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Introduction

This paper consists of expository remarks on the relevance of the manifold of
maximal isotropic subspaces in C*"*', with respect to a nondegenerate symmetric
biliear form, to the spinors of 80(2%+1, C), introduced in Elie Cartan’s lecture
notes “Legons sur la théorie des spineurs 1, 11 (1938)” ([3]), Chapitre V.

Let us denote by G* the complex Lie group Spin (2z+1, C), the universal
covering group of the complex special orthogonal group SO(2n+1, C), and
consider the spin representation of G*. The dimension of the representation space
is 2". We denot by P the complex projective space of all complex lines through
the origin in the representation space, and by V the G*-orbit in P through the
point determined by the highest weight vectors. Since the center of G* leaves every
point on P fixed, V is a quotient space of SO(2n+1, C).

Making use of the Clifford algebra ([1]), one can study the spin representation
in detail and identify V with the space of all maximal isotropic subspaces in C*"**
with respect to a non-degenerate symmetric biliear form (cf. [6], Chap. IV, §9).
Further, a concrete description of this projective imbedding V—P in terms of a
suitable coordinate system of V can be obtained ([5], Lemma 2.1).

On the other hand, in his book, Elie Cartan introduces the above projective
imbedding V— P in an explicit form without ado ([3] Chap. V, 92), and takes this
setting as the starting point of his spinor theory. In this article, we attempt to shed
light on this Cartan’s approach.

We show first how this projective imbedding arises naturally within the
context of the space V of all maxmal isotropic subspaces (§1), The process of
determining coordinate transformations associated to a suitable coordinate chart
covering of V leads to a holomorphic line bundle F over V with the property
that, the square F@F is the n-th exterior product of the vector bundle whose fibre
over a point V is the vector space V itself. The projective imbedding in question
is determined by a vector space of holomorphic sections of the line bundle F~'. In
this section, a certain determinant (Lemma in 1.5) plays a crucial role.
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Next, we observe that the Lie algebra of holomorphic vector fields on V
induced by the SO(2n+1, C)-action is the restriction to V of a Lie algebra of
infinitesimal projective transformations on the complex projective space P (§2).
Thus, we have an isomorphism of 80(2z+1, C) into 8I(2”, C), which is the spin
representation. This is one way to reach E. Cartan’s original description of the spin
representation ([2], XV. 37).

1. The manifold of maximal isotropic subspaces

1.1. The real cartesial space R™ is contained in the complex cartesial space
C™ canonically and its standard inner product extends to a complex symmetric
bilinear form on C™, which will be denoted by S.

A vector v in C™ is said to be isotropic if S(v, v)=0, and a complex subspace
V of C™ is said to be isotropic if the restriction of S to V is identically zero.
Suppose that a complex subspace V is isotropic, then its complex conjugate
subspace V is isotropic, and VN V={0}. Moreover, there is a unique real
subspace U in R™ whose complexfication U¥, i. e., the complex subspace spanned
by U, is V+ V. Hence, dimeU is even. As a special case of Witt’s Theorem, it
is known that every maximal isotropic subspace in C™ is of the same dimension £,
where £ is the maximum integer such that 2k <.

Let V be the set of all maximal isotropic subspaces in C» with rspect to the
bilinear form S, ([3], [6] Chap.IV, 9). Depending on whether # is even or odd,
the description of the set is slightly different. In this papaer, we are concerned only
the case where m is odd.

Suppose that  is odd and m=2xn+1. Using the standard basis {e:; 4=0, 1,
vy 1, 15 ..., %'} of R*"*', we put

eo=eo, e:=(1/V2)(e:i—V—1es), er=(1/V2)(e:+V—Tex).
Then, {e:; A=0,1, ..., », 1, ..., #'} is a basis of C***!, and
S(Zi azex, 22 bae)=avbo+ 2 aibir+ 2 avb..
With this basis, the standard hermitian form is given by
H(Z; azer, 2 bien)=20 aaba.

If v=ae+2 aie;+2 arey, then T=aqoeot+ 2 areit aiew ObViOUSly,
H(u, v)=S(u, 7), u, v C**,

1.2. We shall prove that V is a complex manifold in a primitive way ; we first
choose an open covering of V consisting of particular 2" open subsets with
complex coordinates, and then show that the coordnate transformations are
holomorphic.
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Let us denote by NV the set of integers {1, ..., %} and by N the collection of all
subsets in N, consisting of 2" subsets including the empty set ¢. For A, BEN, A
+ B is the subset of those integers which belong to AU B but not to ANB ([4]
Ch.II, §XI). This addition is not only commutative but also associative ;

(A+B)+C=A+(B+C) for A, B, CEN.

