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Introduction. P. Lelong has introduced the notion of positivity in the
space of currents” on a complex manifold M. Given an irreducible analytic
set V in M, he showed that V' defines a closed positive current [V] by integrating
forms on the regular points of V. Such a current as [V] is now called an an-
alytic cycle. Thus he has enabled us to study some properties of analytic sets
from the view point of real enalysis ([5]). Then using geometric measure
theory of H. Federer ([1]), J. King proved his characterization theorem of an-
alytic cycles among closed positive currents on M ([4]). Since then, many
interesting results have been obtained on closed positive currents. For the
detail we refer readers to the excellent survey article by R. Harvey ([2]).

On the other hand, D. Sullivan has introduced the notion of a cone structure
C on C= manifold M, and that of C-structure currents in the space of currents on
M. He proved several general properties of C-structure currents with com-
pact support, and obtained beautiful applications to the study of leaves of foli-
ations on compact manifolds ([6]).

A complex manifold M has the natural cone structures C,, (k=1,2, -++) defined
by its almost complex structure and the notion of C,-structure currents is ex-
actly the same as that of positive currents of dimension k. Thus, as remarked
in [6], a cone structure C and C-structure currents generalize positive currents
on complex manifolds. However it seems to us that general properties of
C-structure currents have not been exploited so much as we would expect from
our knowledge on positive currents on complex manifolds. Therefore in
this paper we shall study cone structures and structure currents in more general
setting. For this purpose, first of all, we shall define our cone structures which
are more general than those defined in [6]. Namely in our definition of a cone
structure €2, we only need a closedness of (), while the “continuity” of Q is
necessary for the definition in [6]. Then closely following the case of com-
plex manifolds, we shall define the notion of Q-positive currents® and that of

(1) in the sense of G. de Rham.
(2) In conjunction with complex case, we prefer this terminology to that of a Q-structure
current.
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Q-sets which is an analogue of analytic set in complex case. In the last section,
we shall study their general properties.

Finally we should record our debt to papers [2] and [3] as well as to [6].
Several proofs adopted here are modifications of those given in [2]. The in-
teresting example guaranteed by Lemma 3-5 is just a slight change of ¢-geo-
metries in [3], and our Theorem 5-6 is a minor generalization of Theorem in

(3]-

1. Convex cones in vector spaces. Let I/ be a real vector space of finite
dimension. We write V'* for its dual space. For a non empty convex cone Q
in V, its dual cone Q* is defined by

Q*: = {aeV*; a(u)>0 for any usQ, u+0},

where Q) is the topological closure of Q in V. Then the following is well
known ([7]).

Lemma 1-1. Let Q be a non empty open convex cone in V.
(1) If Q*=0, then Q* is also an open convex cone and we have (Q*)*=Q. (ii)
We have Q* =+ if and only if Q contains no straight line.

We write {Q} for the linear subspace of V spanned by Q. Regarding Q asa
subset of {Q}, we write Q° for the set of the interior points in Q. Then Q°is a
non empty open convex cone in {Q}.

Lemma 1-2. Let Q be a non empty convex cone in V.
(1) We have Q*=0 if and only if Q° containsno straight line.
(i) If Q*==0, then we have

Q* = {ac€V*; a(u)=0 for any uc}

= {aeV*; a(u)=0 for any usQ} .

(iii) If Q*==0, then we have

Q= {ueV; aw)=0 for any acQ*}

= {ueV; a(u)=0 for any acQ*}.

Proof®. Fixing an inner product ( , ) on V, we identify V* with V.
(1) Put W;={Q}. We write W, for the orthogonal complement of W,. Set
Qt: = {ucsW,;; (u,v)>0 for any vel, v=0}.

Then Q' is the dual cone of Q°in W,. A vector v=u,+w,(w,E W}, w,&W,) is
in Q* if and only if w,eQt. Thus Q*+¢ if and only if Q*=¢@. Thus our
assertion follows from (ii) of Lemma 1-1.

