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1. Introduction

In the mid-1980s Thurston showed that certain holomorphjinachical systems
could be classified by purely topological data [3]. Spedifjcdet f: P* — P! be
a rational map from the complex projective line to itself afgdeed > 1. By the
Riemann-Hurwitz formula, such a map hag 2 2 critical points, counted with mul-
tiplicity. Letting C, denote the set of critical points, assarthat thepostcritical set
Pr =0 f"(Cy) is finite.

This classification takes the following form. Suppose moemnegally that f is
an orientation-preserving branched covering of the twesp to itself. Thenf has a
postcritical setP, which we assume is finite. Given two such snfipg we sayf
and g areThurstonequivalent if there is a homeomorphisga: (52, Pf) — (52, P,)
conjugating f tog up to isotopy relative toP,. Thurston then characterized those
branched coverings which are equivalent to rational maps.aldo proved that, apart
from a precisely described set of exceptions knownnésgral Lates examplesthat a
rational map is determined by its combinatorial class. &itlen, this rigidity has been
employed to give, for example, combinatorial descriptiofs/arious parameter spaces
and combination procedures for rational maps, viewed asutjcal systems.

In practice, it can be difficult to determine when two exglicigiven rational
maps, or more generally two branched coverings, are corndially equivalent. It
also of interest to consider similar notions of equivalensbere the postcritical set
is enlarged to include other points, remaining finite andverd-invariant.

Since the notion of combinatorial equivalence is given inmte of topological
data up to isotopy, it is tempting to formulate an algebradtian of this equivalence,
so that one might reduce certain computations to purelybaége problems, a realm
where invariants might be easier to define and compute.

Let G = m(S? — Py). In [4] Kameyama showed that associated to a degree
branched coveringd is a certain homomorphism

fTZG—>Gd><ISd,

where S, is the symmetric group o@ letters, and obtained necessatysafiicient
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conditions in terms off;, g; for f andg to be combinatorially equivalent.

In this work, we give a reformulation of Kameyama’s result sing the classical
non-dynamical notion oHurwitz equivalencef planar coverings and elementary alge-
braic topology. The main result, Theorem 4.1, is essentidintical to Kameyama'’s:
to f, we associate a certain homomorphism

priG— G xSy

and give necessary and sufficient conditions in termg fp, for f andg to be com-
binatorially equivalent. It seems highly probable that &ttff; = p;.

In §2, we define Hurwitz and Thurston equivalence in a more gérsating.
In §3, we define, after some algebraic preliminaries, the homphism g. In §4, we
analyze the dependence pf and prove our main result.

Notation and conventions.
e Branched coverings are continuous and orientation-preger
o Sy: the symmetric group on a set
elLetd > 1 be an integer. lip: X — Y is a function, then the induced “diagonal”
map x — (p(x), ..., o(x)) € Y¢ will be denotedy?.

2. Branched covers

2.1. Branched covers. An orientation-preserving, continuous mgp S% — §2
is a branched coveringf can be written in the formy — z* in local complex coordi-
nates. The integet is thiecal degreeof f at the originx and is denoted defc ).
Pointsx wherek > 1 are calledcritical points of f; their images areritical values
Fix Ao, A1 C S2 with Az finite and Ag C A;. Put

X,':SZ—A,', izl, 2

DeriniTion 2.1, Let B(A1, Ao, d) denote the space of smooth branched covers
f: 82 — 82 such that the critical points off lie im, deg(f) =d, andA; =
f7H(Ao).

2.2. Hurwitz, covering, and Thurston equivalence. Fix Ag, A1, andd ; write
B =B(Ap, A1,d). On B we consider three equivalence relations:
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DeriniTion 2.2.  Let f, g € B. Suppose there exist orientation-preserving homeo-
morphismseo, ¢1: S% — S? such thats;(A;) = A;, i =1, 2 and

(52, Aq) — (52, Aq)

7| s

(52, Ao) T ($2, Ao)
0

commutes. Then we say g,  akurwitz equivalent

If ¢o=1id we sayf ,g arecovering equivalent

If ¢o and ¢, are isotopic through maps agreeing ap we say f ,g areThurston
equivalent (In particular, ¢; sendsAg to Ap, and the restrictionp1|Ag agrees with

$1|Ao).

Thus,
covering eq. = Hurwitz eq.<= Thurston eq.

