpha \to \operatorname{Ind}_{C_n \times C_r} D(\mathbf{Z}C_n \times C_r) \xrightarrow{\tilde{\alpha}} \bigoplus_{\substack{p \mid n}} \operatorname{Ind}_{C_p e_p \times C_r} D(\mathbf{Z}C_{p^{e_p}} \times C_r)$$

$$0 \to \operatorname{Ker} \delta \to \operatorname{Ind}_{C_n} D(\mathbf{Z}C_r) \xrightarrow{\delta} \bigoplus_{\substack{p \mid n}} \operatorname{Ind}_{C_r} D(\mathbf{Z}C_r)$$

$$\downarrow 0$$

Since δ is injective, $\operatorname{Ker} \delta = 0$ and so $\operatorname{Ker} \alpha \cong \operatorname{Ker} \tilde{\alpha}$. This completes the proof.

Let $N \cdot F$ be the semidirect product of a group N by a group F. For a $\mathbb{Z}N$ -module M and each $\tau \in F$, we define another $\mathbb{Z}N$ -module structure on M to be $\sigma \cdot m = \tau^{-1}\sigma \tau m$ where $\sigma \in N$ and $m \in M$, and denote it by M^{τ} . This yields the action of F on $D(\mathbb{Z}N)$. Hence $D(\mathbb{Z}N)$ can be regarded as a module over F.

Proposition 1.3. Let $G=C_n \cdot C_q$ and define e_p by $p^{e_p}||n$ for each p|n. Assume that C_q acts faithfylly on each Sylow subgroup of C_n and that (n, q)=1. Then

$$D(\mathbf{Z}G) \cong D(\mathbf{Z}C_q) \oplus \bigoplus_{p \mid n} D(\mathbf{Z}C_{p^e_p})^{c_q} \oplus \left(\mathbf{Z} \Big/ \frac{q}{(2,q)} \mathbf{Z} \right)^{\sum\limits_{p \mid n}^{\sum\limits_{q \mid p} e_p}} \oplus \operatorname{Ind}_{C_n}^G D(\mathbf{Z}C_n)^{(q)} \oplus K,$$
 where K is the complementary subgroup of $\bigoplus_{p \mid n} D(\mathbf{Z}C_{p^e_p})^{c_q}$ in $(D(\mathbf{Z}C_n)^{c_q})^{(q')}$.

Proof. We have the induction map $\varphi \colon D(\mathbf{Z}C_n) \to D_0(\mathbf{Z}G)$ and the restriction map $\psi \colon D_0(\mathbf{Z}G) \to D(\mathbf{Z}C_n)$. It is known that $\operatorname{Coker} \varphi \cong \left(\mathbf{Z} \middle/ \frac{q}{(2,q)}\mathbf{Z}\right)^{\sum\limits_{p|n}e_p}$ ([1]). We see that $q \cdot \operatorname{Ker} \psi = 0$. Then we have that $\varphi \colon D(\mathbf{Z}C_n)^{(q')} \to D_0(\mathbf{Z}G)^{(q')}$ is surjective and that $\psi \colon D_0(\mathbf{Z}G)^{(q')} \to D(\mathbf{Z}C_n)^{(q')}$ is injective. On the other hand for a $\mathbf{Z}C_n$ -module M, $\mathbf{Z}G \otimes M \cong M \oplus M^{\tau} \oplus \cdots \oplus M^{\tau^{q-1}}$ as $\mathbf{Z}C_n$ -modules, where τ is a generator of C_q . So we see that $\psi \circ \varphi = \operatorname{trace}_{C_q}$. Since $q \cdot D(\mathbf{Z}C_n)^{C_q} \subseteq \operatorname{trace}_{C_q}(D(\mathbf{Z}C_n)) \subseteq D(\mathbf{Z}C_n)^{c_q}$, $\operatorname{trace}_{C_q} \colon (D(\mathbf{Z}C_n)^{c_q})^{(q')} \to (D(\mathbf{Z}C_n)^{c_q})^{(q')} \to D_0(\mathbf{Z}G)^{(q')} \to (D(\mathbf{Z}C_n)^{c_q})^{(q')}$ is surjective and $\varphi \colon (D(\mathbf{Z}C_n)^{c_q})^{(q')} \to D_0(\mathbf{Z}G)^{(q')}$ is injective, and so both maps are bijective. Applying this argument to the subgroup $G_p = C_{p^q} \cdot C_p$ of G, we have the split exact sequence