It is useful to notice that A+ B=C implies A+ C=B.
Given A, BEN, we denote by p(A, B) the number of pairs (7, j) such that
i€A, j€EB and >/, and put (A, B)=(—1)*“?_ For A,B,CEN,

e(A, B+C)=¢e(A, B) (A, C) and e(A+ B, C)=¢e(A4, C) B, C).
Let us denote by #(A) the nunber of integers in A. Later we need the equality
( — 1)#(A+C) =(_ 1)#(A+B)( — 1)#(B+C)'

Now, we return to V. Let xo, X1, ..., X, X1, ..., X»- be the complex coordinates
of C***! with respect to the basis {e.}. These coordinate functions form the dual
basis of {e}.

DEFINITION.  Given A={j1, ..., Jo})EN, 1<...<j», we denote by A° the
complement of A in the set N. Put A°={i, ..., iu}, 1<...<ix. Let Va be the
set of all those maximal isotropic subspaces in C*"*', on each of which the
restrictions of n linear functions

Xiry eeey Xiny Xjrry eeey Xijor

are linearly independent. The subset Va will turn out to be open and dense in
V.

The set V is the union of these 2" subsets Vi, AEN.

Proof. Take an arbitrary VE V. We use the same notation for the restric-
tion of x: to the subspace V. We will show that we can choose a basis E of the
dual space of V consisting of # restrictions from {x:} with the properties that xo
does not belong to E and that for each 7(1<7< ), either x: or x belong to E, but
not both. This implies that V" belongs one of Va.

Let E’ be a basis of the dual of V consisting of % restrictions from {x}.
Suppose that xo is a member of the basis £’. We express each x: E’ as a linear
combination of these # members in E’, and obtain #+1 homogeneous linear
equations whose solution space is V.

If xo does not appear in the above z+1 linear equations, then the vector e is
a solution of the these equations, and belongs to the isotropic subspace V. This
is a contradibtion. Thus, the coefficient of xo is not zero in at least one linear
equation, say xi=..., xa& E’ We replace xo by x., obtaining a new basis £ not
containing Xo.



4 J. HANO

Suppose that both xx and xx belong to E for some k. Then, for some /, both
x: and xr do not belong to the basis. As before, write each non-member x; as a
linear combination of members in the base £. Suppose that in the linear equations
for all pairs x; and x» not belonging to £, both X, and x» do not appear. Then,
we can find two vectors

aoeo+ek+2 aéex and b0€o+ ek'+2 bAex

satisfying the system of equations, where the index A in the summations runs
through the collection of A such that x:& E and that if A= then x» € E, and if
A=m’ then x»EE. Since they are isotropic, @o=>5bo=0. We have

S(ek+2 aea, ek'+2 bxe,l):l

This is a contradiction, as these vectors are in the isotropic subspace V.

Thus, for some /, both x; and x» do not belong to E and at least in one of
the two linear equations x;=... and xv... in the system, either x. or X appears
with non-zero coefficient. We can replace one of x» and x» by one of x; and x.
Repeating this process, we obtain a desired basis. We have finished the proof.

1.3. The next step is to introduce a system of complex coordinates on each Va.
Let us begin with the simplest case. By definition, Vj is the set of all maximal
isotropic subspaces in C?"*!, on each of which the restrictions of xi, ..., x» are
linearly independent. A complex n-dimensional subspace V of C*"*' belongs to
V, if and only if V is the space of solutions of the following 7#+1 linear equations
([3], Ch.V, 92):

(1) x0—(v2) 271 Eixi=0,
x5+ (1/V2) €0 — 271 Esixs=0 (1<j<n),

for some (&;, &) in C™*™* satisfying the condition that
Ei+&:=0, (1, j=1, ..., n).