The converses, generally, fail to hold. Note that pre- angfist-composingf € B by
homeomorphisms preservindp, A1 leaves the Hurwitz class unchanged.

2.3. Covering classification. The general theory of covering spaces and their
relation to fundamental groups (see e.g. [5]) implies thatecing equivalence classes
of elements of3 are in one-to-one correspondence with conjugacy classé@sdek d
subgroups ofri(Xo, -).

The correspondence is induced by the assignment

f = fim(X1, ) = Hp < m(Xo, )

followed by recording the conjugacy class of the imade . Thhe invariant clas-
sifying covering equivalence classes is completely algiebin nature.

2.4. Monodromy and Hurwitz classification. Supposef € B. The general
theory of covering spaces implies that the monodromy (yiglation of 71(Xo, bg) on
the fiber f ~%(bo) obtained by lifting loops based &b is isomorphic to theight reg-
ular action of G on the set of cosetd/ \ G by right multiplication, whereH =
femi(X1, ), b€ fHb).

More precisely, choose coset representatives to write

G=Hg U ---UHgy
with g1 =15. Giveng € G andi € {1, ...,d} there is a uniqug for which

Hgig=Hg;.
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Thereforeg determines a permutatiefig) € S,;, and we write the image ag =
i.o(g). One finds readily that fog g’ € G, this satisfiesi.o(gg’) = (i.0(g)).0(g’).
Thereforeo(g) € S, satisfieso(gg’) = o(g)o(g’). Hence one has a representation
0. G — S,;. A different choice of coset representatives, indices, arjugacy class of
subgroupH changes this representation by postcompositicenkinner automorphism
of §,. Write 0 = oy.

An immediate consequence of the Hurwitz Classification Téwo for planar
branched covers (see e.g. [1]) is

Theorem 2.1. Two branched coveringg, g € B are Hurwitz equivalent if and
only if there is a homeomorphisgy: (52, Ao) — (52, Ao) such thato; = o, o ¢o. UP
to inner automorphisms.

One may interpret this in the following way. The group of amtwphisms of
m1(Xo, b) generated by such mags. and by inner automorphisms acts on the set of
subgroupsH arising as images under induced homomorphfsna$ planar, connected
coverings. The orbits under this action then classify thewiua classes.

A priori the Hurwitz criterion is a mixture of topological dnalgebraic condi-
tions. However, if one presents;(Xo, -) as e.g.<gl,...,gn0 I TL; & = l> where the
generatorg, is freely homotopic iXp to a simple oriented loop aroung, € Ay,
k=1, ...,n0=#Ao, then there are algebraic conditions for an isomorphismumrad-
mental group to be induced by a homeomorphism; see ([7], Thihl)!

3. Definition of p

As before, fixAg, A1, andd and write3 = B(Ap, A1, d). The main result of this
section is

Proposition 3.1. Given f € B, there is a natural induced homomorphism
ﬁfﬁ Go — Gg X Sy
well-defined up to composition by inner automorphisms.
Composition of p” with projection onto the second factor is just the Hurwitz
homomorphismo . However, whereas ; depends only on the image grouf =
f«m1(X1, ), the homomorphisnp Uses crucially themap f. and not merely its im-

age. This is unavoidable: by the proof of ([2]), Prop. 2.1R)is possible for a given
Hurwitz class to contain infinitely many maps in distinct Téton classes.

11 am grateful to Ryan Budney for the timely provision of theference.
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3.1. Algebraic preliminaries. We begin by refining the analysis of the right
regular representation if2.4. We avoid the language of wreath products, and certain
conventions of notation which, although familiar to algabts, might cause confusion
in other readers.

Let G be any group andd a subgroup of finite indéx . Fix a choice asfet
representativedg; }%., of H in G. Giveni andg € G, there is a unique element
h(g,i) of H such that

1) gig =h(g.i)g;.
It is easily verified that
() h(gg',i) = h(g, i)h(g', i.o(g)).
Thus one obtains a homomorphism
p:G—H!' xS <G xS,
where the product in the latter group is written
[(x1,x2, ..y xa), 0] - [(x1, X5, - -, X1), 0] = [(x1X] o, X2X5 s+ oo, XaX)y ), 0.
In particular,

[(x1, .o ooxa), ol P = [t x ), o M.

