

Title	On stable James numbers of quaternionic projective spaces
Author(s)	Ōshima, Hideaki
Citation	Osaka Journal of Mathematics. 1975, 12(1), p. 209-213
Version Type	VoR
URL	https://doi.org/10.18910/4783
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

ON STABLE JAMES NUMBERS OF QUATERNIONIC PROJECTIVE SPACES

HIDEAKI ŌSHIMA

(Received March 12, 1974)

In [4], we have defined the stable James numbers $k_s(X, A)$ for some finite CW-pairs (X, A) and computed $d_C(n)=k_s(CP^n, CP^1)$. In this note we estimate $d_H(n)=k_s(HP^n, HP^1)$, where HP^n denotes the quaternionic projective space of topological dimension $4n$. We obtain

Theorem. *For $n \geq 2$*

(0) $d_H(n)$ is a factor of $(2n)!(2n-2)!\cdots 4!$, in particular none of the prime factors of $d_H(n)$ is greater than $2n$,

$$(i) \quad 2j+1 \leq \begin{cases} \nu_2(d_H(n)) \leq 3j+3 & \text{for } n=2^j, \\ \nu_2(d_H(n)) \leq 3j+6 & \text{for } 2^j+1 \leq n < 2^{j+1}, \end{cases}$$

$$(ii) \quad 2j \leq \nu_3(d_H(n)) \leq 2j+2 \quad \text{for } 3^j \leq n < 2 \cdot 3^j,$$

$$2j+1 \leq \begin{cases} \nu_3(d_H(n)) \leq 2j+2 & \text{for } 2 \cdot 3^j \leq n < \frac{3^{j+2}+1}{4}, \\ \nu_3(d_H(n)) \leq 2j+4 & \text{for } \frac{3^{j+2}+1}{4} \leq n < 3^{j+1}, \end{cases}$$

$$(iii) \quad \text{for a prime } p \geq 5$$

$$\nu_p(d_H(n)) = 2j \quad \text{for } p^j \leq n < \frac{p^{j+1}+1}{4},$$

$$2j \leq \nu_p(d_H(n)) \leq 2j+2 \quad \text{for } \frac{p^{j+1}+1}{4} \leq n < \frac{p+1}{2} p^j,$$

$$2j+1 \leq \nu_p(d_H(n)) \leq 2j+2 \quad \text{for } \frac{p+1}{2} p^j \leq n < p^{j+1},$$

where $\nu_p(m)$ denotes the exponent of p in the prime factorization of m .

Recall that $d_H(n)=$ the index of the image of $i^* : \{HP^n, S^4\} \rightarrow \{S^4, S^4\}$, where $\{X, Y\}$ denotes the set of stable homotopy classes of stable maps $X \rightarrow Y$ and $i : S^4 = HP^1 \rightarrow HP^n$ the natural inclusion. Then obviously $d_H(1)=1$.

1. Lower bound of $d_H(n)$

In this section we use K -theories. We introduce the following notations: ξ_n = the canonical quaternionic line bundle over HP^n ; $g_H = \xi_1 - 1 \in \widetilde{KSp}(S^4)$; $g_R = g_H \wedge g_H \in \widetilde{KO}^{-4}(S^4)$; $\tilde{\xi}_n = g_H \wedge (\xi_n - 1) \in \widetilde{KO}^{-4}(HP^n)$; η = the canonical complex line bundle over $S^2 = CP^1$; $g_C = \eta - 1 \in \widetilde{K}(S^2)$; $\varepsilon: KO^*() \rightarrow K^*()$, the complexification; $c: KSp() \rightarrow K()$, the scalar restriction; $ch: K^*() \rightarrow H^*(; Q)$, the Chern character; $y_{2k} = g_R^{-k} \in KO^{8k}$; $y_{2k+1} \in KO^{8k+4}$, the generator such that $\varepsilon(y_{2k+1}) = 2g_C^{-4k-2}$; $z_n = c(\xi_n - 1) \in \widetilde{K}(HP^n)$; $t \in H^4(HP^n; Z)$, the first symplectic Pontrjagin class of ξ_n . Then we have

$$\begin{aligned}\varepsilon(y_{2k}\tilde{\xi}_n^{2k+1}) &= g_C^2 z_n^{2k+1}, \\ \varepsilon(y_{2k-1}\tilde{\xi}_n^{2k}) &= 2g_C^2 z_n^{2k}, \\ ch(z_n) &= \exp(\sqrt{t}) + \exp(-\sqrt{t}) - 2,\end{aligned}$$

and $\widetilde{KO}^{-4}(HP^n)$ is the free group with basis $\tilde{\xi}_n, y_1\tilde{\xi}_n^2, \dots, y_{n-1}\tilde{\xi}_n^n$, and $K(HP^n)$ is the truncated polynomial ring over Z with generator z_n and the relation $z_n^{n+1} = 0$.

