<table>
<thead>
<tr>
<th>Title</th>
<th>A q-analogue of Young symmetrizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Gyoja, Akihiko</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 23(4) P.841–P.852</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1986</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/4787</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/4787</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Let W be the symmetric group on the set of n letters $\{1, 2, \ldots, n\}$, $s_i \ (1 \leq i \leq n-1)$ the transposition $(i, i+1)$ in W, and $S = \{s_1, s_2, \ldots, s_{n-1}\}$. Then every element w of W can be expressed as $w=s_1s_2\cdots s_{i_1}(1 \leq i_1 \leq n-1)$. We denote the minimal length of such an expression by $l(w)$, i.e., $l(w) = \min \{l\}$. Let $K = \mathbb{C}(q)$ be the field of rational functions in one variable q over the complex number field \mathbb{C}. The Hecke algebra $H = H(q)$ of W is defined as follows: H has a basis $\{h(w)\}_w \subseteq W$ which is parametrized by the elements of W. The multiplication is characterized by the rules

$$(h(s)+1)(h(s)-q) = 0, \quad \text{if } s \in S,$$

$$h(w)h(w') = h(ww'), \quad \text{if } l(w)+l(w') = l(ww').$$

Notice that H is a q-analogue of the group algebra $\mathbb{C}W$ of W in the sense that when q is specialized to 1, H is specialized to $\mathbb{C}W$. It should also be mentioned that the Hecke algebra can be defined for a general Coxeter system (W, S) (see [2, Chap. 4, §2, Ex. 23]).

As is well-known, a complete set of mutually orthogonal primitive idempotents of $\mathbb{C}W$ is constructed by A. Young (see, for example, [6], [9]). Our main theorems are (3.10) and (4.5). In these theorems, we give a complete family of mutually orthogonal primitive idempotents of H, which is specialized to the one constructed by Young, when q is specialized to 1.

The present work was motivated by a question posed by Dr. M. Jimbo in connection with his investigation [7] of the Yang-Baxter equation in mathematical physics. The author would like to express his thanks to Dr. M. Jimbo.

1. Let (W, S) be a Coxeter system, w an element of W and $w=s_1s_2\cdots s_n \ (s_i \in S)$ a reduced decomposition of w. See [2; Chap. IV] for the fundamental concepts concerning Coxeter systems. It is known and easily proved by using [2; Chap. IV, n° 1.5, Lemma 4] that the set

$$\{s_{i_1}s_{i_2}\cdots s_{i_p} | 1 \leq i_1 < \cdots < i_p \leq n, 0 \leq p \leq n\}$$

* This research was supported in part by Grant-in-Aid for Scientific Research, The Ministry of Education, Science and Culture.
is uniquely determined by \(w \) and does not depend on the choice of a reduced decomposition of \(w \). If an element \(x \) of \(W \) is contained in this set, we write \(x \leq w \). The partial order defined in this way is called the Bruhat order.

Assume, from now on, that \(W \) is finite. It is known that every representation of the Hecke algebra \(H=H(q) \) can be afforded by a \(W \)-graph [5]. The precise definition of a \(W \)-graph is irrelevant here. What we need is that, for every finite dimensional representation \(\rho_q \) of \(H \), by an appropriate choice of a basis of the representation space, the elements \(h(w)(w \in W) \) are represented by matrices over \(C[q] \). Hence we can obtain a representation \(\rho_1 \) of \(W \) by the specialization \(q \to 1 \). This fact is used, for example, in the following way.

Let \(\chi_q = \text{trace } \rho_q \), \(\chi_1 = \text{trace } \rho_1 \) and \(\chi_q = \sum_i m_i \chi_i,q \) the irreducible decomposition of \(\chi_q \). By [3], we have

\[
\sum_{w \in W} \chi_q(h(w))\chi_q(q^{-1}(w)h(w^{-1}))/\sum_{w \in W} q^{\ell(w)} = \sum_i m_i(d_{i,q}/d_{i,1}) ,
\]

where \(d_{i,q} \) is the generic degree of \(\chi_i,q \) [1; Definition (2.4)] which is known to be a polynomial in \(q \), and \(d_{i,1} = (d_{i,q})_{q \to 1} \), which is equal to the degree (i.e., the dimension of the representation space) of the representation affording \(\chi_i,q \). By the specialization \(q \to 1 \), we get

\[
\sum_{w \in W} \chi_i(w)\chi_i(w^{-1})/\text{card } W = \sum_i m_i^2 .
\]

Hence \(\rho_q \) is irreducible if and only if \(\rho_1 \) is irreducible.