$$0 \to D(\boldsymbol{Z}C_{p^{\boldsymbol{e}_p}})^{\boldsymbol{c}_q} \to D_0(\boldsymbol{Z}G_p) \to \left(\boldsymbol{Z}\bigg/\frac{q}{(2,q)}\boldsymbol{Z}\right)^{\boldsymbol{e}_p} \to 0 \ ,$$

we note here that $D(\mathbf{Z}C_{p^{\sigma_p}})$ is a *p*-group and that *p* is coprime to *q*. Now applying (1.2), we get that

$$D(\mathbf{Z}G) \cong D(\mathbf{Z}C_q) \oplus \bigoplus_{p \mid n} D(\mathbf{Z}C_{p^e_p})^{C_q} \oplus \left(\mathbf{Z} / \frac{q}{(2, q)} \mathbf{Z}\right)^{\sum\limits_{p \mid n}^{\sum} e^{p_p}} \oplus \left(\operatorname{End}_{C_n}^G D(\mathbf{Z}C_n) \to \bigoplus_{p \mid n} \operatorname{Ind}_{C_p^{e_p}}^C D(\mathbf{Z}C_{p^{e_p}})\right].$$

Trivially the last factor is isomorphic to $\operatorname{Ind}_{C_n}^G D(\mathbf{Z}C_n)^{(q)} \oplus \operatorname{Ker}[\operatorname{Ind}_{C_n}^G D(\mathbf{Z}C_n)^{(q')})$ $\to \bigoplus_{p|n} \operatorname{Ind}_{C_{p^ep}}^{G_p} D(\mathbf{Z}C_{p^ep})]$, and further, from the above argument on the induction maps it follows that the second factor is isomorphic to the complementary subgroup of $\bigoplus_{p|n} D(\mathbf{Z}C_{p^ep})^{C_q}$ in $(D(\mathbf{Z}C_n)^{C_q})^{(q')}$. This completes the proof.

2. Structure of $D(ZH_n)$

Throughout this section we assume that $n \ge 3$ is an odd integer.

Lemma 2.1. There are exact sequences

$$0 \to N \to D(\mathbf{Z}H_n) \to D(\mathbf{Z}D_n) \oplus D(\mathbf{Z}H_n/(\tau^2+1)) \to 0$$
$$0 \to N' \to D(\mathbf{Z}D_{2n}) \to D(\mathbf{Z}D_n) \oplus D(\mathbf{Z}D_n) \to 0$$

where both N and N' are of odd order.

Proof. From the pullback diagrams

$$egin{aligned} & oldsymbol{Z} H_n & \longrightarrow oldsymbol{Z} H_n / (au^2 + 1) & \downarrow & \downarrow & \\ & oldsymbol{Z} D_n & \cong oldsymbol{Z} H_n / (au^2 - 1) & \longrightarrow oldsymbol{F}_2 D_n & \\ & oldsymbol{Z} D_2 - \longrightarrow oldsymbol{Z} D_n & \downarrow & \downarrow & \\ & oldsymbol{Z} D_n & \longrightarrow oldsymbol{F}_2 D_n & & \downarrow & \end{pmatrix}$$

we get the (Mayer-Vietoris) exact sequences (cf. [8])

$$K_{1}(\mathbf{Z}D_{n}) \oplus K_{1}(\mathbf{Z}H_{n}/(\tau^{2}+1)) \to K_{1}(\mathbf{F}_{2}D_{n}) \to D(\mathbf{Z}H_{n}) \to D(\mathbf{Z}H_{n}/(\tau^{2}+1)) \to 0$$

$$D(\mathbf{Z}D_{n}) \oplus D(\mathbf{Z}H_{n}/(\tau^{2}+1)) \to 0$$

$$K_{1}(\mathbf{Z}D_{n}) \oplus K_{1}(\mathbf{Z}D_{n}) \to K_{1}(\mathbf{F}_{2}D_{n}) \to D(\mathbf{Z}D_{2n}) \to D(\mathbf{Z}D_{n}) \oplus D(\mathbf{Z}D_{n}) \to 0.$$