We regard £=(&;, &), i1<J, as the coordinates of V. The map V —€ is a
homeomorphism from Vs onto C™"**V/2

Take an arbitrary VE V, and let (£;, £;) be the coordinates of V determined
by the Cartan equations (1). For each (=1, ..., %), there is a unique solution v;
of the Cartan equations such that x;(v;)= 0. The 7 column vectors vi, ..., U form
a basis of 1 dual to the basis {x1, ..., x»}. The (22+1, %) matrix Ms(V)=(2, ...,
vn) is given by
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N/?SI e \/?En
1 0
0 1
—Elz _Slén_i'éln
—&i&it+
[ =61t ém —&

We will define coordinate functions on V4 for an arbitrary AE N in a similar
way. Put A={j1, -, iu}, 1<---<jyand A°={d, -+, iu}, 1<+ <in By definition,
the restrictions of # linear functions

Xity *°°y Xigy Xjiy *°° X

are linearly independent on each V&€ V4. As in the case of Vo, an # dimensional
subspace V belongs to Vi if and only if V is the solution space of the following
n+1 linear equations :

xo—(ﬁ)(Ea 52‘196:17'{'217 E;::ij')=0,
ij"”(l/ﬁ)fj‘i%‘(za é;':iaxia+2d E.;ijdxid')zo (jbEA),
Xia+(1/V2)Ebxo— (D Eficxic+ 2 Ebinxin) =0 ({aE A°),

for some constants £ (1<7/<n), &4 with £,+E4=0 (1<j, k<n). The map V
>(-ee, &R, -+, €4, +++) defines the coordinates of V/, and the open subset Vi is
homeomorphic to C*"*72,
Take an arbitrary VE Va. For each £ (k=1, -+, ), let v# be a unique vector
in V satisfies the condition that

x (vA):{L if kEA°® and A=k or if kEA and A=F/,
o 0, otherwise.

We denote by Ma( V) the matrix (vf, -+, vs); the A-th row of the matrix is
(8s1, ==+, Orn), if A=RE A° or if A=k" and RE A (§ is the Kronecker’s delta), and
(—EAEL+ER, -, —ERER+ER), iIf A=RE A or if A=F and FEA°.

1.4. Suppose that V& V4N Vs There exists a unique non-singular (7%, #)-matrix
T45( V) such that

(2) MB( V)=MA( V) TAB( V)
Obviously, Tea(V)=Tu( V)™, and if VE V4N VN Ve, A, B, CEN, then
(3) Tac(V)="Tus(V).Tec(V).

The complex vector bundle associated to the family of transition functions ( Va4
N Vs, Tas(V)), A, BEN, is the vector bundle over V whose fibre over V is the
vector space V isself.
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Using the equality (2), we determine the inverse of Tu4s( V). For this purpose,
we put B={4, -, Lo}, h<--<[, and B*={ki, -=-, ko}, l1<--<ks. If A is either
ka or 1y, Ms(V)imn="0um, m=1, -+, n, where |A|=kq if A=Fq, and |A|=1, if A=
ly. From (2), it follows that

(Tas(V) Diaim=Ma( V) im.

Therefore,
—Efont+ &4, iIft€A+B
oy tOm s ’
4 (Tas(V)Dem { Om, otherwise,

for m=1, -+, n.
Thus, the entries of Tas( V) are rational functions of the £’s and £4’s. From
the equality (2), we obtain the following proposition :

On V4N Vs, the coordinate functions EF’s and E%’s are rational functions of
the coordinate functions £f’s and £5’s. Thus, V is a complex manifold of
dimension n(n+1)/2.

We will determine explicitly these rational functions.

1.5. For the purpose we need some definitions ([3] Chap. IV, 92). Given a
positive integer m =2, let x; (1<i<m) and x: (1<, j<m) be variables such that
X+ %;:=0, x:=0. For 1<41, =+, 12a<m, £>2, we put

xil-“izle:(]-/zkk!)z E(jl"'jZk)(le.iz)"'(szk—njzk),

where in the summation {/i, ***, j2x} runs over all permutations of 71, ***, 72, and
€(j1, ***, j2x) denotes the sign of the permutation ji, ***, j2e. Obviously, Xiy..iz is
skew-symmetric with respect to the indecies, i.e., Xijwigeiowie=(—1)Xsiiprigoi.
Another expression of Xi.i;s 1S

2 s(jl"'jZk)(lejz)"'(szte-ljzk)~

Jramr<aas o< < o
From this, it follows that
(%) Kirein= 221 (1)  KigizuXive 7vinre
When the number of indeces is odd and equal to 2£+1, we put
Kivwizenr =(1/2°R1) 2 (1 ors1)(X52) (Xszia)** (Ksansanr)-
Then,
(6) Kireioner = 22t (= 1) Kigiv Tt

Again, Xi..is.: 1S skew-symmetric in indeces.
If A={d, -+, i}, 1<6<--<in<m, we also denote by x4 the function X,
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and if A=9, we put xo=1.
The following lemma is crucial.