Given a different choice of coset representatiges B,-g,-, one has that the corre-
sponding homomorphism’ is given by

p/(g) = [(i/\ll’ e l’:ld)’ 1511] . /)(g) : [(i/\lilv RN l’/\l(?l)s 1511]

i.e. differs fromp by postcomposition by an inner automorphismf x S, in which
the projection toS,; of the conjugating element is trivial.

Suppose a conjugatél’ = xHx~* of H is employed in the above construction.
Letc,: G — G be given byc, ¢ ) =x'gx. Given coset representativgs  fék\ G,
put g/ = c(g:). If 0,0": G — S, are as above then one finds that ag,2¥,

(3) o(g) = o' (cx(g))-

Define as abové’(g, j) to be the unique element @i’ satisfyingg)g = '(g,/)8;.0'(s)-
Applying the isomorphisnt, to both sides of the defining equaiil) for thehi 's

gig =h(g,i)gio
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yields, using the definition of the/s,
gicx(g) = cx(h(g, 1))g] o-
Since the element, h(g(i )) lies idl’, by uniqgueness we have
4 h'(cx(g). 1) = cx(h(g, i)).

Using the definition ofp’ we have using Equations (3), (4)

p'(cx(8)) = [(h'(cx(8). 1), - ... W' (cx(g). d)). o' (cx(8))]
[(cx(h(g. 1)), ... cx(h(g. d)), o(8)]

= [()Cil, ) Xﬁl), 1341] : p(g) : [()C, cee )C), 1341]'

This may be summarized in the following diagram:

G L Hd ><JS([

(5) CAl l(‘[(r‘....x)‘l]

G —— H" xS,
o’

Applying this to g =c;1(g) and then writingg forg yields

(6) P =10 x7h), s, ] - px) - p(g) - p(x)F - [(x, - ., x), 1s,]-

That is,

(7) pl=cxop

where X =p(x)~Y[(x, ..., x),1s,] and the conjugation takes place @& x S;. Sum-

marizing still further:
(8) p=p up to inner automorphisms.

If N < H is any normal subgroup ang H — N \ H is the projection then
composingp with the homomorphism § ..., q),ids,]: H* x S; — (N \ H)¢ x S,
induces a homomorphism: G — (N \ H)? x S,. Considering (5), ifH’ = c,(H) and
N’ = ¢,(N) then the induced isomorphis@: N \ H — N’ \ H' makes the diagram
below commute:

G L (N\H)XmSd

(9) Cx J{ l[?ﬁ,ids{,]

G E— (N/\H/)d ><ISd
o’
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Equivalently,
(10) P =[ct.ids,]opoc,a.
Summarizing still further:
(11) 7 =[¢¢,ids,] o7 up to inner automorphisms.

Remark. The induced homomorphism arises from the right action off on the
cosetsN \ G as follows. WriteG :|_],‘.’:1 Hg; and H =||,., Nhy. Define an action
of (N\ H)? x S; on the set of coset®& \ G by

(12) Nhygi[((Nhy,...,Nhy), 7)] = Nhh;gi-.

It is easily seen that this is a well-defined right action, &mat the induced homomor-
phism from (V\ H)? xS, to the symmetric grouy ¢ is injective. Summarizing, the
usual right action ofG on the coseté \ G induces a mafs — Sy\¢ Which factors
throughp, i.e. the diagram

G —2— (N\ H)Y xS,

® | !

G ——  Svgo
commutes. Thus

ker(p) = (] x'Nx,

xeG

the normal coreof N in G (see [6],§1.6). Conjugate group®y N’ yield the same
cores. Thus kef) depends only on the conjugacy classMf , and one has diRcH
that

d
ker(p) = mglegi-

i=1

3.2. Application to branched covers. Fix now b € X3, thought of as also ly-
ing in Xo. Write G; =m1(X;,b), i =1, 2, and let.,: G1 — Go be the homomorphism
induced by the inclusion: X; — Xo; note that., is surjective. LetN1 < G denote
the kernel ofi,.