Hence it is sufficient to show that Coker $[K_1(\mathbf{Z}D_n)\to K_1(\mathbf{F}_2D_n)]$ is of odd order. Write $D_{2n}=\langle \rho, \sigma, \tau | \rho^2=\sigma^n=\tau^2=1$, $\rho\sigma=\sigma\rho$, $\rho\tau=\tau\rho$, $\tau^{-1}\sigma\tau=\sigma^{-1}\rangle$ and $D_n=\langle \sigma, \tau | \sigma^n=\tau^2=1$, $\tau^{-1}\sigma\tau=\sigma^{-1}\rangle$, and define $\Sigma_n\in \mathbf{Z}D_{2n}$ (resp. $\Sigma_n\in \mathbf{Z}D_n$) to be $\Sigma_n=\sum_{i=0}^{n-1}\sigma^i$. It has been shown [4] that $D(\mathbf{Z}D_{2n})\cong D(\mathbf{Z}D_{2n}/(\Sigma_n))$ and $D(\mathbf{Z}D_n)\cong D(\mathbf{Z}D_n)$

836 Y. Hironaka

 $D(\mathbf{Z}D_n/(\Sigma_n))$. Then we have the commutative diagram with exact rows

We see that Coker $\varphi \simeq \text{Coker } \varphi'$ and that the latter is of odd order, since $K_1(F_2D_n/(\Sigma_n))$ is so. This completes the proof.

Lemma 2.2. There is a commutative diagram with exact rows and columns

$$0 \to E \to D(\mathbf{Z}H_n) \xrightarrow{\varphi} D(\mathbf{Z}D_{2n}) \to 0$$

$$0 \to E \to D(\mathbf{Z}H_n/(\tau^2+1)) \xrightarrow{\varphi'} D(\mathbf{Z}D_n) \to 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

where E is an elementary 2-group.

Proof. We will use the following notation;

 R^d =the ring of integers of $Q(\zeta_d + \zeta_d^{-1})$, where ζ_d is a primitive d-th root of unity,

$$R^d_{\ p} = Z_p \otimes R^d$$
, $Z_p H_m = Z_p \otimes Z H_m$, $Z_p D_m = Z_p \otimes Z D_m$. Write $H_n = \langle \sigma, \tau | \sigma^n = \tau^4 = 1, \tau^{-1} \sigma \tau = \sigma^{-1} \rangle$ and $\Sigma_n = \sum_{i=0}^{n-1} \sigma^i \in Z H_n$. Then we see that $\operatorname{Nrd}((Z_p D_{2n}/(\Sigma_n))^*) = (Z_p [\sigma + \sigma^{-1}, \rho]/(\Sigma_n))^*$ for every prime p , because $Z_p D_{2n}/(\Sigma_n)$ is embedded into $M_2(Z_p [\sigma + \sigma^{-1}, \rho]/(\Sigma_n))$. Since we can prove by the same method as in $[4, \S 3]$ that $D(Z[\sigma + \sigma^{-1}, \rho]) \cong D(Z[\sigma + \sigma^{-1}, \rho]/(\Sigma_n))$, we have that $D(ZD_{2n}) \cong D(Z[\sigma + \sigma^{-1}, \rho])$. Similarly we have that $D(ZD_n) \cong D(Z[\sigma + \sigma^{-1}])$. Now we express the class groups in idèlic form (cf. [6]). Then we have

$$D(\boldsymbol{Z}\boldsymbol{H}_n) \simeq \frac{\prod\limits_{\substack{p \mid 2n}} \prod\limits_{\substack{1 \neq d \mid n}} (R^d_{p}^{*} \times R^d_{p}^{*})}{\prod\limits_{\substack{1 \neq d \mid n}} (R^d^{*} \times R^d^{*}_{+}) \prod\limits_{\substack{p \mid 2n}} n(\boldsymbol{Z}_{p}\boldsymbol{H}_{n}^{*})},$$

where $n(\mathbf{Z}_p H_n^*) = \{ \operatorname{Nrd}(x) | (1, x) \in \mathbf{Z}_p H_n^* \hookrightarrow \mathbf{Z}_p \langle \tau \rangle^* \times \mathbf{Z}_p H_n / (\Sigma_n)^* \}$ and $R^{d*} = \{ u \in R^{d*} | u \text{ is positive at all real places of } R^d \}$,