We will use this kind of "specialization argument" very often without mentioning the details.

From now on, we assume that \(W \) is the \(n \)-th symmetric group acting on \(\{1, 2, \cdots, n\} \) and \(S = \{s_1, s_2, \cdots, s_{n-1}\} \), where \(s_i = (i, i+1) \). See [6] for the fundamental concepts concerning symmetric groups.

For each partition \(\lambda \) of \(n \), we can define two standard tableaux \(T_+ = T_+(\lambda) \) and \(T_- = T_-(\lambda) \), e.g., if \(\lambda = (5 \ 4 \ 2 \ 1) \),

\[
T_+(\lambda) = \begin{array}{cccc}
1 & 2 & 3 & 4 \\
6 & 7 & 8 & 9 \\
10 & 11 & 12 & 13 \\
14 &
\end{array}
\]

\[
T_-(\lambda) = \begin{array}{cccc}
1 & 5 & 8 & 11 & 14 \\
2 & 6 & 9 & 12 \\
3 & 7 & 10 & 13 \\
4 &
\end{array}
\]

We omit the exact definition of \(T_\pm(\lambda) \). Let \(I_+ = I_+(\lambda) \) (resp. \(I_- = I_-(\lambda) \)) be the set of \(s_i \)'s which preserve each row (resp. column) of \(T_+(\lambda) \) (resp. \(T_-(\lambda) \)) as a set.
For example, if \(\lambda = (5 \ 4 \ 2 \ 1) \), then
\[
I_+ = \{ s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_{10}, s_{11}, s_{12} \}
\]
and
\[
I_- = \{ s_1, s_2, s_3, s_5, s_6, s_8, s_9, s_{11}, s_{12} \}.
\]

Let \(W_\pm = W_\pm(\lambda) \) be the parabolic subgroups of \(W \) generated by \(I_\pm \), and
\[
H_\pm = \sum_{w \in W_\pm} K h(w).
\]
Then \(H \) are subalgebras of \(H_\pm \). Let
\[
(1.1) \quad e_+ = e_+(\lambda) = \sum_{w \in W_+} h(w)
\]
and
\[
(1.2) \quad e_- = e_-(\lambda) = \sum_{w \in W_-} (-q)^{-t(w)} h(w).
\]

Since, for each \(s \in I_+ \),
\[
e_+ = \sum_{w \in W_+} (1 + h(s)) h(w),
\]
we have
\[
h(s) e_+ = q e_+.
\]

Hence
\[
h(w) e_+ = q^{t(w)} e_+ \quad (w \in W_+).
\]

In the same way, we can show that
\[
h(w) e_+ = e_+ h(w) = q^{t(w)} e_+ \quad (w \in W_+),
\]
and
\[
h(w) e_- = e_- h(w) = (-1)^{t(w)} e_- \quad (w \in W_-).
\]

From these equalities, we get
\[
e^2_\pm = P_\pm e_\pm,
\]
where
\[
P_\pm = P_\pm(\lambda) = \sum_{w \in W_\pm} q^{t(w)}.
\]

The left \(H \)-modules \(H e_\pm \) are isomorphic to the induced representations \(H \otimes \mathcal{E}_\pm \), where \(\mathcal{E}_\pm \) are the one-dimensional \(H_\pm \)-modules denoted by
\[
h(w) v = q^{t(w)} v \quad (v \in \mathcal{E}_+)
\]
and
\[
h(w) v = (-1)^{t(w)} v \quad (v \in \mathcal{E}_-)
\]
By the classical result of A. Young and by the specialization argument, we have
\[\dim_k \text{Hom}_H(He_\pm, He_\pm) = 1. \]
Take (non-zero) intertwining operators
\[f_\pm \in \text{Hom}_H(He_\pm, He_\pm). \]
The images of \(f_\pm \) do not depend on the choice of \(f_\pm \). Thus we have the following result.