(ii) We will only have to show

(3) Especially (ii) and (iii) are well known.
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Q*>{asV*; a(u)=0 for any uc} .
Take any v €V satisfying
(v,u)=0 for any ucQ.
Choose any weQ*. Then for any ¢>0, we have v+tweQ*. Thus v=lim

>0
(v+tw)eQ*.
(iif) We will only have to show

Qo {ueV; a(u)=0 for any a=Q*}.
Suppose a vector u=u,+u, (1, Wy, u,& W,) satisfies
(u, v)=0 for any vEQ*.

Since O*= {v,+7v,; v,€ QL and v,& W,}, we have (4;, v) =0 for any v Q' and
u,=0. From (ii) we have u,€(Q1)*, where (Q')* is the dual cone of Qt in W),
Since (Q1)*=Q° from (i) of Lemma 1-1, we have 4, Q’=0. q.e.d.

2. Convex cones in vector bundles. Let M be a connected C* manifold
of dimension m. Let z: E—~M be a real vector bundle over M of fibre dimen-
sionr. For x& M, we write E, for the fibre of E over x. We write z*: E¥*—>M
for the dual vector bundle of E. By a convex cone in E, we mean a non empty
subset ) of E such that for any x&M, Q.:=QNE, is a non empty convex
cone in E,. Wen Q is moreover closed (resp. open) in E, we call Q a closed
(resp. open) conves cone in E. We set

Q*: = N (Q)*.

Lemma 2-1. Suppose . is a closed convex cone in E. Then Q* is an open

subset of E*.

Proof. Suppose Q* were not open in E*. Then there exist a=Q* and a
sequence {a } CE*—Q* such that lim a;=a. Set x;=n*(a,) and =*(a)=x.

j=

Then we have lim x,=x. We may assume that there exists a compact subset
i»e

K with {x}CK. Choose a fibre metric on E|, and denote by S(E|) its unit
sphere bundle. Since o€ Q*, there exists ujeﬁ,‘; (= Q.;) such that ||u||=1
and o (u,)<0. Since {u} is in the compact subset QO N S(E| ), we may assume
{u} converges to ucQ. ThenueQ, and oc(u)=lji+m” a(u;)<0. Thisis a con-

tradiction. q.ed.

Corollary 2-2. Let Q be a closed convex cone in E. Suppose Q¥ :=(Q,)* is
not empty for any xM. Then Q* is an open convex cone in E*.
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3. Cone structures. We write TM (resp. T*M) for the tangent (resp.
cotangent) bundle of M. For a point x€M, we write T, M (resp. T*M) for the
tangent (resp. cotangent) space of M at x. For a non negative integer %, set

A TM: = TMN\-- ANTM (k-times)
and
AN'TM: = T*M A --- ANT*M (k-times) .
The fibre of A,TM (resp. A*TM) over x&M is denoted by A,T,M (resp.

A*T,M). Thus A,T,M (resp. A*T,M) is the vector space of k-vectors (resp.
k-covectors) of M at x. We remark A*TM is the dual bundle of A,TM.

DEerFINITION. By a cone structure of dimension k on M, we mean a closed
convex cone Q in A,TM satisfying one of the following mutually equivalent
conditions (cf. (i) of Lemma 1-2 and Corollary 2-2):

(3-1) QF: = Q*NA*T,M=*0Q for any x=M;
(3-2) QF contains no straight line for any x&M;
(3-3) Q* is an open convex cone in \*TM.

A k-dimensional oriented regular submanifold IV of M is called an Q-submanifold
if the following two conditions are satisfied:

(34) for each x& N, we have A,T.N N\ Q.= the half line which defines
the orientation of N,
and

(3-5) N has a locally finite volume.

The following three examples are well known.