$$D(ZD_{2n}) \simeq rac{\prod\limits_{p|2n}\prod\limits_{1 \pm d|n}(R^{d}{}_{p}{}^{*} imes R^{d}{}_{p}{}^{*})}{\prod\limits_{1 \pm d|n}(R^{d}{}^{*} imes R^{d}{}^{*})\prod\limits_{p|2n}u(Z_{p}[\sigma + \sigma^{-1}, \
ho])}$$
 ,

where

$$u(\boldsymbol{Z}_{p}[\sigma+\sigma^{-1},\rho]) = \{y \mid (1,y) \in \boldsymbol{Z}_{p}[\sigma+\sigma^{-1},\rho]^{*} \hookrightarrow \boldsymbol{Z}_{p}\langle \rho \rangle^{*} \times \boldsymbol{Z}_{p}[\sigma+\sigma^{-1},\rho]/(\Sigma_{n})^{*}\},$$

$$D(ZH_n/(\tau^2+1)) \simeq rac{\prod\limits_{\substack{p \mid n}} \prod\limits_{1 \neq d \mid n} R^d_p^*}{\prod\limits_{1 \neq d \mid n} R^{d*} \prod\limits_{\substack{p \mid n}} n(Z_pH_n/(\tau^2+1)^*)},$$

where $n(\mathbf{Z}_p H_n/(\tau^2+1)^*)=$ {Nrd(x)|(1, x) $\in \mathbf{Z}_p H_n/(\tau^2+1)^* \hookrightarrow \mathbf{Z}_p \lceil \overline{\tau} \rceil^* \times \mathbf{Z}_p H_n/(\Sigma_n, \tau^2+1)^*$ }, and

$$D(\mathbf{Z}D_n) \simeq \frac{\prod\limits_{p|n} \prod\limits_{1 \neq d|n} R^{d}_{p}^{*}}{\prod\limits_{1 \neq d|n} R^{d*} \prod\limits_{p|n} u(\mathbf{Z}_{p}[\sigma + \sigma^{-1}])},$$

where $u(\mathbf{Z}_{p}[\sigma+\sigma^{-1}]) = \{y \mid (1, y) \in \mathbf{Z}_{p}[\sigma+\sigma^{-1}]^{*} \hookrightarrow \mathbf{Z}_{p}^{*} \times \mathbf{Z}_{p}[\sigma+\sigma^{-1}]/(\Sigma_{n})^{*}\}.$

Hence there exist natural surjections $\varphi: D(\mathbf{Z}H_n) \to D(\mathbf{Z}D_{2n})$ and $\varphi': D(\mathbf{Z}H_n|(\tau^2+1)) \to D(\mathbf{Z}D_n)$. Then

$$\operatorname{Ker} \varphi \simeq \frac{\prod\limits_{1 \neq d \mid n} (R^{d*} \times R^{d*}) \prod\limits_{p \mid 2n} u(\boldsymbol{Z}_{p}[\sigma + \sigma^{-1}, \rho])}{\prod\limits_{1 \neq d \mid n} (R^{d*} \times R^{d*}) \prod\limits_{p \mid 2n} n(\boldsymbol{Z}_{p}H_{n}^{*})}.$$

Trivially $(R^{d*})^2 \subseteq R^{d*}$ for every $d \mid n, d \neq 1$. Since the degree of $\mathbf{Z}_p H_n / (\Sigma_n)$ over its center is 4, $u(\mathbf{Z}_p [\sigma + \sigma^{-1}, \rho])^2 \subseteq n(\mathbf{Z}_p H_n^*)$ for every $p \mid n$. Hence Ker φ is an elementary 2-group. Similarly we can show that Ker φ' is an elementary 2-group.

Let $\psi: D(\mathbf{Z}H_n) \to D(\mathbf{Z}H_n/(\tau^2+1))$ and $\psi': D(\mathbf{Z}D_{2n}) \to D(\mathbf{Z}D_n)$ be the maps defined as follows; for $(x, y) \in (\prod_{p|2n} \prod_{1 \neq d|n} R^d_p^*) \times (\prod_{p|2n} \prod_{1 \neq d|n} R^d_p^*)$, ψ (the class of (x, y))=the class of y, and ψ' (the class of (x, y))=the class of y. In fact ψ (resp. ψ') is the map induced by the natural surjection $\mathbf{Z}H_n \to \mathbf{Z}H_n/(\tau^2+1)$ (resp. $\mathbf{Z}D_{2n} \to \mathbf{Z}D_{2n}/(\rho+1) \cong \mathbf{Z}D_n$). It is clear that both ψ and ψ' are surjective. Further we have the commutative diagram with exact rows and columns