Proposition 1.3. Let \(V_\pm = V_\pm(\lambda) \) be the images of \(f_\pm \). Then \(V_\pm \) are irreducible \(H \)-modules and
\[f_\pm : V_\mp \longrightarrow V_\pm. \]
Every irreducible representation of \(H \) can be realized uniquely as \(V_+ \) (or as \(V_- \)).

REMARK. It is known that every irreducible representation of \(H \) is absolutely irreducible [1].

2. The purpose of this section is to construct a \(q \)-analogue of the Young symmetrizer. The main result of this section is (2.2.1).

2.1. First, let us determine \(f_+ \) explicitly. For this purpose, it suffices to determine \(f_+(e_-) \). Since
\[f_+(e_-) = e_-(P_+^{-1}P_-^{-1}f_+(e_-))e_+ \]
and
\[e_-h(x)h(y)e_+ = (-1)^{i(x)}q^{i(\sigma)}e_-h(w)e_+, \quad (x \in W_-, y \in W_+), \]
f_+(e) is of the form
\[\sum_{w \in X} a_w e_-h(w)e_+ \quad (a_w \in K), \]
where
\[X = \{ w \in W | sw > w \} \quad \text{for every} \quad s \in I_-(\lambda), \quad \text{and} \]
\[wt > w \quad \text{for every} \quad t \in I_+(\lambda) \}.

Let \(T_1 \) and \(T_2 \) be standard tableaux which belong to the partition \(\lambda \), and \([T_2, T_1]\) the permutation which transforms \(T_1 \) to \(T_2 \). We write \([T \pm]\) (resp. \([\pm T], [\pm \mp] \)) for \([T, T\pm]\) (resp. \([T_\pm, T][T_\pm, T_\mp] \)), e.g., if \(\lambda = (5, 4^2, 1) \)
\[
\begin{align*}
T & \quad = \\
1 & \quad 2 \quad 4 \quad 7 \quad 14 \\
3 & \quad 5 \quad 6 \quad 8 \\
9 & \quad 10 \quad 11 \quad 13 \\
12 & \quad
\end{align*}
\]
then

\[[T^+] = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 1 & 2 & 4 & 7 & 14 & 3 & 5 & 6 & 8 & 9 & 10 & 11 & 13 & 12 \end{pmatrix}\]

and

\[[T^-] = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 1 & 3 & 9 & 12 & 2 & 5 & 10 & 4 & 6 & 11 & 7 & 8 & 13 & 14 \end{pmatrix}\]

If \(i\) and \(i+1\) are in the same row of \(T_\ast\), then \([T^+](i) < [T^+](i+1)\). Hence

\[(2.1.2)\quad [T^+]s > [T^+]\quad (s \in L_\ast)\,.

In the same way, we can show that

\[(2.1.3)\quad [T^-]s > [T^-]\quad (s \in L_\ast)\,.

Note that \([T_1, T_2][T_3, T_4] = [T_1, T_3]\) and \([++][-][-++]\) consists of permutations which preserve each column of \(T_\ast\). Hence we can restate [9; Lemma (4.2.A)] as follows.

Lemma 2.1.4. For \(z \in W\), the following two conditions are equivalent:

(i) \quad \(zW_+z^{-1} \cap [++]W_-[++] = \{1\}\).

(ii) \quad \(z \in ([++]W_-[++)W_+\).

In fact (ii) \(\Rightarrow\) (i) is trivial. Conversely, assume (i). Let \(T\) be the transform of \(T_\ast\) by \(z\), i.e., \(z = [T^+]\). If there are two numbers \(a, b\) which appear in the same row of \(T\) and the same column of \(T_\ast\), then the transposition \((a, b)\) belongs to \(zW_+z^{-1} \cap [++]W_-[++)\). This contradicts (i). Hence we get (ii) by [9; Lemma (4.2.A)].

Let \([++]z\) \((= [++]\)) be an element of \(X\). By (2.1.2) and (2.1.3), \([++]\) is also an element of \(X\). Hence

\([++]z \in W_-[++)W_+\)

by [2; Chap 4, §1, Ex. 3]. By (2.1.4),

\[zW_+z^{-1} \cap [++]W_-[++) \neq \{1\},\]

i.e., we can find elements \(x_\pm \in W_\pm\) such that

\([++]z)x_+ = x_-(z)z, \quad x_\pm \neq 1\).