Fix f € B. We expand on the discussion at the star§®#. Recall that a choice
of homotopy class of patlg: ([0, 1], 0, 1) — (X1, f(b), b) in Xg yields an isomor-
phism ag, : m1(Xo, f(b)) — m1(Xo, b). (Here, we have used; = f~%(Ap), so that
f(b) € Xo.) A pair ag, o of paths yields a pair of isomorphisms differing by an
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inner automorphism ofr1(Xo, b). Abusing notation, we writef,: Gi — Gy for the
composition of the map on fundamental groups inducedfby  with Thus f,. and

its image H =f.(G1) < Go are defined only up to postcomposition by an inner au-
tomorphism and conjugation, respectively. RPut f,#£N1). Then N <« H and the map
f. induces an isomorphisnf,: Go — N \ H since one has

Ly

1 Ny G1 Go —— 1
(14) l f*l f*l 7*1 l
1 N H N\H —— 1

q

The dependence is clear:.ife Go and f] = ¢, o f. then

—/

(15) f.=cxof,

wherex = g (x).
We now apply the construction in the preceding section taiobs homomor-
phism

PriGo— (N\H) xS,
well-d_efined up to the kind of equivalence expresse@dri, Equations (10), (11). The
map f,: Go — N \ H induces an isomorphism
(70, ids,]: G& xSy — (N \ HY % Sy.
By composingp, with the inverse of this map we obtain a homomorphism
pr: Go— G xSy
Equation (15) implies that the diagram

i g
W\ HY xS, L% Gas,
(16) [c?.ids,)] l lid

(72 ids,]

(NI\HI)dNSd GgNSd

commutes. Concatenation of this diagram with the diagran{9)n proves Proposi-
tion 3.1 U

We note here some properties of the homomorphism ~
1. Composition ofp”with projection onto thei th coordinate in the first factor of
G¢ x S; (not a homomorphism) is surjective, since given dnyi ,j , pgtg =
g *hg; makesh g,i ) =h .
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2. The covering space aX; corresponding taVi <1 G, is just the restrictionp; of
the universal coveringyg: Uy — Xo to the connected subspacg = pgl(Xl) (see [5],
Prop. 11.1). Note that this covering is regular with deckugrav; \ G1, which is iso-
morphic viat, to Go.

If f € B, the composition

fopi: Ui — Xo

is the covering corresponding to the conjugacy class of mulpy f.(N1) = N < Go.
Let {b1,...,bs} be a fiber of f above some point. Then each fiper(b;) is the
orbit of a point under the deck group; \ G % Go. The monodromy action otg
on the fibers off o p; is imprimitive, since it preserves thé  blocks *(b;). The
discussion of monodromy i§2.4 and that at the end @f.1 together then make this
observation manifest algebraically by showing that thiSoacfactors througtp,. Re-
calling that H =f.(G1), the mapf, induced by f identifiesVv \ H with Go. Thus,
the mapp "may be viewed as simply recording the fact that the monodrastion of
Go on the fibers off o p; factors throughG¢ x S;.

4. Dependence ofp;

As before, fixAg, A1, andd and writeB = B(Ag, A1, d). Fix b € X1 and letG;
be as in the preceding section.
The main result of this section is

Theorem 4.1 (Thurston classification). Two elementsf, ¢ € B are Thurston
equivalent via a pair¢g, ¢1 if and only if up to inner automorphismg, o ¢o. =
[65.. ds,] 0 py, i.e.

Go L) GgNSd

box l l[tbéﬁ*-ids,,]

Go —— Gg xSy

Pg

commutes.

An homeomorphismp; : (52, A1) — (52, A1), upon restricting toX; = S2 — Ay,
induces (by choice of a path; as in§2.2) an induced map.: Gi — G; whose
image is determined up to conjugacy .

Lemma 4.1. Supposep; sendsA; to itselfi =0, 1L Then¢i. sends the normal
subgroupN; = ker(.) to itself.
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Proof. Lety: (8% 1) — (X3, b) represent an element @f;. Then there is a ho-
motopy in Xo from ~ to the constant map dt . SingesendsA; to itself; =0, 1 it
sendsX, to itself. Hence composition of the homotopy withyields a homotopy in
Xo of ¢ o~ with the constant map at(b). ]

The lemma implies that there is an induced isomorphismt Go — Go since one
has

1 N1 G1 Go 1
(17) l b1 l 1 l b1, l l
1 N1 G1 Go 1

Since the middle vertical map is determined only up to inngtomorphisms ofG;
(which preserveN;), the induced mapp,, is determined only up to inner automor-
phisms ofGo.

Lemma 4.2. Two mapsf, g € B are Thurston equivalent via a paipg, ¢ if
and only if 1. the diagram

G, P1+ Gy

.| &

Go — Go
Pox
commutes up to pre- and postcomposition by inner automsmuhiand 2. ¢;, = do.,
up to inner automorphisms. The three inner automorphisnesadiowed to vary inde-
pendently.