$$0 \to N \to D(\mathbf{Z}H_n) \xrightarrow{(\cdot, \psi)} D(\mathbf{Z}D_n) \oplus D(\mathbf{Z}H_n | (\tau^2 + 1)) \to 0$$

$$0 \to N' \to D(\mathbf{Z}D_{2n}) \xrightarrow{(\cdot, \psi')} D(\mathbf{Z}D_n) \oplus D(\mathbf{Z}D_n) \longrightarrow 0.$$

$$\downarrow 0$$

Since Ker φ and Ker φ' are 2-group, we get by (2.1) that Ker $\varphi \cong \text{Ker } \varphi'$. Thus we conclude the proof.

Theorem 2.3. Let $n \ge 3$ be an odd integer and define e_p by $p^{e_p}||n$ for each p|n. Then:

- i) $D(\mathbf{Z}H_n) \oplus D(\mathbf{Z}D_n) \cong D(\mathbf{Z}H_n/(\tau^2+1)) \oplus D(\mathbf{Z}D_{2n})$
- ii) $D(\mathbf{Z}H_n) \cong O(D(\mathbf{Z}D_{2n})) \oplus D(\mathbf{Z}D_n)^{(2)} \oplus (\mathbb{Z}/2\mathbb{Z})^{\sum_{p|n}^{\sum_{i}e_p}} \oplus L$, where L is an extension of $D(\mathbf{Z}D_n)^{(2)}$ by an elementary 2-group. In particular, if $n=p^t$ for an odd prime p,

838 Y. HIRONAKA

$$D(\mathbf{Z}H_{p^t}) \cong D(\mathbf{Z}D_{2p^t}) \oplus (\mathbf{Z}/2\mathbf{Z})^t$$
.

Proof. By (2.2) we have the commutative diagram with exact rows and columns

Since ψ' splits by (1.2), ψ splits also. Therefore

$$D(\mathbf{Z}H_n) \oplus D(\mathbf{Z}D_n) \cong D(\mathbf{Z}H_n/(\tau^2+1)) \oplus F \oplus D(\mathbf{Z}D_n)$$

$$\cong D(\mathbf{Z}H_n/(\tau^2+1)) \oplus D(\mathbf{Z}D_{2n}).$$

For the proof of ii) we begin with the case $n=p^t$. It has been shown (e.g. [1], [4]) that $d(\mathbf{Z}D_{p^t})$ and $d(\mathbf{Z}D_{2p^t})$ are odd, and hence in this case the exact sequences in (2.2) split. On the other hand it is known that the 2-part of $D(\mathbf{Z}H_{p^t}/(\tau^2+1))$ is an elementary 2-group of rank t ([11]). Therefore we see that

$$D(\mathbf{Z}H_{p^t}) \cong D(\mathbf{Z}D_{2p^t}) \oplus (\mathbf{Z}/2\mathbf{Z})^t$$
.

Next consider the general case. By (2.1) we see that

$$D(ZH_n)^{(2)} \cong D(ZD_n)^{(2)} \oplus D(ZH_n/(\tau^2+1))^{(2)}$$
.

On the other hand, by (2.2), we have that $O(D(\mathbf{Z}H_n)) \cong O(D(\mathbf{Z}D_{2n}))$. Thus we get

$$D(ZH_n) \cong O(D(ZD_{2n})) \oplus D(ZD_n)^{(2)} \oplus D(ZH_n/(\tau^2+1))^{(2)}$$
.

There is a commutative diagram with exact rows

$$0 \longrightarrow E \longrightarrow D(\mathbf{Z}H_n/(\tau^2+1)) \longrightarrow D(\mathbf{Z}D_n) \longrightarrow 0$$

$$\downarrow \downarrow \alpha \qquad \downarrow \alpha$$

$$0 \rightarrow (\mathbf{Z}/2\mathbf{Z})^{\sum_{p|n}^{E_p}} \rightarrow \bigoplus_{p|n} D(\mathbf{Z}H_{p^e_p}/(\tau^2+1)) \rightarrow \bigoplus_{p|n} D(\mathbf{Z}D_{p^e_p}) \rightarrow 0.$$

It can be shown along the same line as in (1.2) that α is surjective and splir, and by (2.2) E is an elementary 2-group. Therefore we see that

$$D(\mathbf{Z}H_n/(\tau^2+1))^{(2)} \cong (\mathbf{Z}/2\mathbf{Z})^{\sum\limits_{p|n} e_p} \oplus L$$

where L is an extension of $D(\mathbf{Z}D_n)^{(2)}$ by an elementary 2-group. We conclude the proof.