By the equality

\[e_-h([++]z)x_+ e_+ = q^{(s_\pm)}e_-h([++]z)e_+\]

\[= e_-h(x_-[++]z)e_+ = (-1)^{t(s_\pm)}e_-h([++]z)e_+\],
we conclude that

\[(2.1.5) \quad e_- h([-+]) e_+ = 0.\]

Hence (2.1.1) is of the form

\[a \cdot e_- h([-+]) e_+ \quad (a \in K).\]

Since \(f_+ \neq 0, a \neq 0\). Note that the above argument shows also that

\[e_- h([T-])^{-1} h([T+]) e_+ = b \cdot e_- h([-+]) e_+\]

with some \(b \in K\). By the specialization \(q \to 1\), \(b\) specializes to 1. Hence \(b \neq 0\). Thus we may assume that

\[f_+(e_-) = e_- h([T-])^{-1} h([T+]) e_+.\]

By the same argument as above, we can also show that

\[f_-(e_+) = e_+ h([T+])^{-1} h([T-]) e_-\]

(up to scalar multiple).

2.2. Now let us construct a \(q\)-analogue of the Young symmetrizer. Since \(f_+(e_-) \in V_+\),

\[f_+ f_-(e_-) = c f_+(e_-) \quad (c = c(q) \in K),\]

i.e.,

\[e_- h^{-1} h_+ e_+ h^{-1} h_+ e_+ e_+ = c e_- h^{-1} h_+ e_+ ,\]

where \(h_\pm = h([T+])\). Hence

\[(2.2.1) \quad (h_- e_- h^{-1} \cdot h_+ e_+ h^{-1}) = c (h_- e_- h^{-1} \cdot h_+ e_+ h^{-1}).\]

By the specialization \(q \to 1\), \((h_- e_- h^{-1}) (h_+ e_+ h^{-1})\) specializes to the Young symmetrizer (corresponding to the standard tableau \(T\)). Hence \(c = c(T) \neq 0\).

2.3. For a standard tableau \(T\) which belongs to a partition \(\lambda\), let

\[E(T) = c(T)^{-1} (h([T-]) e_-(\lambda) h([T-])^{-1}) (h([T+]) e_+(\lambda) h([T+])^{-1}).\]

Let us consider when

\[E(T_1) E(T_2) = 0\]

for two different standard tableaux.

If \(T_1\) and \(T_2\) belong to different partitions, \(E(T_1) E(T_2) = 0\). In fact, if \(\chi_q\) is an irreducible character of \(H\) such that \(\chi_q(E(T_1)) = m \neq 0, \in \mathbb{Z}\), then \(\chi_q(E(T_1))_{q \to 1} = m\). By (3.9) below, which will be proved without using the results
of (2.3), the specialization $E(T_1)_{q^+1}$ is well defined and equal to the Young symmetrizer. Hence $m=1$. In the same way we can show that $\chi_q(E(T_2))=0$. Hence $E(T_1)$ and $E(T_2)$ are (primitive) idempotents which belong to different irreducible representation of H. Hence $E(T_1)E(T_2)=0$.

Assume that T_1 and T_2 belong to the same partition λ.

Lemma 2.3.1. If $T_1 \neq T_2$ and $l([T_1+-]) \geq l([T_2+-])$, then $E(T_1)E(T_2)=0$.

Proof. It suffices to prove

$$e_+(\lambda) h([T_1+-])^{-1} h([T_2+-]) e_-(\lambda) = 0. \tag{2.3.2}$$

By using the fact

$$l(w) = \text{card} \{ (i, j) | 1 \leq i < j \leq n, \, w(i) > w(j) \} \quad (w \in W),$$

it is easy to see that

$$l([T+]) + l([T-]) = l([+-]) \tag{2.3.3}$$

for any standard tableau T. By our assumption,

$$l([+-]) \geq l([T_1+])+l([T_2-]). \tag{2.3.4}$$

Let

$$Y = \{ x_1, x_2 | x_1 \leq [T_1+]-1, \, x_2 \leq [T_2-] \} .$$

Then $Y \cap W_+[+-]W_-=\emptyset$ by (2.3.4). Since we can express $h([T_1+])^{-1} h([T_2-])$ as a linear combination

$$\sum_{y \in Y} a_y h(y) \quad (a_y \in K),$$

the argument of 2.1 shows (2.3.2).