Proof. Necessity is clear, by the preceding discussion.

To prove sufficiency, recall that two self-homeomorphisrhe gurface (orientable,
homeomorphic to a compact surface minus a finite set of poers isotopic if and
only if they induce the same map on fundamental group, up merirautomorphisms
(combine [7], Thms. 3.7.3 and 5.13.1). Supposg ¢1 are orientation-preserving
homeomorphisms for which (1) and (2) hold. Condition (2) liep that¢g is isotopic
to ¢1 through homeomorphisms agreeing # . Condition (1) implied there ex-
ists a lift (Eo such that¢go f = go q?o. Passing to maps on fundamental groups, and
using the fact thag. is injective, we have%o* =gt o ¢o. o f.. By condition (2), this
in turn is ¢1.. SO ¢, is isotopic t0q~50 through maps agreeing o, . Hencéo,(io)
is a pair of maps yielding a Thurston equivalence betwgen gand [l
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Lemma 4.3. Two branched coverg, g are Hurwitz equivalent via a paityg, ¢1
if and only if up to inner automorphismgs, , ids,] o p; = p, © ¢ox, i.€.

pr
Gy —— Gg X S([

box l l[@‘i*‘idsd]

Go —_— Gg X Sd
Pg

commutes.

Proof. It will be notationally convenient to pyt #£.

The sufficiency is clear: the assumptiog[, ids,] o oy = ps o ¢o. implies o, =
oy o ¢os, and therefore the hypothesis of Theorem 2.1 is satisfied.

To prove the necessity, arrange by suitable conjugations the diagram
in Lemma 4.2 to commute. Letl  =f.(Gi), H' = fJ(G1), N = f.(N1), and
N’ = fI(Ny). Since ¢1.(N1) = N1 (Lemma 4.1) we haveV’' = ¢o.(N). Thus there
is an induced magbo.: N \ H — N’\ H' making the diagrams

2 B 37

(18) ‘Il lq’

N\H —— N'\ H

box
and
Go P Go
(19) 7.| |7
N\H —— N'\ H’
Bo

commute (erect diagram (17) on (14)).
Pick coset representativgs & G, and define coset representativesof
H' in Go by g/ = ¢o.(g:)- Applying ¢o. to the equation

8ig8 = h(g.i)8i.o):
substitutingg :qbg*l(g), and then writingg forg yields
— -1 . _ .
gllg - ¢0*(h(¢0* (g)v l))g;_g(¢&1(g)) - h/(gv l)gz{.d’(g)‘
Thus by uniqueness and the definition/d{g, i) we have

' (g.1) = doh(d(8). 1),  0'(8) = 0 0 ¢, (g)-
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It follows from the definitions ofp, p’ that
(20) p'(8) = [46.. ids,] © p(g) © ¢5.(2)

i.e. p' o do. = [#L,.1ds,] o p.
Equations (18), (19), and (20) show that

[ id] [72.id]
_lg%id] | Lfodl

Go SN H([NS[[ (N\H)(IXIS(/ GB’NS[[

4"’{ [qs‘é*.id]l [%*-idll [$‘1’*,id]l

/ 1d id] 774 id

Go —2— H¥ xS, LN (N By s, L G s,

commutes. Applying the definition of, 7' as the composition from left to right of the
top and bottom, respectively, completes the proof. [l

Proof of Theorem 4.1.  As before it is convenient to gét= g.

The necessity follows immediately from Lemmas 4.2 and 4.3.

We now prove sufficiency. The assumptipp 3 ¢o. = [¢8, ,ids,] o 5, implies that
of = os o ¢o.. Theorem 2.1 then implies that there exists a homeomorphisrfor
which ¢o, ¢;1 yields a Hurwitz equivalence betwegh  apid

By Lemma 4.2 it is enough to show,, = ¢o.. Let x € Go be arbitrary. Then by
surjectivity (see the note at the end §8) there existg € G such that

p(g) = [(x,...), 1.
Focusing just on the first coordinate in tii factor, by hypothesis we have
p' o po(g) = [(ou(x), ..), ]
and by Lemma 4.3 we have
P o ¢ox(8) = [(¢1.(x), .- ), 1.

Equating the two we haveéy, (x) = ¢,,(x) for all x € Go, and the theorem is proved.
O
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