REMARK 2.4. When $n=p^t$, rank E=t. But it may be conjectured that rank $E-\sum_{p|n}e_p>0$ unless n is a power of an odd prime. In fact, when n=15, $E\cong C_2\times C_2\times C_2$ and in this case we get that $D(ZH_{15})\cong C_2\times C_2\times C_2$. We note here the outline of the computation.

Since $D(\mathbf{Z}D_{30}) = D(\mathbf{Z}D_{15}) = \{1\}$ ([4]), the commutative diagram in the proof of (2.3) shows that $F = \{1\}$, and hence

$$E \cong D(ZH_{15}) \cong D(ZH_{15}/(\tau^2+1))$$
.

Along the same line as in the proof of [1, Théorème 3] we get that for an odd square-free integer n,

$$D(\mathbf{Z}H_n/(\tau^2+1)) \cong \bigoplus_{\substack{p \mid n}} D(\mathbf{Z}H_p/(\tau^2+1)) \oplus \bigoplus_{\substack{1 \neq d \mid n \\ d \neq \text{prime}}} (R^d/I^d)^*/\mathrm{Im} \; R^{d *}_+ \; ,$$

where $I^d = \prod_{\substack{p \mid d}} (1 - \zeta_p)(1 - \zeta_p^{-1})R^d$. Further we see that there is a natural surjection $\bigoplus_{\substack{1 \neq d \mid n \\ d \neq \text{prime}}} (R^d/I^d)^*/\text{Im } R^d + D(\mathbf{Z}H_n/(\Sigma_n, \tau^2 + 1))$. On the other hand, we

know that $\operatorname{Ker}[D(ZH_n/(\tau^2+1)) \to D(ZH_n/(\Sigma_n, \tau^2+1))]$ is an elementary 2-group of rank $\sum_{p|n} 1$. Though this is true for every odd integer, here we give the proof for the square-free case. Expressing both groups in idèlic form (cf. the proof of (2.2)), we know that

$$\operatorname{Ker}\left[D(ZH_{n}/(\tau^{2}+1))\rightarrow D(ZH_{n}/(\Sigma_{n}, \tau^{2}+1))\right]$$

$$\stackrel{\prod_{1\neq d\mid n}}{=} \frac{R^{d} + \prod_{p\mid n} \operatorname{Nrd}(Z_{p}H_{n}/(\Sigma_{n}, \tau^{2}+1)^{*})}{\prod_{1\neq d\mid n} R^{d} + \prod_{p\mid n} n(Z_{p}H_{n}/(\tau^{2}+1)^{*})}$$

$$\cong \prod_{p\mid n} \left(\frac{R^{p} + \operatorname{Nrd}(Z_{p}H_{p}/(\Sigma_{p}, \tau^{2}+1)^{*})}{R^{p} + n(Z_{p}H_{p}/(\tau^{2}+1)^{*})}\right)$$

$$\cong \bigoplus_{p\mid n} \operatorname{Ker}\left[D(ZH_{p}/(\tau^{2}+1)) \rightarrow D(ZH_{p}/(\Sigma_{p}, \tau^{2}+1))\right]$$

$$\cong (Z/2Z)^{p\mid n}.$$

Hence we have that for an odd square-free integer n

$$D(\mathbf{Z}H_n/(\tau^2+1)) \simeq \bigoplus_{\substack{p \mid n}} D(\mathbf{Z}H_p/(\tau^2+1)) \oplus D(\mathbf{Z}H_n/(\Sigma_n, \tau^2+1))$$
$$\simeq (\mathbf{Z}/2\mathbf{Z})^{\sum_{\substack{p \mid n}} 1} \oplus D(\mathbf{Z}H_n/(\Sigma_n, \tau^2+1)).$$