ExampLE 3-1. Let E be an involutive oriented & dimensional subbundle of
TM. For each x=M, set Q,=the half line in A,E, defining the orientation.
Then Q:= U Q, is a cone structure of dimension & on M. Then a closed

reM

connected Q-submanifold is nothing but a closed leaf with locally finite volume.

ExamPpLE 3-2. Let M be an m dimensional connected complex manifold,
and J the natural almost complex structure on M. For each x& M, we write
SP, (T.M) for the closed convex cone in A, T, M generated by {uA Ju, A -+
AN Jug; g, u,c T ,M}. Then SP,,,,,(]W):———’ éJMSPk,,,(T,lW) is a cone structure

of dimension 2k on M. A closed SP, ,(M)-submanifold is exactly the same
as a non singular analytic set of pure dimension & (cf. [2]).

ExampLE 3-3. Let the notation be as in Example 3-2. Choose &k and p
so that k+p=m. For each x& M, we write \,,T,M for the subspace of 2k-
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vectors of type (k, k) at x. Set

WP, (T.M): = {ue A (T:M); uAve SP,, ,(T.M)
for any ueSP, (T,M)} .

Then WP, (M)= UMWP,,,,,(T,M) is a cone structure of dimension 2k on M. We

have SP, (M) WP, (M). A closed WP, ,(M)-submanifold is also a SP, ,(M)-
submanifold.

The following example will show that our cone structure is more general
than those in [6].

ExampLE 3—4. For (x, y)E R?, set

{(a, b); 0<b=<a} if x>0
Qi = {{(a,0); 0=a, b} if x=0
{(a,b); 0<a<b} if x<0.

Then Q= U £, » (disjoint) is a cone structure of dimension 1 on R?. 'This
,NeER ’

Q is not cone structure in the sense of [6], because Q has no “continuity”-pro-

perty.
Fix a continuous Riemannian metric g on M. Then it definens the natural
norm |u| on A, T,M. Set

Gi(T.M): = {uc \,T.M; |u| = 1 and u is a simple vector}.
For a k-covector e A*T,M, the comass ||a||* is defined by
lla|l*: = sup {a(w); uc Gi (T M)} .
For a k-vector uc A ,T,M, the mass ||u|| is defined by
llull: = sup{a(u); e A*"T,M and ||all* = 1} ,

(cf. [1]). Now let ¢ be a nowhere zero continuous k-form on M. For each
xe M, define Q4 , by

Q4 ,: = the closed convex cone in A,T,M generated by
{ueGi(T.M); ¢.(u) = li¢lI*},
and set Qo= U Q¢ ,.
reM

Lemma 3-5. The notation being as above, Qg is a cone structure of dimension
kon M.

Proof. Let Gi(T,M)" be the closed convex closure of G§ (T, M)in A, T, M.
We remark that
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(3-6) Gi(T.M" = {uc A\ T.M; |lull = 1},
and that for e A*T, M, we have
(-7) llell* = sup{a(w); ue Gi(T.M)"} .
Now G;(AI)A:=‘EEJEG;‘(T,AI)A isa closed subsetof AT, M and ¢: G§¥(TM)"—~R
is continuous. Since G (T, M) is compact, (3-7) implies that the mapping
é: us Gi (MY = llpawll*

is continuous. Therefore the subset

X: = {usGi(M)"; $(u) = $(u)}
is closed in G} (M)" and hence in A, TM. Since

Qs = {au; a>0 and us X},

Q4 1s a closed convex cone in A, TM. For any ues XN A,T.M, we have p(u)
=|l¢,l[*>0. Therefore ¢(u)>0 for any ucQy,, u+0. Thus Qg4 is a cone
structure of dimension & on M. q.e.a.

REMARK 3-6. (i) The cone structure Q4 constructed as above is inspired
by the ¢-geometry in [3]. In fact, in [3], the set ®:= {uc Gi(M); p(u)=||plI*}
is considered, where ||¢||*=sup{||p,||*; x=M}. Therefore a ¢p-submanifold in
[3] is in particular an Q4-submanifold. In general the converse is not true.