Lemma. Suppose that 1<1, -, ix<m. Form a (k, k)-matrix whose (a,
b)-entry is — XX+ Xisin. Then,

det( - xiaxib + xiaib) =( - l)k(xﬂ'"ik)z-

We will carry out the computation of the above determinant at the end of this
section.

1.6. We return to the manifold V. On the open subset Vi, the function &% is
defined in terms of the coordinate functions £#’s by (5) or by (6) in the same way
as xg is defined, for each BEN.

Applying the above lemma on the matrix ( 74z)”", whose form is given by (4),
we have

(7) det (Tup) ' =(—1)"**P(&4+5)* on VaN V5.

One implication of the above equality is that Vi V3 is the subset of Va
where the function &4+5 does not vanish, and is connected and dense in V. This
follows from the facts that £4+s is not identically zero and the subset of Vi
consisting of the points where the function does not vanish is connected and dense,
and that the matrix Taz(V) is non-singular if and only if V& VaN Vs Now, it
is clear that the intersection of any number of open subsets V4’s is connected and
dense in V.

To state another implication of (7), we remark that from Tpa=(7us)7", it
follows that

(8) ($g+A)_2=(E£+B)2 on VAﬂ VB.

By the equalities (3), (7) and

(__1)#(A+C):(_1)#(A+B)(_1)#(B+C)

we have
) (Eﬁarc)_z:(SA+BA)_2(EE+C)—2 on VaN VN Ve,

The equalities (8) and (9) yield the following :

The family of the transition functions (Va0 Vs, (E4:+5)7%), A, BEN, defines
the holomorphic line bundle L over V whose fibre over a point VE V is the n-th

exterior product N"(V) of the vecor space V. (In fact, the set of transition
functions (VaN Vs, (—1)"“*?) defines the trivial line bundle.)

1.7. The purpose of this section is to prove the following
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Theorem 1. The set
{(VaN Vs, (A, A+ B)(&4+5)7Y), A, BEN}

is a collection of transition functions and defines a holomorphic line bundle F
over V such that F*=L.

Proof. It suffices to show that
e(B, B+A)(E8:4)'=e(A, A+ B)(&4:5) on VaN V3,
and
(10) e(A, A+ C)(Edic) ' =e(A, A+ B)(éi+5)'e(B, B+ C)(é8+0)™

on VaNVeN Vg, for A, B, CEN.

The first equality is a special case of the second one (10) where C=A, as A
+C=¢ and £&3=¢(A, ¢)=1. In the second equality, we put B+ C=D(C=B
+D). We will verify the equality rewritten in the following form :

(11) e(B, D)éf=e(A, A+B+D)&4 s:0(e(A, A+ B)Edrs)™

on V4N V3, for any A, BEN.
Furthermore, it is sufficient to prove the equality (10) for the case where A=
@. In fact, we can easily derive (11) from the equality

(12) 5(3, D)Eg:Eg+D(Eg)—l on V¢ﬂ VB,

for arbitrary B, DEN. In the rest of the proof, we drop the superscript ¢ from the
functions £%.

By (9),
(€8)*=(€p+p) (€)% on V,N Vp, for any DEN.

Thus, the squares of both sides of the equality (12) are equal. Since the open set
Vs V3 is connected, it suffices to verify (11) at one convenient point in V,N V3
where both sides of the equality do not vanish. Let us choose a point V1 in V,
given by &=1(1<7/<n), Ex=1(1<;<k<mn). Then, &(Vi)=1 for every DEN.
Hence Vi€ V,N Vi by the remark made right after (7). What we need is to show

(13) 8(V1)=e(B,D) for every DEN.

In order to prove the equality (13) for D={7}, we look at the first rows of both
side of the equality (2) M(V1)=My( V1) Tes( V1). Then,

(14) (EE(V1), ==, EXVON Tas(V)) ' =(&( W), ..., &()=(1, ..., 1).

Using the expression of the matrix (74s)" given by (4) and the equalities
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0, if 1<y,
(&&i+Ey)(Vi)=1—1, if i=/,
—2,1f 1>,
we can easily show that £ V1)=&(B, {7}), 1<i <, satisfy (14). Thus, the equality
(13) is verified for D={i}, 1<i<n.