Now let us return to the case n=15. It is sufficient to show that $D=D(ZH_{15}/(\Sigma_{15}, \tau^2+1)) \cong \mathbb{Z}/2\mathbb{Z}$. From the pullback diagram

$$egin{aligned} egin{aligned} ZH_{15}/(\Sigma_{15},\, au^2+1)) & \longrightarrow Z[\zeta_{15},\,ar{ au}] \ \downarrow \ Z[\zeta_3,\,ar{ au}] \oplus Z[\zeta_5,\,ar{ au}] & \rightarrow F_5[\zeta_3,\,ar{ au}] \oplus F_3[\zeta_5,\,ar{ au}] \end{aligned}$$

we get the exact sequence

$$K_1(\boldsymbol{Z}[\zeta_3, \, \bar{\tau}]) \oplus K_1(\boldsymbol{Z}[\zeta_5, \, \bar{\tau}]) \oplus K_1(\boldsymbol{Z}[\zeta_{15}, \, \bar{\tau}]) \rightarrow K_1(\boldsymbol{F}_5[\zeta_3, \, \bar{\tau}]) \oplus K_1(\boldsymbol{F}_3[\zeta_5, \, \bar{\tau}]) \rightarrow D \rightarrow 0.$$

Taking the reduced norm, we have the exact sequence

$$Z_+^* \oplus Z[\zeta_5 + \zeta_5^{-1}]_+^* \oplus Z[\zeta_{15} + \zeta_{15}^{-1}]_+^* \to F_5^* \oplus F_3[\zeta_5 + \zeta_5^{-1}]^* \to D \to 0$$
.

On the other hand $Z[\zeta_{15}+\zeta_{15}^{-1}]^*=\{\xi_1^a\xi_2^b\xi_3^c|a, b \text{ and } c \text{ are all odd or all even}\}$, where $\xi_1=\zeta_{15}+\zeta_{15}^{-1}-1$, $\xi_2=\zeta_{15}^2+\zeta_{15}^{-2}-1$ and $\xi_3=\zeta_{15}^3+\zeta_{15}^{-3}+1$. A direct computation shows that $D\cong Z/2Z$.

REMARK 2.5. Let $\Lambda_{2n} = \mathbb{Z}C_{2n} \cap \prod_{d|n} R^d \times R^d$. Cassou-Noguès has shown in [2] that there exists a surjection of $D(\mathbb{Z}H_n)$ in $D(\Lambda_{2n})$ whose kernel is an elementary 2-group. It is seen in the proof of (2.2) that $D(\Lambda_{2n}) \cong D(\mathbb{Z}D_{2n})$. Hence a part of (2.2) and the final assertion of (2.3) are only restatements of the results of Cassou-Noguès.

REMARK 2.6. Recently, after this manuscript was written, T. Miyata has shown [9] that Res: $D(\mathbf{Z}D_m) \rightarrow D(\mathbf{Z}C_m)$ is injective for every integer m > 1. Using this we know that the map φ in (2.2) has a close relation to the restriction $\operatorname{Res}_{C_{2n}}^{H_n} \colon D(\mathbf{Z}H_n) \rightarrow D(\mathbf{Z}C_{2n})$. Further we can extend the results to the case where n is even. Let m > 1 be an integer and $H_m = \langle \sigma, \tau | \sigma^{2m} = 1, \sigma^m = \tau^2, \tau^{-1}\sigma\tau = \sigma^{-1} \rangle$. Then there is a natural surjection $\varphi \colon D(\mathbf{Z}H_m) \rightarrow D(\mathbf{Z}D_{2m})$ such that $\operatorname{Res}_{C_{2m}}^{D_{2m}} \circ \varphi = \operatorname{Res}_{C_{2m}}^{H_m}$. (When m is odd, φ is the map defined in (2.2).) From this we see that $\operatorname{Res}_{C_{2m}}^{H_m}(D(\mathbf{Z}H_m)) \cong D(\mathbf{Z}D_{2m})$ and $\operatorname{Ker} \varphi = \operatorname{Ker} \operatorname{Res}_{C_{2m}}^{H_m}$ is an elementary 2-group.