(ii) Suppose M is a Kihler manifold with a Kihler form . Then the
cone structure Q,+ of dimension 2k defined as above is exactly tha. of Example
3-2. 'This is a direct consequence of Wirtinger’s Inequality (cf. [2]).

(iii) In general the definition of Q4 depends upon the choice of a con-
tinuous Riemannian metric g on M. However a conformal change of g does
not affect Q4. Changing g with ||¢,|[*¥*g, we may assutme ||¢,|[¥*=1 for any
xeM.

4. Current.. In this section we fix some terminology from current theory
(e.g. [1]). We assume that } is a connected C= manifold with a3 C° Riemannian
metric.

Let K*(M) denote the real vector space of continuous k-forms with com-
pact support on M with the usual inductive limit topology. Let 9*(M) be the
real vector space of C~ k-forms with compact support with the usual inductive
limit topology. The space D;i(M) of currents of dimension k on M is by definition
the topological dual space of 9),(M). The topological dual space Ki(M) of
K*(M) is a subset of 94(M) and by definition the space of currents of dimension k
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representable by integration.®
For Te Ki(M), the total variation measure ||T|| is defined by

ITI(f): = sup {IT(¢)|; b€ D (M), llplI*< f(x) for any xeM},
where f& K(M), f=0. Then the following is well known (e.g. [1]).

Lemma 4-1. Let T Ki(M). Then there exists a ||T||-measurable k-
vector field.

T: xe M AT M
satisfying the following three conditions:
4-1)  for any p= D (M), we have

T(x)) = lim TXs:,00)
¢o(T(x)) = lim IT1I(B(.€))

Sfor \|T|| almost all x in M, where B(x, €) is the E-ball with center x and X, o) 15 its
characteristic function;

42) T =1 for ||TI| almostall x in M;
and

(4+-3) 7(¢) = | o TeNaTIe)

for any p KHM).
Moreover if there exists another ||T||-measurable k-vector field S satisfying
(4-1), (4-2) and (4-3), then

T(x) = S(x) for ||T)| almost all x in M.
DeFiniTION.  Let T'e Kj(M) and T be the k-vector field as in Lemma
4-1. By abuse of language, we call T the density k-vector field of T.

5. Q-positive currents. In this section we fix an m-dimensional con-
nected C~ manifold with a C° Riemannian metric g and a cone structure
of dimension k& on M.

DEFINITION. A k-form ¢ D¥(M) is called Q-positive if ¢(u)=0 for any
ucsQ. A current Te Di(M) is called Q-positive if T(¢p)=0 for any Q-positive
k-form ¢ D(M).

ExampLE 5-1. Let N be an Q-submanifold of M (cf. section 3). Define

(4) For any 7€ Kx(M), using Riesz representation theorem, the domain of definition T can
be naturally extended to all bounded Borel measurable k-forms with compact support
(cf. 4-3).
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a current [N]e 9i(M) by
V)= o

for any k-form ¢ D(M). Then [N] is Q-positive. Moreover if N is closed,
then [/V] is a closed current.

DreFINITION. A C* k-form w on M is called a Q-transversal k-form (ac-
cording to [6]) if w(x)>0 for any us Q.

Lemma 5-1. There exists an Q-transversal k-form on M.

Proof. From Corollary 2-2, we know Q* is an open convex cone in ATM.
Thus for each point x& M, there exist an open neighbourhood U and a C*
k-form o on U such that a(u)>0 for any u=Q, (yeU). Therefore there
exist a locally finite open covering {U )} of M and C* k-forms a; on U; with
aw)>0 for any ucQ, (yeU,). Let {p} be a partition of unity subordinat-
ing to {U;}. Then o=}« is a Q-transversal k-form q.e.d.

Theorem 5-1. If T is an Q-positive current in Diy(M), then T is represen-
table by integration (i.e., T € Ki(M)).