3. The purpose of this section is to determine the scalar $c=c(q)$ which appeared in (2.2.1). Our main result of this section is (3.8).

Let us define a linear functional tr on H by

$$tr h(w) = \begin{cases} g & (w=1) \\ 0 & (w \neq 1) \end{cases},$$

where

$$g = (q-1)(q^2-1) \cdots (q^n-1)/(q-1)^n = \sum_{w \in W} q^{l(w)}. \tag{3.1}$$

It is known [4] that

$$tr(h(x)h(y)) = \begin{cases} gq^{l(x)} & (xy=1) \\ 0 & (xy \neq 1) \end{cases} \tag{3.2}$$
and

\[(3.3) \quad \text{tr}(h_1 h_2) = \text{tr}(h_2 h_1) \quad (h_1, h_2 \in H).\]

By specializing \(q\) to a prime power \(r\), \(H(q)\) specializes to a \(C\)-algebra \(H(r)\) which can be identified with a subalgebra of the group ring \(C\text{GL}_n(r)\) (see \[3\]). It is easy to see that the restriction of the character of the regular representation of \(C\text{GL}_n(r)\) to \(H(r)\) equals the specialization \(\text{tr}_{e \cdot r}\). It is known \[3\] that every irreducible character of \(H(r)\) can be uniquely obtained by restricting an irreducible character of \(C\text{GL}_n(r)\) (which is extended to a linear functional on \(C\text{GL}_n(r)\)).

Let \(\chi(\lambda)\) be the character of \(V_\pm(\lambda)\) (see \(1.3)\) and \(\tilde{\chi}(\lambda)\) the irreducible character of \(C\text{GL}_n(r)\) corresponding to \(\chi(\lambda)_{e \cdot r}\) in the above sense. Let \(d(\lambda, r)\) be the multiplicity of \(\tilde{\chi}(\lambda)\) in the regular representation of \(C\text{GL}_n(r)\), which is also the degree of \(\tilde{\chi}(\lambda)\).

Then

\[(3.4) \quad d(\lambda, r) = \prod_{i \geq 1} \frac{(r \lambda_i + (m-i)) - r \lambda_{i+1}}{(r-1)(r-1)^2 \cdots (r \lambda_i + (m-i) - 1)} \times \frac{(r-1)(r^2-1) \cdots (r^n-1)}{r^{(m-1)+(m-2)+ \cdots}},\]

where \(\lambda = \{\lambda_1 \geq \lambda_2 \geq \cdots \lambda_m \geq 0\}\) (See \[8\].) Let \(d(\lambda, q)\) be the polynomial such that \(d(\lambda, r) = d(\lambda, r)\) for any prime power \(r\).

The above argument shows that

\[(3.5) \quad \text{tr} = \sum_{\lambda} d(\lambda, q) \chi(\lambda),\]

where \(\lambda\) runs over the set of partitions of \(n\). We have

\[(3.6) \quad \text{tr}(h \cdot e \cdot h^{-1} \cdot h_+ e_+ h_+^{-1})
\begin{align*}
&= q^{-l(\lambda-\emptyset)} \text{tr}(h \cdot e \cdot h([+\cdot]) e_+ h_+^{-1}) \\&= q^{-l(\lambda-\emptyset)} \text{tr}(h([+\cdot]) e_+ h_+ h^{-1}) \\&= q^{-l(\lambda-\emptyset)} \text{tr}(h([+\cdot]) e_+ h([+\cdot]) e_+) \\&= q^{-l(\lambda-\emptyset)} \sum_{x \in W_+} (q^{-l(\pm)} e_+ h([+\cdot]) h([+\cdot]) h([+\cdot]) h([+\cdot]) h([+\cdot]) h([+\cdot])) \\&= q^{-l(\lambda-\emptyset)} \sum_{x \in W_+} (q^{-l(\pm)} e_+ h([+\cdot]) h([+\cdot]) h([+\cdot]) h([+\cdot]) h([+\cdot]) h([+\cdot])) \\&= q^{-l(\lambda-\emptyset)} (q^{-l(\lambda-\emptyset)} g) \\&= g.
\end{align*}\]