We give here the outline of the proof. There are isomorphisms (for details see [6], [7])

$$C(\mathbf{Z}G) \simeq J_{QG}/[J_{QG}, J_{QG}](\mathbf{Q}G)^*U(\mathbf{Z}G)$$

$$\simeq \operatorname{Hom}_{\Omega_{\mathbf{Q}}}(R_G, J_F)/\operatorname{Hom}_{\Omega_{\mathbf{Q}}}(R_G, F^*)\operatorname{Det}(U(\mathbf{Z}G)),$$

where R_G is the Grothendieck group of virtual characters of G. For each element of $D(\mathbf{Z}G)$ we can choose representatives as follows;

a projective left ideal M

$$\leftrightarrow \alpha = (\alpha_p) \in U(\mathfrak{M}) \subseteq J_{QG}$$
, where \mathfrak{M} is a maximal order of QG containing ZG , such that $M = \bigcap_{p} (Z_p G \alpha_p \cap QG)$

$$\leftrightarrow \operatorname{Det}(\alpha) \in \operatorname{Hom}_{\Omega_{\boldsymbol{Q}}}(R_G, J_F).$$

For a subgroup H of G, $\operatorname{Res}_{H}^{G}(M)$ has the representative $\rho_{G/H}(\operatorname{Det}(\alpha))$, where $\rho_{G/H}(\operatorname{Det}(\alpha))(X) = \operatorname{Det}_{\operatorname{Ind}_{H}^{G}X}(\alpha)$ for $X \in R_{H}$ (for details see Appendix in [7]).

Now we compute $\operatorname{Res}_{C_{2m}}^{H_m}$ and $\operatorname{Res}_{C_{2m}}^{D_{2m}}$ by using $\rho_{H_m/C_{2m}}$ and $\rho_{D_{2m}/C_{2m}}$. When m is odd, we have the commutative diagram with exact row and column

(*)
$$0 \to \operatorname{Ker} \varphi \to D(\mathbf{Z}H_m) \xrightarrow{\varphi} D(\mathbf{Z}D_{2m}) \to 0$$

$$\downarrow \operatorname{Res}_{C_{2m}}^{D_{2m}} D(\mathbf{Z}C_{2m}) \to 0$$

where φ is the map defined in (2.2). Let m be even. Since $\operatorname{Res}_{C_{2m}}^{D_{2m}}$ is injective, we know that the natural map φ of $D(\mathbf{Z}H_m) \cong U(\mathcal{O})_+/\mathcal{O}_+^*\operatorname{Nrd}(U(\mathbf{Z}H_m))$ to $D(\mathbf{Z}D_{2m}) \cong U(\mathcal{O})/\mathcal{O}^*\operatorname{Nrd}(U(\mathbf{Z}D_{2m}))$, where $\mathcal{O} = \mathbf{Z} \oplus \mathbf{Z}$

defined. Hence we also have the diagram (*). Finally, Ker $\varphi = \text{Ker Res}_{C_{2m}}^{H_m}$ is annihilated by 2 (the Artin exponent of H_m).

University of Tsukuba

References

- [1] P. Cassou-Noguès: Groupe des classes de l'algebre d'un groupe métacyclique, J. Algebra 41 (1976), 116-136.
- [2] P. Cassou-Noguès: Quelques théorèmes de base normale d'entiers, to appear in Ann. Inst. Fourier.
- [3] S. Endo and T. Miyata: Quasi-permutation modules over finite groups, II, J. Math. Soc. Japan 26 (1974), 698-713.
- [4] S. Endo and T. Miyata: On the class groups of dihedral groups, to appear in J. Algebra.
- [5] A. Fröhlich: Module invariants and root numbers for quaternion fields of degree 4l^r, Proc. Cambridge Philos. Soc. **76** (1974), 393-399.
- [6] A. Fröhlich: Locally free modules over arithmetic orders, Crelles J. 274/275 (1975), 112-138.
- [7] A. Fröhlich: Arithmetic and Galois module structure for tame extensions, Crelles J. 286/287 (1976), 380-440.
- [8] J. Milnor: Introduction to algebraic K-theory, Annals of Math. Studies, 72, Princeton Univ. Press, 1971.
- [9] T. Miyata: A normal integral basis theorem for dihedral groups, to appear in Tôhoku Math. J.
- [10] I. Reiner: Projective class groups of symmetric and alternating groups, Linear and Multilinear Algebra 3 (1975), 147-153.
- [11] S.M.J. Wilson: Reduced norms in the K-theory of orders, J. Algebra 46 (1977), 1-11.