Proof. Choose x=M arbitrarily and fix it. From Corollary 2-2, we
know Q* is an open convex cone in A*TM. Therefore if we choose a sufficient-
ly small open neighbourhood U of #, there exist Q-positive k-forms ¢!, -+,
¢'e D(M) such that {p}, -+, ¢!} is a basis for A*T,M for any ye U. Choosing
U sufficiently small, we may assume U is oriented. Then A*T,M and A"*T,M
are dual to each other. Therefore, choosing U sufficiently small, there exist
(m—Fk)-forms @, ---, 0'c D" ¥(M) such that {f}, ---, 6!} is the dual basis for
A™*T ,M for any ye U. On U, we can write T as

T=3Tp
where T,& Di(U) (=Di(U)). Then for any fe DY(U) with £=0,f¢' is Q-
positive. So we have
OST(f¢) = B T(fO'AY) = T(fO'AS) = T

Therefore T; is a positive Radom measure. Therefore T'|,= Ki(U). Since
x is arbitrary, we can prove T & Kiy(M). q.e.d.

Theorem 5-2. Let T K(M) and T the density k-vector field of T (cf.

section 4). Then T is Q-positive if and only if ?(x)EQ,, for |T|| almost all x in
M.

Proof. Suppose T is Q-positive. Then for any Q-positive k-form
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dE DH(M), we have T(Xp, 0p)=0. Thus (4-1) implies ¢,(f(x))§0 for any
Q-positive k-form = D(M). Since Q* 1s open in A*TM, we see
(5-1) Q¥ = {¢.; = D"(M) and Q-positive}.

Therefore we have a(f(x))gO for any a=Q¥. Then (iii) of Lemma 1-2 im-
plies f(x)eﬁ,,:ﬂ.,. The “if”-part is trivial. q.e.d.

Proposition 5-3. Let QPi(M) be the set of all Q-positive currents in
DM). Then QPi(M) is a closed convex cone in Di(M), and contains no straight
line.

Proof. Let {T'} be a sequence in QP;(M) such that lim T ,=T& Di(M)
jroe

with respect to the simple topology. Then for any Q-positive k-form ¢,
we have T(¢)=lim T (¢)=0. Thus T€QPi(M). Clearly QPi(M) is a

convex cone. Suppose there existed S€QPi(M) and T Dj(M) such that
{S+1tT; te R} CQPi(M).

Then we must have

(5-2) T(¢) = 0 for any Q-positive k-form ¢ in D*(M).

From Theorem 5-1, we know T'e Kj(M). Let T be the density k-vector field
of T. Then from (4-1) we know that for ||T||-almost all x in M, we have

(5-3) qs,(f(x)) =0 for any Q-positive k-form ¢ in D(M).

Since QF is open, (5-1) and (5-3) imply that ?(x):O for ||T|| almost all x
in M. Then from (4-2) we can conclude that the support of ||T||=@. Thus
T=0. q.e.d.

Proposition 5-4. Let &i(M) be the set of currents with compact \support on
M. Then for any Q-transversal k-form o, the subset

A: = {TeQP|(M)NEIM); T(w) = 1}
is relatively compact in Di(M).

Proof. It suffices to show that for any n€ QXM), {| T(n)|; T€ A} is
bounded. Let K be the support of %. Set ¢x: =inf {o(u); uEQ,, |ju||=1,

x€K}. Then ¢x>0. Take any T’ A4 and write T for its density k-vector field
(cf. Theorem 5-1). Then we have

1) = 1 7 TE)aTIE) =< 12T w0)1a1T(x)
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< sup [ln1*{_di7Il.
IEK K
On the other hand, we have

1= T(w) = | o T@)ITIE)

2 | o T@MITIE = cf dITII.

Therefore we see

sup ||.||*
1T =——F—
K

for any Te A. q.e.d.