Using (2) in a similar way, we prove the equality (13) at the point Vi for D
={i, j}, 1<i<j<mn. For an arbitrary D with #(D)>2, we verify (13) easily by
making use of the definitions (5) and (6) for &3 in 1.5 and a remark on &(B, *)
in 1.2. We have finished the proof of the theorem.

Corollary 1. The cooordinate transformation on Vi Vg is given by

El=e(A+B, {i})éirpre(E4in)7Y, (=1, ..., n),
F=e(A+B, {7, /N)Efisrun(Edrs) ™, 1<i<j<n).

Proof. By putting D={7} and {7, j} in (11), we obtain the above results.

Corollary 2. For each CEN,
{(Va, e(A, A+C)E4ic), AEN}

defines a holomorphic section sc of the holomorphic line bundle F~'. The set of
holomorphic sections {sc, CEN} determines a map ¢ from V into the complex
projective space P*"~'. To be precise, if V& Va, the image ((V)EP” ' is the
point with homogeneous coordinates

[e(A, A)EAV), ..., (A, A+ C)éL:c(V), ..., e(A, A)EL(V)].

The map ¢ is a holomorphic imbedding of the complex manifold V into the
complex projective space P,
The restriction of ¢ to Vy is given by

(15) V oll, L, E(V), L, EMV))
The expression (15) is found in Cartan’s Lecture notes [3].

Proof. The equalities (10) shows that indeed sc is a secton of the line bundle
F~'. Suppose that for VE V4 and V'E Vi, «((V)=c(V’). As VE V4, the A-th
homogeneous coordinateof ¢( V) is £4(V)=1. As V'E Vs, the A-th homogeneous
coordinate of the same point is c£5+4(V’) with a non-zero constant ¢. Thus, ££+4
(V")#0, and hence V'E V4 by the remark following (7). The map ¢ is obviously
injective on V4 by definition. We have shown that V' =V’. The holomorphic map
¢ is imbedding.
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1.8. Proof of the lemma (1.5). We use the same notations as in 1.5. In order to
prove the Lemma, it suffices to verify the equality

X1X1 X1Xe+ X1

det =(%1...2)%
XiX;+ Xis
XeX1+ Xr1 XeXr

We sketch the computation of the determinant. We begin with the case where

x1=...=x,=0, and the matrix is skew-symmetric. It is known that,
_ ((x1-#)? if % is even,
dEt("“)*{ 0, if % is odd.

Further, we need the determinant of the minor matrix A obtained by deleting the
a-th row and the b-th column of the matrix (x).

detAabz{ 0, if % is even,

One verifies the result by induction on %. Applying elementary column operations
on the matrix Ag, one get a matrix of the form

0 xiz! * *
2o 0 Lk .. *
0 0:

(yij)
0 0:

where V=122 — X102 — X1:X52) [X12. Since v+ v;=0, one can use the induction
hypothesis and obtains

det Aco=(x12)*¥3..0..4¥3..5..4.
Making use of the equality
X12Y3..a. k= X1..a..k

([7], p. 95), one finishes the computation.

Retern to the general case. Consider the determinamt in question as a
polynomial of the x;;’s. The degree of the polynomial is at most 2. We denote by
Pv its homogeneous component of degree v. FPy=det(xx;)=0. Further, one
verifies easily that Pi=...=P._»=0,

0, if » is even,

Pk-l=2a,b(-l)‘”"anbAaF{(xl,,.k)Z if » is odd, and
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(x1-2)% if 7 is even,

Pk:[ 0, if # is odd.

We have finished the proof of the lemma.

2. The spin representation

2.1. The purpose of this section is to construct the spin representation of the
complex orthogonal Lie algebra 30(2z+1, C) by making use of the projective
immersion ¢: V—P¥! given in Corollary 2.

We donote by Gc and by G the matrix representations of the complex special
orthogonal group SO(2z+1, C) and the special orthogonal group SO(2n+1)
respectively, with respect to the basis {e:} of C*"*' defined in 1.1. The group Ge is
the set of all complex (2#+1, 2%z+1) matrices with determinant equal to 1 and
leaving the symmetric bilinear form S invariant. Obviously, a matrix belonging to
G maps a maximal isotropic subspace with respect to S onto a maximal isotropic
subspace. The group G is the intersection of Gc and the unitary group U(2z+1).

As in the previous section, we donote V the set of all maximal isotropic
subspaces in C*"*!. The group G acts on V transitively and hence so does the
group Gc. We present a proof.