On the other hand, \((2.2.1)\) implies that \(E = e^{-1} h \cdot e \cdot h^{-1} \cdot h_+ e_+ h_+^{-1}\) is an idempotent of \(V_+(\lambda) h_+^{-1}\). By the specialization \(q \rightarrow 1\), \(E\) specializes to a primitive idempotent. Hence the value of the character \(\chi(\lambda)\) at \(E\) specializes to 1. But a character value at an idempotent must be an integer. Hence \(E\) is primitive. Hence

\[(3.7) \quad \text{tr}(e^{-1} h \cdot e \cdot h^{-1} \cdot h_+ e_+ h_+^{-1}) = d(\lambda, q).\]

By \((3.6)\) and \((3.7)\),
\[c = \frac{g}{d(\lambda, q)} \]

By (3.4), \(c \) can be also expressed as follows

\[c = \frac{\prod (q-1)(q^2-1) \cdots (q^{\lambda_i}(m-i)-1)}{\prod (q^{\lambda_j}(m-j)-q^{\lambda_j}(m-j))} q^{(m_2-1) + (m_2-2) + \cdots + (m_2-n)}. \]

Let us restate our results as a theorem.

Theorem 3.10. Let \(\lambda \) be a partition of \(n \) and \(\{T_1, \ldots, T_f\} \) the standard tableaux which belong to \(\lambda \). Assume that

\[l([T_i-]) \geq l([T_j-]), \quad \text{if} \quad i < j. \]

For each standard tableau \(T \), let

\[E(T) = c^{-1}h([T-])e_-(\lambda)h([T-])^{-1}h([T+])e_+(\lambda)h([T+])^{-1}, \]

where

\[c = \frac{g}{d(\lambda, q)}. \]

Then \(E(T_1), \ldots, E(T_f) \) are primitive idempotents which belong to \(\chi(\lambda) \), and

\[E(T_i)E(T_j) = 0, \quad \text{if} \quad i < j. \]

(See (1.1) and (1.2) for \(e_\pm \), section 2.1 for \([T \pm] \), (3.1) for \(g \), (3.4) and the subsequent lines for \(d(\lambda, q) \).)

4. Orthogonalization of idempotents

The purpose of this section is to give a procedure to construct an orthogonal family of idempotents from a given family of idempotents. By applying this procedure to the family of idempotents \(\{E(T)\} \) which was obtained in the preceding section, we get a complete family of mutually orthogonal, primitive idempotents of \(H \).

4.1. Let \(X \) be a partially ordered set of cardinality \(n \). Let \(I = \{1, 2, \ldots, n\} \) and \(A \) be the set of bijections \(a: I \rightarrow X \) such that \(a^{-1} \) is order preserving. If \(a \) is an element of \(A \) and if \(a(i) \) and \(a(i+1) \) are not comparable, we define a new element of \(A \) by

\[a'(j) = \begin{cases} a(j) & \text{if } j \neq i, i+1 \\ a(i+1) & \text{if } j = i \\ a(i) & \text{if } j = i+1. \end{cases} \]
If \(b(\in A) \) can be obtained from \(a \) by applying this operation several times, we say that \(b \) is equivalent to \(a \) and write \(a \sim b \). This relation is an equivalence relation.

Lemma 4.2. *Any two elements of \(A \) are equivalent to each other.*

Proof. Let \(a, b \in A \) such that
\[
\begin{align*}
a(k) &= b(k) \quad (k < i) \\
a(i) &= b(i) .
\end{align*}
\]

Let \(a(i) = a_0 \) and \(b^{-1}(a_0) = j \). Then \(j > i \) and \(a_0 = b(j) \) is not comparable with any one of \(\{b(i), b(i+1), \ldots, b(j-1)\} \). In fact, if \(b(j) \) is comparable with \(b(k) \) \((i \leq k < j)\), then \(a_0 = b(j) > b(k) \). But \(a^{-1}(b(j)) = i \) and \(b(k) \in \{b(1), \ldots, b(i-1), a_0 \} = \{a(1), \ldots, a(i)\} \), hence \(a^{-1}(b(k)) > i \). Since \(k < j \), this is a contradiction.