Choose $f \in \{HP^n, S^4\}$ such that the composition $S^4 \xrightarrow{i} HP^n \xrightarrow{f} S^4$ is of degree $d_H(n)$. Put

$$f^*(g_R) = \sum_{j=1}^n a_j y_{j-1} \tilde{\xi}_n^j, \quad a_j \in Z.$$

And put $2a_{2j} = b_{2j}$ and $a_{2j+1} = b_{2j+1}$. Then, by the above equations, we have

$$d_H(n)t = f^* \cdot ch \cdot \varepsilon(g_R) = ch \cdot \varepsilon \cdot f^*(g_R) = \sum_{j=1}^n b_j (\exp(\sqrt{t}) + \exp(-\sqrt{t}) - 2)^j$$

in $H^*(HP^n; Q)$ and hence $b_1 = d_H(n)$. Put $t = x^2$, then we have

$$b_1 x^2 \equiv \sum_{j=1}^n b_j (\exp(x) + \exp(-x) - 2)^j \pmod{x^{2n+2}}.$$

Differentiating this equation twice, we have

$$2b_1 \equiv 2b_1 + \sum_{j=1}^{n-1} (j^2 b_j + 2(2j+1)(j+1)b_{j+1})(\exp(x) + \exp(-x) - 2)^j \pmod{x^{2n}}.$$

Hence

$$j^2 b_j + 2(2j+1)(j+1)b_{j+1} = 0 \quad \text{for } j \leq n-1,$$

and therefore

$$j! b_1 = (-1)^j 2^j \cdot 3 \cdot 5 \cdots (2j+1)(j+1)b_{j+1} \quad \text{for } j \leq n-1.$$

That is, we have

$$(2j)! d_H(n) = 2^{2j} \cdot 3 \cdot 5 \cdots (4j+1)(2j+1)a_{2j+1} \quad \text{for } j \leq \left[\frac{n-1}{2} \right],$$

$$(2j-1)! d_H(n) = -2^{2j-1} \cdot 3 \cdot 5 \cdots (4j-1)(2j)2a_{2j} \quad \text{for } j \leq \left[\frac{n}{2} \right].$$

Put

$$\begin{aligned} \tau_p(n) = \max_{\substack{j \leq \left[\frac{n-1}{2} \right] \\ k \leq \left[\frac{n}{2} \right]}} & \{ \nu_p(2^{2j} \cdot 3 \cdot 5 \cdots (4j+1)(2j+1)) - \nu_p((2j)!) , \\ & \nu_p(2^{2k-1} \cdot 3 \cdots (4k-1)(2k)2) - \nu_p((2k-1)!) \}. \end{aligned}$$

Then obviously $\tau_p(n) \leq \nu_p(d_H(n))$. Elementary calculation shows that

$$\tau_2(n) = 2j+1 \quad \text{for } 2^j \leq n < 2^{j+1} \quad \text{and } j \geq 1,$$

and for an odd prime p

$$\tau_p(n) = \begin{cases} 2j & \text{for } p^j \leq n < \frac{p+1}{2}p^j \\ 2j+1 & \text{for } \frac{p+1}{2}p^j \leq n < p^{j+1}. \end{cases}$$

Thus we obtain the lower estimates of Theorem.

2. Upper bound of $d_H(n)$

The canonical fibration $S^{4n-1} \xrightarrow{\tilde{p}_{n-1}} HP^{n-1}$ factorizes as the composition of the canonical fibrations $S^{4n-1} \xrightarrow{\tilde{p}_{2n-1}} CP^{2n-1} \longrightarrow HP^{n-1}$. The order of \tilde{p}_{2n-1} as a stable map is $(2n)!$ [2], [5]. Hence the stable order of \tilde{p}_{n-1} is a factor of $(2n)!$. Therefore $d_H(n)$ is a factor of $(2n)! d_H(n-1)$. This implies Theorem (0).