DEerFINITION. A closed subset X of M is called a Q-subset if there exists an
open dense subset U of X such that

(54) U is a connected Q-submanifold and the Hausdorff (k-1)-dimensional
measure of X~ U is zero.

Then we define the current [X]€ Di(M) by [X]:=[U] (cf. Example 5-1).
This is independent of the particular choice of U satisfying (54).

Lemma 5-2. The current [X] is closed and Q-positive.

Proof. It remains to show [X] is closed. We know the support of d[X]
is in X~ U. Since [X]=[U] is 2 locally flat current (cf. p. 316 in [2]), d[X] is
also a locally flat current of dimension (k-1). Then we know d[X]=0, because
the Hausdorff (k-1)-dimensional measure of the support of d[X] is zero (cf.
4.1. [1]). q.e.d.

Lemma 5-3. Let T be an Q-positive closed current. Suppose the suport of
Tis in an Q-subset X. Then we have T=a[X] (a=0).

Proof. The proof goes similarly as in [2]. Since T is in Kj(M) and
dT=0, T is a locally flat current of dimension k.. Remark [X] is also a locally
flat current of dimension k. Set S=X~U. Then U is a closed Q-submanifold
in M~S and Ty is a closed locally flat current of dimension & with support in
U. Thus there exists ac R with T'|,=a[U] on M~S. Therefore T-a[X] is a
locally flat current of dimension & with support in S. Since the Hausdorff
k-dimensional measure of S is zero, we have T-a[X]=0. Clearly a=0. q.e.d.

Theorem 5-5. Let X be an Q-subset. Then {a[X]; a=0} is an extreme
ray in the closed convex cone of Q-positive closed currents.

Proof. The proof goes similarly as in [2|. Fix an Q-transversal k-form
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o on M (cf. Lemma 5-1). Let K be any compact subset of M. Let T X}(M)
and T the density k-vector field of 7. Then we have

(5-5) T(Xx) = | o (T@)ITII)

< sup loIITIK) (. 4-2).
If T is moreover Q-positive, then we have
(5-6) el TI(K) = T(Xgw)

where cy=inf {o(u); u€Q,, |[u||=1, x€ K} >0. From (5-5) and (5-6), we know
that for an Q-positive current T,

(5-7) the support of T=the support of T N\ w.

Now suppose [X]=S+T where S, T are closed Q-positive currents. Then
from (5-7), we have

the support of S = the upoort of SAw
C the support of (S+T)Aw
= the support of [X|A »
= the support of [X].

From Lemma 5-3, we have S=a[X], a=0. q.e.d.

Theorem 5-6. Let ¢ be a nowhere zero closed k-form on M. Let g be a
C°-Riemannian metric on M such that ||¢p,||*=1 for any x&M®. Let T be a
closed Qg-positive current. Then T is homologically volume minimizing®.

Proof. Let T be the density k-vector field of 7. From Theorem 5-2,
we have

(5-8) f(x)e(ﬂd,), for ||T|| almost all x in M.

On the other hand (3-6) and (4-2) imply

(5-9)  T(x)eGi(T.M)y" for ||T|| almost all x in M.
Then (5-8) and (5-9) imply

(5-10) gb,,(?(x)) =1 for ||T|| almost all x in M.

Let K be any compact subset of M. Remarking ¢ is a Qq-transversal k-

(5) Confer (iii) of Remark 3-6.
(6) By this, we mean that for any current R in D}+; with compact support, we have ||T[(K)
=<|xxT+dR)| for any compact subset K of M.
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form, (5-10) implies
XT(6) = | $LTEITIE = ITIEK).
Let R be any current in 9},,(M) with compact support. Then we have
ITI(K) = Xk T(¢)

= (XgT+dR) (¢) (¢ being closed)
= |[XxkT+dR||(M),

where the last inequality follows from (5-5) applied to the compact set K U the
support of dR and we put ||[XxT+dR||(M)= if dReE Ki(M). q.e.d.
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