Now we can define an element \(c \) of \(A \) by
\[
c(k) = \begin{cases}
b(k) & (1 \leq k < i) \\
b(j) & (k = i) \\
b(k-1) & (i < k \leq j) \\
b(k) & (j < k \leq n) .
\end{cases}
\]

Then \(b \sim c \) and \(a(k) = c(k) \ (k < i + 1) \). Thus, by an induction on \(i \), we can show that \(a \sim b \).

4.3. Let \(X \) be a set of idempotents in a ring with 1. Let us define a relation \(\leq \) in \(X \) by
\[
e \leq e' \text{ if there exists a sequence } \\
(\#) \quad e = e_0, e_1, \ldots, e_n = e' \text{ of elements of } X \\
such that \quad e_ie_{i+1} \neq 0 \quad (0 \leq i < n) .
\]

Assume that
\[\text{(4.3.1)} \quad \text{the relation } \leq \text{ defined by (\#)} \text{ is a partial order} .\]

We can define \(A \) for this partially ordered set.

Remark. If from the beginning, \(X \) is totally ordered and satisfies
\[\text{(4.3.2)} \quad ee' = 0 \quad \text{if } \ e \geq e' ,\]
then (4.3.1) is automatically satisfied. For example the set \{\(E(T_1), \ldots, E(T_p) \)\} satisfies (4.3.2) with any total order such that \(l([T]) \geq l([T']) \) whenever \(E(T) \geq E(T') \).
Lemma 4.4. Let X be a set of idempotents. Let $x \in X$, $a \in A$, $i = a^{-1}(x)$ and $E(a, x) = (1 - a(1)) \cdots (1 - a(i - 1))a(i)$. Then $\{E(a, x)\}_{x \in X}$ are mutually orthogonal idempotents, and each element $E(a, x)$ is independent of $a \in A$.

Proof. If $i > j$, then $a(i)a(j) = 0$. Hence
\[
a(i)(1 - a(1)) \cdots (1 - a(i - 1))a(i) = a(i),
\]
\[
a(i)(1 - a(1)) \cdots (1 - a(i)) = 0,
\]
\[
a(i)(1 - a(1)) \cdots (1 - a(j - 1))a(j) = 0 \quad (i > j).
\]

From these equalities, we can conclude that $E(a, a(i))$ are mutually orthogonal idempotents.

To show that every $E(a, a(i))$ is independent of a, it is enough to prove that
\[
E(a, a(j)) = E(a', a(j))
\]
if a' is obtained from a by the transposition $(i, i + 1)$. There is nothing to prove for $j < i$. For $j = i$,
\[
E(a, a(i)) = (1 - a(1)) \cdots (1 - a(i - 1))a(i)
\]
and
\[
E(a', a(i)) = (1 - a'(1)) \cdots (1 - a'(i))a'(i + 1),
\]
since $a'(i + 1) = a(i)$. Since
\[
a'(i)a'(i + 1) = a(i + 1)a(i) = 0,
\]
we have $E(a', a(i)) = E(a, a(i))$. For $j = i + 1$,
\[
E(a, a(i + 1)) = (1 - a(1)) \cdots (1 - a(i))a(i + 1)
\]
and
\[
E(a', a(i + 1)) = (1 - a'(1)) \cdots (1 - a'(i - 1))a'(i),
\]
since $a'(i) = a(i + 1)$. Since
\[
a(i)a(i + 1) = a'(i + 1)a'(i) = 0,
\]
we have $E(a', a(i)) = E(a, a(i))$. Since
\[
(1 - a'(i))(1 - a'(i + 1)) = (1 - a(i + 1))(1 - a(i))
\]
\[
= (1 - a(i))(1 - a(i + 1)),
\]
(4.4.1) holds for $j > i + 1$.

By the above lemma, we can define a set of mutually orthogonal idempotents
\[
X^o = \{x^o | x \in X\},
\]
where, $x^a = E(a, x)$ for some $a \in A$.

Theorem 4.5. The set

$$\{E(T)^a | T \text{ standard tableau}\}$$

is a complete family of mutually orthogonal primitive idempotents in H.

References

Department of Mathematics
College of General Education
Osaka University
Toyonaka, Osaka 560
Japan