Lemma 1. *Let X be a simply connected finite CW-complex with a base point. Then the natural inclusion $SP^m(X) \xrightarrow{\iota_m} SP^\infty(X)$ induces isomorphisms $\pi_k(SP^m(X)) \xrightarrow{\cong} \pi_k(SP^\infty(X))$ for $k \leq m$, where $SP^m(X)$ and $SP^\infty(X)$ denote the m -fold symmetric product of X and the infinite symmetric product of X respectively [1].*

Proof. There is a commutative diagram [3] for $j \geq 1$

$$\begin{array}{ccc} H_j(SP^m(X)) & \xrightarrow{\iota_m^*} & H_j(SP^\infty(X)) \\ \downarrow \cong & & \downarrow \cong \\ \sum_{k=1}^m H_j(SP^k(X), SP^{k-1}(X)) & \rightarrow & \sum_{k=1}^\infty H_j(SP^k(X), SP^{k-1}(X)) \end{array}$$

where the bottom map is the natural inclusion. Then, it follows from $H_j(SP^k(X), SP^{k-1}(X)) = 0$ for $1 \leq j < k$ that $\iota_m^*: H_j(SP^m(X)) \rightarrow H_j(SP^\infty(X))$ are isomorphic for $j \leq m$. Since $SP^m(X)$ is simply connected, the result follows

from the theorem of J.H.C. Whitehead.

The obstructions to extending the natural inclusion $S^4 \rightarrow SP^{4n-1}(S^4)$ over HP^n lie in $H^{4j}(HP^n, S^4) \otimes \pi_{4j-1}(SP^{4n-1}(S^4))$ for $2 \leq j \leq n$. Lemma 1 shows that $SP^{4n-1}(S^4)$ and $SP^\infty(S^4) = K(Z, 4)$, the Eilenberg-MacLane complex, have the same $4n$ -type. Hence, in particular, we have $\pi_{4j-1}(SP^{4n-1}(S^4)) = 0$ for $j \leq n$.

Therefore we have a map $f: HP^n \rightarrow SP^{4n-1}(S^4)$ which factorizes $S^4 \xrightarrow{i} SP^{4n-1}(S^4)$ as $S^4 \subset HP^n \xrightarrow{f} SP^{4n-1}(S^4)$. This implies that $d_H(n)$ is a factor of $k_s^{4n-1,4} = k_s(SP^{4n-1}(S^4), S^4)$. $k_s^{4n-1,4}$ and $k_s^{4n-1,5}$ are factors of $k_s^{4n-1,5}$ and $k^{4n-1,5}$ respectively [4]. Hence $d_H(n)$ is a factor of $k^{4n-1,5}$.

We require the following theorem of Ucci [6]:

$$\begin{aligned} \nu_2(k^{m,2t+1}) &\leq \phi(2t)\beta_2(m), \\ \nu_p(k^{m,2t+1}) &= t\beta_p(m) \quad \text{for an odd prime } p \end{aligned}$$

where $\beta_p(m)$ is defined by $p^{8_p(m)} \leq m < p^{8_p(m)+1}$ and $\phi(s)$ is the number of integers u such that $0 < u \leq s$ and $u \equiv 0, 1, 2$, or $4 \pmod{8}$.

By this theorem, we have

$$\begin{aligned} \nu_2(d_H(n)) &\leq 3\beta_2(4n-1), \\ \nu_p(d_H(n)) &\leq 2\beta_p(4n-1) \quad \text{for an odd prime } p. \end{aligned}$$

Then the following lemma completes the proof of Theorem.

Lemma 2.

$$\begin{aligned} \text{(i)} \quad \beta_2(4n-1) &= \begin{cases} j+1 & \text{for } n = 2^j, \\ j+2 & \text{for } 2^j+1 \leq n < 2^{j+1}, \end{cases} \\ \text{(ii)} \quad \beta_3(4n-1) &= \begin{cases} j+1 & \text{for } 3^j \leq n < \frac{3^{j+2}+1}{4}, \\ j+2 & \text{for } \frac{3^{j+2}+1}{4} \leq n < 3^{j+1}, \end{cases} \\ \text{(iii) for a prime } p \geq 5 \quad \beta_p(4n-1) &= \begin{cases} j & \text{for } p^j \leq n < \frac{p^{j+1}+1}{4}, \\ j+1 & \text{for } \frac{p^{j+1}+1}{4} \leq n < p^{j+1}. \end{cases} \end{aligned}$$

The proof of this lemma is easy, and we omit it.

References

- [1] A. Dold and R. Thom: *Quasifaserrungen und unendliche symmetrische Produkte*, Ann. of Math. **67** (1958), 239–281.
- [2] E. Dyer: *Chern characters of certain complexes*, Math. Z. **80** (1963), 363–373.
- [3] M. Nakaoka: *Cohomology of symmetric products*, J. Inst. Polytech. Osaka City Univ. **8** (1957), 121–145.
- [4] H. Ōshima: *On the stable James numbers of complex projective spaces*, Osaka J. Math. **11** (1974), 361–366.
- [5] H. Toda: *On unstable homotopy of spheres and classical groups*, Proc. Nat. Acad. Sci. USA **46** (1960), 1102–1105.
- [6] J. Ucci: *Symmetric maps of spheres of least positive James number*, Indiana Univ. Math. J. **21** (1972), 709–714.