The subspace V5 spanned by ey, ..., €, is a maximal isotropic subspace. Take
an maximal isotropic subspace V, and choose an orthonormal basis {A, ..., fa} of
V with respect to the hermitian form H (1.1). Let f; denote the complex
conjugate of f; with respect to R***!. Then there exists one and only one unit
vector fo which is orthogonal to fi, ..., fa, f1, ..., f» and satisfies the equality

aANeiN..NexNCIN N Ca=LAAN N2 FIN A Fa

Arranging these 2#2+1 column vectors fo, fi, ..., fa, f1, ..., fn, Wwe obtain a
matrix belonging to G, which maps e; to f; and 2, to f; (1<i<#), and hence Vo
to V. Thus, G acts transitively on V.

Let g and gc be the Lie algebras of G and G. respectively. A complex (2z+1,
2n+1) matrix X belongs to gc, if and only if its entries X, satisfy the following
conditions :

Xoo=0, XOi’:—XiO, X0i=—Xi'0, Xi’j':—)(ji,
Xiy=—Xji, Xvs=— Xy, (i, 1=1, ..., n),

and X belongs to g, if and only if X is skew-hermitian and belongs to gc.

2.2. The action of G (resp. Gc) an V induces the Lie algebras of vector fields
anti-isomorphic to g (resp. ac). Let us express these vector fields on V, in terms of
the coordinates introduced in 1.2. Since we are only concerned with the open
subset V, in this section, we delet the superscript ¢ from the notations of coordi-
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nate functions.

Take an arbitrary VE V, and let (&, &) be the coordinates of V' determined
by the Cartan equations (1). As in 1.3, for each i(1<i<wm), v: is the solution of
the Cartan equations such that x;(v;) =0y, 1<j<n. The % column vectors v1, ***,
vn form a basis of V.

Take X Egc, and put g.=exp tX. Given VE V,, if the absolute value of ¢
is sufficiently small, 0:.V is in V,, and is spanned by 0:.v1, ***, 0+.U». The Cartan
equations for 0:.0; are

xo(o‘t.vl)—(l/ﬁ)Z?:l Ei(dt- V)xi(dt.vz)=0,
xj'(o‘t.l)z)+ ﬁ&(m. V)xo(o't.l)z)— 2?:1 éij(dt. V)xi(at.vz)=0,
(1<j<n).

We differentiate both sides of the equalities at {=0 and obtain

) E(X)=(d/dti0)E(0:. V) =1/ V2)( Xoi+ X, Xoi(Eis+ E:E5))
— 20 X5i&— 25 < nXin(Eiéni— Eréi), (1<i<m),

éij(X)E(d/dttzo)gij(dt- V)
2) =(1/V2){(Xo:&i— Xoi;+ X uXow (€€ ni+ EsEri)}
+ Zk(inEjk _ijélk) + Xi’j - 2k<lel,(£ik$lJ~ gilékj),
(1<i<j<n).

The holomorphic vector field
3) E(X)=30£(X)0/ 08+ D i<;6 4(X)0/ 0E

is the (1,0)-component of the real vector field on V,, induced by the one parameter
group exp tX. The correspondence X —&(X) is a Lie algebra anti-isomorphism.

2.3. The next step is to lift the vector field £(X) on VEge, to an infinitesimal
projective transformation #(X) on P?*"—1 by making use of the projective immer-
sion ¢ : V—P”" defined in Corollary 2.

Let [24], AE N, be homogeneous coordinates on P?"~. We denote by U, the
open subset in P**"! defined by z,+#0. Putting ua=24/2y, for A%+ ¢, we have a
system of coordinates (z4) on U;. We denote by N’ the subset of N omitting the
empty set ¢. It is convenient to stipulate that #s=1. By (15),

ua(c(V)=£E4(V), AEN’, for VE V,.
From the definition of &;..;, for £=3 ((5) and (6) in 1.4), we have

—e({a}, (i iu))Eiion, if i€{G1--1x), and if % is odd,
0, otherwise,

35i1--~ik/85,-={

and
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_ (—e(k}, {i- i) i, if{jRC{i 44},
aé”'"”’/a&k_{ 0, otherwise,
where j<k.
Keeping these in mind, we define the following vector fields on U, :
4) 0/ou:+ P —e({d}, {or-in}) e 7,0/ Oty i

(i i) Dk odd, £23
where 1<, <<, <n, (1<:<#), and

(5 0/oun+ 22—k}, {ivri))this 510/ O,
(i i) DUk}, k>3
where 1< < <, <n, (1<j<k<n).

These vector fields are tangent to the image ¢( Vy), and the vector field 9/0&;
(resp. 0/0&;z) is t-related to the vector field (4) (resp. (5)) on Us. A vector field YV
on V, and a vector field Z on Uy are said to be ¢-related, if at each point pE Vi,
the image of Y5 under the differential ¢« is Z.») ([4], Chap. III).

2.4. Given a (2% 2")-complex matrix X*, the one-parameter group exp tX*
induces a vector field on C*" and on P —1. If X*=(X*453), the (1, 0)-component
of the corresponding vector field on C*" is

ZA(ZBX*ABZB)a/aZA,
and that of the vector field induced on Us is
(6) ZAM{ZBeN(XfBMB—XJB uBuA)}a/auA.

The correspondence which assings to X*€2((2”, C) the holomorphic vectorfield
(6) on Uy is an anti-isomorphism.

If the vector field (6) vanishes on the submanifold V,, then X* is a scalar
matrix and its infinitesimal projective transformation is identically zero. This is an
immediate consequence of the following fact :

Given AEN’, the polynomials in the set

{€s; BEN}U{&s6a; BEN'}

are linearly independent over C on V,(=C***),

We prove this proposition by induction on #. When n=2, we verify it by
inspection. Next, we show that the polynomials £5’s BE N, are linearly indepen-
dent by induction on #. Suppose that 20 cs€s=0. Apply d/0&» on both sides of
the equality and obtain a linear equation involving only those &c’s, where C=B
+{7}, nE B, and #(B) is odd, by the formulas for derivatives in 2.3. By induction
hypothesis, cs=0 if #E B, and #(B) is odd. Do the same with 9/, 1<;7< n.
After thses operations, the original equality is reduced to 2 cz€&s=0 where all B’
{1, ..., n—1}. By induction hypothesis c=0. Thus, cz=0 for all B.

If a given set A is {1, ..., n}, using degrees of polynomials and the linear
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independence of {£&s; BE N}, we can prove the claim easily. If A#(1, ..., n}, say
AC{l, ..., n—1}, applying 0/0&, and 0/0&,, in the same way as above, we prove
the statement.

2.5.

Thorem 2. Given a matrix X Egc, there corresponds one and only one
matrix X*€381(2", C) such that the infinitesimal projective transformation in-
duced by X* on P*""' is t-related to the vector fied £(X) induced by X on Vs
((3)). The correspondence X +— X* is an isomorphism and is the spin representa-
tion of the Lie algebra 30(2n+1, C). Under the isomorphism the image of g is
contained in 3u(2").

Proof. We denote by Eu. the (22+1, 2%2+1) matrix whose (4, w)-entry is 1
and all other entries are zero, for 4, ©=0, 1, ..., 1/, ..., #/, and similarly by E*4s
the (27, 2") matrix whose (A, B)-entries is 1 and all other entries are zero, for A,
B&EN. The Lie algebra gc is generated by

EOi_Ej’O, on'—Ez‘o, 1<i<n.

Let X be one of these generators. First, we choose a vector field #'(X) on U,
so that £(X) and #'(X) are ¢-related. In the expression of £(X) given by (1), (2)
and (3), we substitute &;, £z, 0/0€; and 0/0&x by u:, u;x, the vector field (4) and
the vector field (5) respectively, and obtain a desired 2’(X). Next, adding to z'(X)
a suitable vector field on U, vanishing on the submanifold V,, we have a vector
field #(X), which is not only ¢-related to £(X) but also an infinitesimal projective
transformation induced by some X*&38((2", C). Once such X* is found, it is
unique in virtue of 2.4.

If X=_Eo;—Ejn,
E(Eoi— Ew0)=(1/V2)(0/08:+ Zj.5<: £:0/0&s:— 235,:<i€:0/0E32).
On account of the equality for an even &
2=~ usuui 5. =0 on Vs,
we put

M(EM_E:"O):
(1/V2)Zi..m(— 1) {7}, {ir...iu)) i.....0.0/00s,. 0

(1<n<...<ix<n).

Then, u(Eo;— Eno) is the infinitesimal projective transformation associated to
the (27, 2™) matrix

(7) (1vV2) 24, ica(—1)e(A, {1 E*ansa),
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and is ¢-related to &(Eo:— E o).

If X=FEow—Eiwn, E(Eoww—FE:i)=1/V2){Zi(Eis+E;E:)0/06;+ 2 ;<n(Es€in
— Ex€i3)0/0E ).
Using the equality for an even &

E(= 1)  Uigithin e = Uil iy— Uirenigs ON Vg,

we put
u(Eor— E0)=(1V2) X i — Uiyini + Uithi... ) 0)0U it (1 < 1: < .. < 1 < 1),

which is ¢-related to £(Eo~»— E ), and is the infinitesimal projective transformation
determined by the matrix

®) (1/V2)Zaen: iwa(=1De(A, {iDE* aar

in 812", C).

Since the ¢-relatedness between £(X) and #(X) preserves the bracket product,
it is obvious that there is a unique isomorphism s from g. into 8I(2”, C) which
maps Eo:— Eo to the matrix (8) and Eos.— Eio to the matrix (9), 1<i<#.

In order to show that s is the spin representaton, let

H=J-12{Eus—Evv), AER.

The subspace spanned by these diagonal matrics is a Cartan subalgebra in gc.
From the equalitiy

E;— Ei'i’:[EOi—Ei’O, Eoir— Eio], 1<:<m,
in follows that
9 S(H)=v—1 Za-ar(1/2 2y i— Za=1* Aid) i inptininh-

Thus, the highest weight of the representation s is (1/2)2}; A;, and s is the spin
representation.
The compact form g is generated by

—(1/V2)(Eoi— Evo+ Eoir— Ex),
(V=1/V=2)(Eoi—Eio+ Eor—Ei0), 1<i<mn,

and their images under s are

(l/Z)ZAEN €<A, {i})E:AHi),
(*/_—1/2)2,4@: S(A, {i}>8(Ay {Z.})E:A+(ih

where 0(A, {i})=—1if i€A, =1if i¢ A, respectively, 1<:/<#n. These matrices
are in 8u(2”) and hence s(g)C2u(2”). We have finished the proof.
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2.6. Under the spin representation s : 80(2z+1, C)—3l(2", C),
S(Eoi—En)=1/v2)2 4. ica(—1)e(A, {i}) Efasiay, 1<i<m;
S(Eor—Ei)=1/v2)Zaen. iea(—1)e(A, {i})Efariy, 1<i<n;
S(Ei—Eir)=1/2{~Z ey icaEtat Zacy, ieaBXa}, 1<i<m;
S(En—Exi)=Za, a5iwe(A, jRN(EXiiiarin— Efvmarn), 157, k<n;
S(Eiv—Er;)=Za, asiw(—1)e(A, (JE}) Efasiiny, 1<j<k<n;
S(Esw—Eri)=2Z 4, asine(A, {(JEY) EX+iina, 1<j<k<n.

2.7. The Clifford algebra a over the vector space R***' equipped with the stan-
dard inner product is the quotient algebra of the tensor algebra over R***! modulo
the ideal generated by v®uv+(v, v)1, v R**** ([1], [3] and [6]). It is known
that the spin representation is associated to a representation of the Clifford algebra
a on the same representation module C*". Here, we give its description. We use
the same notation s for the representation.

Let {e:} be the standard basis of R***! as in 1.1. The algebra a is generated by
1 and the €i’s. We set

s(e0)=v—Taen(—1)* P Exa,
s(e)=vV—1Zaen(—1)*We(A, {i}) Exasia,
s(er)=vV—=1Zaen(=1)*De(A, {i})(A, {i}) Exasia,
where 8(A, {i})=—1if €A, =1if i€ A1 <i<n). Then, for v=Ziv:e:E R*"*",
s(v)*+(v, v)I=0. Thus, s is a representation of the algebra a. Moreover,

s((1/2)eve))=—s(Eoi—Ew), and s((1/2)eoes)=—s(Eos— Eo)(1<i<n).
Hence, the spin representation is determined by the above representation of the
algebra a.

2.8. Let g1 be the subalgebra in g consisting of matrices X with
XoozXOi’zXio=X0i=Xi'0=0(i=1, ) n)

The subalgebra is isomorphic to the orthogonal Lie algebra 0(27). From the result
2.5, it is easy to show that the restriction to g of the spinor representation of 0(2#%
+1) on C*" is the direct sum of the two inequivalent irreducible representations.
The subspace in C*" of vectors 2 whose components 24=0 if #(A) is odd, is an
irreducible gi-module whose highest weight is (1/2)(A1+ -+ A,) ; the subspace of
vectors 2 with z4a=0 if #(A) is even, is also irreducible and its highest weight is
(1/2)(A+ -+ An-1—An).
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